CN101714577A - 横向dmos晶体管及其制造方法 - Google Patents
横向dmos晶体管及其制造方法 Download PDFInfo
- Publication number
- CN101714577A CN101714577A CN200910178836A CN200910178836A CN101714577A CN 101714577 A CN101714577 A CN 101714577A CN 200910178836 A CN200910178836 A CN 200910178836A CN 200910178836 A CN200910178836 A CN 200910178836A CN 101714577 A CN101714577 A CN 101714577A
- Authority
- CN
- China
- Prior art keywords
- gate electrode
- type
- ldmos transistor
- tagma
- locos
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title description 9
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 210000000746 body region Anatomy 0.000 abstract description 5
- 239000000758 substrate Substances 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 10
- 229920002120 photoresistant polymer Polymers 0.000 description 9
- 239000012535 impurity Substances 0.000 description 8
- 239000010408 film Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
- H01L29/7825—Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66674—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/66681—Lateral DMOS transistors, i.e. LDMOS transistors
- H01L29/66704—Lateral DMOS transistors, i.e. LDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7831—Field effect transistors with field effect produced by an insulated gate with multiple gate structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
- H01L29/0852—Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
- H01L29/0873—Drain regions
- H01L29/0878—Impurity concentration or distribution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明的目的是提供一种LDMOS晶体管及其制造方法,可以提高LDMOS晶体管的漏极-源极之间的阻抗。LDMOS晶体管包括:P型本体区,形成在N阱中;源极区和源极接触区,形成在P型本体区中;漏极区,形成在与P型本体区隔开一定距离处;LOCOS,形成在P型本体区和漏极区之间的N阱的表面上;主栅电极,形成在LOCOS和N阱上;以及辅栅电极,形成在源极区和源极接触区之间。
Description
本申请要求于2008年10月01日提交的韩国专利申请第10-2008-0096626号的优先权,其全部内容结合于此作为参考。
技术领域
本发明涉及半导体器件,更具体地,涉及LDMOS晶体管及其制造方法。
背景技术
理想情况下,作为功率半导体器件,可以在接近半导体的理论击穿电压下工作的器件是优选的。
因此,在通过集成电路控制采用高电压的外部系统的情况下,该集成电路需要一个用于控制高电压的内置器件,该内置器件设置有具有高击穿电压的结构。
即,在具有高电压直接施加其上的晶体管的漏极或源极中,要求漏极和源极与半导体衬底之间的穿通电压,以及漏极和源极与阱或衬底之间的击穿电压高于该高电压。
高电压半导体器件中,用于高电压的LDMOS(Lateral DiffusedMOS,横向扩散MOS)具有适于高电压的结构,因为该LDMOS具有由漂移区分开并由栅电极控制的沟道区和漏极电极。图1示出了示例性的LDMOS晶体管的截面图。
参照图1,为了调节聚集在栅极边缘的电场以提高漏极-源极击穿电压BVdss,在漂移区形成LOCOS 130。
尽管LOCOS 130对提高击穿电压BVdss是有效的,但与没有LOCOS应用到其上的LDMOS相比,鉴于漏极-源极之间的阻抗,LOCOS 130不是有利的。
