CN101675532B - 微通道雪崩光电二极管 - Google Patents

微通道雪崩光电二极管 Download PDF

Info

Publication number
CN101675532B
CN101675532B CN2007800249205A CN200780024920A CN101675532B CN 101675532 B CN101675532 B CN 101675532B CN 2007800249205 A CN2007800249205 A CN 2007800249205A CN 200780024920 A CN200780024920 A CN 200780024920A CN 101675532 B CN101675532 B CN 101675532B
Authority
CN
China
Prior art keywords
semiconductor
solid
semiconductor layer
additional
additional semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800249205A
Other languages
English (en)
Other versions
CN101675532A (zh
Inventor
齐拉丁·Y·萨迪戈夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zecotek Medical Systems Singapore Pte Ltd
Original Assignee
Zecotek Medical Systems Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zecotek Medical Systems Singapore Pte Ltd filed Critical Zecotek Medical Systems Singapore Pte Ltd
Publication of CN101675532A publication Critical patent/CN101675532A/zh
Application granted granted Critical
Publication of CN101675532B publication Critical patent/CN101675532B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明的微通道雪崩光电二极管涉及半导体光敏器件,也就是具有内部信号放大的半导体雪崩光电二极管。所述微通道雪崩光电二极管可以用于在医学伽马层析x射线照相装置中记录超微弱的光脉冲直到单个光子、伽马量子和带电粒子,还用于辐射检测和原子物理实验。本发明的器件特征在于,雪崩光电二极管包括衬底和具有不同的电物理性能的半导体层,该半导体层在其间以及与衬底之间具有公共的界面,该雪崩光电二极管还设置有单独的固态区域的至少一个二维矩阵,该单独的固态区域形成在该二维矩阵中并实施为用于形成电势微深度的高导电的岛的形式。为了减小体积内产生电流并改善沿器件表面的电势分布的均匀性,固态区域位于两个额外的半导体层之间,该两个额外的半导体层相对于与它们具有公共界面的半导体层表现出高的电导率。所述发明使得可以在器件体内获得此电势分布形式,其允许光电子在单独的固态区域上收集。

