JP2004200308A - 光電変換膜の作製方法および固体撮像素子 - Google Patents

光電変換膜の作製方法および固体撮像素子 Download PDF

Info

Publication number
JP2004200308A
JP2004200308A JP2002365456A JP2002365456A JP2004200308A JP 2004200308 A JP2004200308 A JP 2004200308A JP 2002365456 A JP2002365456 A JP 2002365456A JP 2002365456 A JP2002365456 A JP 2002365456A JP 2004200308 A JP2004200308 A JP 2004200308A
Authority
JP
Japan
Prior art keywords
silicon
photoelectric conversion
conversion film
temperature
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002365456A
Other languages
English (en)
Inventor
Yoshiyuki Hirano
喜之 平野
Nobuo Saito
信雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2002365456A priority Critical patent/JP2004200308A/ja
Publication of JP2004200308A publication Critical patent/JP2004200308A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】シリコン基板に生じうる欠陥を軽減することができる、ナノシリコン層からなる光電変換膜の作製方法および作製される光電変換膜をフォトダイオードとして用いる固体撮像素子を提供する。
【解決手段】単結晶シリコン基板10を熱酸化してシリコン酸化膜12を単結晶シリコン基板10の表面に形成し、ついで、低圧化学気相堆積法により、シリコン酸化物膜12の上にシリコンナノ結晶14の集合体を形成し、ついで、シリコンナノ結晶14を熱酸化してシリコン酸化膜16をシリコンナノ結晶14の表面に形成し、以下、後半の2つの処理を繰り返してシリコンナノ結晶層18を形成する。さらに、シリコン酸化膜16が形成された単結晶シリコン基板10を1000℃で熱処理した後、温度が1000〜800℃の間は、10℃/分以下の降温速度で降温して光電変換膜を得る。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、光電変換膜の作製方法および作製される光電変換膜をフォトダイオードとして用いる固体撮像素子に関する。
【0002】
【従来の技術】
従来のテレビジョン用超高感度カメラでは、光電変換膜として、主にアモルファスセレン膜が用いられてきた。
【0003】
このアモルファスセレン膜からなる光電変換膜は、HARP(High-gain Avalanche Rushing amorphous Photoconductor)膜と呼ばれ、暗電流が小さく、かつ、高電界を印加して光生成した信号電荷をアバランシェ増倍させることにより1を超える量子効率を得ることができるものである。
【0004】
HARP膜を利用した高感度HARP膜撮像管が実現されている(例えば、非特許文献1参照。)。
【0005】
今後、よりコンパクトで堅牢な高感度カメラを実現するためには、このHARP膜をフォトダイオードとしてCCDやCMOSに積層して用いることが考えられるが、この場合、CCDやCMOSの動作電圧が数V程度と低いため、100〜200V程度の動作電圧でアバランシェ増倍するHARP膜を用いることは現実にはできない。
【0006】
このため、よりコンパクトで堅牢な高感度CCDカメラまたは高感度CMOSカメラを実現するためには、低電圧でアバランシェ増倍する光電変換膜を開発することが必要不可欠である。
【0007】
このような光電変換膜として、表面をキャリアのトンネル伝導が可能な厚みの絶縁膜で覆われた、直径数nmのシリコン結晶であるシリコンナノ結晶を集積化したナノシリコン層を含む光電変換膜が提案されている(特許文献1参照。)。
【0008】
このナノシリコン層を含む光電変換膜は、アバランシェ増倍の起こり易さの指標となる衝撃イオン化率がアモルファスセレン膜よりも高いことが予想される。