然而,如果漂移区的浓度增强以提高漏极-源极之间的阻抗,则击穿电压BVdss相应于此降低。即,击穿电压BVdss和漏极-源极之间的阻抗具有一种权衡关系。
因此,当维持击穿电压BVdss的电平时,提高漏极-源极之间的阻抗存在限制。
发明内容
因此,本发明旨在提供一种LDMOS晶体管及其制造方法。
本发明的一个目的是提供一种LDMOS晶体管及其制造方法,其可以提高LDMOS晶体管的漏极-源极之间的阻抗。
本公开的其他优点、目的和特征一部分将在下文说明书中阐述,一部分通过对下文的审视对于本领域的普通技术人员将变得明显或者可以从本发明的实践中获得。通过本发明所写的说明书及其权利要求以及附图中特别指出的结构,可以实现和获知本发明的目的和其他优点。
为了实现这些目的和其他优点以及根据本发明的目的,如在本文中所实施的和概括描述的,一种LDMOS晶体管,包括:P型本体区(body region),形成在N阱中;源极区和源极接触区,形成在P型本体区中;漏极区,形成为与P型本体区隔开一个距离;LOCOS,形成在P型本体区和漏极区之间的N阱的表面上;主栅电极(main gate electrode),形成在LOCOS和N阱上;以及辅栅电极(sub-gate electrode),形成在源极区和源极接触区之间。
在本发明的另一方面中,一种用于制造LDMOS晶体管的方法,包括以下步骤:在N阱中形成P型本体区;在P型本体区中形成源极区和源极接触区;在源极区和源极接触区之间形成辅栅电极(sub-gate electrode);形成在与P型本体区隔开一个距离的漏极区;在P型本体区和漏极区之间的N阱的表面上形成LOCOS;以及在LOCOS和N阱上形成主栅电极。
应当理解,本发明的上述总体描述和以下的具体描述都是示例性的和说明性的,并且旨在提供对所要求的本发明的进一步解释。
附图说明
所含附图用来提供对本公开的进一步理解,其结合到本申请中,构成本申请的一部分,图示出本公开的实施例,并与说明书一起解释本公开的原理。在附图中:
图1示出了相关技术的LDMOS晶体管的截面图。
图2示出了根据本发明的优选实施例的LDMOS晶体管的截面图。
图3A~图3C示出了根据本发明的优选实施例的制造LDMOS晶体管的方法的步骤的截面图。
具体实施方式
现在将详细参考本发明的具体实施例,其举例示于附图中。无论在何种情况下,全部附图使用相同参考编号来指代相同或类似的部分。
图2示出了示出了根据本发明的优选实施例的LDMOS晶体管的截面图。参考图2,LDMOS晶体管包括:N阱210,形成在P型半导体衬底200上;LOCOS 230,形成在N阱210的表面上;漏极区260,形成在N阱210中,在LOCOS 230的一侧;以及掺杂N+型杂质的源极区252,掺杂P+型杂质的源极接触区254;以及具有沟槽形状的第二栅电极256,形成在P型本体区250中,该P型本体区250与漏极区260隔开一定的距离,在LOCOS 230的另一侧上。
源极区252和漏极区260形成在LOCOS 230的相对侧而彼此隔开。栅极绝缘薄膜240形成在衬底的不包含LOCOS 230的表面上。
第一栅电极270形成在源极区252和漏极区260之间的LOCOS230上。
虽然相关技术的LDMOS晶体管仅具有在源极区252和漏极区260之间形成的第一电流路径A,但本发明的LDMOS晶体管,通过在源极区252和源极接触区254之间形成沟槽以形成第二栅极,可以另外形成第二电流路径B。
由于第一电流路径A从源极区252和漏极区260之间的LOCOS 230的下侧绕道,因而使用常规的LOCOS的LDMOS晶体管的第一电流路径A,即形成在源极区252和漏极区260之间的沟道区具有源极-漏极之间的阻抗所造成的损耗。
因此,在本发明中,通过形成第二栅电极256形成另外的垂直沟道以形成另外的电流路径。
相应地,由于该另外的电流路径提高了总电流密度,因而可以提高源极-漏极之间的阻抗。
此外,通过提高电流密度(甚至无需改变漂移区的浓度),不会发生与源极-漏极之间的阻抗有权衡关系的源极-漏极击穿电压BVdss的下降。
将参照附图根据本发明的优选实施例描述制造LDMOS晶体管的方法。
图3A~图3C示出了根据本发明的优选实施例的制造LDMOS晶体管的方法的步骤的截面图。
参照图3A,在P型半导体衬底200上形成NBL 205后,在NBL205上形成N阱210。
在N阱210中形成P型本体区250和LOCOS 230。
例如,通过在半导体衬底上沉积氧化硅薄膜(半导体衬底中掺杂有P型杂质)、在氧化硅薄膜上涂敷光刻胶以及利用掩模对光刻胶进行曝光和显影以形成图样。
然后,向半导体衬底中注入杂质以形成第一离子注入区后,去除光刻胶。
在氧化硅薄膜上再次涂敷光刻胶,并利用掩模对光刻胶进行曝光和显影以形成图样。
然后,通过向半导体衬底注入杂质形成第二离子注入区后,去除光刻胶。
然后,进行热处理并且在其上沉积氮化硅薄膜后,在氮化硅薄膜上涂敷光刻胶,并且利用掩模对光刻胶进行曝光和显影以形成图样。通过使用光刻图样作为掩模刻蚀氮化硅薄膜区域后,去除光刻胶。
然后,执行氧化步骤以形成LOCOS 230。将氧化应用到高电压区的整个部分。
在N阱210上形成LOCOS 230,LOCOS 230与P型本体区250隔开一定距离。
参照图3B,在P型本体区250中形成沟槽以形成第二栅电极256。通过在沟槽中埋置氧化物可以形成第二栅电极256。
