CN101626890A - 无纺纤维质材料以及从其得到的电极 - Google Patents

无纺纤维质材料以及从其得到的电极 Download PDF

Info

Publication number
CN101626890A
CN101626890A CN200680052104A CN200680052104A CN101626890A CN 101626890 A CN101626890 A CN 101626890A CN 200680052104 A CN200680052104 A CN 200680052104A CN 200680052104 A CN200680052104 A CN 200680052104A CN 101626890 A CN101626890 A CN 101626890A
Authority
CN
China
Prior art keywords
carbon fiber
fiber fragments
woven fibrous
average
fibrous materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200680052104A
Other languages
English (en)
Inventor
拉迪亚德·莱尔·伊斯特万
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN101626890A publication Critical patent/CN101626890A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Nonwoven Fabrics (AREA)
  • Inert Electrodes (AREA)
  • Conductive Materials (AREA)

Abstract

描述了含有活化碳纤维的纤维质材料及它们的制备方法。同时公开了含有该纤维质材料的电极。

Description

无纺纤维质材料以及从其得到的电极
技术领域
本发明涉及含活化碳纤维的纤维质材料及其制备方法。该活化碳纤维可应用于包含活性碳材料的各种装置,所述的装置包括但并非局限于多种电化学装置(例如,电容器、电池、燃料电池等等)、氢存储装置、过滤装置、催化基质等等。
背景技术
双电层电容器的设计依赖于非常大的电极表面积,其通常通过在集电器上涂敷“纳米级粗糙”的金属氧化物或活性碳来制成,其中集电器由良导体例如铝或铜箔制备,并通过来自导电的电解质盐的离子的物理分离来将电荷储存到被称做亥姆霍兹(Helmholtz)层的区域。该亥姆霍兹层,其在超过电极表面的几个
Figure A20068005210400041
上形成,典型地相当于离表面的头两个或三个分子。在EDLC中没有显著的物理电介质,取而代之地由电磁决定的亥姆霍兹层提供。尽管如此,电容还是基于跨越电场的物理电荷分离。因为电池的每个面在其表面储存有数量相等但极性相反的离子电荷,同时在它们之间的电解质(但是超过了亥姆霍兹层)被损耗并有效的变成了传统的电容器的反性板,因此该技术即被称为双电层电容。电极由多孔的薄膜隔离物所物理隔离,类似于电解电容器或锂离子电池。目前的EDLC具有的频率响应(反应曲线或RC)常数为毫秒到秒。然而,商业的EDLC(有时被叫做超级电容器)目前非常昂贵,而且应用于例如混合动力汽车时能量密度不足,其主要地替代应用在软故障存储备份的消费电子中。
普遍接受的EDLC碳表面孔隙的尺寸,对于含水电解质来说应该至少大约为1-2nm,对于有机电解质来说大约为2-3nm,从而容纳相应的电解质离子的溶剂化球,从而为气孔提供可获得的亥姆霍兹层电容表面积。为了暴露和润湿电解质,气孔应该开口到表面,而非封闭的或在内部。同时,刚刚超过临界尺寸的全部开放气孔越多越好,因为这样可以最大限度地增加总表面积。实质上,更大的孔隙是不受欢迎的,因为它们会使总有效表面积相对减少。其它的研究显示,当平均孔径从大约4nm增加到大约20nm时是可以增加电容的。
使用在如此ELDC装置上的传统活性碳具有许多电化学没有用的微孔(即,按照IUPAC的定义小于2nm)。为了形成亥姆霍兹层,孔径大小必须近似电解质离子的溶剂化球,或者更大一些。对于有机电解质,这些孔理想地要大于3到4nm。在报导有最高电化学活化的碳的文献中,实际测量的EDLC要比理论上小20%,这是由于次优的孔径分布,其中对电容没有贡献的微孔占有较大的比例(代表性地超过三分之一或一半)以及大孔(取决于活化度)比例的增长减少了总表面积。相反,除了由于碳粒子制成的电极材料的形成而引起的损失之外,由前体模板材料控制的具有理想孔径和形状的某些模板化碳显示出与理论值接近的电容。
通过充分地增加碳的有效面积可以优化性能,且同时可以达到更大的电容和降低成本(需要使用较少的材料)。主要来说,存在两种增加电容的方式。第一种方式为提高有效的碳表面积。IUPAC关于纳米技术的定义对于有机电解质的尺寸特征的传统之见具有潜在的帮助:微孔≤2nm、中孔是>2和≤50nm、以及大孔>50nm。传统的目标通常即为优化中孔的表面积。
第二种方式为充分利用存在的碳表面来形成电极材料。由于成本和密度的原因,活性碳粉末通常在集电器的金属薄片上堆积一定的深度,代表性地为50到150微米。为了最大化表面积,粉末颗粒需要随机地尽可能紧密地堆积。通常通过研磨来达到,不规则的形状的粒径分布在几个增长的倍数之间(KurarayBP20公布的是5到20微米,或根据Maxwell的6643119专利3到30微米且d50为8微米),以便小一些的颗粒装填在大颗粒之间。
技术上这些是随机多分散的填料。堆积密度多少可以通过尺寸分布的形状来调整。细粉料减少了空隙/体积的孔隙度。这些材料的空隙通常被认为比根据IUPAC定义的大孔大三个数量级,虽然从技术上来说也落入其中。为了消除讨论中的术语混乱,微米级的材料空隙被称为材料孔隙(材料孔隙度),从而与碳粒子上或内部的纳米级表面气孔区别。
在上下文中引入本征电容的概念和术语压实损失是非常有用的。本征电容是当完全双层时总有效碳表面积的理想电容。与理想接近的尺寸为“碳亥姆霍兹容量”或μF/cm2的CH。Kinoshita在Carbon Electrochemical and Physical Properties (1988)中编选了很多关于CH测量值的报告;更近来的论文所确定的有机电介质的范围在3到20之间。传统之见为暴露在边缘的石墨晶胞的定向可以解释这些差异。大多数(不一定都)的这些CH测量值,是根据电容的三电极参考测量值或BET表面积估算测量的,因此都包括两者的压实损失和由于BET方法所引入的任何表面积测量的误差。令人惊讶地是,因为很多活性碳表面包含了实质上对有机电解质的电容没有贡献的微孔,所以在不同的碳所观察到的一些试验变化来自于形成的电极材料的材料孔隙。
压实损失(compaction loss)为碳的本征电容和传统的某种形式的电极的比电容之间的差异(F/g,F/cc,或者%),该电极用在工业中的度量。工业专家推测压实损失在低于大约30%到高于80%的范围。对于给定的材料,实际数字也将会随着电极的厚度而改变。