Description

微通道雪崩光电二极管
技术领域
本发明涉及半导体光敏器件,具体地涉及具有信号的内部放大的半导体雪崩光电二极管。提出的微通道雪崩光电二极管可以用于在医学伽马层析x射线照相法(medical gamma tomography)装置中记录超微弱的光脉冲,直到单个光子以及伽马量子(gamma quant)和带电粒子,还应用于辐射检测和原子物理实验。
背景技术
器件[1]是已知的,其包括:半导体衬底;以及半导体区域的矩阵,具有与衬底的相反的导电类型,并通过具有特定电导率的缓冲-电阻层与半透明的场电极分开。光电子的雪崩放大在衬底与半导体区域之间的边界上发生。然后雪崩电流通过位于这些区域上的电阻层向半透明的电极流动。此器件的缺点是,由于缓冲层和高掺杂的半导体区域的差的透明性,在光谱的可见和紫外区域中量子输出低。此外,形成在半导体区域之间的光电子不可能被放大,这导致器件的灵敏度减小。
器件[2]是已知的,其包括:半导体衬底,具有n型电导率;以及外延层,具有p型电导率并通过电阻层和介电层与衬底分开。具有n型电导率的分离的半导体区域形成在介电层里面,并在电阻层的一侧上和外延层的另一侧上露出。具有n型电导率的高掺杂区域保证在通过介电层的区域彼此分离的p-n结中雪崩过程的局域化。形成有光电子的光敏层实际上是在异质材料(介电层和电阻层)的表面上生长的外延层。因此该器件的主要缺点是制备此外延层的技术的复杂性和大量的暗电流,这导致器件的灵敏度和信噪比的恶化。
器件[3]也是已知的,其已经作为原型,其包括半导体衬底和与衬底形成p-n结的半导体层。衬底的表面包括与衬底相比具有增强的电导率的分离的半导体区域的矩阵。在该原型中,采用半导体区域以建立保证信号放大的分离的雪崩区域(微通道)。该器件的缺点是在发生光电子的放大的界面区域中不能控制的局部微火花放电(micro-sparkover)的出现(以及在操作的过程中形成)。这里的问题是,半导体区域直接地位于形成在衬底-半导体界面上的p-n结界面上。因此根据导电类型,半导体区域在它们之间或通过半导体层的电中性部分或通过衬底具有电荷和电流的连接。换句话说,器件在发生雪崩过程的分离的区域中并不具有实现的对电流的局域化限制。为了在器件的整个区域上获得大量的雪崩过程,具有减小的火花放电电势的一个或几个区域并不允许器件电压的增大。这样,器件具有有限的雪崩过程的放大因子,该放大因子是雪崩光电二极管灵敏度等级的指示。
发明内容
本发明旨在提高信号放大的稳定性并增大在光谱的可见和紫外区域中雪崩光电二极管的灵敏度。为了实现这些技术效果,由分离的固态区域(solid-state area)组成的至少一个矩阵形成在雪崩光电二极管中,该固态区域具有增强的电导率并且在所有的侧面被具有一种类型的电导率的半导体材料包围,该雪崩光电二极管包括半导体衬底和具有不同的电物理参数的半导体层。固态区域位于两个额外的半导体层之间,两个额外的半导体层和与其具有公共界面的半导体层相比具有增强的电导率。而且,具有增强的电导率的至少一个额外的半导体层与固态区域并不具有公共的界面。半导体区域位于沿半导体层的公共界面。
根据实施器件的变量,具有增强的电导率的固态区域由与半导体层之一相同但具有不同导电类型的材料形成、由相对于半导体层的材料具有窄带的半导体以及金属材料形成。这导致在垂直于衬底平面的方向上器件中交替的p-n结或异质结或金属-半导体结的形成。
因此,分离的电势孔(potential hole)的至少一个二维矩阵在器件中形成,该分离的电势孔位于具有增强的电导率的额外的半导体层之间。具有增强的电导率的固态区域的两个或多个矩阵的形成导致器件的灵敏度的大的改善和信号幅度的稳定性。
附图说明
图1A到1C示出具有一个和两个矩阵的固态区域的微通道雪崩光电二极管的横截面。
具体实施方式