【0009】
また、ナノシリコン層を含む光電変換膜は、電荷がシリコン酸化膜をトンネリングしながらナノ結晶内を格子散乱させることなく弾道的に伝導するため、最終的に、電荷が高エネルギ状態になることが知られている(例えば、非特許文献2参照。)。
【0010】
これらの知見より、ナノシリコン層を含む光電変換膜は、低電圧でアバランシェ増倍を生じることが期待できる。
【0011】
また、このようなナノシリコン層を含む光電変換膜として、低圧化学気相堆積(LPCVD)法によるシリコンナノ結晶の自己形成工程と、800℃程度の比較的高温でシリコンナノ結晶表面を熱酸化してシリコン酸化膜を形成する工程とを繰り返して作製したシリコンナノ結晶膜が光電変換特性を示すことが報告されている(例えば、非特許文献3参照。)。ここで、低圧化学気相堆積法によるシリコンナノ結晶の自己形成とは、シリコン膜堆積の初期に原料の供給を止めることで、相互に分離独立した状態のナノ結晶を自己組織的に形成することをいう。自己形成されたシリコンナノ結晶は、個別にシリコン酸化膜によって表面を覆われ、相互に絶縁される。
【0012】
低圧化学気相堆積法によりシリコンナノ結晶を自己形成する手法は、均一なシリコンナノ結晶を得ることができ、また、シリコンナノ結晶の精密な構造制御が可能であるために好適であることも知られている(特許文献1参照。)。
【0013】
この場合、多層膜を形成した後、シリコンナノ結晶中のダングリングボンドと呼ばれる欠陥を除去するために、窒素雰囲気中で、多層膜を形成するプロセス温度以上の温度、例えば、1000℃程度の温度で熱処理することが行われている。
【0014】
【特許文献1】
特開2001−7381号公報
【非特許文献1】
谷岡等:アバランシェ倍増a−Se光導電膜を用いた高感度HARP
撮像管,テレビ誌,Vol.44,No.8,pp.1074-1083(1990)
【非特許文献2】
N.Koshida et.al.:Appl.Surf.Sci., 146,371(1999)
【非特許文献3】
Y.Hirano et.al. :Appl.Phys.Lett.,79,2255(2001)
【0015】
【発明が解決しようとする課題】
しかしながら、上記のようにナノシリコン層を含む光電変換膜の作製方法において、ナノシリコン層(膜)のダングリングボンド欠陥を除去するために高温で熱処理を行うとき、シリコン基板に欠陥を生じて、光電変換特性に悪影響を与える場合があることが、本発明者等の検討により判明した。
【0016】
なお、低圧化学気相堆積法を用いてシリコンナノ結晶を自己形成する方法に変えて、シリコン基板を低温で陽極酸化または化学エッチングすることでナノシリコン層を形成する方法も知られている。この場合は、ナノシリコン層(膜)のダングリングボンド欠陥を除去するための熱処理を必ずしも要しない。しかしながら、この場合、ナノシリコン層(膜)のダングリングボンド欠陥が解消していないおそれがあり、また、均一なナノ結晶を得ることができず、さらにまた、ナノ結晶の精密な構造制御を行うことも難しい。
【0017】
本発明は、上記の課題に鑑みてなされたものであり、ナノシリコン層からなる光電変換膜をシリコン基板に積層形成する際の最終工程において高温で熱処理するときにシリコン基板に生じうる欠陥を軽減することができる、光電変換膜の作製方法および作製される光電変換膜をフォトダイオードとして用いる固体撮像素子を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る光電変換膜の作製方法は、シリコン基板上に、信号電荷のトンネル伝導が可能な厚みの絶縁層で覆われた直径数nmのシリコン結晶の集合体を含むシリコンナノ結晶層が形成された光電変換膜の作製方法において、該シリコンナノ結晶層を形成した後に非酸化性ガス雰囲気中で800℃を超える温度で所定時間熱処理する工程を含み、熱処理を終えた後の降温速度を少なくとも800℃まで降温されるまでの間は10℃/分以下とすることを特徴とする。
【0019】
このような高温熱処理工程を最終工程として有するシリコンナノ結晶層を含む光電変換膜の作製方法としては、前記した低圧化学気相堆積法により自己形成したシリコンナノ結晶の表面を熱酸化して酸化膜を形成する方法を挙げることができるが、これ以外にも、シリコン基板をターゲットとした希ガス雰囲気中でのレーザアブレーション法によりシリコンナノ結晶膜を作製する方法、シリコン酸化膜中へのシリコンイオン注入法、レーザアブレーション法、プラズマ化学気相堆積法、スパッタリング法等によりシリコンリッチ酸化膜(SiO)またはSiO/シリコン酸化膜の積層構造を堆積し、これを高温熱処理することによりナノ結晶をシリコン酸化膜中に析出させることでシリコンナノ結晶膜を作製する方法、プラズマ化学気相堆積法によりモノシランガスをプラズマ分解する際に水素ガスをパルス的に導入することでシリコンナノ結晶膜を作製する方法もある。
