TWI408265B - 化合物半導體磊晶基板及其製造方法 - Google Patents

化合物半導體磊晶基板及其製造方法 Download PDF

Info

Publication number
TWI408265B
TWI408265B TW096118921A TW96118921A TWI408265B TW I408265 B TWI408265 B TW I408265B TW 096118921 A TW096118921 A TW 096118921A TW 96118921 A TW96118921 A TW 96118921A TW I408265 B TWI408265 B TW I408265B
Authority
TW
Taiwan
Prior art keywords
layer
compound semiconductor
substrate
epitaxial
channel
Prior art date
Application number
TW096118921A
Other languages
English (en)
Other versions
TW200804637A (en
Inventor
Tsuyoshi Nakano
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW200804637A publication Critical patent/TW200804637A/zh
Application granted granted Critical
Publication of TWI408265B publication Critical patent/TWI408265B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/205Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using reduction or decomposition of a gaseous compound yielding a solid condensate, i.e. chemical deposition
    • H01L21/2056Epitaxial deposition of AIIIBV compounds

Description

化合物半導體磊晶基板及其製造方法
本發明係關於,適宜使用於製造場效電晶體(Field Effect Transistor,以下稱為FET)或高電子遷移率電晶體(High Electron Mobility Transistor,以下稱為HEMT)等各種電子裝置之化合物半導體磊晶基板及其製造方法。
近年,使用以GaAs為中心之3-5族化合物半導體之各種電子元件,由於活用其能夠進行超高速、高頻動之特長,而被使用於行動電話或衛星接收器等高頻機器,故達到跳躍性進步,之後也可見到穩定發展。
一般而言,為了製作使用化合物半導體之電子元件,係使用一種半導體基板,該半導體基板係在單晶基板上,藉由離子注入法、擴散法、或者磊晶成長法等各種手段,積層成具有必要特性之結晶層。在上述手法中,由於磊晶成長法係不只控制雜質量也可將結晶之組成或厚度等在極廣範圍予以精密地控制,故逐漸被廣泛使用於製作此種半導體基板。
以磊晶成長法而言,其為液相法、氣相法、及真空蒸鍍法之一種的分子束磊晶成長法等已為人所知。此等之中,由於氣相法可控制性佳地處理大量基板,故被廣泛使用於工業上。特別是,以構成磊晶層之原子物種之有機金屬化合物或氫化物做為原料使用,而在基板上使其熱分解而進行結晶成長之金屬有機化學氣相沉積法(Metal-Organic Chemical Vapor Deposition法,以下稱為MOCVD法),由於其可適用之物質範圍廣,且適合結晶組成、厚度之精密控制,也有優良量產性,故近年逐漸被廣泛使用。