压实损失来源于至少五个分离现象。首先,不同尺寸粒子的无规则堆砌,导致非常大变化的材料空隙。这些空隙在最好的情况下为长的和曲折的,在最坏的情况下通过随机的限制(未润湿的表面)彻底与电解质隔绝。任何小于大约6nm的限制-很容易地在不规则形状的内嵌颗粒的连接处增大从数十纳米到几微米的直径-可以展示出导致完全地堆砌,因此一旦电荷置于该设备上时,其将被临近的溶剂化电解质离子阻塞。因此不可能有进一步的质量迁移或电解质扩散。最近的研究惊人地展示出由相当比例的典型活性碳事实上是由活化生产的微粒的凝聚。一项研究结果显示它们平均小于100nm,但是群集(由于范德华力)到或“装饰”微米大小的大粒子。其结果为由于不可能有更多的质量迁移到该区域,因此限制区域耗尽了离子。该区域的表面利用不足。第二,对于更多的表面堆砌较小的碳粒子到材料的空隙导致将电解质从材料里面移动出来,增加了超越电极表面的离子导电性和质量迁移的需要,例如从分离器区域。在更坏的的情况下这限制了有效电容。在最好的情况下,其增加了RC和令人所不期望地延缓了装置的频率响应。第三,更多的小粒子增加了横向边界颗粒的数目,电荷必须从该边界流入电极。所不期望地减少了电极的传导率,所不期望地增加了它的ESR,因此增加了它的RC。第四,为了克服由于许多小颗粒所引起的传导率的问题,通常加入一定比例的对有效表面积没有贡献的导电碳粒子。第五,为了将如此多分散的精细不规则颗粒结合在一起,通常加入一定比例的粘结剂,例如对有效表面积没有贡献的PFTE。科学文献所报导的实验电极,具有差不多10%的碳导体和粘结剂的每一个,这意味着只有80%的电极物质能够对实际的电容表面积起贡献作用。
使得EDLC的性能最大化是合乎需要的。
发明简要
本发明人已经发现,通常从具有大体上类似的直径和长径比α的活化碳纤维碎片所形成的纤维质材料可以提高EDLC的性能。
在另一方面,本发明人已经发现,利用纤维质材料也可以提高EDLC的性能,该纤维质材料由下列物质的混合物形成:(a)50到95+%的第一活化碳纤维碎片群和(b)第二碳纤维碎片群,其具有与第一群大体上类似或相等的直径,但长度比第一群要长。
附图说明
附图1的图形描述了对于无规堆砌的最终体积分数Φ与长径比α的函数关系。实线是从随机接触等式Φα=5.1的理论拟合。插图显示了在低长径比时相同图形的放大视图。图形复制于Physical Review E 67 051301,051301-5(2003)。
详细说明
通过这些描述和附加的权利要求,可以理解以下定义:
术语“长径比”是指碳纤维或纤维的长度除以纤维的直径。
术语“压实损失”被用来是指电极在总共有效的碳表面积的本征电容和传统的测量的单位电容之间的差异(用F/g、F/cc或百分比)。
术语“本征电容”是指当完全为双层时总共有效的碳表面积的理想电容。
关于碳纤维或纤维的术语“中孔的”是用来描述表面特点的孔径大小的分布,其中至少大约有20%的总孔隙体积具有的尺寸为从大约2到大约50nm。
用于碳纤维或纤维的惯用语“催化活化的”是指,它的含孔表面,其中孔隙已经经过了催化地控制活化(例如,刻蚀)处理。在一些具体实施方案中,选择平均粒度的金属氧化物颗粒来充当合适的催化剂和至少一部分金属氧化物在活化处理之后保留在纤维中或其上。
术语“纤维”是指聚合物和碳具有细直径的细丝状材料,例如直径小于大约20微米,和优选小于大约10微米,例如那些可以使用常规纺纱方法所获的类型。
术语“纳米纤维”是指聚合物和碳具有小于1微米的非常细直径细丝状材料,和优选纳米尺度(100纳米或更小的直径),例如那些可以使用静电纺纱方法所获的类型。
活化的碳纤维
本本发明的碳纤维的实体特征可以通过任何已知的方法制备。通常碳纤维是通过聚合单体形成聚合物纤维并且碳化至少一部分聚合物纤维来产生碳纤维而制备的。
碳纤维可以使用任何已知的方法活化。例如,Kyotani,Carbon,2000,38:269-286,已经总结出获得中孔碳纤维的可利用方法。Hong等人,Korean J Chem.Eng.,2000,17(2),237-240,描述了一种通过进一步的催化气化所获得的二次活化的已活化过的碳纤维。美国申请NO.11/211,894(申请日2005年8月25日)描述了优选的具有受控制的中孔隙碳纤维的制备方法;那篇申请的全部内容在此作为参考。如美国申请NO.11/211,894所述,在理想情况下,需要控制碳纤维的活化以确保中孔隙的形成。然而,由其他的制备方法所形成的活化碳纤维也可以应用于本发明。
在一些实施方案中,本发明的活化碳纤维的直径大约为10微米或更小,在有些实施方案中大约为5微米或更小,在有些实施方案中大约为1微米或更小,在有些实施方案中大约为500nm或更小,在有些实施方案中大约为100nm或更小。优选的直径取决于制备纤维质材料的方法。
本发明的活化碳纤维具有孔隙(例如,它们不是平滑的表面)。在活化期间引入到纤维表面和纤维内部的孔隙尺寸取决于处理方法,以及一种优化方案中取决于金属氧化物纳米颗粒催化剂的催化活性,其数量和/或纳米颗粒的尺寸以及活化的条件。通常,希望所选择的孔隙的尺寸要足够的大,以便能容纳特别的用在理想的表面堆砌电解质,但是实质上的较大要避免总纤维表面面积不必要地减少。
平均孔隙的大小典型地在大约1nm到大约20nm的范围内。理想情况下,平均孔隙大小在大约3nm到15nm之间,优选6-10nm。
同质碳纤维碎片
本发明是基于以下认识:同质杆状碳纤维碎片群可用于最大化由其形成的纤维质材料的表面面积和孔隙度。本发明的第一令人惊奇的方面为,数理模型和实验数据同时显示低α纤维状材料(短棒、圆柱或纤维)可以随机地像球体一样堆积。理论上三维球体无规填充的极限为0.64,即贝尔纳极限(Bernal limit)。根据经验,由于实验材料的不均匀性测量到的贝尔纳极限大约为0.63。令人惊讶地是,长径比为2的圆柱体的堆积密度大约为0.62。对于特定的材料例如电极有利地为,它们大致以相同的无规则填充接触(5.4±0.2,在许多实验中经验验证)作为球体的等效容积(并对于不规则的形状而言更小),但是具有的表面积超过了相同直径材料的两倍,所以每单位表面积具有相称地更少的平均接触点和势能面(potential surface)阻塞。
在长传导元件上的规则数目的接触和从材料到集电极金属薄片减少了总颗粒的边界数目,改善了导电性和减少了ESR。长的狭窄的多孔管道以圆柱形排列有利于电解质的扩散和离子的导电性,类似于碳纤维织物,但是没有相同材料密度的限制以及因为避免了编织步骤降低了成本。普通的碳纸或毡是由高多分散性的长径比的长纤维所组成的,这些纤维无法达到相同的无规则填充密度和总表面积。通常,制造纤维的成本通过利用其长度(例如,对于拉伸强度或导电的连续性)而合理化了。令人惊讶地是,本发明的方法仅仅利用了圆柱几何体的短长度。由于这些无规则填充性能在尺度上是恒定的,因此它们可以预见地延伸到第二代的细纤维的材料。
活化期间,碳纤维可以为碎片。对于本发明,纤维被进一步打断,以便纤维的平均长度相对均匀。可以利用任何已知的方法使纤维成碎片例如化学方法或机械研磨,而且经过筛选的方法例如先进的空气分级器使得粒度分布没有过度的多分散性,例如长径比的分布为从1到5但是集中于2到3。作为对比,典型的商业活性碳微粒的分布为3到30微米、中位数为8微米;它是高度多分散地。许多较小的颗粒意味着能在少数较大的颗粒之间填充从而使总表面积最大化,但是引起压实损失。
