CN101689570A - 采用耗尽模式GaN基FET的串叠电路 - Google Patents

采用耗尽模式GaN基FET的串叠电路 Download PDF

Info

Publication number
CN101689570A
CN101689570A CN200880009064A CN200880009064A CN101689570A CN 101689570 A CN101689570 A CN 101689570A CN 200880009064 A CN200880009064 A CN 200880009064A CN 200880009064 A CN200880009064 A CN 200880009064A CN 101689570 A CN101689570 A CN 101689570A
Authority
CN
China
Prior art keywords
active layer
layer
mode fet
depletion mode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880009064A
Other languages
English (en)
Other versions
CN101689570B (zh
Inventor
迈克尔·墨菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Integrations Inc
Original Assignee
Velox Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Velox Semiconductor Corp filed Critical Velox Semiconductor Corp
Priority to CN201210189604.6A priority Critical patent/CN102694013B/zh
Publication of CN101689570A publication Critical patent/CN101689570A/zh
Application granted granted Critical
Publication of CN101689570B publication Critical patent/CN101689570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0883Combination of depletion and enhancement field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/226Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with junction-FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/0948Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET using CMOS or complementary insulated gate field-effect transistors
    • H03K19/09482Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET using CMOS or complementary insulated gate field-effect transistors using a combination of enhancement and depletion transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0952Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using Schottky type FET MESFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Logic Circuits (AREA)

Abstract

一种电路包括输入漏极节点、输入源极节点和输入栅极节点。该电路还包括III族氮化物耗尽模式FET,其具有源极、漏极和栅极,其中,耗尽模式FET的栅极联接到使耗尽模式FET保持在其导通状态的电势。另外,该电路还包括增强模式FET,其具有源极、漏极和栅极。耗尽模式FET的源极串联联接到增强模式FET的漏极。耗尽模式FET的漏极用作输入漏极节点,增强模式FET的源极用作输入源极节点,并且增强模式FET的栅极用作输入栅极节点。