参照图3C,向N阱210中注入杂质离子以形成N+型漏极区260和P型本体区250。
通过制成选择性的P型杂质离子(例如born B)形成P型本体区250,通过使用预定的离子注入掩模(未示出)以固定的剂量(dose)注入P型杂质离子。
P型本体区250的部分用来作为LDMOS晶体管的沟道区。
在P型本体区250中形成掺杂P+型杂质的源极接触区254和掺杂N+型杂质的源极区252,源极接触区254和源极区252位于第二栅电极256的相对侧上。
然后,在衬底上形成第一栅电极270,栅极绝缘层240设置在衬底和第一栅电极270之间。
将偏置电压同时施加至第一栅电极270和第二栅电极256上,当施加偏置电压时,由于存在第二栅电极256,随该偏执电压形成沟道区A和垂直沟道区B,沟道区A从P型本体区250开始在LOCOS 230的下侧绕道至漏极区260,垂直沟道区B从源极区252至漏极区260。
即,在LOCOS 230的下侧形成从P型本体区250开始的第一电流路径A,以及在P型本体区250和漏极区260之间形成第二电流路径B。
对比相关技术,第二电流路径B是由沟槽型第二栅电极256的形成而产生的另外的电流路径,以与相关技术的电流路径A一起形成双电流路径。
如上述所描述的,本发明的LDMOS晶体管及其制造方法具有以下优点。
由于双电流路径提高了总电流密度,双电流路径可以提高源极-漏极之间的阻抗。
无需改变漂移区的浓度就可提高电流密度,这可以防止击穿电压BVdss的下降,而击穿电压BVdss与Rdson具有权衡关系。
在不背离本发明的精神和范围的前提下,可以对本发明作各种修改及变化,这对于本领域的技术人员而言是显而易见的。因此,本发明意在涵盖在所附权利要求及其等同替换的范围内的对本发明的修改和变化。
Claims (8)
1.一种LDMOS晶体管,包括:
P型本体区,形成在N阱中;
源极区和源极接触区,形成在所述P型本体区中;
漏极区,形成为与所述P型本体区隔开一个距离;
LOCOS,形成在所述P型本体区和所述漏极区之间的所述N阱的表面上;
主栅电极,形成在所述LOCOS和所述N阱上;以及
辅栅电极,形成在所述源极区和所述源极接触区之间。
2.根据权利要求1所述的LDMOS晶体管,其中所述辅栅电极是形成在所述源极区和所述源极接触区之间的沟槽型栅电极。
3.根据权利要求2所述的LDMOS晶体管,其中所述辅栅电极是通过在所述沟槽中埋置氧化物形成的栅电极。
4.根据权利要求1所述的LDMOS晶体管,其中所述辅栅电极在所述源极区和所述漏极区之间形成垂直沟道区。
5.一种用于制造LDMOS晶体管的方法,包括以下步骤:
在N阱中形成P型本体区;
在所述P型本体区中形成源极区和源极接触区;
在所述源极区和所述源极接触区之间形成辅栅电极;
形成与所述P型本体区隔开一个距离的漏极区;
在所述P型本体区和所述漏极区之间的所述N阱的表面
上形成LOCOS;以及
在所述LOCOS和所述N阱上形成主栅电极。
6.根据权利要求5所述的方法,其中形成辅栅电极的步骤包括在所述源极区和所述源极接触区之间形成沟槽的步骤。
7.根据权利要求5所述的方法,其中形成辅栅电极的步骤包括在所述沟槽中埋置氧化物的步骤。
8.根据权利要求5所述的方法,其中形成辅栅电极的步骤包括在所述源极区和所述漏极区之间形成垂直沟道区的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2008-0096626 | 2008-10-01 | ||
KR1020080096626A KR101009399B1 (ko) | 2008-10-01 | 2008-10-01 | Ldmos 트랜지스터 및 그 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101714577A true CN101714577A (zh) | 2010-05-26 |
Family
ID=42056461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910178836A Pending CN101714577A (zh) | 2008-10-01 | 2009-09-28 | 横向dmos晶体管及其制造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100078715A1 (zh) |
KR (1) | KR101009399B1 (zh) |
CN (1) | CN101714577A (zh) |
TW (1) | TW201015719A (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102097327A (zh) * | 2009-12-02 | 2011-06-15 | 万国半导体股份有限公司 | 双通道沟槽ldmos晶体管和bcd工艺 |
CN102130060A (zh) * | 2010-12-24 | 2011-07-20 | 日银Imp微电子有限公司 | 一种用于直接驱动功率器件的高压栅驱动芯片的制备方法 |
CN102487082A (zh) * | 2010-12-02 | 2012-06-06 | 上海华虹Nec电子有限公司 | 横向沟槽金属氧化物半导体器件 |