本发明的碳纤维的实体特征可以是分解为较短的碎片(例如在碳化之后和期间或在活化之后),然后将其应用于底物(例如作为浆料)从而形成无纺纸状层。像短纤维碎片粉末似的颗粒可以由大块的较长的材料通过压碎、碾磨、斩切、磨削、化学研磨等方式制备,使用制备好的碎片长度分布随后涂敷到底物(例如电极的表面)之上。
通常,为了最大化无规则填充的碎片群具有的平均长度为直径的一到五倍;即1到5的长径比。长径比小于1的精细组成可以“阻塞”材料的孔隙;高长径比不能紧密地堆积。对于具体的设备特性可以选择一定的长径比;例如,对于功率密度更希望有更多的材料孔隙度从而确保电解质的质量迁移(高比例),而对于能量密度从紧密堆积的更多表面积可能更合乎需要(低比例)。实际上,研磨和筛选过程导致在工程设计的目标附近具有一定的颗粒分布分散性。
通常,当纤维的直径减小,它们的总表面积增加,为了达到单个数的长径比变得更为困难但是这是次要的。多少有些较低的堆积密度被较大的单根纤维表面积所抵消。为了保持沿着纤维轴线的导电率以及不引入太多的颗粒边界,可以设想实际的最小的平均长度。在一些实施方案中,7微米直径的纤维的长度可能为15微米、长径比大约为2。在一些实施方案中5微米直径的纤维长度可能为10微米、同时长径比为2。对于直径小于一微米的电纺丝纳米纤维,对于导电率合适的长度可以保持为几微米,导致当纤维直径减小时长径比增加。然而通常,材料平均的长径比保持在20之下以达到大于大约50%的合理材料密度。在附图1中图示的工程上的权衡,显示出对于单分散堆砌的理论和试验的结果(来自Physical Review E27 051301(2003)。
所形成的纤维质材料的长径比分布将产生符合这些无规则填充的原则的可预见的平均密度和孔隙度的材料。
非均匀碳纤维碎片混合物
同样在本发明的范围内具有多峰分布的活化碳纤维碎片的混合物。第一群包含的碎片具有相当均匀的长度和直径。其他的活性纤维碎片群包含大体上与第一群相同的直径,但是具有较长的长度和更高长径比。
在相对均匀的较小碎片中由于密度和总表面积并不关键地取决于一些长的碎片(大体上较大的长径比),从而有可能第二纤维碎片群具有比第一群长的长度但实质上没有影响密度或表面积。学术上,这些是双峰或多峰的多分散。可以混合适中比例的较长纤维,对于相当于几个直径的长度每个平均有5.4个接触。通过提供半连续的导电轨迹和更进一步地减少颗粒的界面,其对于材料的导电率和ESR具有主要优点。
在一实施方案中,非均匀混合物包含大约50到95%的第一实质上的同质(非高多分散)碎片群和实质上与第一群具有类似直径但更长长度的平衡碎片。
在一实施方案中在第二群中纤维的长度比第一群大约大两倍,在另一实施方案中第二群是其长的五倍。在另一实施方案中,无论第一群的长度,较长的纤维的平均长度为50、100、150或200微米,所述的长度相当于所希望的电极材料的平均厚度。
纤维质材料
可以对本发明的纤维进行进一步地处理从而按照本发明提供一种材料,该材料与如美国专利No.6627252和6631074所描述的传统的颗粒碳涂层处理并不矛盾,在这里将两篇的全部内容都作为参考,除了一些与本申请的揭示或定义不一致的内容,此处的揭示或定义应该被认为是优先的。
结果所得的“像纸”一样的纤维质材料的密度,诸如涂敷在集电器金属薄片之上的材料,是纤维碎片的长度与它们的直径相比(它们的长径比)的一项工程性质,长度与平均直径的多分散分布,和选择性地沉积后致密化(例如通过压力)。假如长度与直径接近,那么碎片和传统的粒子很相像从而堆积的更密导致结果材料具有较少的孔隙度。假如长度比直径大的多,那么长径比将会较大,以及堆积密度较小(即如与体积比有更多的疏松空隙的材料)。长度与直径的平均长径比可以进行调整和/或以不同比例的混合物来提供任何所需的在无规则填充原则之内的材料孔隙度(空隙/体积比)。在一些实施方案中,至少大约50%数目的总碳纤维碎片具有大约5到大约30微米的长度,与一些活性碳颗粒材料相当。在有些实施方案中,至少大约50%数目的总碎片具有低于30的长径比。在有些实施方案中,平均长径比低于20。在有些实施方案中,平均长径比低于10。在有些实施方案中,其中纤维碎片的直径等于或小于100nm更类似地接近碳纳米管,至少大约50%数目的碳纤维碎片的长度小于1微米长径比小于20。
在一些实施方案中,纤维质材料的密度可以进一步的增加(例如通过简单地卷压得到所需的厚度或类似方法)。在一些实施方案中,密度的增加在碳化和/或活化之前,以及在有些实施方案中,密度的增加在碳化和/或活化之后。在一些实施方案中,密集的纤维质材料的厚的小于或等于大约200微米,在有些实施方案中,小于或等于大约150微米,以及在有些实施方案中,小于或等于大约100微米。
电容器
EDLC电极是典型地由活性碳直接地或间接地结合到金属薄片集电器之上制备的,虽然可以使用金属氧化物。按照本发明,根据此处所描述的方法所制备的活性碳材料可以和附加的金属氧化物或类似物等一起应用到集电器之上,对于杂化特征包括增强的法拉第准电容。
本发明的电容器的实体特征包括至少一个此处所描述的类型的电极。在一些实施方案中,电容器进一步地包含电解质,在一些实施方案中为水溶液,在有些实施方案中是有机物。在一些实施方案中,电容器表现出双电层电容。在一些实施方案中,特别是在活性碳纤维质材料的表面上存在残留的金属氧化物的情况下,电容器进一步地表现出法拉第准电容。
有机电解质的传统碳EDLC使用碳酸丙烯酯或者乙腈作为有机溶剂以及一种常规的氟硼酸盐。一些碳和绝大多数商业金属氧化物EDLC使用基于硫酸(H2SO4)或氢氧化钾(KOH)的含水电解质。根据本发明可以使用任何这些电解质或类似物。
因为有机电解质比含水电解质的导电率低,因此它们具有缓慢的RC特征和高ESR作用,并且在明显较大的几何形状达到质量迁移孔隙约束,这是因为它们是大得多的溶剂离子。然而,由于它们的击穿电压超过3V而含水电解质为1V,因此有机物产生更高的总能量密度,这是因为总能量是电压的二次方函数。用于有机物的优化的碳孔隙和材料也可任选地用于含水电解质,因为含水的溶剂化球体更小。这将允许,例如超容量装置适合于RC需求而不管碳的制造,通过长径比改变电极堆积密度和改变电解质。混合式装置将自然地具有大范围的总RC特征,这是因为它们结合了EDLC与PC电容现象。使用在混合电动汽车的实际范围在小于大约1秒到大于15秒,以及为了分配动力小于大约0.01秒到超过大约1秒。
本发明的活化中孔碳纤维或纤维或它们的相应碎片,其实体特征可以并入各式各样装置,它们包含了传统的活性碳材料或那些可以方便地变更而并入碳纤维质材料的工程材料的几何形状、表面积、孔隙度和导电率。典型的装置包括但不局限于各种电化学装置(例如,电容器、电池包括但不局限于单面镍氢电池和/或两面锂离子电池、燃料电池等等)。这样的装置可以没有限制的应用于所有申请的情况,包括但不局限于那些潜在地可以受益于高能和大功率密度的电容器等等。
通过解释和附图已经对前述事项进行了详细地描述,但是并没有对所附权利要求的范围加以限制。许多此处的优化实施方案的变化对本领域的技术人员而言是显而易见的,而且依然在附加的权利要求或它们的等效的范围内。