被使用於製造FET或HEMT等電子元件之磊晶成長基板係例如藉由使用MOCVD法使具有必要電子特性之GaAs、AlGaAs、InGaAs等結晶層以必要之構造成長於GaAs基板上而製作者。
在FET或HEMT等平面型電子元件中,以閘極所致之電場對橫向遷移於GaAs層和InGaAs層所形成之通道層中之電子進行控制,藉此形成使其發揮電晶體特性之活性層,在此活性層與半絕緣性基板間,通常係形成由GaAs層或AlGaAs層等所構成之緩衝層。
於活性層與半絕緣性基板間插入緩衝層之目的係,抑制因磊晶層/基板界面之雜質所致之影響、抑制基板本身之影響、及抑制從活性層而來之電子漏出,緩衝層係為了維持電子元件特性而具有非常重要之角色。
已為人所知之問題為,以MOCVD法在基板上成長各種磊晶層時,因係將Ga或Al等3族原料做為有機金屬化合物予以供給,故在其熱分解而成長為磊晶層之際,碳(C)會被取入至其成長結晶中。再者,有機金屬化合物之熱分解動作會依據鎵(Ga)或鋁(Al)等3族原料與砷(As)或磷(P)等5族原料之流量比、換言之即5族/3族原料流量比而產生變化,而會使成長結晶中所含有之C濃度產生變化之情形也已為人所知。在成長GaAs或AlGaAs等磊晶層之情形中,將5族/3族原料流量比設定於越小之值而成長磊晶,所得到之磊晶層會具有越高之C濃度。由於在GaAs和AlGaAs結晶中C係作用為受體雜質,故所得到之磊晶層係成為具有以p型載體濃度做為背景濃度之結晶層。
當使用MOCVD法製作被用於製造具有電子遷移之通道層之平面型電子裝置之化合物半導體磊晶基板時,在通道層之前側(與基底基板相反之側)中,係有肖特基(schottky)層、間隔(spacer)層等具有背景p型載體濃度之結晶層,另一方面,在通道層之後側(與基底基板同側)中,係配置有間隔層、緩衝層等具有背景p型載體濃度之結晶層。
因此,當藉由MOCVD法製作用於FET或HEMT等電子元件之磊晶成長基板時,具有背景p型載體濃度之複數之結晶會成長。
對於製造用於FET或HEMT等電子元件之製造用的磊晶基板而言,例如,在其係為將InGaAs應變層使用於電子做遷移之通道層之HEMT的應變通道高電子遷移率場效電晶體(pseudomorphic-HEMT,以下稱為p-HEMT)構造之情形中,在室溫(300K)之通道層中之電子遷移率係約為8250cm2 /Vs(日本電子情報通信學會、2006年綜合大會演講論文集、CT-1-3「化合物半導體高頻裝置用磊晶成長技術」、2006年3月25日、日本國士館大學),要達成其以上之值係困難的。因此,藉由增加電子遷移率進一步達成電子元件之啟動電阻之減低和電力損失之減低,而使電子元件特性比起現在更為提高,係有其極限。
關於電子遷移率之改善,以往以來已有各種提案不斷被提出。例如,在日本特開平6-21106號公報中,係提出在p-HEMT構造中,關於被使用於通道層之InGaAs應變層之In組成與InGaAs層厚度以一定之關係式予以最佳化而改善電子遷移率。此外,在日本特開平2-246344號公報中,係提出在p-HEMT構造中,在被使用於通道層之InGaAs應變層與n-AlGaAs電子供給層之間插入由AlGaAs層與GaAs層所組成之間隔層,並將成長條件最佳化,藉此改善二維電子氣(two-dimensional electron gas)濃度與電子遷移率。再者,在日本特開2004-207471號公報中,係提出增加InGaAs應變層之In組成並結合由AlGaAs層與GaAs層組成之間隔層,將成長條件最佳化,藉此改善電子遷移率。
然而,如具有p-HEMT構造之磊晶基板般,從在具有電子進行遷移之通道層之化合物半導體磊晶基板中二維電子氣濃度與電子遷移率值越高,電子元件特性越提升之觀點來看,並非期望二維電子氣濃度與電子遷移率的值為能夠滿足高頻用元件等應用領域中之值即可,而係期望合併擁有高二維電子氣濃度與高電子遷移率而電子遷移率特性經改善之磊晶基板。
本發明之目的係在於,提供電子遷移率特性經改善之更高性能之化合物半導體磊晶基板及其製造方法。
本發明人等係為了解決上述課題而不斷致力研究後,才完成本發明。
