CN101484986B - 化合物半导体外延基板 - Google Patents

化合物半导体外延基板 Download PDF

Info

Publication number
CN101484986B
CN101484986B CN2007800251864A CN200780025186A CN101484986B CN 101484986 B CN101484986 B CN 101484986B CN 2007800251864 A CN2007800251864 A CN 2007800251864A CN 200780025186 A CN200780025186 A CN 200780025186A CN 101484986 B CN101484986 B CN 101484986B
Authority
CN
China
Prior art keywords
layer
channel layer
compound semiconductor
type carrier
carrier concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800251864A
Other languages
English (en)
Other versions
CN101484986A (zh
Inventor
中野强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of CN101484986A publication Critical patent/CN101484986A/zh
Application granted granted Critical
Publication of CN101484986B publication Critical patent/CN101484986B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/205Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using reduction or decomposition of a gaseous compound yielding a solid condensate, i.e. chemical deposition
    • H01L21/2056Epitaxial deposition of AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供电子迁移率特性获得改善的更高性能的化合物半导体外延基板及其制造方法。化合物半导体外延基板具有电子移动的通道层以及位于通道层的前侧和背侧的外延层,并且,位于通道层的背侧的外延层中每单位面积的p型载流子浓度总量A(/cm2)、位于通道层的前侧的外延层中每单位面积的p型载流子浓度总量B(/cm2)满足下式(1)。0<A/B≤3.5(1)。在此,A=(位于通道层的背侧的外延层中含有的活性状态的受主杂质提供的总p型载流子浓度)×(位于背侧的外延层的总厚度),B=(位于通道层的前侧的外延层中含有的活性状态的受主杂质提供的总p型载流子浓度)×(位于前侧的外延层的总厚度)。