【0020】
また、本発明に係る光電変換膜の作製方法は、低圧化学気相堆積法により、表面にシリコン酸化物層が形成されたシリコン基板に直径数nmのシリコン結晶の集合体の単層を形成するシリコン結晶形成段階と、熱酸化処理により、該シリコン結晶の表面に信号電荷のトンネル伝導が可能な厚みのシリコン酸化物層を形成するシリコン酸化物層形成段階とを有し、該シリコン結晶形成段階および該シリコン酸化物層形成段階を多数回繰り返して多層のシリコンナノ結晶層を形成するシリコンナノ結晶層形成工程と、該シリコンナノ結晶層が形成されたシリコン基板を窒素ガス雰囲気中で800℃を超える温度で所定時間熱処理する熱処理工程と、熱処理工程終了後、少なくとも800℃まで降温されるまでの間は10℃/分以下の降温速度で降温して該シリコンナノ結晶層が形成されたシリコン基板を冷却する冷却工程とを有することを特徴とする。
【0021】
本発明の上記の構成により、高温熱処理工程を経ることで生じうるシリコン基板の欠陥生成を軽減することができる。また、これにより、光電変換膜の光電変換特性の改善を図ることができる。
【0022】
また、本発明に係る固体撮像素子は、上記の作製方法により作製された光電変換膜をフォトダイオードとして用いることを特徴とする。
【0023】
これにより、良好な感度特性を有する固体撮像素子を得ることができる。
【0024】
【発明の実施の形態】
本発明に係る光電変換膜の作製方法および固体撮像素子の好適な実施の形態(以下、本実施の形態例という。)について、図を参照して、以下に説明する。
【0025】
まず、本実施の形態例に係る光電変換膜の作製方法について、図1を参照して説明する。
【0026】
光電変換膜を形成するために用意した単結晶シリコン基板10を洗浄する〈図1(a)参照。〉。
【0027】
ついで、ドライ酸素雰囲気中、例えば800℃の温度で単結晶シリコン基板10を熱酸化して、信号電荷のトンネル伝導が可能な、例えば1nm程度の厚みのシリコン酸化膜(シリコン酸化物層:絶縁層)12を単結晶シリコン基板10の表面に形成する(図1(b)参照。)。
【0028】
ついで、原料としてシランガスを用いる低圧化学気相堆積法により、シリコン酸化物膜12の上にシリコンナノ結晶14の集合体(これを便宜的に単層と呼ぶ。)を形成する(シリコン結晶形成段階:図1(c)参照。)。このとき、シリコン堆積の初期段階でシランガスの供給を一旦止めることで、シリコン酸化物膜12の上に自己組織的にシリコンナノ結晶14が形成される。典型的なシリコンナノ結晶14の形成条件は、単結晶シリコン基板10の温度が例えば525℃、シランガスの圧力が例えば800Pa(6Torr)、堆積時間が例えば30秒である。
【0029】
ついで、ドライ酸素ガスの圧力が例えば8Torr(1060Pa)の雰囲気中で、例えば800℃の温度でシリコンナノ結晶14、言いかえればシリコンナノ結晶14の集合体(単層)を例えば5分間、熱酸化して、信号電荷のトンネル伝導が可能な、例えば1nm程度の厚みのシリコン酸化膜16をシリコンナノ結晶14の表面に形成する(シリコン酸化物層形成段階:図1(d)参照。)。その後、例えば、150℃/分の降温速度で、シリコン酸化膜16の覆われたシリコンナノ結晶14を525℃の温度まで冷却する。
【0030】
以下、図1(c)のシリコン結晶形成段階と図1(d)のシリコン酸化物層形成段階を例えばそれぞれ20回繰り返して、シリコン酸化膜16で覆われたシリコンナノ結晶14の集合体が多層に積層された、例えば0.05μmの厚みのシリコンナノ結晶層18を形成する(シリコンナノ結晶層形成工程:図1(e)参照。)。図1(e)では、便宜的に、シリコン酸化膜16で覆われたシリコンナノ結晶14の集合体が3層積層された状態を示している。
【0031】
このとき、シリコンナノ結晶層18は、シリコン酸化膜16で覆われたシリコンナノ結晶14の集合体のみでなく、例えばゲルマニウム(Ge)ナノ結晶やシリコンカーバイト(SiC)ナノ結晶等を含むものであってもよい。
【0032】
ついで、シリコン酸化膜16中の、より正確には、シリコンナノ結晶14中のダングリングボンド欠陥を除去するために、シリコン酸化膜16が形成された単結晶シリコン基板10を非酸化性ガスである窒素雰囲気中、例えば1000℃の温度で例えば1時間熱処理する(熱処理工程)。