Claims (20)

1、一种无纺纤维质材料,其包含具有大体上类似的长度和直径的活化碳纤维碎片,其中碳纤维碎片的长径比平均大约在1到20之间。
2、如权利要求1所述的无纺纤维质材料,其中碳纤维碎片的长径比平均在大约1到10之间。
3、如权利要求1所述的无纺纤维质材料,其中碳纤维碎片的长径比平均在大约1到5之间。
4、如权利要求1所述的无纺纤维质材料,其中碳纤维碎片的长径比平均在大约2到3之间。
5、如权利要求1所述的无纺纤维质材料,其中碳纤维碎片的平均直径小于15微米。
6、如权利要求1所述的无纺纤维质材料,其中碳纤维碎片的平均直径小于10微米。
7、如权利要求1所述的无纺纤维质材料,其中碳纤维碎片的平均直径大约为5微米。
8、如权利要求1所述的无纺纤维质材料,其中压实损失小于50%。
9、如权利要求1所述的无纺纤维质材料,其中压实损失小于40%。
10、如权利要求1所述的无纺纤维质材料,其中压实损失小于30%。
11、一种无纺纤维质材料,其包含第一活化碳纤维碎片群,其中大于大约50%的第一活化碳纤维碎片群具有大体上类似的长度和直径,并且其中第一活化碳纤维碎片群的长径比平均在1到20之间。
12、如权利要求11的无纺纤维质材料,其进一步地包含至少一个第二活化碳纤维碎片群,其平均长度超过第一活化碳纤维碎片群的平均长度。
13、如权利要求11所述的无纺纤维质材料,其中碳纤维碎片的长径比平均在大约1到10之间。
14、如权利要求11所述的无纺纤维质材料,其中碳纤维碎片的平均直径小于15微米。
15、如权利要求11所述的无纺纤维质材料,其中碳纤维碎片的平均直径小于10微米。
16、如权利要求11所述的无纺纤维质材料,其中压实损失小于50%。
17、一种电极,其包含:
集电器;和
覆盖所述集电器至少部分的无纺纤维质层,其中该无纺纤维质层包含第一活化碳纤维碎片群,其中大于大约50%的第一活化碳纤维碎片群具有大体上类似的长度和直径,并且其中第一活化碳纤维碎片群的长径比平均在1到20之间。
18、如权利要求17所述的电极,其中无纺纤维质层包含第一活化碳纤维碎片群,其中大于大约90%的第一活化碳纤维碎片群具有大体上类似的长度和直径,并且其中第一活化碳纤维碎片群的长径比平均在1到20之间。
19、如权利要求17所述的电极,其中无纺纤维质层的厚度小于或等于大约200微米。
20、如权利要求17的电极,其进一步地包含至少一个第二活化碳纤维碎片群,其平均长度超过第一活化碳纤维碎片群的平均长度。
CN200680052104A 2006-01-31 2006-02-03 无纺纤维质材料以及从其得到的电极 Pending CN101626890A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/345,188 US20070178310A1 (en) 2006-01-31 2006-01-31 Non-woven fibrous materials and electrodes therefrom
US11/345,188 2006-01-31