Description

化合物半导体外延基板
技术领域
本发明涉及电场效应晶体管(Field Effect Transistor、以下简称FET)、高电子迁移率晶体管(High Electron Mobility Transistor、以下简称HEMT)等各种电子器件制造中优选使用的化合物半导体外延基板及其制造方法。 
背景技术
近年来,使用以GaAs为中心的3-5族化合物半导体的各种电子元件,发挥可超高速、高频率工作的特长,通过应用于手机、卫星放送接受器等高频率机器中,实现了飞速发展,今后也将会继续稳步发展。 
通常情况下,为了制作使用了化合物半导体的电子元件,使用通过离子注入法、扩散法、或外延生长法等各种方法在单结晶基板上层叠了具有必需特性的结晶层的半导体基板。在上述方法中,因为外延生长法不仅可控制杂质的量,而且可将结晶的组成、厚度等在极宽的范围内精密地控制,所以已广泛应用于这种半导体基板的制作中。 
作为外延生长法,已知有液相法、气相法、以及作为真空蒸镀法之一的分子束外延生长法等。其中因气相法可控制性良好地处理大量基板,所以广泛应用于工业中。特别是用构成外延层的原子种的有机金属化合物或氢化物作原料,使其在基板上热分解从而进行结晶生长的有机金属热分解法(Metal-Organic Chemical Vapor Deposition法,以下简称MOCVD法),因为可适用的物质范围广,并且适合结晶组成、厚度的精密控制,量产性优异,所以近年来已广泛应用。 
制造FET、HEMT等电子元件时使用的外延生长基板,例如采用MOCVD法,通过使具有必需电子特性的GaAs、AlGaAs、InGaAs等结晶层以必需的结构在GaAs基板上进行生长来制作。 
在FET、HEMT等平面型电子元件中,通过用栅(Gate)电极的电场控 制在用GaAs层、InGaAs层形成的通道层中横向移动的电子,从而形成发挥晶体管特性的活性层,在该活性层与半绝缘性基板之间,通常形成由GaAs层、AlGaAs层等构成的缓冲层。 
在活性层与半绝缘性基板之间插入缓冲层的目的是,控制外延层/基板界面的杂质产生的影响、控制基板本身产生的影响、以及控制从活性层漏电,为保持电子元件的特性起到具有非常重要的作用。 
已知采用MOCVD法在基板上生长各种外延层时,因为Ga、Al等3族原料作为有机金属化合物供给,所以将其热分解作为外延层生长时,C(碳)被混入到该生长结晶中。并且已知随着镓(Ga)、铝(Al)等3族原料与砷(As)、磷(P)等5族原料的流量比即5族/3族原料流量比的变化,有机金属化合物的热分解行为发生变化,生长结晶中含有的C浓度发生变化。生长GaAs、AlGaAs等外延层时,将5族/3族原料流量比设定为越小值来进行外延生长,则获得的外延层具有越高的C浓度。因为在GaAs、AlGaAs结晶中,C作为受主杂质发挥作用,所以获得的外延层成为将p型载流子浓度作为本底浓度而具有的结晶层。 
采用MOCVD法,制作用于制造具有电子移动的通道层的平面型电子器件的化合物半导体外延基板时,通道层的前侧(衬底基板的相反侧)上有肖特基(Schottky)层、间隔层等具有本底p型载流子浓度的结晶层,另一方面,通道层的背侧(衬底基板的相同侧)上配置有间隔层、缓冲层等具有本底p型载流子浓度的结晶层。 
因此,通过MOCVD法制作FET、HEMT等电子元件用的外延生长基板时,具有本底p型载流子浓度的多数结晶层生长。 
在制造用于制造FET、HEMT等电子元件的外延基板时,例如是将InGaAs倾斜层(日文:歪み 
Figure G2007800251864D00021
)用于电子移动的通道层的HEMT的倾斜通道(日文:歪みチヤネル)高电子迁移率电场效应晶体管(pseudomorphic-HEMT、以下简称p-HEMT)的结构时,室温(300K)下的通道层中电子的迁移率约为8250cm2/Vs左右(电子信息通信学会、2006年综合大会演讲论文集、CT-1-3“化合物半導体高周波デバイス用エピタキシヤル成長技術”、2006年3月25日、国土馆大学),要达到该值以上的值是困难的。因此通过提高电子迁移率以进一步达到降低电子元件的 启动电阻(日文:立ち上がり抵抗)、电力损失,使电子元件的特性提高超过现有水平是存在限度的。 