Description

采用耗尽模式GaN基FET的串叠电路
相关申请的交叉引用
该申请涉及与其同日提交的序列号为No.11/725,823且名为“Termination and Contact Structures For A High Voltage GaN-BasedHeterojunction Transistor”的共同待决美国专利申请,并且通过引用将其内容合并于此。
该申请还涉及与其同日提交的序列号为No.11/725,820且名为“High-Voltage GaN-Based Heterojunction Transistor Structure andMethod of Forming Same”的共同待决美国专利申请,并且通过引用将其内容合并于此。
技术领域
本发明大体上涉及诸如GaN基FET的III族氮化物化合物半导体FET,更具体来讲,涉及采用耗尽模式GaN基FET并且用作增强模式FET的电路。
背景技术
使用诸如GaN、AlGaN、InGaN、AlGaN、AlInGaN等宽带隙半导体的GaN基FET作为高功率应用的功率器件已经备受关注,这是因为它们的导通电阻比使用Si或GaAs的FET在大小上小一个或者更多数量级,由此可以以更大电流在更高温度下操作并且可以经受高压应用。
在图1中示出了传统的GaN基FET的一个实例。如所示出的,在诸如蓝宝石衬底的半绝缘衬底91上形成异质结结构。该异质结结构包括GaN缓冲层92,例如,未掺杂的GaN层93和未掺杂的AlGaN层94,其中,未掺杂的AlGaN层94通常比未掺杂的GaN层93薄得多。未掺杂的GaN层93用作沟道层。可选的,在未掺杂的AlGaN层94上设置两个n-AlGaN接触层95。源极电极S和漏极电极D布置在它们各自的接触层95上。栅极电极G形成在未掺杂的AlGaN层94上,并且位于源极电极S和漏极电极D之间。如果在源极电极S和漏极电极D与下面的半导体层之间可以建立满意的欧姆接触,则接触层95可以不是必需的。
通过在具有大带隙的AlGaN层和具有较窄带隙的GaN层之间的异质结界面上形成量子阱,GaN基FET器件能够将电子迁移率最大化。结果,电荷被捕获在量子阱里。通过未掺杂的GaN层中的二维电子气96来表现所捕获的电子。通过向栅极电极施加电压来控制电流量,栅极电极与半导体肖特基接触,以使得电子沿着源极电极和漏极电极之间的沟道流动。
即使当栅极电压为0时,在沟道中也将产生电子,这是因为形成了从衬底向着器件表面延伸的压电场。因此,GaN基FET用作耗尽模式(即,常导通型)器件。出于多种原因,期望的是提供增强模式(即,常截止型)GaN基FET。例如,当采用耗尽模式FET作为功率源极的开关器件时,必须连续向栅极电极施加至少等于栅极阈值的偏置电压,以保持开关处于截止状态。这样的布置会消耗过多的功率。另一方面,如果采用增强模式FET,则即使在没有施加电压的情况下也可以保持开关处于截止状态,由此消耗的功率较少。遗憾的是,虽然已经尝试制造GaN基增强模式FET,但是通常不令人满意,这是由于存在诸如导通状态电导差且击穿电压差的问题。
发明内容
根据本发明,一种电路包括输入漏极节点、输入源极节点和输入栅极节点。该电路还包括具有源极、漏极和栅极的III族氮化物耗尽模式FET,其中,耗尽模式FET的栅极联接到使耗尽模式FET保持在其导通状态的电势。另外,该电路还包括具有源极、漏极和栅极的增强模式FET。耗尽模式FET的源极串联联接到增强模式FET的漏极。耗尽模式FET的漏极用作输入漏极节点,增强模式FET的源极用作输入源极节点,并且增强模式FET的栅极用作输入栅极节点。
根据本发明的一个方面,III族氮化物可以包括GaN。
根据本发明的另一个方面,耗尽模式FET可以是额定电压大于约100V的高压FET。
根据本发明的另一个方面,III族氮化物耗尽模式FET可以包括:衬底;第一有源层,所述第一有源层设置在所述衬底的上方;以及第二有源层,所述第二有源层设置在所述第一有源层上。所述第二有源层具有比所述第一有源层高的带隙,使得在所述第一有源层和所述第二有源层之间产生二维电子气层。在所述第二有源层上设置快闪层,并且在所述快闪层上设置源极接触、栅极接触和漏极接触。
根据本发明的另一个方面,所述第一有源层可以包含GaN,并且所述第二有源层可以包含III族氮化物半导体材料。
根据本发明的一个方面,所述第二有源层可以包含AlxGa1-xN,其中0<X<1。
根据本发明的另一个方面,所述第二有源层可以选自由AlGaN、AlInN和AlInGaN组成的组。
根据本发明的另一个方面,在所述衬底和所述第一有源层之间还可以设置成核层。
根据本发明的另一个方面,所述快闪层可以包含金属Al。
根据本发明的另一个方面,所述快闪层可以包含金属Ga。
根据本发明的另一个方面,所述快闪层可以是形成自然氧化物层的经退火的快闪层。
根据本发明的另一个方面,所述第二有源层和所述快闪层可以包括形成在其内的第一凹进部和第二凹进部,并且所述源极接触和所述漏极接触可以分别设置在所述第一凹进部和所述第二凹进部中。
附图说明
图1示出传统GaN基FET的一个实例。
图2示出根据本发明构建的电路的一个实例。
图3和图4示出图2中所示电路的电流-电压特性曲线。
图5示出图2中所示电路的电流与栅源电压的对比。
图6示出图2中所示电路中可以采用的氮化镓基FET的一个实例。
图7和图8示出图2中所示电路中可以采用的氮化镓(GaN)FET的可供选择的实例。
具体实施方式