【0033】
熱処理を終えた後、1000℃の温度にあるシリコン酸化膜16が形成された単結晶シリコン基板10を冷却する(冷却工程)。このとき、温度が1000〜800℃の間は、10℃/分以下の降温速度、例えば、7℃/分程度の降温速度で降温させる。なお、このとき、800℃以下の温度に至った後は、後述する単結晶シリコン基板10の欠陥を生じない範囲で降温速度を大きくすることが能率的であるが、これに限らず、800℃以下の温度に至った後においても10℃/分以下の降温速度を維持することを排除するものではなく、例えば、常温に至るまで10℃/分以下の降温速度で冷却してもよい。
【0034】
これにより、本実施の形態例に係るシリコンナノ結晶層18からなる光電変換膜が得られる。
【0035】
得られた光電変換膜の断面透過型電子顕微鏡写真を図2(a)に示す。図2(a)より、単結晶シリコン基板10には欠陥が見られないことが分かる。
【0036】
これに対して、冷却工程において、100℃/分の降温速度で1000℃から常温までシリコンナノ結晶層18が形成された単結晶シリコン基板10を冷却したときの光電変換膜の断面透過型電子顕微鏡写真を図2(b)に示す。図2(b)より、単結晶シリコン基板10に欠陥が生じていることが分かる。なお、図2(b)では、欠陥を目立たせるため網目模様表示している。
【0037】
また、上記の熱処理を行うことなく、シリコンナノ結晶層形成工程終了後のシリコンナノ結晶層18が形成された単結晶シリコン基板10、すなわち、シリコン結晶形成段階とシリコン酸化物層形成段階を繰り返すことで、少なくともシリコン酸化物層形成段階からつぎのシリコン結晶形成段階へ移行する過程で800℃から525℃までの降温期間、結果的に150℃/分の降温速度で冷却が繰り返されて得られる非熱処理の光電変換膜の断面透過型電子顕微鏡写真を図2(c)に示す。図2(c)より、単結晶シリコン基板10には欠陥が生じていないことが分かる。この知見から、熱処理を行ったときにおいても、少なくとも1000〜800℃の温度範囲の間について10℃/分以下の降温速度で降温すれば十分であり、800℃以下の温度に至った段階では、10℃/分を大きく超える降温速度で降温しても単結晶シリコン基板10に欠陥は見られないであろうことが予測できる。なお、このケースでは、シリコンナノ結晶層18にダングリングボンド欠陥が多数存在することが予想され、後述するように、この光電変換膜を用いた発光素子はフォトルミネッセンスが得られないことから、この予測の妥当性が裏付けられる。
【0038】
つぎに、上記本実施の形態例に係る光電変換膜の作製方法で作製した光電変換膜の光電変換特性を測定した結果について、図3および図4を参照して説明する。
【0039】
図3に示すように、本実施の形態例に係る光電変換膜(シリコンナノ結晶層18と同一の参照符号を付す。)18が形成された単結晶シリコン基板12の単結晶シリコン基板12側に正極としてのアルミ電極20を配設し、光電変換膜18側に負極としての半透明金電極22を配設して、測定用の受光素子24を構成する。
【0040】
受光素子24のアルミ電極20および半透明金電極22間に異なる電圧を印加したときの光電変換特性である電流密度変化を測定した結果を図4に示す。図4中、○は光照射時のものであり、●は暗時のものである。
【0041】
図4より、本実施の形態例に係る光電変換膜を用いた受光素子は、電圧の増加に伴い光照射時の電流密度が大きく増加し、また、測定を行った全ての電圧範囲において、暗時の電流密度が光照射時の電流密度を大きく下回ることが分かる。すなわち、良好な光電変換特性が得られることが分かる。
【0042】
これに対して、図2(b)で示した、熱処理後100℃/分の降温速度で降温した光電変換膜を用いた受光素子について、上記と同様に光電変換特性を測定した結果を図5に示す。
【0043】
図5より、100℃/分の降温速度で降温した光電変換膜は、暗時の電流密度と光照射時の電流密度とが同程度であり、望ましい光電変換特性が得られていないことが分かる。
【0044】
つぎに、上記本実施の形態例に係る光電変換膜の作製方法で作製した光電変換膜のフォトルミネッセンス(PL)特性を測定した結果を図6に示す。
【0045】
フォトルミネッセンス特性を測定するための励起光は、325nmのHe−Cdレーザを用いた。なお、図2(b)の100℃/分の降温速度で降温した光電変換膜および図2(c)の熱処理を行わなかった光電変換膜についても、合わせて、フォトルミネッセンス特性を測定した。