对于电子迁移率的改善,从以往开始就逐步提出了各种方案。例如日本特开平6-21106号公报提出:在p-HEMT结构中,对于通道层使用的InGaAs倾斜层的In组成和InGaAs层的厚度,通过一定的关系式使其最优化,改善电子迁移率。此外,日本特开平2-246344号公报提出:在p-HEMT结构中,在通道层使用的InGaAs倾斜层和n-AlGaAs电子供给层之间,插入由AlGaAs层和GaAs层形成的间隔层,通过使生长条件最优化,改善二维电子气体浓度和电子迁移率。并且,日本特开2004-207471号公报提出:通过提高InGaAs倾斜层的In组成以及组合由AlGaAs层和GaAs层形成的间隔层,使生长条件最优化,从而改善电子迁移率。 
但是,如具有p-HEMT结构的外延基板那样,具有电子移动的通道层的化合物半导体外延基板中,二维电子气体浓度和电子迁移率的值越高,越能提高电子元件的特性,从这一观点出发,二维电子气体浓度和电子迁移率的值,并不是可使高频率用元件等应用领域满足的值,期望兼具高二维电子气体浓度和高电子迁移率的电子迁移率特性得到改善的外延基板。 
发明内容
本发明的目的是提供电子迁移率得到改善的更高性能的化合物半导体外延基板及其制造方法。 
本发明者为了解决上述课题进行了精心研究,结果完成了本发明。 
即:本发明提供平面器件用的化合物半导体外延基板,其具有电子移动的通道层以及位于通道层的前侧和背侧的外延层,并且,位于通道层的背侧的外延层中每单位面积的p型载流子浓度总量A(/cm2)、位于通道层的前侧的外延层中每单位面积的p型载流子浓度总量B(/cm2)满足下式(1), 
0<A/B≤3.5    (1) 
在此,A=(位于通道层的背侧的外延层中含有的活性状态的受主杂质提供的总p型载流子浓度)×(位于背侧的相应的外延层的总厚度), 
B=(位于通道层的前侧的外延层中含有的活性状态的受主杂质提供的总p型载流子浓度)×(位于前侧的外延层的总厚度)。
本发明提供化合物半导体外延基板,其为具有InGaAs层作为电子移动的通道层的假形态高电子迁移率电场效应晶体管结构的化合物半导体外延基板,其中,上述InGaAs层的室温(300K)下的电子迁移率为9000cm2/Vs以上。 
此外,本发明提供包括采用MOCVD法在衬底基板上生长外延层的工序的上述化合物半导体外延基板的制造方法。 
附图说明
图1表示本发明实施方式的化合物半导体外延基板的层结构。 
图2表示实施例所示的化合物半导体外延基板的层结构。 
图3表示用于测定实施例所示的化合物半导体外延基板中各层的p型载流子浓度的单层结构。 
图4表示实施例中室温时的电子迁移率测定结果。 
符号说明 
1半绝缘性GaAs衬底基板 
2缓冲层 
3背侧活性层 
4通道层 
5前侧活性层 
6接触层 
11半绝缘性GaAs衬底基板 
12、13缓冲层 
14背侧电子供给层 
15、16背侧间隔层 
17通道层 
18、19前侧间隔层 
20前侧电子供给层 
21肖特基层 
31半绝缘性GaAs衬底基板 
32p型载流子浓度测定层(AlGaAs、厚度:2000nm、载流子浓度:1~200E15/cm3
具体实施方式
化合物半导体外延基板
本发明的化合物半导体导体外延基板具有电子移动的通道层、位于通道层的前侧的外延层、以及位于通道层的背侧的外延层,通常依次具有衬底基板、缓冲层、通道层、前侧活性层(间隔层、电子供给层、肖特基层等)、接触层。此外,化合物半导体导体外延基板在通道层与缓冲层之间也可具有背侧活性层(电子供给层、间隔层等)。如图2所示,缓冲层、间隔层也可有2个以上。 
此外,对于化合物半导体导体外延基板而言,通过(由位于通道层的背侧的外延层中含有的活性状态的受主杂质而形成的总p型载流子浓度)×(位于背侧的外延层的总厚度)计算出的位于通道层的背侧的外延层中每单位面积的p型载流子浓度总量A(/cm2)、与通过(由位于通道层的前侧的外延层中含有的活性状态的受主杂质而形成的总p型载流子浓度)×(位于前侧的外延层的总厚度)计算出的位于通道层的前侧的外延层中每单位面积的p型载流子浓度总量B(/cm2)的比A/B大于0,优选为0.5以上、3.5以下、且优选1.5以下。 
满足上述式(1)的化合物半导体外延基板,通道层的前侧的外延层(前侧活性层、接触层等)中存在的活性状态的p型载流子浓度的总量,以及通道层的背侧的外延层(缓冲层、背侧活性层等)中存在的活性状态的p型载流子浓度的总量构成了平衡适度的状态。该化合物半导体外延基板,从带偏移(Band lineup)的关系来看,因为在通道层内移动的电子在通道层和与其接触的其他层的边界附近移动的这种状态得到改善,电子在通道层内的中心附近移动,所以在通道层内移动的电子的迁移率提高。 
化合物半导体外延基板,例如通过提高缓冲层的p型载流子浓度,另一方面使厚度变薄,可使背侧的外延层中存在的活性状态的p型载流子浓度的总量减少,同时,抑制外延层/基板界面的杂质产生的影响,并且抑制向基板漏电。这种化合物半导体外延基板不仅电子迁移率特性优异,而且因为缓冲层薄,所以也可消减用于使缓冲层生长的原料(例如5族原料)的使用量。因为通常5族原料的价格相对高价,所以该化合物半导体外延基板有利于节省成本。