本发明由图1示出,图中示出具有一个和两个固态区域的矩阵的微通道雪崩光电二极管的横截面,该固态区域位于具有增强的电导率的额外的半导体层之间。器件在半导体衬底1的基础上制造,该衬底1例如是具有n型电导率并且电阻率为1 Ohm*cm的硅。开始,具有n型电导率和0.1 Ohm*cm电阻率的第一额外半导体层2通过掺入磷的局部扩散在半导体衬底的工作区域中形成。然后具有p型电导率和在1-100 Ohm*cm的范围内的电阻率的硅半导体层3通过分子束外延在衬底的表面上生长,该硅半导体层与第一额外半导体层形成p-n结。具有增强的电导率的固态区域4通过由磷原子对半导体层的离子掺杂而形成。掺杂的剂量选择在5-100μCi/cm2的范围内。在900℃的温度对缺陷退火后,具有n型电导率和0.01 Ohm*cm电阻率的区域或岛在半导体层中形成,该区域或岛在所有的侧面被具有p型电导率和1-100Ohm*cm范围内的电阻率的半导体材料包围。然后,具有大约0.01 Ohm*cm的电阻率的第二额外半导体层5通过离子掺入硼在半导体层3的表面上形成。这导致在垂直于衬底平面的方向6上交替的p-n结在器件的体内形成,从而交替的p-n结位于具有增强的电导率的两个额外的半导体层之间。
根据实施器件的变量,具有增强的电导率的固态区域还由被硅材料围绕的锗或钛的团簇形成。为了锗或钛的团簇可以在硅半导体层的体内形成,锗或钛的掺杂剂量选择在1000μCi/cm2以上。然后,在垂直于衬底平面的方向上交替的p-n结或金属-半导体结在器件中形成。
固态区域的横截面尺寸和它们之间的间隙由特定的光模板决定,通过该光模板在用于半导体层的局部掺杂的光致抗蚀剂或特定的掩模中打开窗口。在掺杂的工艺中离子的能量根据嵌入的注入原子的所需深度选择。然后制备器件的已知的部件如工作区域周围的保护环或深沟槽以及接触电极。
与原型不同,所提出器件中光电流的雪崩放大只在固态区域与半导体层的边界中发生,这些边界本身代表与方向6一致的电荷载流子的单独的放大通道。这由于在方向6上具有交替的电势势垒的区域被处于方向7上的p-n结区域围绕。在操作模式中,电压施加到半导体层的顶电极,该电压具有对应于半导体衬底的来自电荷的主载流子的耗尽的极性。这样,倍增通道中的中间结在正方向上偏移,两个外部的结在相反的方向上偏移。处于倍增通道之间的p-n结区域也在相反的方向上变得偏移。而且,具有增强的电导率的第一额外半导体层限制了衬底中电场的扩展,这样它保证产生的暗电流(darkgeneration current)的减小和雪崩过程只在器件的工作区域中扩展。具有增强的电导率的第二额外半导体层限制了来自外侧的电场并保证沿器件的光敏表面的电势的一致性。因此,器件里面电势的分布的形式被获得从而激发形成于上光敏半导体层的光电子向电势微孔(micro-hole)聚集。光电子的放大在倍增的第一通道从顶到底发生,在正方向偏移的下一个结起到倍增的电子聚集的深度为大约0.5-1V的电势孔的作用。电子在上述电势孔中几纳秒时间的积累导致雪崩区域中(也就是第一结的边界区域中)电场的急剧减小,作为其结果在给定倍增通道中的雪崩过程停止。然后,经过在雪崩过程不连续之后的几十纳秒的时间,积累的电子由于第三结的足够的泄露而进入衬底中。这样,光电子的雪崩倍增在单独的倍增通道中发生,该倍增通道在它们之间不具有电荷连接。由于此,改善了操作的稳定性并增大了雪崩光电二极管的灵敏度。
信息来源
1.Gasanov A.G.et al.Patent of the Russian Federation No.1702831 fromJune 27,1997.Application 4747595/25 from October11,1989(类比)。
2.Antich P.P.,et al.US Patent No.5844291 from December 1,1998,Class:H 01L 31/107;H 01 L 31/06.Application No.771207 from December 10,1996(类比)。
3.Sadygov Z.Y.,Patent of Russia No.2102821 from January 20,1998,Class:H 01 L 31/06.Application No.96119670 from October 10,1996(原型)。

Claims (3)

1.一种雪崩光电二极管,包括:
衬底;
第一额外半导体层,在所述衬底上并与所述衬底具有公共界面;
在所述第一额外半导体层上的半导体层;
在所述半导体层上的第二额外半导体层,
其中,所述半导体层以及所述第一额外半导体层和所述第二额外半导体层具有不同的电物理性能,以及
特征在于:在所述半导体层中存在由分离的固态区域组成的至少一个矩阵,所述固态区域由与围绕其的所述半导体层的半导体材料相同但是具有相反导电类型的材料制成,所述固态区域与所述半导体层相比具有较高的电导率,所述固态区域处于所述第一额外半导体层和所述第二额外半导体层之间并与所述第一额外半导体层和所述第二额外半导体层不具有公共界面,所述第一额外半导体层和所述第二额外半导体层和与其具有公共界面的所述半导体层相比具有较高的电导率。
2.一种雪崩光电二极管,包括:
衬底;
第一额外半导体层,在所述衬底上并与所述衬底具有公共界面;
在所述第一额外半导体层上的半导体层;
在所述半导体层上的第二额外半导体层,
其中,所述半导体层以及所述第一额外半导体层和所述第二额外半导体层具有不同的电物理性能,以及
特征在于:在所述半导体层中存在由分离的固态区域组成的至少一个矩阵,所述固态区域由所述半导体层的半导体材料围绕并且由相对于与其具有公共界面的所述半导体材料具有窄的禁带的半导体制成,所述固态区域与所述半导体层相比具有较高的电导率,所述固态区域处于所述第一额外半导体层和所述第二额外半导体层之间并与所述第一额外半导体层和所述第二额外半导体层不具有公共界面,所述第一额外半导体层和所述第二额外半导体层和与其具有公共界面的所述半导体层相比具有较高的电导率。
3.一种雪崩光电二极管,包括:
衬底;
第一额外半导体层,在所述衬底上并与所述衬底具有公共界面;
在所述第一额外半导体层上的半导体层;
在所述半导体层上的第二额外半导体层,
其中,所述半导体层以及所述第一额外半导体层和所述第二额外半导体层具有不同的电物理性能,以及
特征在于:在所述半导体层中存在由分离的固态区域组成的至少一个矩阵,所述固态区域被所述半导体层的半导体材料围绕,所述固态区域与所述半导体层相比具有较高的电导率,所述固态区域处于所述第一额外半导体层和所述第二额外半导体层之间并与所述第一额外半导体层和所述第二额外半导体层不具有公共界面,所述第一额外半导体层和所述第二额外半导体层和与其具有公共界面的所述半导体层相比具有较高的电导率,以及
所述固态区域由金属材料制成。
CN2007800249205A 2006-06-01 2007-05-31 微通道雪崩光电二极管 Expired - Fee Related CN101675532B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2006118960/28A RU2316848C1 (ru) 2006-06-01 2006-06-01 Микроканальный лавинный фотодиод
RU2006118960 2006-06-01
PCT/RU2007/000287 WO2007139451A1 (fr) 2006-06-01 2007-05-31 Photodiode avalanche à microcanaux

Publications (2)

Publication Number Publication Date
CN101675532A CN101675532A (zh) 2010-03-17
CN101675532B true CN101675532B (zh) 2012-11-14

Family

ID=38778871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800249205A Expired - Fee Related CN101675532B (zh) 2006-06-01 2007-05-31 微通道雪崩光电二极管

Country Status (8)

Country Link
EP (1) EP2026386A4 (zh)
JP (2) JP5320610B2 (zh)
KR (1) KR101301897B1 (zh)
CN (1) CN101675532B (zh)
AU (1) AU2007268338A1 (zh)
CA (1) CA2654034C (zh)
RU (1) RU2316848C1 (zh)
WO (1) WO2007139451A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2528107C1 (ru) * 2013-04-16 2014-09-10 Зираддин Ягуб оглы Садыгов Полупроводниковый лавинный детектор
RU2731665C1 (ru) * 2019-03-12 2020-09-07 Общество С Ограниченной Ответственностью "Детектор Фотонный Аналоговый" (Ооо "Дефан") Лавинный фотодетектор (варианты) и способ его изготовления (варианты)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2102821C1 (ru) * 1996-10-10 1998-01-20 Зираддин Ягуб-оглы Садыгов Лавинный фотодиод
US6222209B1 (en) * 1996-12-20 2001-04-24 Board Of Regents, The University Of Texas System Wide wavelength range high efficiency avalanche light detector with negative feedback

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US771207A (en) 1897-11-19 1904-09-27 Gisbert Kapp Apparatus for registering the supply of electricity.
JPH077844B2 (ja) * 1981-11-30 1995-01-30 財団法人半導体研究振興会 静電誘導型半導体光電変換装置
US4700209A (en) * 1985-10-30 1987-10-13 Rca Inc. Avalanche photodiode and a method of making same
JPS63122285A (ja) * 1986-11-12 1988-05-26 Tokuzo Sukegawa 半導体受光素子用材料
SU1702831A1 (ru) 1989-10-11 1997-06-27 Институт ядерных исследований АН СССР Лавинный фотоприемник
JPH0774385A (ja) * 1993-09-03 1995-03-17 Hamamatsu Photonics Kk 静電誘導型アバランシェフォトダイオード
RU2105388C1 (ru) * 1996-04-10 1998-02-20 Виктор Михайлович Горловин Лавинный фотоприемник
RU2142175C1 (ru) * 1998-09-18 1999-11-27 Общество с ограниченной ответственностью "Центр перспективных технологий и аппаратуры" Лавинный фотоприемник
JP2001007381A (ja) * 1999-06-24 2001-01-12 Nippon Hoso Kyokai <Nhk> 光電変換膜とその作製方法
JP2001077400A (ja) * 1999-08-31 2001-03-23 Tokai Rika Co Ltd 半導体フォトデバイス
KR100375829B1 (ko) * 2000-12-19 2003-03-15 한국전자통신연구원 아발란치 광 검출기
JP2002252367A (ja) * 2001-02-23 2002-09-06 Nippon Hoso Kyokai <Nhk> 高感度光電変換装置
JP4195556B2 (ja) * 2001-08-07 2008-12-10 日本放送協会 光電変換膜作製方法、光電変換膜作製装置及び撮像素子
KR100463416B1 (ko) * 2002-09-05 2004-12-23 한국전자통신연구원 아발란치 포토트랜지스터
JP2004200308A (ja) * 2002-12-17 2004-07-15 Nippon Hoso Kyokai <Nhk> 光電変換膜の作製方法および固体撮像素子
RU2294035C2 (ru) * 2005-03-24 2007-02-20 Зираддин Ягуб-оглы Садыгов Лавинный фотодиод
JP5401203B2 (ja) * 2009-08-07 2014-01-29 株式会社日立製作所 半導体受光装置及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2102821C1 (ru) * 1996-10-10 1998-01-20 Зираддин Ягуб-оглы Садыгов Лавинный фотодиод
US6222209B1 (en) * 1996-12-20 2001-04-24 Board Of Regents, The University Of Texas System Wide wavelength range high efficiency avalanche light detector with negative feedback
US6353238B2 (en) * 1996-12-20 2002-03-05 Board Of Regents, The University Of Texas System Method of using a wide wavelength range high efficiency avalanche light detector with negative feedback

Also Published As

Publication number Publication date
KR101301897B1 (ko) 2013-08-29
AU2007268338A1 (en) 2007-12-06
EP2026386A4 (en) 2013-07-31
JP2009539245A (ja) 2009-11-12
EP2026386A1 (en) 2009-02-18
JP5666636B2 (ja) 2015-02-12
WO2007139451A1 (fr) 2007-12-06
RU2316848C1 (ru) 2008-02-10
CA2654034A1 (en) 2007-12-06
CA2654034C (en) 2016-08-09
JP5320610B2 (ja) 2013-10-23
CN101675532A (zh) 2010-03-17
KR20100093143A (ko) 2010-08-25
JP2013138240A (ja) 2013-07-11

Similar Documents

Publication Publication Date Title
US11579267B2 (en) High-speed light sensing apparatus
JP2954034B2 (ja) 単一キャリア型固体放射線検出装置
KR101143346B1 (ko) 변형 내부 게이트 구조를 갖는 반도체 방사선 검출기
US5844291A (en) Wide wavelength range high efficiency avalanche light detector with negative feedback
KR20110010646A (ko) 전자기 방사 변환기 및 배터리
US9257588B2 (en) Microchannel avalanche photodiode (variants)
CN101675532B (zh) 微通道雪崩光电二极管
US20200328321A1 (en) Integrated sensor of ionizing radiation and ionizing particles
RU2294035C2 (ru) Лавинный фотодиод
EP3055887B1 (en) Multi-pixel avalanche photodiode
AU2013260752B2 (en) Microchannel avalanche photodiode
RU2770147C1 (ru) Микропиксельный лавинный фотодиод
WO2022198017A1 (en) Method for manufacturing deep-junction low-gain avalanche detectors and associated semiconductor substrates
Yakimov et al. Picosecond UV single photon detectors with lateral drift field: Concept and technologies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121114

Termination date: 20150531

EXPY Termination of patent right or utility model