Publications (1)

Publication Number Publication Date
CN101626890A true CN101626890A (zh) 2010-01-13

Family

ID=38322426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680052104A Pending CN101626890A (zh) 2006-01-31 2006-02-03 无纺纤维质材料以及从其得到的电极

Country Status (15)

Country Link
US (2) US20070178310A1 (zh)
EP (1) EP1981705B1 (zh)
JP (2) JP5465882B2 (zh)
KR (2) KR20130062380A (zh)
CN (1) CN101626890A (zh)
AU (1) AU2006337690A1 (zh)
BR (1) BRPI0621060A2 (zh)
CA (1) CA2637667A1 (zh)
ES (1) ES2725724T3 (zh)
HU (1) HUE043436T2 (zh)
IL (1) IL193048A0 (zh)
MX (1) MX2008009821A (zh)
RU (1) RU2429317C2 (zh)
UA (1) UA94083C2 (zh)
WO (1) WO2007091995A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103842422B (zh) * 2011-07-21 2016-08-24 恩特格里公司 纳米管与细磨的碳纤维聚合物复合材料的组合物及其制造方法
CN106605326A (zh) * 2015-07-24 2017-04-26 住友电气工业株式会社 氧化还原液流电池用电极、氧化还原液流电池和电极的特性评价方法
CN112216518A (zh) * 2020-09-15 2021-01-12 暨南大学 一种柔性锌离子混合电容器及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313723B2 (en) * 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
US20070178310A1 (en) * 2006-01-31 2007-08-02 Rudyard Istvan Non-woven fibrous materials and electrodes therefrom
CA2642151A1 (en) * 2006-02-15 2007-10-25 Rudyard Lyle Istvan Mesoporous activated carbons
AU2008216735A1 (en) * 2007-02-14 2008-08-21 Rudyard Lyle Istvan Methods of forming activated carbons
GB201110585D0 (en) * 2011-06-22 2011-08-03 Acal Energy Ltd Cathode electrode modification
KR101946013B1 (ko) * 2011-12-23 2019-02-11 삼성전자주식회사 전기에너지 발생 및 저장장치
US9607776B2 (en) 2013-10-24 2017-03-28 Corning Incorporated Ultracapacitor with improved aging performance
AT515234A1 (de) 2013-12-23 2015-07-15 Chemiefaser Lenzing Ag Verfahren zur Herstellung von Carbonpartikeln
KR101862551B1 (ko) 2015-09-30 2018-05-30 금오공과대학교 산학협력단 등방성 탄소섬유전극의 제조방법
US20180019483A1 (en) * 2016-07-13 2018-01-18 University Of Tennessee Research Foundation Redox flow battery with increased-surface-area electrode and asymmetric electrolyte concentration
US10661090B2 (en) * 2016-12-21 2020-05-26 Medtronic, Inc. Implantable medical device batteries with milled fluorinated carbon fibers, devices, and methods