具有InGaAs层作为电子移动的通道层的本发明的化合物半导体外延基板适合作为假形态高电子迁移率电场效应晶体管结构的化合物半导体外延基板,InGaAs层在室温(300K)下的电子迁移率为9000cm2/Vs以上。 
根据图1对本发明的化合物半导体外延基板的实施方式进行说明。图1所示的化合物半导体外延基板10的层结构,依次包括由半绝缘性GaAs形成的衬底基板1、由GaAs或AlGaAs形成的缓冲层2、由GaAs、AlGaAs、或InGaP形成的背侧活性层3、由InGaAs、InGaP或GaAs形成的通道层4、由GaAs、AlGaAs或InGaP形成的前侧活性层5、由GaAs或InGaAs形成的接触层6。 
图1所示的化合物半导体外延基板10,例如可采用MOCVD法通过在衬底基板1生长各层来制作,其具有用于制造具有电子移动用的通道层的平面器件的化合物半导体外延基板的层结构,具有用于制造p-HEMT而使用的化合物半导体外延基板的结构。 
图1所示的化合物半导体外延基板10,每单位面积的p型载流子浓度总量A(/cm2)为(位于通道层4的背侧的背侧活性层3及缓冲层2中含有的活性状态的受主杂质提供的p型载流子浓度)×(背侧活性层3及缓冲层2的合计厚度),每单位面积的p型载流子浓度总量B(/cm2)由(位于通道层4的前侧的前侧活性层5及接触层6中含有的活性状态的受主杂质提供的p型载流子浓度)×(其全部外延层的厚度)来计算时,以A/B在上述范围内的方式而构成。 
如上所述,化合物半导体外延基板10中,前侧外延层的活性状态的p型载流子浓度的总量,与背侧外延层的活性状态的p型载流子浓度的总量形成良好的平衡状态,在通道层4中的电子的移动状态得到改善,实现了以往所没有的高电子迁移率。 
通常情况下,因为发生结晶缺陷,无法提高背侧的电子供给层载流子的浓度,所以前侧的电子供给层载流子浓度有增高的趋势。因此,通道层4中移动的电子容易集中到前侧,所以可使背侧的电子供给层载流子浓度与前侧的电子供给层载流子浓度相比变为极小。 
化合物半导体外延基板的制造方法
化合物半导体基板,例如可采用MOVCD法进行制造,也可在衬底基板上,采用MOVCD法生长外延层。 
化合物半导体外延基板10的制造方法按如下说明。 
将作为高电阻的半绝缘性GaAs单结晶基板的衬底基板1的表面脱脂洗涤、蚀刻、水洗、干燥后,放置于结晶生长炉的加热台上。高电阻的半绝缘性GaAs单结晶基板,例如可利用LEC(Liquid EncapsulatedCzochralski)法、VB(Vertical Bridgeman)法、VGF(Vertical GradientFreezing)法等制备。GaAs单结晶基板,通常具有1个从结晶学的晶面方向倾斜的约0.05°~约10°的倾斜度。 
用高纯度氢将结晶生长炉内充分置换后,开始加热衬底基板1。结晶生长时的基板的温度,通常为约500℃~约800℃。在衬底基板1在适当的温度稳定时,向炉内导入砷原料,接着导入镓原料、铝原料或铟原料,可生长为GaAs层或AlGaAs层或InGaAs层即可。通过在衬底基板1上适当生长所需要的层,获得化合物半导体外延基板10。 
外延生长的原料,优选有机金属及/或氢化物。砷原料,例如为三氢化砷(砷化氢)、将砷化氢的氢用碳原子数为1~4的烷基取代后的烷基胂、碳原子数为1~3的烷基或氢与砷结合的三烷基化物或三氢化物。 
此外,InGaP层的生长,向炉内导入磷原料、镓原料以及铟原料即可。 
用于n型载流子的掺杂物中,可使用硅、锗、锡、硫、硒等的氢化物或具有碳原子数为1~3的烷基的烷基化物。 
在外延生长时,通过控制规定时间和各原料的供给,可获得具有所需结构的化合物半导体外延基板10,即如在衬底基板1上具有缓冲层2、背侧活性层3、通道层4、前侧活性层5、接触层6的结构。原料的供给,可根据各层的组成调整5族/3族原料流量比进行,例如,考虑到通道层4的前侧和背侧的p型载流子浓度总量的平衡,可在调整5族/3族原料流量比的同时进行。通常情况下,与前侧活性层5的厚度比较,因为背侧活性层 3和缓冲层2的合计厚度变大,所以生长背侧活性层3和缓冲层2时的5族/3族原料流量比,可设定为比生长前侧活性层5时的5族/3族原料流量比大。 
可在下述条件下进行外延生长,即可在背侧活性层3及缓冲层2中每单位面积的p型载流子浓度总量A(=活性状态的p型载流子浓度×厚度)、前侧活性层5及接触层中每单位面积的p型载流子浓度总量B(=活性状态的p型载流子浓度×厚度)的比A/B为大于0、3.5以下的条件下进行外延生长。 