【0046】
図6より、本実施の形態例に係る光電変換膜(図6中、矢印(A)で示す。)は、良好なフォトルミネッセンス特性が得られ、単結晶シリコン基板中に欠陥を生じていないことが確認される。これに対して、熱処理後100℃/分の降温速度で降温した光電変換膜(図6中、矢印(B)で示す。)は、望ましいフォトルミネッセンス特性が得られず、熱処理を行わなかった光電変換膜(図6中、矢印(C)で示す。)は、フォトルミネッセンス特性が得られないことが分かる。熱処理後100℃/分の降温速度で降温した光電変換膜については、シリコン基板中の欠陥で電荷が非発光性再結合して消滅していることが予測され、一方、熱処理を行わなかった光電変換膜については、前述のように、シリコンナノ結晶中のダングリングボンド欠陥によりフォトルミネッセンス特性が得られないものと考えられる。
【0047】
つぎに、以上説明した本実施の形態例に係る作製方法で作製した光電変換膜をフォトダイオードとしてCCDやCMOSと組み合わせて用いれば、感度特性の良好な固体撮像素子を得ることができる。また、この固体撮像素子を用いることにより、コンパクトで堅牢な高感度CCDカメラまたは高感度CMOSカメラを得ることができる。
【0048】
なお、本実施の形態例に係る作製方法で作製した光電変換膜は、CCD、CMOSを用いた固体撮像素子のみでなく、ドキュメントスキャナにおけるCCD、CMOSを用いたイメージセンサにも適用可能である。
【0049】
【発明の効果】
本発明に係る光電変換膜の作製方法によれば、シリコン基板上に、信号電荷のトンネル伝導が可能な厚みの絶縁層で覆われた直径数nmのシリコン結晶の集合体を含むシリコンナノ結晶層が形成された光電変換膜の作製方法において、シリコンナノ結晶層を形成した後に非酸化性ガス雰囲気中で800℃を超える温度で所定時間熱処理する工程を含み、熱処理を終えた後の降温速度を少なくとも800℃まで降温されるまでの間は10℃/分以下とし、または、低圧化学気相堆積法により、表面にシリコン酸化物層が形成されたシリコン基板に直径数nmのシリコン結晶の集合体の単層を形成するシリコン結晶形成段階と、熱酸化処理により、シリコン結晶の表面に信号電荷のトンネル伝導が可能な厚みのシリコン酸化物層を形成するシリコン酸化物層形成段階とを有し、シリコン結晶形成段階およびシリコン酸化物層形成段階を多数回繰り返して多層のシリコンナノ結晶層を形成するシリコンナノ結晶層形成工程と、シリコンナノ結晶層が形成されたシリコン基板を窒素ガス雰囲気中で800℃を超える温度で所定時間熱処理する熱処理工程と、熱処理工程終了後、少なくとも800℃まで降温されるまでの間は10℃/分以下の降温速度で降温してシリコンナノ結晶層が形成されたシリコン基板を冷却する冷却工程とを有するため、高温熱処理工程を経ることで生じうるシリコン基板の欠陥生成を軽減することができる。また、これにより、光電変換膜の光電変換特性の改善を図ることができる。
【0050】
また、本発明に係る固体撮像素子によれば、上記の作製方法により作製された光電変換膜をフォトダイオードとして用いるため、良好な感度特性を有する固体撮像素子を得ることができる。
【図面の簡単な説明】
【図1】本実施の形態例に係る光電変換膜の作製方法を説明するためのものであり、(a)は単結晶シリコン基板を示し、(b)は単結晶シリコン基板の表面に酸化膜を形成した状態を示し、(c)は酸化膜上にシリコンナノ結晶の集合体を形成した状態を示し、(d)はシリコンナノ結晶の表面に酸化膜を形成した状態を示し、(e)は(c)および(d)の工程を繰り返してシリコンナノ結晶層を単結晶シリコン基板上に形成した状態を示す。
【図2】シリコンナノ結晶層および単結晶シリコン基板の断面透過型電子顕微鏡写真を示す図であり、(a)は本実施の形態例に係る光電変換膜の作製方法により作製したものを、(b)は熱処理後100℃/分の降温速度で降温したものを、(c)は熱処理を行わなかったものを、それぞれ示す。
【図3】光電変換膜の光電変換特性を測定するための素子の概略構成を示す図である。
【図4】本実施の形態例に係る作製方法により作製した光電変換膜の光電変換特性を示すグラフ図である。
【図5】熱処理後100℃/分の降温速度で降温して作製した光電変換膜の光電変換特性を示すグラフ図である。
【図6】光電変換膜のフォトルミネッセンス特性を示すグラフ図である。
【符号の説明】
10 単結晶シリコン基板
12 シリコン酸化膜
14 シリコンナノ結晶
16 シリコン酸化膜
18 シリコンナノ結晶層
20 アルミ電極
22 半透明金電極
24 受光素子