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US219788A (en) * 1879-09-16 Improvement in car-roofs
US40157A (en) * 1863-10-06 Improvement in boilers
US246528A (en) * 1881-08-30 Sand-trap and button-catcher for the manufacture of paper
US7027A (en) * 1850-01-15 Circulak
US185741A (en) * 1876-12-26 Improvement in chimneys
US3288641A (en) * 1962-06-07 1966-11-29 Standard Oil Co Electrical energy storage apparatus
ATE1021T1 (de) * 1978-06-07 1982-05-15 Eric Frank Thomas White Verfahren zur herstellung einer schwarzen, nicht leitenden, cellulosehaltigen textilfaser.
JPS57500782A (zh) * 1980-04-28 1982-05-06
DE3214948A1 (de) * 1981-04-23 1982-11-25 Toho Beslon Co., Ltd., Tokyo Verfahren zur herstellung von aktivierten kohlenstoffasern
FR2522697B1 (fr) * 1981-12-24 1985-10-18 Toho Beslon Co Fibres d'acrylonitrile, procede de fabrication d'une fibre d'acrylonitrile et de fabrication d'une fibre preoxydee, de carbone actif fibreux ou d'une fibre de carbone a partir de celle-ci
DE3228482C2 (de) * 1982-07-30 1986-09-11 VEG-Gasinstituut N.V., Apeldoorn Verfahren zur Reaktion von Kohlenmonoxid mit Wasserdampf unter Bildung von Kohlendioxid und Wasserstoff und Verwendung eines Katalysators hierfür
US4565727A (en) * 1983-09-12 1986-01-21 American Cyanamid Co. Non-woven activated carbon fabric
FR2583916B1 (fr) * 1985-06-25 1990-01-12 Europ Composants Electron Cellule pour condensateur a double couche electrique et procede de fabrication d'une telle cellule
JPH0621420B2 (ja) * 1985-08-20 1994-03-23 東燃株式会社 炭素繊維の表面処理法
JPS63218159A (ja) * 1987-03-06 1988-09-12 Kuraray Co Ltd 活性炭電極
GB8822518D0 (en) * 1988-09-26 1988-11-02 Cybertronics Ltd Improvements in & relating to fibrous activated carbons
US5041195A (en) * 1988-11-17 1991-08-20 Physical Sciences Inc. Gold electrocatalyst, methods for preparing it, electrodes prepared therefrom and methods of using them
ATE136949T1 (de) 1988-11-17 1996-05-15 Physical Sciences Inc Elektrokatalysator, verfahren zur herstellung, daraus hergestellte elektroden und deren verwendungsverfahren
FI86403C (fi) 1990-10-23 1992-08-25 Kemira Oy Saeteri Foerfarande foer framstaellning av aktivkol fraon cellulosahaltigt material.
DE69102405T2 (de) * 1990-12-13 1994-09-29 Mitsubishi Gas Chemical Co Aktivkohlesubstanz, Herstellungsverfahren und Anwendung.
JP2757573B2 (ja) * 1991-03-14 1998-05-25 松下電器産業株式会社 電気二重層コンデンサ
US5451476A (en) * 1992-11-23 1995-09-19 The Trustees Of The University Of Pennsylvania Cathode for a solid-state battery
RU2031837C1 (ru) 1993-03-15 1995-03-27 Электростальское научно-производственное объединение "Неорганика" Способ получения активного угля
JPH07161589A (ja) * 1993-12-06 1995-06-23 Nisshinbo Ind Inc 電気二重層キャパシタ
JP2825146B2 (ja) * 1993-12-28 1998-11-18 東邦レーヨン株式会社 電気機器用吸着エレメント
US5488023A (en) * 1994-08-12 1996-01-30 Corning Incorporated Method of making activated carbon having dispersed catalyst
US5862035A (en) * 1994-10-07 1999-01-19 Maxwell Energy Products, Inc. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes
JP3446339B2 (ja) * 1994-10-18 2003-09-16 三菱化学株式会社 活性炭の製造方法
US5626977A (en) * 1995-02-21 1997-05-06 Regents Of The University Of California Composite carbon foam electrode
JPH08315820A (ja) * 1995-05-11 1996-11-29 Petoca:Kk 二次電池負極材用炭素繊維及びその製造方法
WO1996037288A1 (fr) * 1995-05-26 1996-11-28 Hitachi Chemical Company, Ltd. Materiau pour purifier l'air ambiant
US5776633A (en) * 1995-06-22 1998-07-07 Johnson Controls Technology Company Carbon/carbon composite materials and use thereof in electrochemical cells
JP3502490B2 (ja) * 1995-11-01 2004-03-02 昭和電工株式会社 炭素繊維材料及びその製造法
US5963417A (en) * 1995-11-09 1999-10-05 Wisconsin Alumni Research Foundation Electrochemical capacitor
JP3532016B2 (ja) * 1995-11-22 2004-05-31 日立マクセル株式会社 有機電解液二次電池
US5990041A (en) * 1996-04-05 1999-11-23 Research Foundation Of State University Of New York At Buffalo Mesoporous activated carbon filaments
US5877935A (en) * 1996-09-17 1999-03-02 Honda Giken Kogyo Kabushiki-Kaisha Active carbon used for electrode for organic solvent type electric double layer capacitor
US5922300A (en) * 1997-01-23 1999-07-13 Oji Paper Co., Ltd. Process for producing silicon carbide fibers
US6205016B1 (en) * 1997-06-04 2001-03-20 Hyperion Catalysis International, Inc. Fibril composite electrode for electrochemical capacitors
AU733930B2 (en) * 1997-06-27 2001-05-31 University Of Southampton Porous film and method of preparation thereof
US6673328B1 (en) * 2000-03-06 2004-01-06 Ut-Battelle, Llc Pitch-based carbon foam and composites and uses thereof
US5907471A (en) * 1997-12-29 1999-05-25 Motorola, Inc. Energy storage device with electromagnetic interference shield
EP1371607A3 (en) 1998-02-10 2004-01-07 Corning Incorporated Method of making mesoporous carbon
US6248691B1 (en) * 1998-02-10 2001-06-19 Corning Incorporated Method of making mesoporous carbon
WO2000005172A1 (en) * 1998-07-20 2000-02-03 Corning Incorporated Method of making mesoporous carbon using pore formers
CN1204577C (zh) * 1998-08-25 2005-06-01 钟纺株式会社 电极材料及其制造方法
US6080504A (en) * 1998-11-02 2000-06-27 Faraday Technology, Inc. Electrodeposition of catalytic metals using pulsed electric fields
US6183189B1 (en) * 1998-11-27 2001-02-06 Chartered Semiconductor Manufacturing, Ltd. Self aligning wafer chuck design for wafer processing tools
US6288888B1 (en) * 1998-12-25 2001-09-11 Nec Corporation Electric double layer capacitor
US8107223B2 (en) * 1999-06-11 2012-01-31 U.S. Nanocorp, Inc. Asymmetric electrochemical supercapacitor and method of manufacture thereof
KR100371402B1 (ko) 1999-06-14 2003-02-07 주식회사 엘지화학 기공 특성이 개질된 활성 탄소 섬유 및 그 개질 방법
WO2001013390A1 (fr) * 1999-08-10 2001-02-22 Honda Giken Kogyo Kabushiki Kaisha Procede de production de carbone active pour electrode de condensateur electrique double couche
JP2001135555A (ja) * 1999-11-01 2001-05-18 Honda Motor Co Ltd 電気二重層コンデンサ用電極
US6297293B1 (en) * 1999-09-15 2001-10-02 Tda Research, Inc. Mesoporous carbons and polymers
US6753454B1 (en) * 1999-10-08 2004-06-22 The University Of Akron Electrospun fibers and an apparatus therefor