停止各原料的供给使结晶生长停止,冷却后从炉内取出各外延层层叠在一起的化合物半导体外延基板10即可。 
实施例 
通过实施例对本发明进行说明,但本发明并不限于本实施例。 
在半绝缘性GaAs衬底基板上生长各层,制作图2所示的p-HEMT用化合物半导体外延基板30。图2所示的化合物外延基板30包括: 
半绝缘性的GaAs衬底基板11、 
缓冲层12(p-Al0.25Ga0.75As、厚度:100nm、载流子浓度:1~200E15/cm3)、 
缓冲层13(p-Al0.20Ga0.80As、厚度:50nm、载流子浓度:2E16/cm3)、 
背侧电子供给层14(n-Al0.20Ga0.80As、厚度:4nm、载流子浓度:3E18/cm3)、 
背侧间隔层15(p-Al0.20Ga0.80As、厚度:3nm、载流子浓度:2E16/cm3)、 
背侧间隔层16(i-GaAs、厚度:6nm)、 
通道层17(i-In0.35Ga0.65As、厚度:6nm)、 
前侧间隔层18(i-GaAs、厚度:6nm)、 
前侧间隔层19(p-Al0.20Ga0.80As、厚度:3nm、载流子浓度:2E16/cm3)、 
前侧电子供给层20(n-Al0.20Ga0.80As、厚度:6nm、载流子浓度:42E18/cm3)、以及 
肖特基层21(p-Al0.20Ga0.80As、厚度:38nm、载流子浓度:2E16/cm3)。 
生长使用减压筒型(barrel)MOCVD炉,作为3族原料气体使用三甲基镓(TMG)、三甲基铝(TMA)以及三甲基铟(TMI),5族原料气体使用砷 化氢(AsH3),作为n型掺杂物,使用乙硅烷(Si2H6),作为载气使用高纯度氢,在反应炉内压力0.1atm、生长温度650℃、生长速度3~1μm/hr的生长条件下进行生长。 
从缓冲层13到肖特基层21,设定5族/3族原料流量比为38.3进行生长。缓冲层12,使5族/3族原料流量比在11.5~103.2变化进行生长。这样通过使本底p型载流子浓度与其它他生长层不同,调节通道层17的两侧的各活性状态的p型载流子浓度。 
各层的活性状态p型载流子浓度,通过下述方法求出,即:对于在与使图2的化合物半导体外延基板的各层生长的5族/3族原料流量比相同的条件下生长的图3所示的单层结构,在室温下进行Van der Pauw法的Hall测定。通常GaAs层、InGaAs层的本底p型载流子浓度,与AlGaAs层的本底p型载流子浓度相比为小二位数左右的数值,因此在计算本底p型载流子浓度总量时,可以不考虑GaAs层、InGaAs层的本底p型载流子浓度。 
在缓冲层12的生长中,改变5族/3族原料流量比,制作了4种化合物半导体外延基板30。并且对于这些化合物半导体外延基板30,分别求出每单位面积的背侧p型载流子浓度总量A(/cm2)与每单位面积的前侧p型载流子浓度总量B(/cm2)。将这些结果示于表1中。 
表1化合物半导体外延基板的电子迁移率特性 
  每单位面积背侧  P型载流子浓度  总量A(/cm2)   每单位面积前侧  P型载流子浓度  总量B(/cm2)   A/B   室温电子迁移率  (cm2/Vsec)   二维电子气体浓  度(/cm2)
  1.3×1011   8.2×1010   1.5   9230   2.58×1012
  1.9×1011   8.2×1010   2.3   9100   2.56×1012
  5.6×1011   8.2×1010   6.9   8850   2.43×1012
  2.08×1012   8.2×1010   25.3   8410   1.93×1012
并且,在室温下进行Van der Pauw法的Hall测定,测定图2的外延生长基板的室温电子迁移率及室温二维电子气体浓度。这些结果也示于表1中。将A/B与电子迁移率之间的关系示于表4中。A/B为3.5以下时,电子迁移率为9000cm2/Vs以上,获得显示高电子迁移率的化合物半导体外延基板。该电子迁移率比以往在GaAs基板上生长的InGaAs通道的p-HEMT的迁移率8990cm2/Vs高。 
对于图3所示的化合物半导体外延基板30而言,在测定化合物半导体外延基板的特性时,虽然未使p-HEMT用化合物半导体外延基板上存在的接触层生长,但具有与p-HEMT用化合物半导体外延基板相同的特性。 
产业上利用的可能性 
根据本发明,提供通道层内的电子迁移率高的化合物半导体外延基板。使用该化合物半导体外延基板时,可制造高性能的平面器件。 