換言之,本發明係提供一種平面型裝置用化合物半導體磊晶基板,其係具有電子遷移之通道層、及在較通道層於前側及於後側之磊晶層,且在較通道層於後側之磊晶層中之每單位面積的p型載體濃度總量A(/cm2 )、與在較通道層於前側之磊晶層中之每單位面積的p型載體濃度總量B(/cm2 )係滿足次式(1)。
0<A/B≦3.5 (1)
在此,A=(由較通道層後側之磊晶層中所含有之活性狀態之受體雜質而得之全部p型載體濃度)×(在後側之所有磊晶層的厚度)、B=(由較通道層前側之磊晶層中所含有之活性狀態之受體雜質而得之全部p型載體濃度)×(在前側之所有磊晶層的厚度)。
本發明係提供一種化合物半導體磊晶基板,其在具有lnGaAs層做為電子進行遷移之通道層的應變通道高電子遷移率場效電晶體構造之化合物半導體磊晶基板中,InGaAs層在室溫(300K)之電子遷移率為9000cm2 /Vs以上。此外,本發明係提供一種前述化合物半導體磊晶基板之製造方法,其係包含在基底基板上以MOCVD法中成長磊晶層之步驟。
化合物半導體磊晶基板
本發明之化合物半導體磊晶基板係具有電子進行遷移之通道層、在較通道層於前側之磊晶層、及在較通道層於後側之磊晶層,通常,依序具有基底基板、緩衝層、通道層、前側活性層(間隔層、電子供給層、肖特基層等)、及接觸層。此外,化合物半導體磊晶基板在通道層與緩衝層間,也可具有後側活性層(電子供給層、間隔層等)。緩衝層、間隔層可如第2圖所示有2層以上。
此外,關於化合物半導體磊晶基板,從(由在較通道層於後側之磊晶層中所含有之活性狀態受體雜質而得之全部p型載體濃度)×(在後側之磊晶層的全部厚度)計算出之在較通道層於後側之磊晶層中之每單位面積的p型載體濃度總量A(/cm2 )、與(由在較通道層於前側之磊晶層中所含有之活性狀態受體雜質而得之全部p型載體濃度)×(在前側之磊晶層的全部厚度)計算出之在較通道層於前側之磊晶層中之每單位面積p型載體濃度總量B(/cm2 )之比A/B係大於0,較理想係0.5以上3.5以下、更理想係1.5以下。
滿足前述式(1)之化合物半導體磊晶基板中,存在於較通道層於前側之磊晶層(前側活性層、接觸層等)之活性狀態的p型載體濃度總量、與存在於較通道層於後側之磊晶層(緩衝層、後側活性層等)之活性狀態的p型載體濃度總量係構成適度之平衡狀態。此化合物半導體磊晶基板係從頻帶排列(band lineup)關係,改善在通道內進行遷移之電子於通道層及與其相接之其他層之邊界附近進行遷移之狀態,使電子在通道層內中心附近進行遷移,因而提高在通道內進行遷移之電子的遷移率。
在化合物半導體磊晶基板中,係例如,一方面提高緩衝層之p型載體濃度,另一方面使厚度變薄,藉此能減少存在於後側磊晶層之活性狀態的p型載體濃度總量,同時抑制磊晶層/基板界面之雜質影響,並抑制對基板之電子洩漏。此種化合物半導體磊晶基板係不只有優良之電子遷移率特性,且因緩衝層薄故也能減少用於緩衝層成長之原料(例如,5族原料)的使用量。通常,5族原料係因相對地較高價,故此化合物半導體磊晶基板在成本面上係較有利。
具有InGaAs層做為電子進行遷移之通道層之本發明化合物半導體磊晶基板係適合做為應變通道高電子遷移率場效電晶體構造之化合物半導體磊晶基板者,而InGaAs層在室溫(zook)之電子遷移率為9000cm2 /Vs以上。
依據第1圖說明本發明之化合物半導體磊晶基板之實施例。第1圖所示之化合物半導體磊晶基板10之層構造係依序含有由半絕緣性GaAs所成之基底基板1;由GaAs或AlGaAs所成之緩衝層2;由GaAs、AlGaAs、或InGaP所成之後側活性層3;由InGaAs、InGaP、或GaAs所成之通道層4;由GaAs、AlGaAs、或InGaP所成之前側活性層5;以及由GaAs、或InGaAs所成之接觸層6。
第1圖所示之化合物半導體磊晶基板10例如藉由在下述基板1上以MOCVD法成長製作即可,並具有做為用於製造具有電子遷移用通道層之平面型裝置之化合物半導體磊晶基板的層構造,且具有被用於製造p-HEMT之化合物半導體磊晶基板之構造。