本发明的发明者已经认识到,使用具有类似操作特性的GaN基耗尽模式结构来替代制造半导体GaN基的增强模式FET半导体结构,可以容易实现这种结构的理想操作特性。即,如以下所详述的,本发明将GaN基耗尽模式FET与一个或多个其它组件相结合,使得所得器件用作增强模式FET。例如,在本发明的一个具体实施例中,将GaN基耗尽模式FET与增强模式FET串联布置,从而提供了在其它方面具有GaN基耗尽模式FET的特性的增强模式器件。
可以采用例如共源极、共栅极、共漏极、源极跟随器等的各种已知方式来连接单独的FET器件,以提供所期望的不同操作特性,从而符合特定目的的要求。也可以将两个这样的器件连接在一起,以提供只用一个器件不能得到的多种可能的输入和输出特性。这样的一个实例是通常使用的“串叠”构造,在该构造中,第一级器件以共源极构造连接,并且其输出转到第二器件的输入,第二器件以共栅极构造连接。所得结构是具有高输入阻抗、低噪声且高增益的器件。
图2示出根据本发明构建的电路100的一个实例。GaN基耗尽模式FET 110的源极连接到增强模式FET 120的漏极。增强模式FET 120可以是,例如,通用的硅基或者GaAs基器件。耗尽模式FET 100的栅极接地,使得FET 110一直导通。在图2的实例中,通过将FET 110的栅极接地来保持FET 120的导通状态。增强模式FET 120的源极接地。耗尽模式FET 110的漏极用作电路100的漏极D。增强模式FET 120的源极用作电路100的源极S。同样,增强模式FET 120的栅极用作电路100的栅极G。
可以参照图3和图4中所示的电流-电压特性曲线来说明电路100的操作。只是出于示例的目的而不是对本发明的限制,FET 110和120都是n-型,但是可供选择的,也可以使用p-型器件。图3示出增强模式FET 120的电流-栅源电压。在该实例中示出FET 120的夹断电压是5V。图4示出耗尽模式FET 110的电流与栅源电压的对比。在该实例中示出耗尽模式FET 110的夹断电压是-6V。
图4示出的是,如果栅源电压VGS是0V或更大,则耗尽模式FET110将保持导通状态。由于在该实例中示出FET 110的栅极接地,因此耗尽模式FET一直导通。图3示出的是,如果施加5V或更大的栅源电压VGS,则增强模式FET 120一直导通。由于电流需要沿着从耗尽模式FET 110的漏极D向增强模式FET 120的源极S的路径流动,因此通过将栅极电压G变为5V或更大的值,电路将处于其导通状态,由此如同增强模式FET一样作用。以此方式,增强模式FET 120的栅极G将以增强模式FET的方式调节通过电路100的电流,而耗尽模式FET110的阻挡电压提供对整个电路100的阻挡能力。因此,电路100如同600V GaN基增强模式FET一样作用。图5示出了电路100的电流与栅源电压的对比。
在以上所表现的实例中,GaN基耗尽模式FET 110具有600V的额定电压,并且FET 120的额定电压是20V。更一般地,在本发明的一些实施例中,耗尽模式FET是任何合适的高压(例如,高于约100V的电压)FET。电路100的输出电压通常将大约等于耗尽模式FET 110和增强模式FET 120之间的额定电压差。因此,为了将电路100的额定电压最大化,优选地选择尽可能小的增强模式FET 120的额定电压。诸如其额定电流和其导通状态下的漏源电阻的电路100的其余特性将与耗尽模式FET 110的类似。
图6至图8示出电路100中可以采用的耗尽模式FET 110的一些具体实例。当然,本发明不限于这些结构,这些结构只是为了示例的目的而示出。在图6中,耗尽模式FET 10包括衬底12、成核(过渡)层18、GaN缓冲层22、氮化铝镓(AlxGa1-xN;0<x<1)肖特基层24和覆盖层或终止层16。另外,FET 10包括源极接触27、栅极接触28和漏极接触30。
通常使用外延生长工艺来制造FET 10。例如,可以使用反应溅射工艺,在该工艺中,在毗邻衬底设置的金属靶和衬底都处于包括氮和一个或多个掺杂物的气氛中时,从金属靶溢出诸如镓、铝和/或铟的半导体的金属组分。可供选择的,可以采用金属有机化学气相沉积(MOCVD),其中,在将衬底保持在升高的温度,通常在700℃至1100℃左右下的同时,将衬底暴露于包含金属的有机化合物的气氛,以及诸如氨的反应含氮气体和含掺杂物气体中。气体化合物分解,并且在衬底302的表面上形成晶体材料膜的形式的掺杂的半导体。然后将衬底和生长的膜冷却。作为另外可供选择的,可以使用诸如分子束外延(MBE)或原子层外延的其它外延生长方法。可以采用的另外的技术包括,但不限于流量调制有机金属气相外延(FM-OMVPE)、有机金属气相外延(OMVPE)、氢化物外延(HVPE)和物理气相沉积(PVD)。
为了开始生长结构,在衬底12上沉积成核层18。衬底12可以由各种材料形成,所述各种材料包括但不限于蓝宝石或碳化硅(SiC)。成核层18可以是,例如,诸如AlxGa1-xN的富铝层,其中,X在0至1的范围内。成核层18操作用于校正GaN缓冲层22和衬底12之间的晶格不匹配。通常,当一层中的原子之间的间距与相邻层中原子之间的间距不匹配时,产生晶格不匹配。由于晶格不匹配,导致相邻层中的原子之间的结合弱,并且相邻层会断裂、分离或者具有大量的晶体缺陷。因此,通过在衬底12的晶体结构和GaN缓冲层22的晶体结构之间产生界面,成核层18操作用于校正GaN缓冲层22和衬底12之间的晶格不匹配。