Claims (4)

1.平面器件用的化合物半导体外延基板,其具有电子移动的通道层以及位于通道层的前侧和背侧的外延层,并且,位于通道层的背侧的外延层中每平方厘米面积的p型载流子浓度总量A、位于通道层的前侧的外延层中每平方厘米面积的p型载流子浓度总量B满足下式(1),
0<A/B≤3.5(1)
式中,A=(位于通道层的背侧的外延层中含有的活性状态的受主杂质提供的总p型载流子浓度)×(位于背侧的外延层的总厚度),
B=(位于通道层的前侧的外延层中含有的活性状态的受主杂质提供的总p型载流子浓度)×(位于前侧的外延层的总厚度)。
2.根据权利要求1所述的基板,其中,通道层的前侧的外延层是前侧活性层及接触层。
3.根据权利要求1所述的基板,其中,通道层的背侧的外延层是缓冲层。
4.根据权利要求1所述的基板,其中,通道层的背侧的外延层是缓冲层及背侧活性层。
CN2007800251864A 2006-05-31 2007-05-28 化合物半导体外延基板 Expired - Fee Related CN101484986B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006150768A JP5073968B2 (ja) 2006-05-31 2006-05-31 化合物半導体エピタキシャル基板およびその製造方法
JP150768/2006 2006-05-31
PCT/JP2007/061236 WO2007139218A1 (ja) 2006-05-31 2007-05-28 化合物半導体エピタキシャル基板およびその製造方法