在第1圖所示之化合物半導體磊晶基板中,當每單位面積之p型載體濃度總量A(/cm2 )係從(由較通道層4於後側之後側活性層3及緩衝層2中所含有之活性狀態之受體雜質而得之p型載體濃度)×(後側活性層3及緩衝層2之合計厚度)而計算出,而每單位面積之p型載體濃度總量B(/cm2 )係從(由較通道層4於前側之前側活性層5及接觸層6中所含有之活性狀態之受體雜質所得之p型載體濃度)×(其所有之磊晶層厚度)所計算出時,係構成為A/B在前述範圍。
如前述,化合物半導體磊晶基板10係成為,前側磊晶層之活性狀態的p型載體濃度總量、與後側磊晶層之活性狀態的p型載體濃度總量之平衡呈良好狀態,而改善通道層4中之電子遷移狀態,達成以往從未有之高電子遷移率。
通常,因產生結晶不完全而無法提高後側電子供給層載體濃度,故前側電子供給層載體濃度有增加之傾向。因此,在通道層4中遷移之電子易偏向前側,故可將後側電子供給層之載體濃度設成比起前側電子供給層之載體濃度為極小者。
化合物半導體磊晶基板之製造方法
化合物半導體基板例如使用MOCVD法製造即可,且在基底基板上以MOCVD法成長磊晶層即可。
以下說明化合物半導體磊晶基板10之製造方法。
將其為高電阻之半絕緣性GaAs單晶基板之基底基板1表面予以脫脂洗淨、蝕刻、水洗、乾燥後,置於結晶成長爐之加熱台上。高電阻之半絕緣性GaAs單晶基板係例如以LEC(Liquid Encapsulated Czochralski)法、VB(Vertical Bridgeman)法、VGF(Vertical Gradient Freezing)法等調製即可。GaAs單晶基板係通常具有從1個結晶性面方位傾斜約0.05°至約10°的傾斜。
在結晶成長爐內以高純度氫充份予以取代後,開始加熱基底基板1。結晶成長時之基板溫度通常約為500℃至800℃。在基底基板1穩定於適當溫度時,導入砷原料,接著,再導入鎵原料、鋁原料或銦原料,而成長GaAs層或AlGaAs層或InGaAs層即可。藉由在基底基板1上適當成長所欲之層,而得到化合物半導體磊晶基板10。
磊晶成長之原料係以有機金屬及/或氫化物較為理想。砷原料係例如為,三氫化砷(胂(arsine))、胂之氫以碳數1至4之烷基取代之烷基胂、將碳數1至3之烷基或氫結合於砷之三烷基化物或三氫化物。
此外,在InGaP層之成長方面,只要導入磷原料、鎵原料及銦原料至爐內即可。
在用於n型載體之摻雜劑方面,只要使用矽、鍺、錫、硫、硒等氫化物或具有碳數1至3之烷基之烷基化物即可。
在磊晶成長時,藉由控制預定時間與各原料之供給,即可得到在基底基板1上具有緩衝層2、後側活性層3、通道層4、前側活性層5及接觸層6之所期望之構造之化合物半導體磊晶基板10。關於原料之供給,只要因應各層之組成調整5族/3族原料流量比即可,例如,考慮通道層4前側與後側之p型載體濃度總量之平衡,一面調整5族/3族原料流量比一面進行即可。通常,因相較於前側活性層5之厚度,後側活性層3與緩衝層2合計厚度係較大,故只要將成長後側活性層3及緩衝層2時之5族/3族原料流量比予以設定成大於成長前側活性層5時之5族/3族原料流量比即可。
只要以:後側活性層3及緩衝層2中之每單位面積之p型載體濃度總量A〔=活性狀態之p型載體濃度×厚度〕、前側活性層5及接觸層中之每單位面積之p型載體濃度總量B〔=活性狀態之p型載體濃度×厚度〕的比A/B大於0且在3.5以下之條件下進行磊晶成長即可。
只要停止各原料供給而停止結晶成長且予以冷卻後,從爐內取出已層積有各磊晶層之化合物半導體磊晶基板10即可。
(實施例)