WO2012094780A1 (zh) * | 2011-01-10 | 2012-07-19 | 电子科技大学 | Soi横向mosfet器件和集成电路 |
CN102723304A (zh) * | 2012-05-31 | 2012-10-10 | 日银Imp微电子有限公司 | 用于直接驱动功率器件的n阱高压栅驱动芯片的制备方法 |
CN102800688A (zh) * | 2011-05-27 | 2012-11-28 | 旺宏电子股份有限公司 | 半导体结构及其操作方法 |
CN102862389A (zh) * | 2011-07-07 | 2013-01-09 | 佳能株式会社 | 驱动电路、液体排放衬底和喷墨打印头 |
CN103632962A (zh) * | 2012-08-20 | 2014-03-12 | 北大方正集团有限公司 | 一种dmos管的制造方法及装置 |
WO2021120766A1 (zh) * | 2019-12-18 | 2021-06-24 | 东南大学 | 横向双扩散金属氧化物半导体场效应管 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8174071B2 (en) * | 2008-05-02 | 2012-05-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | High voltage LDMOS transistor |
KR20100064263A (ko) * | 2008-12-04 | 2010-06-14 | 주식회사 동부하이텍 | 반도체 소자 및 이의 제조 방법 |
US8921933B2 (en) | 2011-05-19 | 2014-12-30 | Macronix International Co., Ltd. | Semiconductor structure and method for operating the same |
TWI419333B (zh) * | 2011-05-19 | 2013-12-11 | Macronix Int Co Ltd | 半導體結構及其操作方法 |
US8962397B2 (en) * | 2011-07-25 | 2015-02-24 | Microchip Technology Incorporated | Multiple well drain engineering for HV MOS devices |
JP2013069861A (ja) * | 2011-09-22 | 2013-04-18 | Toshiba Corp | 半導体装置 |
JP6198292B2 (ja) * | 2012-08-17 | 2017-09-20 | ローム株式会社 | 半導体装置および半導体装置の製造方法 |
US10038061B2 (en) | 2016-07-08 | 2018-07-31 | International Business Machines Corporation | High voltage laterally diffused MOSFET with buried field shield and method to fabricate same |
US10367086B2 (en) | 2017-06-14 | 2019-07-30 | Hrl Laboratories, Llc | Lateral fin static induction transistor |
CN110491941B (zh) * | 2018-05-15 | 2023-03-24 | 立锜科技股份有限公司 | 高压元件及其制造方法 |
US11569375B2 (en) | 2020-04-17 | 2023-01-31 | Hrl Laboratories, Llc | Vertical diamond MOSFET and method of making the same |
CN111477681A (zh) * | 2020-04-23 | 2020-07-31 | 西安电子科技大学 | 双通道均匀电场调制横向双扩散金属氧化物元素半导体场效应管及制作方法 |
CN111477680A (zh) * | 2020-04-23 | 2020-07-31 | 西安电子科技大学 | 双通道均匀电场调制横向双扩散金属氧化物宽带隙半导体场效应管及制作方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050001265A1 (en) * | 2003-06-13 | 2005-01-06 | Satoshi Shiraki | Semiconductor device and method for manufacturing the same |
CN101095218A (zh) * | 2004-08-03 | 2007-12-26 | 飞兆半导体公司 | 使用沉陷沟槽具有顶部漏极的半导体功率器件 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6064088A (en) | 1998-06-15 | 2000-05-16 | Xemod, Inc. | RF power MOSFET device with extended linear region of transconductance characteristic at low drain current |