Publications (2)

Publication Number Publication Date
CN101484986A CN101484986A (zh) 2009-07-15
CN101484986B true CN101484986B (zh) 2012-08-08

Family

ID=38778732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800251864A Expired - Fee Related CN101484986B (zh) 2006-05-31 2007-05-28 化合物半导体外延基板

Country Status (7)

Country Link
US (1) US7935984B2 (zh)
JP (1) JP5073968B2 (zh)
KR (1) KR20090026144A (zh)
CN (1) CN101484986B (zh)
GB (1) GB2452177A (zh)
TW (1) TWI408265B (zh)
WO (1) WO2007139218A1 (zh)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054935A (ja) * 2009-06-19 2011-03-17 Rohm & Haas Electronic Materials Llc ドーピング方法
US8273617B2 (en) 2009-09-30 2012-09-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
WO2011065210A1 (en) * 2009-11-28 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US8569128B2 (en) 2010-06-21 2013-10-29 Suvolta, Inc. Semiconductor structure and method of fabrication thereof with mixed metal types
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
WO2012029292A1 (ja) * 2010-08-31 2012-03-08 住友化学株式会社 半導体基板、絶縁ゲート型電界効果トランジスタおよび半導体基板の製造方法
WO2012029291A1 (ja) * 2010-08-31 2012-03-08 住友化学株式会社 半導体基板および絶縁ゲート型電界効果トランジスタ
US8404551B2 (en) 2010-12-03 2013-03-26 Suvolta, Inc. Source/drain extension control for advanced transistors
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US8525271B2 (en) 2011-03-03 2013-09-03 Suvolta, Inc. Semiconductor structure with improved channel stack and method for fabrication thereof
US8748270B1 (en) 2011-03-30 2014-06-10 Suvolta, Inc. Process for manufacturing an improved analog transistor
US8999861B1 (en) 2011-05-11 2015-04-07 Suvolta, Inc. Semiconductor structure with substitutional boron and method for fabrication thereof
US8796048B1 (en) 2011-05-11 2014-08-05 Suvolta, Inc. Monitoring and measurement of thin film layers
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US8735987B1 (en) 2011-06-06 2014-05-27 Suvolta, Inc. CMOS gate stack structures and processes
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
US8629016B1 (en) 2011-07-26 2014-01-14 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
US8748986B1 (en) 2011-08-05 2014-06-10 Suvolta, Inc. Electronic device with controlled threshold voltage
WO2013022753A2 (en) 2011-08-05 2013-02-14 Suvolta, Inc. Semiconductor devices having fin structures and fabrication methods thereof
US8614128B1 (en) 2011-08-23 2013-12-24 Suvolta, Inc. CMOS structures and processes based on selective thinning
US8645878B1 (en) 2011-08-23 2014-02-04 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8713511B1 (en) 2011-09-16 2014-04-29 Suvolta, Inc. Tools and methods for yield-aware semiconductor manufacturing process target generation
US9236466B1 (en) 2011-10-07 2016-01-12 Mie Fujitsu Semiconductor Limited Analog circuits having improved insulated gate transistors, and methods therefor
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8819603B1 (en) 2011-12-15 2014-08-26 Suvolta, Inc. Memory circuits and methods of making and designing the same
US8883600B1 (en) 2011-12-22 2014-11-11 Suvolta, Inc. Transistor having reduced junction leakage and methods of forming thereof
US8599623B1 (en) 2011-12-23 2013-12-03 Suvolta, Inc. Circuits and methods for measuring circuit elements in an integrated circuit device
US8877619B1 (en) 2012-01-23 2014-11-04 Suvolta, Inc. Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom
US8970289B1 (en) 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9406567B1 (en) 2012-02-28 2016-08-02 Mie Fujitsu Semiconductor Limited Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
US8863064B1 (en) 2012-03-23 2014-10-14 Suvolta, Inc. SRAM cell layout structure and devices therefrom
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US8637955B1 (en) 2012-08-31 2014-01-28 Suvolta, Inc. Semiconductor structure with reduced junction leakage and method of fabrication thereof
US9112057B1 (en) 2012-09-18 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor devices with dopant migration suppression and method of fabrication thereof
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
JP2016500927A (ja) 2012-10-31 2016-01-14 三重富士通セミコンダクター株式会社 低変動トランジスタ・ペリフェラル回路を備えるdram型デバイス、及び関連する方法
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
US9112484B1 (en) 2012-12-20 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9268885B1 (en) 2013-02-28 2016-02-23 Mie Fujitsu Semiconductor Limited Integrated circuit device methods and models with predicted device metric variations
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
KR102098297B1 (ko) * 2013-05-24 2020-04-07 엘지이노텍 주식회사 에피택셜 웨이퍼
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods
US9319013B2 (en) 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708863B2 (ja) 1989-03-20 1998-02-04 三洋電機株式会社 エピタキシヤルウエハ及びその製造方法
JP3135939B2 (ja) * 1991-06-20 2001-02-19 富士通株式会社 Hemt型半導体装置
JPH0621106A (ja) 1992-07-02 1994-01-28 Hitachi Cable Ltd 化合物半導体エピタキシャルウェハ
DE4311876A1 (de) * 1993-04-10 1994-10-13 Hilti Ag Kolben für Auspressgeräte
JP3177951B2 (ja) 1997-09-29 2001-06-18 日本電気株式会社 電界効果トランジスタおよびその製造方法
US6198116B1 (en) * 1998-04-14 2001-03-06 The United States Of America As Represented By The Secretary Of The Air Force Complementary heterostructure integrated single metal transistor fabrication method
JP2001111038A (ja) * 1999-10-12 2001-04-20 Murata Mfg Co Ltd 半導体装置
KR100438895B1 (ko) * 2001-12-28 2004-07-02 한국전자통신연구원 고전자 이동도 트랜지스터 전력 소자 및 그 제조 방법
JP4050128B2 (ja) 2002-10-24 2008-02-20 松下電器産業株式会社 ヘテロ接合電界効果型トランジスタ及びその製造方法
WO2004040638A1 (ja) 2002-10-29 2004-05-13 Matsushita Electric Industrial Co., Ltd. 窒化砒化ガリウムインジウム系ヘテロ電界効果トランジスタ及びその製造方法並びにそれを用いた送受信装置
JP2004165314A (ja) 2002-11-12 2004-06-10 Toshiba Corp 半導体装置およびその製造方法
JP4672959B2 (ja) 2002-12-25 2011-04-20 住友化学株式会社 化合物半導体エピタキシャル基板
JP4635444B2 (ja) * 2004-01-27 2011-02-23 日立電線株式会社 電界効果トランジスタ用エピタキシャルウエハ
JP2006012915A (ja) * 2004-06-22 2006-01-12 Hitachi Cable Ltd Iii−v族化合物半導体装置及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP特开2004-165341A 2004.06.10
徐静波,杨瑞霞,武一宾.MBE生长高2-DEG面密度InP基PHEMT外延材料.《半导体技术》.2005,第30卷(第5期),28-31. *