以下雖經由實施例說明本發明,但本發明係並非被本實施例所限定。在半絕緣性GaAs基底基板上,成長各層而製作如第2圖所示之p-HEMT用化合物半導體磊晶基板30。第2圖所示之化合物半導體磊晶基板30係由下述構造所構成:半絕緣性之GaAs基底基板11、緩衝層12(p-Al0.25 Ga0.75 As、厚度:100nm、載體濃度:1至200E15/cm3 )、緩衝層13(p-Al0.20 Ga0.80 As、厚度:50nm、載體濃度:2E16/cm3 )、後側電子供給層14(n-Al0.20 Ga0.80 As、厚度:4nm、載體濃度:3E18/cm3 )、後側間隔層15(p-Al0.20 Ga0.80 As、厚度:3nm、載體濃度:2E16/cm3 )、後側間隔層16(i-GaAs、厚度:6nm)、通道層17(i-In0.35 Ga0.65 As、厚度:6nm)、前側間隔層18(i-GaAs、厚度:6nm)、前側間隔層19(p-Al0.20 Ga0.80 As、厚度:3nm、載體濃度:2E16/cm3 )、前側電子供給層20(n-Al0.20 Ga0.80 As、厚度:6nm、載體濃度:42E18/cm3 )、及肖特基層21(p-Al0.20 Ga0.80 As、厚度:38nm、載體濃度:2E16/cm3 )組成。
成長係使用減壓桶型MOCVD爐,且使用三甲基鎵(TMG)、三甲基鋁(TMA)及三甲基銦(TMI)做為3族原料氣體,使用胂(AsH3 )做為5族原料氣體,使用二矽烷(Si2 H6 )做為n型摻雜劑,使用高純度氫做為載體氣體,且在反應爐內壓力0.1atm、成長溫度650℃、成長速度3至1 μm/hr之條件下進行。
從緩衝層13至肖特基層21,係將5族/3族原料流量比設成38.3而進行成長。緩衝層12係使5族/3族原料流量比變化成11.5至103.2而進行成長。如此,藉由使背景p型載體濃度與其他成長層不同,而調節通道層17兩側之各活性狀態的p型載體濃度。
各層之活性狀態的p型載體濃度,係針對以相同於使第2圖之化合物半導體磊晶基板各層成長之5族/3族原料流量比的條件所成長之如第3圖所示之單層構造,藉由在室溫進行Van der Pauw法之Hall測定所求出者。通常,GaAs層、InGaAs層之背景p型載體濃度相較於AlGaAs層之背景p型載體濃度係為小2位數程度之值,故在背景p型載體濃度總量計算上,可不考慮GaAs層、InGaAs之背景p型載體濃度。
在緩衝層12之成長時,變更5族/3族原料流量比而製作4種類之化合物半導體磊晶基板30。此外,針對此等化合物半導體磊晶基板30之各者,分別求出每單位面積之後側p型載體濃度總量A(/cm2 )與每單位面積之前側p型載體濃度總量B(/cm2 )。此等之結果如表1所示。
此外,進行在室溫中之依Van der Pauw法的Hall測定,而測定第2圖之磊晶成長基板之室溫電子遷移率及室溫二維電子氣濃度。此等之結果如表1所示。A/B與電子遷移率之關係如第4圖所示。A/B為3.5以下時,電子遷移率係9000cm2 /Vs以上,而得到顯示有高電子遷移率之化合物半導體磊晶基板。此電子遷移率係比以往成長於GaAs基板上之InGaAs通道之p-HEMT的遷移率8990 cm2 /Vs為高。
在第3圖所示之化合物半導體磊晶基板30中,為了便於測定化合物半導體磊晶基板的特性,不使存在於p-HEMT用化合物半導體磊晶基板之接觸層成長,但具有與p-HEMT用化合物半導體磊晶基板相同之特性。
(產業上之利用可能性)
根據本發明,提供在通道層內之電子遷移率高之化合物半導體磊晶基板。若使用此化合物半導體磊晶基板,則可製造高性能之平面型裝置。
1...半絕緣性GaAs基底基板
2...緩衝層
3...後側活性層
4...通道層
5...前側活性層
6...接觸層
10...化合物半導體磊晶基板
11...半絕緣性GaAs基底基板
12,13...緩衝層
14...後側電子供給層
15,16...後側間隔層
17...通道層
18,19...前側間隔層
20...前側電子供給層
21...肖特基層
30...p-HEMT用化合物半導體磊晶基板
31...半絕緣性GaAs基底基板
32...P型載體濃度測定層
第1圖係表示本發明實施例之化合物半導體磊晶基板之層構造。
第2圖係表示實施例所示之化合物半導體磊晶基板之層構造。
第3圖係表示用於測定實施例所示之化合物半導體磊晶基板中之各層的p型載體濃度之單層構造。
第4圖係表示實施例中之室溫電子遷移率測定結果。