Claims (3)

  1. シリコン基板上に、信号電荷のトンネル伝導が可能な厚みの絶縁層で覆われた直径数nmのシリコン結晶の集合体を含むシリコンナノ結晶層が形成された光電変換膜の作製方法において、
    該シリコンナノ結晶層を形成した後に非酸化性ガス雰囲気中で800℃を超える温度で所定時間熱処理する工程を含み、
    熱処理を終えた後の降温速度を少なくとも800℃まで降温されるまでの間は10℃/分以下とすることを特徴とする光電変換膜の作製方法。
  2. 低圧化学気相堆積法により、表面にシリコン酸化物層が形成されたシリコン基板に直径数nmのシリコン結晶の集合体の単層を形成するシリコン結晶形成段階と、熱酸化処理により、該シリコン結晶の表面に信号電荷のトンネル伝導が可能な厚みのシリコン酸化物層を形成するシリコン酸化物層形成段階とを有し、該シリコン結晶形成段階および該シリコン酸化物層形成段階を多数回繰り返して多層のシリコンナノ結晶層を形成するシリコンナノ結晶層形成工程と、
    該シリコンナノ結晶層が形成されたシリコン基板を窒素ガス雰囲気中で800℃を超える温度で所定時間熱処理する熱処理工程と、
    熱処理工程終了後、少なくとも800℃まで降温されるまでの間は10℃/分以下の降温速度で降温して該シリコンナノ結晶層が形成されたシリコン基板を冷却する冷却工程とを有することを特徴とする光電変換膜の作製方法。
  3. 請求項1または2に記載の作製方法により作製された光電変換膜をフォトダイオードとして用いることを特徴とする固体撮像素子。
JP2002365456A 2002-12-17 2002-12-17 光電変換膜の作製方法および固体撮像素子 Pending JP2004200308A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365456A JP2004200308A (ja) 2002-12-17 2002-12-17 光電変換膜の作製方法および固体撮像素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365456A JP2004200308A (ja) 2002-12-17 2002-12-17 光電変換膜の作製方法および固体撮像素子