Also Published As

Publication number Publication date
TWI408265B (zh) 2013-09-11
CN101484986A (zh) 2009-07-15
US20090166642A1 (en) 2009-07-02
JP2007324247A (ja) 2007-12-13
KR20090026144A (ko) 2009-03-11
JP5073968B2 (ja) 2012-11-14
WO2007139218A1 (ja) 2007-12-06
GB0821002D0 (en) 2008-12-24
US7935984B2 (en) 2011-05-03
GB2452177A (en) 2009-02-25
TW200804637A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
CN101484986B (zh) 化合物半导体外延基板
US11637014B2 (en) Methods for selective deposition of doped semiconductor material
US20230197792A1 (en) Structures with doped semiconductor layers and methods and systems for forming same
CN102369597B (zh) 半导体基板、半导体基板的制造方法、和电子器件
CN102428555B (zh) 半导体基板、半导体基板的制造方法及电子器件
US8395187B2 (en) Compound semiconductor epitaxial substrate and manufacturing method thereof
JP5427623B2 (ja) 半導体基板の製造方法および半導体基板
TWI336523B (en) High electron mobility epitaxial substrate
KR20050086945A (ko) 화합물 반도체 에피택셜 기판 및 그 제조 방법
CN108110048A (zh) 高阻iii族氮化物半导体外延结构及其制备方法
JP2005086135A (ja) ヘテロバイポーラトランジスタ用エピタキシャルウエハおよびその製造方法
US20160372569A1 (en) Semiconductor wafer, method of producing semiconductor wafer, and heterojunction bipolar transistor
JP4717318B2 (ja) 化合物半導体エピタキシャル基板
TW200402766A (en) Method for manufacturing compound semiconductor wafer and compound semiconductor device
JP2004241463A (ja) 化合物半導体の気相成長方法
CN102414789A (zh) 半导体基板的制造方法及半导体基板
JPH07201761A (ja) 化合物半導体の成長方法
JP5301507B2 (ja) 化合物半導体エピタキシャル基板
JP2006351993A (ja) 化合物半導体ウェハ
JP2004241676A (ja) 化合物半導体の製造方法及び半導体材料並びに半導体素子
JPH11251329A (ja) 半導体ウェハ及びその製造方法
JP2008028327A (ja) Iii−v族化合物半導体電子デバイス
JP2006216876A (ja) 化合物半導体エピタキシャル基板及びその製造方法
JP2003303825A (ja) 化合物半導体ウェーハの製造方法、及び化合物半導体素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120808