Claims (9)

  1. 一種平面型裝置用3-5族化合物半導體磊晶基板,係具有電子進行遷移之通道層、及在通道層前側之3-5族化合物半導體磊晶層及在通道層後側之3-5族化合物半導體磊晶層,且在通道層後側之3-5族化合物半導體磊晶層中之每單位面積的p型載體濃度總量A(/cm2 )、與在通道層前側之3-5族化合物半導體磊晶層中之每單位面積的p型載體濃度總量B(/cm2 )係滿足次式(1),0<A/B≦3.5 (1)在此,A=(由在通道層後側之3-5族化合物半導體磊晶層中所含有之活性狀態之受體雜質而得之全部p型載體濃度)×(在通道層後側之所有3-5族化合物半導體磊晶層的厚度)、B=(由在通道層前側之3-5族化合物半導體磊晶層中所含有之活性狀態之受體雜質而得之全部p型載體濃度)×(在通道層前側之所有3-5族化合物半導體磊晶層的厚度)。
  2. 如申請專利範圍第1項之基板,其中,在通道層前側之3-5族化合物半導體磊晶層係為前側活性層及接觸層。
  3. 如申請專利範圍第1項之基板,其中,在通道層後側之3-5族化合物半導體磊晶層係為緩衝層。
  4. 如申請專利範圍第1項之基板,其中,在通道層後側之3-5族化合物半導體磊晶層係為緩衝層及後側活性層。
  5. 一種化合物半導體磊晶基板,係在具有InGaAs層做為電子進行遷移之通道層的應變通道高電子遷移率場效 電晶體構造之化合物半導體磊晶基板中,InGaAs層之在室溫(300K)之電子遷移率為9000cm2 /Vs以上。
  6. 如申請專利範圍第5項之基板,其中,進一步包含前側活性層及接觸層做為在通道層前側之磊晶層。
  7. 如申請專利範圍第5項之基板,其中,進一步包含緩衝層做為在通道層後側之磊晶層。
  8. 如申請專利範圍第5項之基板,其中,進一步包含緩衝層及後側活性層做為在通道層後側之磊晶層。
  9. 一種基板之製造方法,係用於製造如申請專利範圍第1項或第5項之基板,其中,包含在基底基板上以MOCVD法中成長磊晶層之步驟。
TW096118921A 2006-05-31 2007-05-28 化合物半導體磊晶基板及其製造方法 TWI408265B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150768A JP5073968B2 (ja) 2006-05-31 2006-05-31 化合物半導体エピタキシャル基板およびその製造方法