在沉积了成核层18之后,在成核层18上沉积GaN缓冲层22,并且在GaN缓冲层22上沉积AlxGa1-xN肖特基层24。作为薄的高迁移率沟道的二维导电沟道26,其将载流子限制在GaN缓冲层22和AlxGa1-xN肖特基层24之间的界面区域。在AlxGa1-xN肖特基层24上沉积覆盖层或终止层16,覆盖层或终止层16用于在FET 10的制造和操作过程中保护AlxGa1-xN肖特基层24以免其发生诸如氧化的表面反应。因为肖特基层24包含铝,所以如果AlxGa1-xN肖特基层24暴露于空气中并且没有以其它方式受保护,则会发生氧化。
在衬底12上生长了外延层18、22和24以及终止层16之后,通过分别在终止层16上沉积源极接触27、栅极接触28和漏极接触30来完成FET 10。接触件27、28和30中的每个是金属接触件。优选地,栅极接触28是诸如,但不限于镍、金的金属材料,并且源极接触27和漏极接触30都是诸如,但不限于钛、金或铝的金属材料。
在本发明的一个实施例中,终止层16是形成在AlxGa1-xN肖特基层24上的InGaN层。InGaN层16用于两个目的,第一个目的是用于提供不包含Al的上层,从而减小氧化。此外,因为诸如InGaAlN的含铝化合物通常需要较高的生长温度来提供足够的均匀度和光滑度,所以通过使用InGaN材料来替代包含铝的材料,可以简化生长工艺。另外,InGaN层24略微降低了表面的势垒,这样可以减少表面电荷的增多并且降低了结构表面上的漏电流。
在本发明的另一个实施例中,终止层16是包含Al金属的快闪层(flash layer)。利用材料的极短猝发来形成快闪层。这样将在结构表面上方形成非常薄(例如,材料的1-2单分子层)但是平的覆盖。该快闪层通常是原位执行的。为了确保形成的是金属Al而不是AlN,不存在当形成AlN时将会存在的反应含氮气体(例如,氨)。可以在高温或低温下形成Al快闪层。在其形成之后,可以接着对Al进行退火,以形成薄的氧化物层。由于Al快闪层非常薄,因此它可以被完全氧化,由此在材料上产生初始的“自然”氧化物,该氧化物随后保护肖特基层24,使其不发生处理过程中通常看到的任何类型的劣化。这可以用作额外的势垒材料,用于降低漏电流并且增大击穿电压,这对于HEMT性能都是重要的。快闪层可以包含其它金属,例如镓或甚至铟,以替代铝。还可以将Ga或In快闪层氧化以在结构上形成均匀的“自然”氧化物。
在本发明的其它实施例中,覆盖层或终止层16可以由其它材料形成,诸如高度Fe掺杂的GaN、Si掺杂的GaN、FeN或SiN。可以是外延、非外延或者甚至无定形的这些层可以用作初始钝化层或者用作额外的势垒材料,用于降低漏电流并且增大击穿电压。例如,向GaN添加Fe导致了可以降低漏电流的材料,这是因为该材料更绝缘并且降低了电子迁移率。
在本发明的其它实施例中,可以在AlxGa1-xN肖特基层24上形成薄AlN层。该层提供了另外的肖特基势垒层,以有助于更有效地调节电荷,由此降低了漏电流并且增大了器件的击穿电压。AlN层还可以用作结构的初始钝化层,这是由于AlN可以容易地被湿法蚀刻,以沉积欧姆接触件。可供选择的,可以氧化AlN层以形成钝化层。
在一些实施例中,终止层16的厚度大致为1至5纳米。因此,电子可以容易地隧穿终止层16。结果,终止层16没有增加栅极接触28和AlxGa1-xN肖特基层24之间的肖特基势垒高度,其中,肖特基势垒高度限定了栅极接触28和AlxGa1-xN肖特基层24的界面上的由电子遭遇的电势能量势垒。另外,终止层16没有影响源极接触27和漏极接触30的形成。
图7示出了FET 10的又一个实施例,在该实施例中,欧姆接触件27和28位于AlxGa1-xN肖特基层24中形成的凹进部中。通过根据传统技术蚀刻AlxGa1-xN肖特基层24来形成凹进部。凹进部可以部分或完全地延伸穿过AlxGa1-xN肖特基层24。例如,在一些情况下,凹进部可以延伸到约5nm至15nm深的深度,由此使得AlxGa1-xN肖特基层24能够保持足够的厚度来产生沟道层26。通过以此方式使接触件凹进,降低了表面的接触电阻和光滑度,从而增大了被沉积用于形成欧姆接触件的金属的渗透性。表面粗糙的增加导致金属更好地迁移到半导体中。对于需要低导通电阻的器件来说,该布置在实现可能最低的导通电阻方面会效果显著。虽然没有示出,但是本发明的该实施例还可以采用诸如以上讨论的覆盖层或终止层。在这种情况下,其中设置有接触件27和28的凹进部也将延伸穿过终止层。
图8示出了FET 10的另一个实施例,在该实施例中,势垒层24由代替AlxGa1-xN的AlInGaN形成。例如,如在GAAS99中由M.AsifKhan等人所著的“Strain Energy B and Engineering in AlGaInN/GaNHeterostructure Field Effect Transistors”中所讨论的,采用了AlxInyGa(1-x-y)N结,其势垒厚度小于50nm且合金组分在x等于0.1至0.2而y等于0.00至0.02的范围内变化。另外,Khan等人陈述的是,基于晶格常数的线性插值,为5的Al/In比率应该几乎与GaN晶格匹配。通过使用AlInGaN,可以与带隙无关地控制张力,由此使得材料的带隙能够关于临界厚度更自由地变化。对于功率器件,在没有过度对材料施加应力和缩短器件寿命的情况下,在沟道中得到最多电荷是至关重要的,其中,随着时间流逝当材料驰豫时会产生器件寿命的缩短。
虽然本文具体示出和描述了各种实施例,但是应该理解的是,在不脱离本发明的精神和意图范围的情况下,本发明的修改形式和变形形式可以被以上教导覆盖并且在所附权利要求的范围内。例如,虽然已经将耗尽模式FET描述为GaN基器件,但是本发明更通常地包括由任何III族氮化物化合物半导体形成的耗尽模式FET,在III族氮化物化合物半导体中,III族元素可以是镓(Ga)、铝(Al)、硼(B)或铟(In)。