JP2002094063A (ja) * | 2000-09-11 | 2002-03-29 | Toshiba Corp | 半導体装置 |
US6900101B2 (en) * | 2003-06-13 | 2005-05-31 | Texas Instruments Incorporated | LDMOS transistors and methods for making the same |
KR100641555B1 (ko) * | 2004-12-30 | 2006-10-31 | 동부일렉트로닉스 주식회사 | 트랜치 소스 구조를 갖는 수평형 디모스 트랜지스터 |
US7473976B2 (en) * | 2006-02-16 | 2009-01-06 | Fairchild Semiconductor Corporation | Lateral power transistor with self-biasing electrodes |
-
2008
- 2008-10-01 KR KR1020080096626A patent/KR101009399B1/ko not_active IP Right Cessation
-
2009
- 2009-09-23 TW TW098132170A patent/TW201015719A/zh unknown
- 2009-09-28 CN CN200910178836A patent/CN101714577A/zh active Pending
- 2009-09-29 US US12/568,871 patent/US20100078715A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050001265A1 (en) * | 2003-06-13 | 2005-01-06 | Satoshi Shiraki | Semiconductor device and method for manufacturing the same |
CN101095218A (zh) * | 2004-08-03 | 2007-12-26 | 飞兆半导体公司 | 使用沉陷沟槽具有顶部漏极的半导体功率器件 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102097327B (zh) * | 2009-12-02 | 2013-10-23 | 万国半导体股份有限公司 | 双通道沟槽ldmos晶体管和bcd工艺 |
CN102097327A (zh) * | 2009-12-02 | 2011-06-15 | 万国半导体股份有限公司 | 双通道沟槽ldmos晶体管和bcd工艺 |
CN102487082A (zh) * | 2010-12-02 | 2012-06-06 | 上海华虹Nec电子有限公司 | 横向沟槽金属氧化物半导体器件 |
CN102130060A (zh) * | 2010-12-24 | 2011-07-20 | 日银Imp微电子有限公司 | 一种用于直接驱动功率器件的高压栅驱动芯片的制备方法 |
CN102130060B (zh) * | 2010-12-24 | 2013-02-20 | 日银Imp微电子有限公司 | 一种用于直接驱动功率器件的高压栅驱动芯片的制备方法 |
WO2012094780A1 (zh) * | 2011-01-10 | 2012-07-19 | 电子科技大学 | Soi横向mosfet器件和集成电路 |
CN102800688B (zh) * | 2011-05-27 | 2015-03-04 | 旺宏电子股份有限公司 | 半导体结构及其操作方法 |
CN102800688A (zh) * | 2011-05-27 | 2012-11-28 | 旺宏电子股份有限公司 | 半导体结构及其操作方法 |
CN102862389A (zh) * | 2011-07-07 | 2013-01-09 | 佳能株式会社 | 驱动电路、液体排放衬底和喷墨打印头 |
CN102723304B (zh) * | 2012-05-31 | 2014-07-16 | 日银Imp微电子有限公司 | 用于直接驱动功率器件的n阱高压栅驱动芯片的制备方法 |
CN102723304A (zh) * | 2012-05-31 | 2012-10-10 | 日银Imp微电子有限公司 | 用于直接驱动功率器件的n阱高压栅驱动芯片的制备方法 |
CN103632962A (zh) * | 2012-08-20 | 2014-03-12 | 北大方正集团有限公司 | 一种dmos管的制造方法及装置 |
WO2021120766A1 (zh) * | 2019-12-18 | 2021-06-24 | 东南大学 | 横向双扩散金属氧化物半导体场效应管 |
US11894458B2 (en) | 2019-12-18 | 2024-02-06 | Southeast University | Lateral double-diffused metal oxide semiconductor field effect transistor |