Publications (2)

Publication Number Publication Date
TW200804637A TW200804637A (en) 2008-01-16
TWI408265B true TWI408265B (zh) 2013-09-11

Family

ID=38778732

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096118921A TWI408265B (zh) 2006-05-31 2007-05-28 化合物半導體磊晶基板及其製造方法

Country Status (7)

Country Link
US (1) US7935984B2 (zh)
JP (1) JP5073968B2 (zh)
KR (1) KR20090026144A (zh)
CN (1) CN101484986B (zh)
GB (1) GB2452177A (zh)
TW (1) TWI408265B (zh)
WO (1) WO2007139218A1 (zh)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054935A (ja) * 2009-06-19 2011-03-17 Rohm & Haas Electronic Materials Llc ドーピング方法
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
US8273617B2 (en) 2009-09-30 2012-09-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
WO2011065210A1 (en) * 2009-11-28 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US8569128B2 (en) 2010-06-21 2013-10-29 Suvolta, Inc. Semiconductor structure and method of fabrication thereof with mixed metal types
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
JP5875296B2 (ja) * 2010-08-31 2016-03-02 住友化学株式会社 半導体基板および絶縁ゲート型電界効果トランジスタ
KR20130092548A (ko) * 2010-08-31 2013-08-20 스미또모 가가꾸 가부시키가이샤 반도체 기판, 절연 게이트형 전계 효과 트랜지스터 및 반도체 기판의 제조 방법
US8404551B2 (en) 2010-12-03 2013-03-26 Suvolta, Inc. Source/drain extension control for advanced transistors
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US8525271B2 (en) 2011-03-03 2013-09-03 Suvolta, Inc. Semiconductor structure with improved channel stack and method for fabrication thereof
US8748270B1 (en) 2011-03-30 2014-06-10 Suvolta, Inc. Process for manufacturing an improved analog transistor
US8999861B1 (en) 2011-05-11 2015-04-07 Suvolta, Inc. Semiconductor structure with substitutional boron and method for fabrication thereof
US8796048B1 (en) 2011-05-11 2014-08-05 Suvolta, Inc. Monitoring and measurement of thin film layers
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US8735987B1 (en) 2011-06-06 2014-05-27 Suvolta, Inc. CMOS gate stack structures and processes
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
US8629016B1 (en) 2011-07-26 2014-01-14 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
WO2013022753A2 (en) 2011-08-05 2013-02-14 Suvolta, Inc. Semiconductor devices having fin structures and fabrication methods thereof
US8748986B1 (en) 2011-08-05 2014-06-10 Suvolta, Inc. Electronic device with controlled threshold voltage
US8645878B1 (en) 2011-08-23 2014-02-04 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8614128B1 (en) 2011-08-23 2013-12-24 Suvolta, Inc. CMOS structures and processes based on selective thinning
US8713511B1 (en) 2011-09-16 2014-04-29 Suvolta, Inc. Tools and methods for yield-aware semiconductor manufacturing process target generation
US9236466B1 (en) 2011-10-07 2016-01-12 Mie Fujitsu Semiconductor Limited Analog circuits having improved insulated gate transistors, and methods therefor
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8819603B1 (en) 2011-12-15 2014-08-26 Suvolta, Inc. Memory circuits and methods of making and designing the same
US8883600B1 (en) 2011-12-22 2014-11-11 Suvolta, Inc. Transistor having reduced junction leakage and methods of forming thereof
US8599623B1 (en) 2011-12-23 2013-12-03 Suvolta, Inc. Circuits and methods for measuring circuit elements in an integrated circuit device
US8877619B1 (en) 2012-01-23 2014-11-04 Suvolta, Inc. Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom
US8970289B1 (en) 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9406567B1 (en) 2012-02-28 2016-08-02 Mie Fujitsu Semiconductor Limited Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
US8863064B1 (en) 2012-03-23 2014-10-14 Suvolta, Inc. SRAM cell layout structure and devices therefrom
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US8637955B1 (en) 2012-08-31 2014-01-28 Suvolta, Inc. Semiconductor structure with reduced junction leakage and method of fabrication thereof
US9112057B1 (en) 2012-09-18 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor devices with dopant migration suppression and method of fabrication thereof
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
CN104854698A (zh) 2012-10-31 2015-08-19 三重富士通半导体有限责任公司 具有低变化晶体管外围电路的dram型器件以及相关方法
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
US9112484B1 (en) 2012-12-20 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9268885B1 (en) 2013-02-28 2016-02-23 Mie Fujitsu Semiconductor Limited Integrated circuit device methods and models with predicted device metric variations
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
KR102098297B1 (ko) * 2013-05-24 2020-04-07 엘지이노텍 주식회사 에피택셜 웨이퍼
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods
US9319013B2 (en) 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302840A (en) * 1991-06-20 1994-04-12 Fujitsu Limited HEMT type semiconductor device having two semiconductor well layers
US6593603B1 (en) * 2001-12-28 2003-07-15 Electronics And Telecommunications Research Institute Pseudomorphic high electron mobility transistor power device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708863B2 (ja) 1989-03-20 1998-02-04 三洋電機株式会社 エピタキシヤルウエハ及びその製造方法
JPH0621106A (ja) 1992-07-02 1994-01-28 Hitachi Cable Ltd 化合物半導体エピタキシャルウェハ
DE4311876A1 (de) * 1993-04-10 1994-10-13 Hilti Ag Kolben für Auspressgeräte
JP3177951B2 (ja) * 1997-09-29 2001-06-18 日本電気株式会社 電界効果トランジスタおよびその製造方法
US6198116B1 (en) * 1998-04-14 2001-03-06 The United States Of America As Represented By The Secretary Of The Air Force Complementary heterostructure integrated single metal transistor fabrication method
JP2001111038A (ja) * 1999-10-12 2001-04-20 Murata Mfg Co Ltd 半導体装置
JP4050128B2 (ja) * 2002-10-24 2008-02-20 松下電器産業株式会社 ヘテロ接合電界効果型トランジスタ及びその製造方法
JP3667331B2 (ja) 2002-10-29 2005-07-06 松下電器産業株式会社 ヘテロ電界効果トランジスタ、およびその製造方法、ならびにそれを備えた送受信装置
JP2004165314A (ja) 2002-11-12 2004-06-10 Toshiba Corp 半導体装置およびその製造方法
JP4672959B2 (ja) 2002-12-25 2011-04-20 住友化学株式会社 化合物半導体エピタキシャル基板
JP4635444B2 (ja) * 2004-01-27 2011-02-23 日立電線株式会社 電界効果トランジスタ用エピタキシャルウエハ
JP2006012915A (ja) * 2004-06-22 2006-01-12 Hitachi Cable Ltd Iii−v族化合物半導体装置及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302840A (en) * 1991-06-20 1994-04-12 Fujitsu Limited HEMT type semiconductor device having two semiconductor well layers
US6593603B1 (en) * 2001-12-28 2003-07-15 Electronics And Telecommunications Research Institute Pseudomorphic high electron mobility transistor power device