Claims (20)

1.一种电路,包括:
输入漏极节点、输入源极节点和输入栅极节点;
具有源极、漏极和栅极的III族氮化物耗尽模式FET,其中,所述耗尽模式FET的栅极联接到使所述耗尽模式FET保持在其导通状态的电势;
具有源极、漏极和栅极的增强模式FET,其中,所述耗尽模式FET的所述源极串联联接到所述增强模式FET的所述漏极,并且
其中,所述耗尽模式FET的所述漏极用作所述输入漏极节点,所述增强模式FET的所述源极用作所述输入源极节点,并且所述增强模式FET的所述栅极用作所述输入栅极节点。
2.根据权利要求1所述的电路,其中,所述III族氮化物包括GaN。
3.根据权利要求1所述的电路,其中,所述耗尽模式FET是额定电压大于约100V的高压FET。
4.根据权利要求1所述的电路,其中,所述III族氮化物耗尽模式FET包括:
衬底;
设置在所述衬底的上方的第一有源层;
设置在所述第一有源层上的第二有源层,所述第二有源层具有比所述第一有源层高的带隙以使得在所述第一有源层和所述第二有源层之间产生二维电子气层;
设置在所述第二有源层上的快闪层;以及
设置在所述快闪层上的源极接触、栅极接触和漏极接触。
5.根据权利要求4所述的电路,其中,所述第一有源层包含GaN并且所述第二有源层包含III族氮化物半导体材料。
6.根据权利要求5所述的半导体器件,其中,所述第二有源层包含AlxGa1-xN,其中0<X<1。
7.根据权利要求5所述的半导体器件,其中,所述第二有源层选自由AlGaN、AlInN和AlInGaN组成的组。
8.根据权利要求4所述的半导体器件,还包括设置在所述衬底和所述第一有源层之间的成核层。
9.根据权利要求4所述的半导体器件,其中,所述快闪层包含金属Al。
10.根据权利要求4所述的半导体器件,其中,所述快闪层包含金属Ga。
11.根据权利要求4所述的半导体器件,其中,所述快闪层是形成自然氧化物层的退火的快闪层。
12.根据权利要求4所述的半导体器件,其中,所述第二有源层和所述快闪层包括形成在其内的第一凹进部和第二凹进部,并且所述源极接触和所述漏极接触分别设置在所述第一凹进部和所述第二凹进部中。
13.根据权利要求1所述的电路,其中,所述III族氮化物耗尽模式FET包括:
衬底;
设置在所述衬底的上方的第一有源层;
设置在所述第一有源层上的第二有源层,所述第二有源层具有比所述第一有源层高的带隙以使得在所述第一有源层和所述第二有源层之间产生二维电子气层;
形成在所述第二有源层的上方的AlN层;以及
设置在所述AlN层的上方的源极接触、栅极接触和漏极接触。
14.根据权利要求1所述的电路,其中,所述III族氮化物耗尽模式FET包括:
衬底;
设置在所述衬底的上方的第一有源层;
设置在所述第一有源层上的第二有源层,所述第二有源层具有比所述第一有源层高的带隙以使得在所述第一有源层和所述第二有源层之间产生二维电子气层,其中所述第二有源层包括形成在其内的第一凹进部和第二凹进部;
分别设置在所述第一凹进部和所述第二凹进部中的源极接触和漏极接触;
设置在所述第二有源层的上方的栅电极。
15.一种电路,包括:
输入漏极节点、输入源极节点和输入栅极节点;
III族氮化物耗尽模式FET;
与所述耗尽模式FET串联布置的增强模式FET,并且
其中,所述耗尽模式FET的第一端子用作所述输入漏极节点,所述增强模式FET的第二端子和第三端子分别用作所述源极节点和栅极节点。
16.根据权利要求15所述的电路,其中,所述III族氮化物耗尽模式FET包括:
衬底;
设置在所述衬底的上方的第一有源层;
设置在所述第一有源层上的第二有源层,所述第二有源层具有比所述第一有源层高的带隙以使得在所述第一有源层和所述第二有源层之间产生二维电子气层;
设置在所述第二有源层上的快闪层;以及
设置在所述快闪层上的源极接触、栅极接触和漏极接触。
17.根据权利要求15所述的电路,其中,所述III族氮化物耗尽模式FET包括:
衬底;
设置在所述衬底的上方的第一有源层;
设置在所述第一有源层上的第二有源层,所述第二有源层具有比所述第一有源层高的带隙以使得在所述第一有源层和所述第二有源层之间产生二维电子气层;
形成在所述第二有源层的上方的AlN层;以及
设置在所述AlN层的上方的源极接触、栅极接触和漏极接触。
18.根据权利要求15所述的电路,其中,所述III族氮化物耗尽模式FET包括:
衬底;
设置在所述衬底的上方的第一有源层;
设置在所述第一有源层上的第二有源层,所述第二有源层具有比所述第一有源层高的带隙以使得在所述第一有源层和所述第二有源层之间产生二维电子气层,其中,所述第二有源层包括形成在其内的第一凹进部和第二凹进部;
分别设置在所述第一凹进部和所述第二凹进部中的源极接触和漏极接触;
设置在所述第二有源层的上方的栅电极。
19.根据权利要求16所述的电路,其中,所述第一有源层包含GaN,并且所述第二有源层包含III族氮化物半导体材料。
20.根据权利要求16所述的电路,其中,所述快闪层包含金属Al。
CN2008800090640A 2007-03-20 2008-03-20 采用耗尽模式GaN基FET的串叠电路 Active CN101689570B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210189604.6A CN102694013B (zh) 2007-03-20 2008-03-20 采用耗尽模式GaN基FET的串叠电路

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/725,760 US7501670B2 (en) 2007-03-20 2007-03-20 Cascode circuit employing a depletion-mode, GaN-based FET
US11/725,760 2007-03-20
PCT/US2008/057593 WO2008116038A2 (en) 2007-03-20 2008-03-20 Cascode circuit employing a depletion-mode, gan-based fet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201210189604.6A Division CN102694013B (zh) 2007-03-20 2008-03-20 采用耗尽模式GaN基FET的串叠电路

Publications (2)

Publication Number Publication Date
CN101689570A true CN101689570A (zh) 2010-03-31
CN101689570B CN101689570B (zh) 2012-06-27

Family

ID=39766758

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2008800090640A Active CN101689570B (zh) 2007-03-20 2008-03-20 采用耗尽模式GaN基FET的串叠电路
CN201210189604.6A Active CN102694013B (zh) 2007-03-20 2008-03-20 采用耗尽模式GaN基FET的串叠电路

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201210189604.6A Active CN102694013B (zh) 2007-03-20 2008-03-20 采用耗尽模式GaN基FET的串叠电路

Country Status (7)

Country Link
US (1) US7501670B2 (zh)
EP (1) EP2140497A4 (zh)
JP (2) JP5580602B2 (zh)
KR (1) KR101497725B1 (zh)
CN (2) CN101689570B (zh)
HK (1) HK1142996A1 (zh)
WO (1) WO2008116038A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219374A (zh) * 2012-01-24 2013-07-24 富士通株式会社 半导体器件及电源器件
CN104348461A (zh) * 2013-08-02 2015-02-11 英飞凌技术德累斯顿有限责任公司 Mosfet驱动器器件
CN104604133A (zh) * 2012-08-28 2015-05-06 夏普株式会社 复合型半导体器件
CN111199958A (zh) * 2018-11-16 2020-05-26 苏州东微半导体有限公司 半导体功率器件

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914500B1 (fr) * 2007-03-30 2009-11-20 Picogiga Internat Dispositif electronique a contact ohmique ameliore
JP2008306130A (ja) * 2007-06-11 2008-12-18 Sanken Electric Co Ltd 電界効果型半導体装置及びその製造方法
US7915643B2 (en) 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices
US7965126B2 (en) * 2008-02-12 2011-06-21 Transphorm Inc. Bridge circuits and their components
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
US7898004B2 (en) 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
US7884394B2 (en) * 2009-02-09 2011-02-08 Transphorm Inc. III-nitride devices and circuits
JP5562579B2 (ja) * 2009-05-12 2014-07-30 日本碍子株式会社 半導体素子用エピタキシャル基板の作製方法
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US7915645B2 (en) * 2009-05-28 2011-03-29 International Rectifier Corporation Monolithic vertically integrated composite group III-V and group IV semiconductor device and method for fabricating same
TW201103150A (en) * 2009-07-10 2011-01-16 Tekcore Co Ltd Group III-nitride semiconductor Schottky diode and its fabrication method
US7939857B1 (en) * 2009-08-24 2011-05-10 Itt Manufacturing Enterprises, Inc. Composite device having three output terminals
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
US20110049580A1 (en) * 2009-08-28 2011-03-03 Sik Lui Hybrid Packaged Gate Controlled Semiconductor Switching Device Using GaN MESFET
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
US8802516B2 (en) * 2010-01-27 2014-08-12 National Semiconductor Corporation Normally-off gallium nitride-based semiconductor devices
CN101783666B (zh) * 2010-02-11 2012-07-04 西安科技大学 一种能可靠关断的增强-耗尽型器件组合开关电路
US8981380B2 (en) 2010-03-01 2015-03-17 International Rectifier Corporation Monolithic integration of silicon and group III-V devices
US9219058B2 (en) 2010-03-01 2015-12-22 Infineon Technologies Americas Corp. Efficient high voltage switching circuits and monolithic integration of same
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
US8896131B2 (en) 2011-02-03 2014-11-25 Alpha And Omega Semiconductor Incorporated Cascode scheme for improved device switching behavior
US8847408B2 (en) * 2011-03-02 2014-09-30 International Rectifier Corporation III-nitride transistor stacked with FET in a package
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
US9236376B2 (en) 2011-03-21 2016-01-12 Infineon Technologies Americas Corp. Power semiconductor device with oscillation prevention
US8766375B2 (en) * 2011-03-21 2014-07-01 International Rectifier Corporation Composite semiconductor device with active oscillation prevention
US9362905B2 (en) * 2011-03-21 2016-06-07 Infineon Technologies Americas Corp. Composite semiconductor device with turn-on prevention control
US9859882B2 (en) 2011-03-21 2018-01-02 Infineon Technologies Americas Corp. High voltage composite semiconductor device with protection for a low voltage device
US8987833B2 (en) 2011-04-11 2015-03-24 International Rectifier Corporation Stacked composite device including a group III-V transistor and a group IV lateral transistor
US9343440B2 (en) 2011-04-11 2016-05-17 Infineon Technologies Americas Corp. Stacked composite device including a group III-V transistor and a group IV vertical transistor
US8710511B2 (en) 2011-07-29 2014-04-29 Northrop Grumman Systems Corporation AIN buffer N-polar GaN HEMT profile
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
US9257547B2 (en) 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
WO2013155108A1 (en) 2012-04-09 2013-10-17 Transphorm Inc. N-polar iii-nitride transistors
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
US8803246B2 (en) 2012-07-16 2014-08-12 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US8933461B2 (en) * 2012-08-09 2015-01-13 Texas Instruments Incorporated III-nitride enhancement mode transistors with tunable and high gate-source voltage rating
KR101919421B1 (ko) 2012-08-16 2018-11-19 삼성전자주식회사 반도체소자 및 그 제조방법
KR101922117B1 (ko) 2012-08-16 2018-11-26 삼성전자주식회사 트랜지스터를 포함하는 전자소자 및 그 동작방법
US9438112B2 (en) * 2012-08-23 2016-09-06 Infineon Technologies Americas Corp. Power converter including integrated driver for depletion mode group III-V transistor
ITTO20121081A1 (it) 2012-12-14 2014-06-15 St Microelectronics Srl Componente elettronico di potenza normalmente spento
CN105164811B (zh) 2013-02-15 2018-08-31 创世舫电子有限公司 半导体器件的电极及其形成方法
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9245992B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US9443938B2 (en) 2013-07-19 2016-09-13 Transphorm Inc. III-nitride transistor including a p-type depleting layer
WO2015033631A1 (ja) * 2013-09-06 2015-03-12 シャープ株式会社 トランジスタ回路
JP6237038B2 (ja) * 2013-09-20 2017-11-29 富士通株式会社 カスコードトランジスタ及びカスコードトランジスタの制御方法
US9048838B2 (en) 2013-10-30 2015-06-02 Infineon Technologies Austria Ag Switching circuit
US9525063B2 (en) 2013-10-30 2016-12-20 Infineon Technologies Austria Ag Switching circuit
US9257424B2 (en) 2013-11-08 2016-02-09 Infineon Technologies Austria Ag Semiconductor device
EP3080845B1 (en) * 2013-11-15 2021-12-22 Texas Instruments Incorporated Method and circuitry for controlling a depletion-mode transistor
US9325308B2 (en) * 2014-05-30 2016-04-26 Delta Electronics, Inc. Semiconductor device and cascode circuit
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
CN104201202B (zh) * 2014-09-17 2017-01-25 电子科技大学 一种具有复合势垒层的氮化镓基异质结场效应管
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
JP6408146B2 (ja) * 2015-05-15 2018-10-17 シャープ株式会社 複合型半導体装置
US9748941B2 (en) 2015-10-27 2017-08-29 Electronics And Telecommunications Research Institute Power semiconductor module and method for stabilizing thereof
KR102265460B1 (ko) 2016-01-11 2021-06-16 한국전자통신연구원 캐스코드 스위치 회로
CN108604597B (zh) 2016-01-15 2021-09-17 创世舫电子有限公司 具有al(1-x)sixo栅极绝缘体的增强模式iii-氮化物器件
JP6061047B1 (ja) * 2016-03-16 2017-01-18 富士電機株式会社 半導体装置
US9929261B2 (en) 2016-04-07 2018-03-27 Semiconductor Components Industries, Llc Electronic device including a HEMT with a segmented gate electrode
CN107924917B (zh) 2016-05-20 2022-03-18 美商新思科技有限公司 具有串联连接的增强模式栅极区域和耗尽模式栅极区域的异质结场效应晶体管器件
TWI762486B (zh) 2016-05-31 2022-05-01 美商創世舫科技有限公司 包含漸變空乏層的三族氮化物裝置
US9865721B1 (en) * 2016-06-15 2018-01-09 Qorvo Us, Inc. High electron mobility transistor (HEMT) device and method of making the same
US9871510B1 (en) 2016-08-24 2018-01-16 Power Integrations, Inc. Clamp for a hybrid switch
US10256811B2 (en) 2016-11-22 2019-04-09 Electronics And Telecommunications Research Institute Cascode switch circuit including level shifter
GB2565805B (en) 2017-08-23 2020-05-13 X Fab Semiconductor Foundries Gmbh Noff III-nitride high electron mobility transistor
US10777638B1 (en) 2018-01-04 2020-09-15 Synopsys, Inc. Constricted junctionless FinFET/nanowire/nanosheet device having cascode portion
US11139290B2 (en) * 2018-09-28 2021-10-05 Taiwan Semiconductor Manufacturing Company, Ltd. High voltage cascode HEMT device
US10840798B1 (en) 2018-09-28 2020-11-17 Dialog Semiconductor (Uk) Limited Bidirectional signaling method for high-voltage floating circuits
US11088688B2 (en) 2019-02-13 2021-08-10 Logisic Devices, Inc. Configurations of composite devices comprising of a normally-on FET and a normally-off FET
US11211484B2 (en) 2019-02-13 2021-12-28 Monolithic Power Systems, Inc. Vertical transistor structure with buried channel and resurf regions and method of manufacturing the same
US10991722B2 (en) 2019-03-15 2021-04-27 International Business Machines Corporation Ultra low parasitic inductance integrated cascode GaN devices
TWI761704B (zh) * 2019-09-12 2022-04-21 黃知澍 Ga-face III族/氮化物磊晶結構及其主動元件與其閘極保護元件
US11127848B2 (en) * 2019-11-29 2021-09-21 Vanguard International Semiconductor Corporation Semiconductor structure and method for forming the same
TWI775027B (zh) * 2019-12-20 2022-08-21 世界先進積體電路股份有限公司 半導體結構
US11152364B1 (en) 2020-04-21 2021-10-19 Vanguard International Semiconductor Corporation Semiconductor structure and methods for manufacturing the same
CN116344595A (zh) * 2023-03-03 2023-06-27 天狼芯半导体(成都)有限公司 氮化镓半导体器件及氮化镓半导体器件的制备方法
CN117155359B (zh) * 2023-10-26 2024-02-09 深圳智芯微电子科技有限公司 GaN HEMT器件预处理方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789586B2 (ja) * 1986-09-01 1995-09-27 株式会社日立製作所 半導体装置
JP4751498B2 (ja) * 2000-03-30 2011-08-17 富士通株式会社 半導体三端子装置
AU2003299899A1 (en) * 2002-12-27 2004-07-29 General Electric Company Gallium nitride crystal, homoepitaxial gallium-nitride-based devices and method for producing same
JP2004247709A (ja) * 2003-01-22 2004-09-02 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
EP1665358B1 (en) * 2003-09-09 2020-07-01 The Regents of The University of California Fabrication of single or multiple gate field plates
TWI258798B (en) * 2003-12-05 2006-07-21 Int Rectifier Corp III-nitride device passivation and method
US7465997B2 (en) * 2004-02-12 2008-12-16 International Rectifier Corporation III-nitride bidirectional switch
US7202528B2 (en) * 2004-12-01 2007-04-10 Semisouth Laboratories, Inc. Normally-off integrated JFET power switches in wide bandgap semiconductors and methods of making
US7119380B2 (en) 2004-12-01 2006-10-10 Semisouth Laboratories, Inc. Lateral trench field-effect transistors in wide bandgap semiconductor materials, methods of making, and integrated circuits incorporating the transistors
JP2006190991A (ja) * 2004-12-09 2006-07-20 Matsushita Electric Ind Co Ltd 電界効果トランジスタ及びその製造方法
US7405430B2 (en) * 2005-06-10 2008-07-29 Cree, Inc. Highly uniform group III nitride epitaxial layers on 100 millimeter diameter silicon carbide substrates
JP4645313B2 (ja) * 2005-06-14 2011-03-09 富士電機システムズ株式会社 半導体装置
JP4897948B2 (ja) * 2005-09-02 2012-03-14 古河電気工業株式会社 半導体素子
DE112007000667T5 (de) * 2006-03-20 2009-01-29 International Rectifier Corp., El Segundo Vereinigter Gate-Kaskoden-Transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219374A (zh) * 2012-01-24 2013-07-24 富士通株式会社 半导体器件及电源器件
CN104604133A (zh) * 2012-08-28 2015-05-06 夏普株式会社 复合型半导体器件
CN104604133B (zh) * 2012-08-28 2017-03-01 夏普株式会社 复合型半导体器件
CN104348461A (zh) * 2013-08-02 2015-02-11 英飞凌技术德累斯顿有限责任公司 Mosfet驱动器器件
CN111199958A (zh) * 2018-11-16 2020-05-26 苏州东微半导体有限公司 半导体功率器件