US6627252B1 (en) * 2000-05-12 2003-09-30 Maxwell Electronic Components, Inc. Electrochemical double layer capacitor having carbon powder electrodes
US6631074B2 (en) * 2000-05-12 2003-10-07 Maxwell Technologies, Inc. Electrochemical double layer capacitor having carbon powder electrodes
JP2004503456A (ja) * 2000-05-24 2004-02-05 ファインセル カンパニー リミテッド 中孔質炭素材料、炭素/金属酸化物複合材料および該材料を用いる電気化学的キャパシタ
KR20000058668A (ko) 2000-06-23 2000-10-05 김동천 연료전지용 탄소 지지체에 직접 촉매를 코팅하는 방법 및그 방법에 의하여 제조된 전극
KR100348499B1 (ko) 2000-07-13 2002-08-10 명지대학교 전기이중층 캐패시터용 왕겨 활성탄의 제조방법
GB0019417D0 (en) * 2000-08-09 2000-09-27 Mat & Separations Tech Int Ltd Mesoporous carbons
DE10040897B4 (de) * 2000-08-18 2006-04-13 TransMIT Gesellschaft für Technologietransfer mbH Nanoskalige poröse Fasern aus polymeren Materialien
US6858349B1 (en) * 2000-09-07 2005-02-22 The Gillette Company Battery cathode
AU2002214042A1 (en) * 2000-11-09 2002-05-21 Foc Frankenburg Oil Company Est. A supercapacitor and a method of manufacturing such a supercapacitor
JP3911145B2 (ja) * 2000-11-10 2007-05-09 三洋化成工業株式会社 電気化学素子の電極用結合剤および電極の製造方法
EP1343410B1 (en) * 2000-12-20 2011-01-26 Showa Denko K.K. Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
KR100406981B1 (ko) * 2000-12-22 2003-11-28 한국과학기술연구원 전하 유도 방사에 의한 고분자웹 제조 장치 및 그 방법
JP4190292B2 (ja) * 2001-04-06 2008-12-03 カーネギー−メロン ユニバーシティ ナノ構造材料の製造方法
US6761868B2 (en) * 2001-05-16 2004-07-13 The Chemithon Corporation Process for quantitatively converting urea to ammonia on demand
US6713011B2 (en) * 2001-05-16 2004-03-30 The Research Foundation At State University Of New York Apparatus and methods for electrospinning polymeric fibers and membranes
JP3715251B2 (ja) * 2001-05-24 2005-11-09 本田技研工業株式会社 電気二重層キャパシタの電極用活性炭の製造方法および炭素原料
JP2004534713A (ja) * 2001-07-13 2004-11-18 ケント ステイト ユニバーシティ インプリンテッドメソポーラス炭素およびその製法
US7232790B2 (en) * 2001-09-11 2007-06-19 Showa Denko K.K. Activated carbon, method for production thereof and use thereof
GB0124812D0 (en) * 2001-10-16 2001-12-05 Polymer Lab Ltd Material
US6643119B2 (en) * 2001-11-02 2003-11-04 Maxwell Technologies, Inc. Electrochemical double layer capacitor having carbon powder electrodes
JP2003213137A (ja) * 2002-01-28 2003-07-30 Sumitomo Bakelite Co Ltd 熱硬化性樹脂成形材料およびこれを成形してなる成形品
US6805730B2 (en) * 2002-01-29 2004-10-19 Amersham Biosciences Membrane Separations Corp. Convoluted surface hollow fiber membranes
US7296691B2 (en) * 2003-07-18 2007-11-20 Kx Technologies Llc Carbon or activated carbon nanofibers
JP2003297701A (ja) * 2002-03-29 2003-10-17 Tdk Corp 電気化学デバイスおよび電気化学デバイスの製造方法
DE60319769T2 (de) * 2002-04-22 2009-04-30 Asahi Glass Co., Ltd. Elektrischer Doppelschichtkondensator
US7199080B2 (en) * 2002-06-17 2007-04-03 Ensyn Renewables, Inc. Process for producing activated carbon
WO2004011371A1 (ja) * 2002-07-30 2004-02-05 Kuraray Chemical Co.,Ltd. 活性炭、その製造方法、分極性電極および電気二重層キャパシタ
KR100489284B1 (ko) * 2002-11-13 2005-05-11 삼성전자주식회사 향상된 기계적 강도를 가지는 나노 다공성 탄소의제조방법 및 그에 의하여 제조되는 나노 다공성 탄소
US6830595B2 (en) * 2002-12-20 2004-12-14 Advanced Energy Technology Inc. Method of making composite electrode and current collectors
US7370657B2 (en) * 2003-04-02 2008-05-13 Philip Morris Usa Inc. Activated carbon-containing sorbent
RU2223911C1 (ru) 2003-04-08 2004-02-20 Федеральное государственное унитарное предприятие "Электростальское научно-производственное объединение "Неорганика" Способ получения активированного угля для электротехнических целей
JP2004335889A (ja) * 2003-05-09 2004-11-25 Tdk Corp 電気化学キャパシタ
CA2524476A1 (en) * 2003-05-09 2004-11-18 Mcgill University Process for the production of activated carbon
JP2005001969A (ja) 2003-06-13 2005-01-06 Nippon Steel Chem Co Ltd 低内部抵抗炭素微粉の製造方法及び電気二重層キャパシタ
JP2005026343A (ja) * 2003-06-30 2005-01-27 Tdk Corp 電気化学素子電極用活性炭、それを用いた電気化学素子電極、及び、電気化学素子
US7790135B2 (en) * 2003-07-02 2010-09-07 Physical Sciences, Inc. Carbon and electrospun nanostructures
CA2530806A1 (en) * 2003-07-03 2005-01-27 Drexel University Nanoporous carbide derived carbon with tunable pore size
JPWO2005028719A1 (ja) * 2003-09-19 2006-11-30 帝人株式会社 繊維状活性炭およびこれよりなる不織布
JP4419507B2 (ja) * 2003-10-17 2010-02-24 富士ゼロックス株式会社 コンデンサの製造方法
WO2005094440A2 (en) * 2004-03-18 2005-10-13 Nanosys Inc. Nanofiber surface based capacitors
US7541312B2 (en) * 2004-03-18 2009-06-02 Tda Research, Inc. Porous carbons from carbohydrates
US20050207902A1 (en) * 2004-03-19 2005-09-22 Bonifacio William J Machine for removing sump pit water and process for making same
JP4705566B2 (ja) 2004-03-31 2011-06-22 富士重工業株式会社 電極材及びその製造方法
EP1751056A1 (en) 2004-06-01 2007-02-14 Tartu Tehnoloogiad Oü A method of making the porous carbon material and porous carbon materials produced by the method
US8465858B2 (en) * 2004-07-28 2013-06-18 University Of South Carolina Development of a novel method for preparation of PEMFC electrodes
KR100605006B1 (ko) 2005-01-18 2006-07-28 (주) 아모센스 전기방사법으로 제조한 나노섬유의 탄소화에 의한 나노세공 분포를 갖는 활성탄소섬유의 제조방법
KR100612896B1 (ko) * 2005-05-18 2006-08-14 삼성에스디아이 주식회사 중형 다공성 탄소체 및 그의 제조방법
JP2008544543A (ja) * 2005-06-24 2008-12-04 ユニバーサル・スーパーキャパシターズ・エルエルシー ヘテロジーナス型電気化学スーパーキャパシタ及びその製造方法
WO2007007802A1 (ja) * 2005-07-13 2007-01-18 Taiyo Ink Mfg. Co., Ltd. 銀ペースト組成物、及びそれを用いた導電性パターンの形成方法、並びにその導電性パターン
US8313723B2 (en) 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
EP1783791B1 (en) * 2005-09-26 2011-02-23 Nisshinbo Industries, Inc. Electric double layer capacitor
CN1328425C (zh) 2005-10-14 2007-07-25 东华大学 具有中空形态结构的活性炭纤维和制备方法
KR100675923B1 (ko) 2005-12-01 2007-01-30 전남대학교산학협력단 금속산화물 복합 나노 활성탄소섬유와 이를 이용한전기이중층 슈퍼캐퍼시터용 전극 및 그 제조 방법
US20070178310A1 (en) 2006-01-31 2007-08-02 Rudyard Istvan Non-woven fibrous materials and electrodes therefrom
CA2642151A1 (en) 2006-02-15 2007-10-25 Rudyard Lyle Istvan Mesoporous activated carbons
AU2008216735A1 (en) * 2007-02-14 2008-08-21 Rudyard Lyle Istvan Methods of forming activated carbons
US8277691B2 (en) * 2008-05-05 2012-10-02 Ada Technologies, Inc. High performance carbon nanocomposites for ultracapacitors
US20100126870A1 (en) 2008-05-09 2010-05-27 Rudyard Lyle Istvan Controlled electrodeposition of nanoparticles
US20120007027A1 (en) * 2008-07-11 2012-01-12 Rudyard Lyle Istvan Activated carbon blacks