Also Published As
Publication number | Publication date |
---|---|
TW201015719A (en) | 2010-04-16 |
US20100078715A1 (en) | 2010-04-01 |
KR101009399B1 (ko) | 2011-01-19 |
KR20100037341A (ko) | 2010-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101714577A (zh) | 横向dmos晶体管及其制造方法 | |
CN106663699B (zh) | 用于具有经级联resurf植入部及双缓冲器的ldmos装置的方法及设备 | |
US7605040B2 (en) | Method of forming high breakdown voltage low on-resistance lateral DMOS transistor | |
US7635621B2 (en) | Lateral double-diffused metal oxide semiconductor (LDMOS) device with an enhanced drift region that has an improved Ron area product | |
US8058129B2 (en) | Lateral double diffused MOS device and method for manufacturing the same | |
US7745294B2 (en) | Methods of manufacturing trench isolated drain extended MOS (demos) transistors and integrated circuits therefrom | |
US20100140700A1 (en) | Semiconductor device and method for manufacturing the same | |
US7408234B2 (en) | Semiconductor device and method for manufacturing the same | |
US7898030B2 (en) | High-voltage NMOS-transistor and associated production method | |
JP2001015741A (ja) | 電界効果トランジスタ | |
US20140159153A1 (en) | Rf ldmos device and method of forming the same | |
US20170194485A1 (en) | Split-gate superjunction power transistor | |
US20130056824A1 (en) | Semiconductor device and manufacturing method for the same | |
US11329153B2 (en) | Method for manufacturing laterally diffused metal oxide semiconductor device and semiconductor device | |
US9831338B1 (en) | Alternating source region arrangement | |
US8686500B2 (en) | Double diffused metal oxide semiconductor device and manufacturing method thereof | |
US9666671B2 (en) | Semiconductor device with composite drift region and related fabrication method | |
KR20110078621A (ko) | 반도체 소자 및 그 제조 방법 | |
US10312368B2 (en) | High voltage semiconductor devices and methods for their fabrication | |
CN102694020B (zh) | 一种半导体装置 | |
US9397191B2 (en) | Methods of making a self-aligned channel drift device | |
KR20090070513A (ko) | 반도체 소자 및 그 제조방법 | |
US7579649B2 (en) | Trench field effect transistor and method of making it | |
KR20100046354A (ko) | Ldmos 트랜지스터 및 그의 제조 방법 | |
EP4099393A1 (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20100526 |