Also Published As

Publication number Publication date
CN102694013B (zh) 2015-08-12
CN102694013A (zh) 2012-09-26
WO2008116038A3 (en) 2008-11-20
EP2140497A2 (en) 2010-01-06
JP2010522432A (ja) 2010-07-01
KR20100015747A (ko) 2010-02-12
WO2008116038A2 (en) 2008-09-25
JP5580602B2 (ja) 2014-08-27
KR101497725B1 (ko) 2015-03-04
CN101689570B (zh) 2012-06-27
US20080230784A1 (en) 2008-09-25
EP2140497A4 (en) 2011-09-21
HK1142996A1 (en) 2010-12-17
JP2014209659A (ja) 2014-11-06
US7501670B2 (en) 2009-03-10

Similar Documents

Publication Publication Date Title
CN101689570B (zh) 采用耗尽模式GaN基FET的串叠电路
CN101689561B (zh) 高压GaN基异质结晶体管的终止结构和接触结构
US10084047B2 (en) Group III-V device structure with variable impurity concentration
US9166033B2 (en) Methods of passivating surfaces of wide bandgap semiconductor devices
JP5813279B2 (ja) 窒化物ベースのトランジスタのための窒化アルミニウムを含むキャップ層およびその作製方法
EP2146378B1 (en) Semiconductor device
JP5468768B2 (ja) 電界効果トランジスタ及びその製造方法
JP5400266B2 (ja) 電界効果トランジスタ
CN102365747B (zh) 补偿门极misfet及其制造方法
CN101689563A (zh) 高电压GaN基异质结晶体管结构及其形成方法
US20130062616A1 (en) GaN-BASED FIELD EFFECT TRANSISTOR
US20150123139A1 (en) High electron mobility transistor and method of manufacturing the same
US20130256681A1 (en) Group iii nitride-based high electron mobility transistor
CN112216736A (zh) 高电子移动率晶体管与其制作方法
CN111524958A (zh) 一种高电子迁移率晶体管
CN106206709A (zh) 半导体装置
JP2009060065A (ja) 窒化物半導体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1142996

Country of ref document: HK

ASS Succession or assignment of patent right

Owner name: POWER INTEGRATIONS INC.

Free format text: FORMER OWNER: VELOX SEMICONDUCTOR CORP.

Effective date: 20110822

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20110822

Address after: American California

Applicant after: Power Integrations Inc.

Address before: new jersey

Applicant before: Velox Semiconductor Corp.

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1142996

Country of ref document: HK