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103842422B (zh) * 2011-07-21 2016-08-24 恩特格里公司 纳米管与细磨的碳纤维聚合物复合材料的组合物及其制造方法
CN106605326A (zh) * 2015-07-24 2017-04-26 住友电气工业株式会社 氧化还原液流电池用电极、氧化还原液流电池和电极的特性评价方法
CN112216518A (zh) * 2020-09-15 2021-01-12 暨南大学 一种柔性锌离子混合电容器及其制备方法和应用

Also Published As

Publication number Publication date
JP5793547B2 (ja) 2015-10-14
IL193048A0 (en) 2009-08-03
RU2008130668A (ru) 2010-03-10
KR20090009191A (ko) 2009-01-22
US20070178310A1 (en) 2007-08-02
US20110220393A1 (en) 2011-09-15
BRPI0621060A2 (pt) 2011-11-29
WO2007091995A8 (en) 2008-08-28
CA2637667A1 (en) 2007-08-16
KR101299085B1 (ko) 2013-08-27
EP1981705A2 (en) 2008-10-22
JP2014077226A (ja) 2014-05-01
WO2007091995A3 (en) 2009-05-22
US8580418B2 (en) 2013-11-12
RU2429317C2 (ru) 2011-09-20
UA94083C2 (uk) 2011-04-11
JP5465882B2 (ja) 2014-04-09
WO2007091995A2 (en) 2007-08-16
EP1981705A4 (en) 2011-06-08
MX2008009821A (es) 2008-11-18
AU2006337690A1 (en) 2007-08-16
EP1981705B1 (en) 2019-02-20
KR20130062380A (ko) 2013-06-12
JP2009525415A (ja) 2009-07-09
ES2725724T3 (es) 2019-09-26
HUE043436T2 (hu) 2019-08-28

Similar Documents

Publication Publication Date Title
CN101626890A (zh) 无纺纤维质材料以及从其得到的电极
JP5039702B2 (ja) 活性炭素繊維、それらの調製方法、及び活性炭素繊維を備えた装置
Lokhande et al. Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers
Zhang et al. Enhanced capacitive deionization of graphene/mesoporous carbon composites
Tang et al. Activated porous carbon spheres with customized mesopores through assembly of diblock copolymers for electrochemical capacitor
Dong et al. Electrochemical properties of vanadium oxide aerogels
Qu et al. Rational design of Au–NiO hierarchical structures with enhanced rate performance for supercapacitors
EP1996509A2 (en) Mesoporous activated carbons
US20120007027A1 (en) Activated carbon blacks
Piedboeuf et al. Carbon xerogels as model materials: toward a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries
Yang et al. Incorporation of MnO2 into boron-enriched electrospun carbon nanofiber for electrochemical supercapacitors
Yi et al. Self-organized bowl-like hollow carbon submicrospheres with hierarchical mesopore-rich structure as superior electrode materials for supercapacitors
KR102051878B1 (ko) 금속 공기 전지용 전극
WO2007103422A1 (en) Mesoporous carbon fiber with a hollow interior or a convoluted surface
JP2006282444A (ja) 高比表面積マリモカーボンの製造方法及びこれを用いた電気二重層キャパシタ
MX2008002720A (en) Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20100113