Publications (1)

Publication Number Publication Date
JP2004200308A true JP2004200308A (ja) 2004-07-15

Family

ID=32763003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365456A Pending JP2004200308A (ja) 2002-12-17 2002-12-17 光電変換膜の作製方法および固体撮像素子

Country Status (1)

Country Link
JP (1) JP2004200308A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049449A1 (en) * 2004-11-04 2006-05-11 Electronics And Telecommunications Research Institute Silicon nitride layer for light emitting device, light emitting device using the same, and method of forming silicon nitride layer for light emitting device
JP2007081190A (ja) * 2005-09-15 2007-03-29 Sanyo Electric Co Ltd 電界効果型トランジスタ
JP2007123554A (ja) * 2005-10-28 2007-05-17 Sanyo Electric Co Ltd 紫外線センサ
JP2009539245A (ja) * 2006-06-01 2009-11-12 ゼコテック メディカル システムズ シンガポール ピーティーイー リミテッド マイクロチャネル・アバランシェ・フォトダイオード(変形物)
JP2009290196A (ja) * 2008-05-29 2009-12-10 Sharp Corp 光検出器、および半導体ナノ粒子埋め込みSi絶縁膜の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049449A1 (en) * 2004-11-04 2006-05-11 Electronics And Telecommunications Research Institute Silicon nitride layer for light emitting device, light emitting device using the same, and method of forming silicon nitride layer for light emitting device
US8222055B2 (en) 2004-11-04 2012-07-17 Electronics And Telecommunications Research Institute Silicon nitride layer for light emitting device, light emitting device using the same, and method of forming silicon nitride layer for light emitting device
JP2007081190A (ja) * 2005-09-15 2007-03-29 Sanyo Electric Co Ltd 電界効果型トランジスタ
JP2007123554A (ja) * 2005-10-28 2007-05-17 Sanyo Electric Co Ltd 紫外線センサ
JP2009539245A (ja) * 2006-06-01 2009-11-12 ゼコテック メディカル システムズ シンガポール ピーティーイー リミテッド マイクロチャネル・アバランシェ・フォトダイオード(変形物)
JP2009290196A (ja) * 2008-05-29 2009-12-10 Sharp Corp 光検出器、および半導体ナノ粒子埋め込みSi絶縁膜の製造方法

Similar Documents

Publication Publication Date Title
Meng et al. Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer
Brongersma et al. Tuning the emission wavelength of Si nanocrystals in SiO 2 by oxidation
Shcheglov et al. Electroluminescence and photoluminescence of Ge‐implanted Si/SiO2/Si structures
JP2001007381A (ja) 光電変換膜とその作製方法
TWI398019B (zh) 在soi上氮化鎵半導體裝置及其製程
JP2001007381A5 (ja)
JP2006236997A (ja) 発光デバイスおよびその製造方法
JP2006349673A (ja) ナノワイヤセンサ装置およびナノワイヤセンサ装置構造の製造方法
JP2010037184A (ja) シリコンリッチ酸化物を含むナノワイヤーおよびその製造方法
JP2004200308A (ja) 光電変換膜の作製方法および固体撮像素子
JP4880156B2 (ja) 高酸素感受性シリコン層及びその製造方法
WO2010013748A1 (ja) 紫外線受光素子および紫外線量の測定方法
Hirano et al. Photoconductive properties of nanometer-sized Si dot multilayers
Rui et al. Structural and electroluminescent properties of Si quantum dots/SiC multilayers
JPH0697070A (ja) 多結晶シリコン膜の製造方法
Wu et al. Room temperature visible electroluminescence in silicon nanostructures
KR101301443B1 (ko) 가시광 발광특성을 갖는 그래핀 및 그 제조방법
Kuroda et al. Formation of thin β-FeSi2 template layer for the epitaxial growth of thick film on Si (111) substrate
WO2007003638A1 (fr) Couche de silicium tres sensible a l'oxygene et procede d'obtention de cette couche
FR2815026A1 (fr) Procede d'auto-organisation de microstructures ou de nanostructures et dispositif a microstructures ou a nanostructures
Yang et al. Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles
KR102405011B1 (ko) ReS2 박막 형성 방법 및 이를 이용한 광 검출기 형성 방법
JP4195556B2 (ja) 光電変換膜作製方法、光電変換膜作製装置及び撮像素子
JP3091882B2 (ja) 半導体装置及びその製造方法
JP4080822B2 (ja) β−FeSi2膜の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415