Also Published As

Publication number Publication date
CN101484986A (zh) 2009-07-15
JP2007324247A (ja) 2007-12-13
US20090166642A1 (en) 2009-07-02
CN101484986B (zh) 2012-08-08
JP5073968B2 (ja) 2012-11-14
KR20090026144A (ko) 2009-03-11
WO2007139218A1 (ja) 2007-12-06
US7935984B2 (en) 2011-05-03
GB2452177A (en) 2009-02-25
GB0821002D0 (en) 2008-12-24
TW200804637A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
TWI408265B (zh) 化合物半導體磊晶基板及其製造方法
US8395187B2 (en) Compound semiconductor epitaxial substrate and manufacturing method thereof
TWI336523B (en) High electron mobility epitaxial substrate
KR101032010B1 (ko) 화합물 반도체 에피택셜 기판 및 그 제조 방법
US7304332B2 (en) Compound semiconductor epitaxial substrate and method for manufacturing same
JP4940562B2 (ja) 化合物半導体エピタキシャル基板およびその製造方法
JP5301507B2 (ja) 化合物半導体エピタキシャル基板
JPH03283427A (ja) 高電子移動度トランジスター用エピタキシャル基板の製造方法
JP2004241676A (ja) 化合物半導体の製造方法及び半導体材料並びに半導体素子
JP2006216876A (ja) 化合物半導体エピタキシャル基板及びその製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees