CN101425040A - 存储器的存取方法、存储控制电路和存储系统 - Google Patents

存储器的存取方法、存储控制电路和存储系统 Download PDF

Info

Publication number
CN101425040A
CN101425040A CNA2008101751356A CN200810175135A CN101425040A CN 101425040 A CN101425040 A CN 101425040A CN A2008101751356 A CNA2008101751356 A CN A2008101751356A CN 200810175135 A CN200810175135 A CN 200810175135A CN 101425040 A CN101425040 A CN 101425040A
Authority
CN
China
Prior art keywords
piece
row
address
row address
access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101751356A
Other languages
English (en)
Other versions
CN101425040B (zh
Inventor
佐藤慎祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Microelectronics Inc
Original Assignee
Kawasaki Microelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Microelectronics Inc filed Critical Kawasaki Microelectronics Inc
Publication of CN101425040A publication Critical patent/CN101425040A/zh
Application granted granted Critical
Publication of CN101425040B publication Critical patent/CN101425040B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • G09G5/39Control of the bit-mapped memory
    • G09G5/393Arrangements for updating the contents of the bit-mapped memory
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • G09G5/39Control of the bit-mapped memory
    • G09G5/395Arrangements specially adapted for transferring the contents of the bit-mapped memory to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/12Frame memory handling
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/12Frame memory handling
    • G09G2360/123Frame memory handling using interleaving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/12Frame memory handling
    • G09G2360/128Frame memory using a Synchronous Dynamic RAM [SDRAM]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1072Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Dram (AREA)
  • Memory System (AREA)

Abstract

本发明涉及存储器的存取方法、存储控制电路和存储系统。通过沿列地址的方向布置块的两个或更多个完全列来在动态随机存取存储器的地址空间内设置存取区域,在所述完全列中存储单元的块布置在行地址的全部指定范围内。每一个块包括位于同一行地址和指定数量的连续列地址的存储单元。布置在存取区域中的块的总数量正好能够存储待存储的数据的字的数量。通过对布置在块的列的每一个中的块进行连续存取,来对块的两个或更多个完全列进行连续存取。因此,使动态随机存取存储器的刷新操作变得不必要。

Description

存储器的存取方法、存储控制电路和存储系统
技术领域
本发明涉及动态随机存取存储器的存取方法,以及使用该存取方法来控制随机存取存储器的存储控制电路。本发明还涉及包括存储器和存储控制电路的存储系统。
背景技术
在常规图像处理电路中,构成帧的输入图像数据被临时存储在缓冲存储器中,然后从该缓冲存储器读取、处理和输出。
为此,动态随机存取存储器(DRAM)由于其低成本通常被用作缓冲存储器。
DRAM需要被周期地刷新以便维持存储在DRAM的存储单元中的数据。然而,对存储单元的其中之一进行存取具有等同于对所访问的单元和具有同一行地址的单元进行刷新的效果。
日本专利特开2003-68072(专利文献1)描述了一种用于存取DRAM的技术。就是说,通过增加行地址来执行读/写。当行地址超过最大行地址时,增加列地址并且将行地址初始化至零,以便地址在帧周期期间被循环多次。因此DRAM的刷新循环变得不必要。
发明内容
要解决的问题
然而,当操作温度较高时,维持数据所需的刷新周期可能变得短于帧周期。在专利文献1描述的技术中,当图像数据的尺寸很大并且行地址在每一个帧周期内两次或更多次达到最大行地址时,该行地址中的每一个在每一个帧周期内被存取两次或更多次。然而,当图像数据的尺寸很小并且行地址在每一个帧周期期间仅达到最大行地址一次时,行地址中的一些在每一个帧周期期间仅被存取一次。具有在每一个帧周期期间仅被存取一次的行地址的单元不能通过仅对于写入/读取数据的存取来维持数据。所述单元需要在帧周期期间的刷新操作。
此外,在专利文献1描述的技术中,由于利用同步动态随机存取存储器(SDRAM)的突发(burst)存取能力不适合于增加操作频率。就是说,通过利用突发存取能力,其中通过仅提供连续地址中的第一个来对位于连续列地址的多个存储单元进行连续存取,SDRAM能够在高频下操作。然而,在专利文献1中描述的存储器存取技术中,通过增加行地址来位于同一列地址的多个存储单元进行连续存取。仅在行地址达到最大行地址之后增加列地址。结果是,不能利用SDRAM的突发存取能力。
为了解决上述问题,本发明的示例性目的是提供存储器存取方法,该存储器存取方法使动态随机存取存储器的刷新操作不必要,同时能够增加操作频率。本发明的另一示例性目的是提供应用使刷新操作不必要的存储器存取方法的存储控制电路和存储系统。
解决所述问题的方式
为了解决上述问题,根据本发明的各种示例性实施例提供一种对在地址空间中布置有存储单元的动态随机存取存储器的存取方法。该方法包括:通过沿列地址的方向布置块(block)的两个或更多个完全列和块的可选不完全列,来在地址空间内设置用于存储由指定数量的字(word)组成的数据的存取区域;以及通过对布置在块的列的每一个中的块进行连续存取,来对块的两个或更多个完全列和块的可选不完全列进行连续存取,以在存储器中写入和存储数据或者读取先前存储在存储器中的数据。块的每一个包括位于同一行地址和指定数量的连续列地址处的多个存储单元,块的完全列的每一个包括布置在行地址的指定范围中的全部中的第一数量的块,块的不完全列包括布置在行地址的指定范围中的一部分中的小于所述第一数量的块,以及布置在块的两个或更多个完全列中的块和布置在块的可选不完全列中的块的总数正好能够存储指定数量的字。此外,该存储器是同步动态随机存取存储器,存储单元需要在刷新周期内被刷新,并且对位于行地址的每一个处的块的其中之一进行存取刷新位于同一行地址的块中的其他块中包含的存储单元。
根据各种其他实施例,地址空间可以被划分成n组,其中n是不小于2的整数。可以执行对存取区域的设置,以便在n组的每一个中沿列地址的方向布置块的两个或更多个完全列和块的可选不完全列,其中块的总数是在n组中布置的块的数量的总和。此外,对布置在块的列的每一个中的块进行的连续存取可以包括在行地址的每一个处对布置在n组中的块进行连续存取。
根据各种其他实施例,行地址的指定范围可以小于地址空间的行地址的范围。
根据其他各种实施例,对存取区域的设置可以包括,当数据的字的指定数量改变时,改变行地址的指定范围,而不改变块的每一个的连续列地址的指定数量。
根据其他各种实施例,数据可以构成在长于刷新周期的帧周期内提供的运动图像的连续帧的其中之一,以及在帧周期期间可以对块的两个或更多个完全列和块的可选不完全列连续存取一次。
为了解决上述问题,根据本发明的各种示例性实施例提供一种对在被划分为n组的地址空间中布置有存储单元的动态随机存取存储器的存取方法,其中n是不小于2的整数。该方法包括:通过在n组的每一个中沿列地址的方向布置不小于2的所需数量的块的完全列和块可选不完全列,来在地址空间中设置用于存储由指定数量的字组成的数据的存取区域;以及通过对布置在块的列的每一个中的块进行连续存取,来对块的所需数量的完全列和块的可选不完全列进行连续存取,以在存储器中写入和存储数据或者读取先前存储在存储器中的数据。行地址的指定范围通过以下步骤设置,i)将存储指定数量的字所需的块的总数除以n和块的完全列的所需数量以获得商,以及(ii)设置行地址的指定范围以便行地址的指定范围包括等于所述商的整数部分的多个行地址。对布置在块的列的每一个中的块进行的连续存取包括在行地址的每一个处对布置在n组中的块进行连续存取。该存储器是同步动态随机存取存储器,存储单元需要在刷新周期内被刷新,并且对位于组的每一个中的行地址的每一个处的块的其中之一进行存取刷新位于同一组中的同一行地址处的其他块中包含的存储单元。
为了解决上述问题,根据本发明的各种示例性实施例提供一种存储控制电路,用于控制在地址空间中布置有存储单元的动态随机存取存储器。该电路包括存取区域设置单元和存取控制单元,该存取区域设置单元通过沿列地址的方向布置块的两个或更多个完全列和块的可选不完全列,来在地址空间内设置用于存储由指定数量的字组成的数据的存取区域,以及该存取控制单元向存储器提供地址信号和存取控制信号,以便通过对布置在块的列的每一个中的块进行连续存取来对块的两个或更多个完全列和块的可选不完全列进行连续存取,以在存储器中写入和存储数据或者读取先前存储在存储器中的数据。
根据各种其他实施例,存储器的地址空间可以被划分成n组,其中n是不小于2的整数,以及存取区域设置单元可以设置存取区域,以便在n组的每一个中沿列地址的方向布置块的两个或更多个完全列和块的可选不完全列,其中块的总数是布置在n组中的块的数量的总和。存取控制单元可以向存储器提供地址信号和存取控制信号,以便对布置在块的列的每一个中的块进行的连续存取包括在行地址的每一个处对布置在n组中的的块进行连续存取。
根据各种其他实施例,存取区域设置单元可以包括行地址范围设置单元,该行地址范围设置单元根据数据的字的指定数量来设置行地址的指定范围,而不改变块的每一个的连续列地址的指定数量。此外,行地址范围设置单元可以接收表示字的指定数量的数据尺寸信号。
根据各种其他实施例,数据可以构成在长于刷新周期的帧周期内提供的运动图像的连续帧的其中之一,以及存取控制单元可以提供地址信号和存取控制信号,以便块的两个或更多个完全列和块的可选不完全列在帧周期内被存取一次。
为了解决上述问题,根据本发明的各种示例性实施例提供一种存储控制电路,用于控制在被划分成n组的地址空间中布置有存储单元的动态随机存取存储器,其中n是不小于2的整数。该电路包括存取区域设置单元和存取控制单元,该存取区域设置单元通过在n组的每一个中沿列地址的方向布置不小于2的所需数量的块的完全列和块的可选不完全列,来在地址空间中设置用于存储由指定数量的字组成的数据的存取区域,以及该存取控制单元向存储器提供地址信号和存取控制信号,以便通过对布置在块的列的每一个中的块进行连续存取来对块的所需数量的完全列和块的可选不完全列进行连续存取,以在存储器中写入和存储数据或者读取先前存储在存储器中的数据。存取区域设置单元通过下述步骤来设置行地址的指定范围,i)将存储指定数量的字所需的块的总数除以n和块的完全列的所需数量以获得商,以及(ii)设置行地址的指定范围,以便行地址的指定范围包括等于所述商的整数部分的多个行地址。存取控制单元向存储器提供地址信号和存取控制信号,以便对布置在块的列的每一个中的块进行的所述连续存取包括在行地址的每一个处对布置在n组中的块进行连续存取。该存储器是同步动态随机存取存储器,存储单元需要在刷新周期内被刷新,以及对位于组的每一个中的行地址的每一个处的块的其中之一进行存取刷新位于同一组中的同一行地址处的其他块中包含的存储单元。
为了解决上述问题,根据本发明的各种示例性实施例提供一种存储系统,该存储系统包括:在地址空间中布置有存储单元的同步动态随机存取存储器;输入端,该输入端在帧周期内接收构成运动图像的连续帧的其中之一的数据;以及存储控制电路,用于控制该同步动态随机存取存储器。该存储控制电路包括存取区域设置单元和存取控制单元,该存取区域设置单元通过沿列地址的方向布置块的两个或更多个完全列和块的可选不完全列,来在地址空间中设置用于存储由指定数量的字组成的数据的存取区域,以及该存取控制单元向存储器提供地址信号和存取控制信号,以便通过对布置在块的列的每一个中的块进行连续存取,使得块的两个或更多个完全列和块的可选不完全列在帧周期期间被连续存取一次,以在存储器中写入和存储数据或者读取先前存储在存储器中的数据。
为了解决上述问题,根据本发明的各种示例性实施例提供一种存储系统,该存储系统包括:在被划分成n组的地址空间中布置有存储单元的同步动态随机存取存储器,其中n是不小于2的整数;输入端,该输入端在帧周期内接收构成运动图像的连续帧的其中之一的数据;以及存储控制电路,用于控制同步动态随机存取存储器。该存储控制电路包括存取区域设置单元和存取控制单元,该存取区域设置单元通过在n组的每一个中沿列地址的方向布置不小于2的所需数量的块的完全列和块的可选不完全列,来在地址空间中设置用于存储由指定数量的字组成的数据的存取区域,以及该存取控制单元向存储器提供地址信号和存取控制信号,以便通过对布置在块的列的每一个中的块进行连续存取,使得块的所需数量的完全列和块的可选不完全列在帧周期内被连续存取一次,以在存储器中写入和存储数据或者读取先前存储在存储器中的数据。
发明的效果
本发明的各种示例性实施例使动态随机存取存储器的刷新操作不必要,同时能够增加操作频率。
附图说明
图1是示出了示例性半导体电路的框图;
图2是示出了示例性SDRAM控制电路的结构的示意图;
图3是示出了在SDRAM内的存取区域的示例性设置的示意图;
图4是示出了示例性计数寄存器的内部结构的示意图;
图5是解释第一计数寄存器的示例性升值计数(counting-up)操作的示意图;
图6是示出了在SDRAM内的存取区域的另一示例性设置的示意图;
图7是示出了示例性SDRAM控制电路的功能结构的示意图;
图8是示出了SDRAM内的存取区域的又一示例性设置的示意图。
参考附图标记
1      半导体电路
2      第一图像处理电路
3      SDRAM控制电路
31     控制器
31a    第一信号线
31b    第二信号线
31c    第三信号线
311    最大行地址计算单元
312    地址计数器单元
3121   第一计数寄存器
3122   第二计数寄存器
3123   参考寄存器
313    命令发生器单元
32     写FIFO
33     读FIFO
341    存取区域设置单元
342    存取控制单元
4      SDRAM
41     第一组
42     第二组
5      第二图像处理电路
具体实施方式
现在将解释本发明的示例性实施例。
图1是示例性半导体电路的框图。
图1所示的示例性半导体电路1包括第一图像处理电路2、SDRAM(同步动态随机存取存储器)控制电路3、SDRAM 4和第二图像处理电路5。SDRAM 4被用作帧存储器。半导体电路1可以被构造为在单一半导体衬底上集成所有这些块的单一半导体集成电路。半导体电路1还可以采用SDRAM 4和集成了除SDRAM 4外的所有块的独立半导体集成电路来构造。
第一图像处理电路2执行诸如从外部器件输入的图像数据的色彩转换处理的处理,并将所处理的图像数据输出到SDRAM控制电路3。
SDRAM控制电路3执行对通过在SDRAM 4中的第一图像处理电路2处理的图像数据进行存储的控制。
SDRAM4存储构成运动图像的连续帧的其中之一的图像数据。在每一个帧周期中,在先前帧周期期间存储的图像数据从SDRAM 4读取,而当前帧的图像数据在SDRAM控制电路3的控制下被存储在SDRAM中。
第二图像处理电路5将从外部器件输入的图像数据与从SDRAM 4读取的图像数据进行比较,并执行诸如轮廓增强的图像处理。然后,在到外部器件的处理之后第二图像处理电路5输出表示图像的图像数据(输出数据)。
图2是示出了示例性SDRAM控制电路3的结构的示意图。图2所示的示例性SDRAM控制电路3包括控制器31、写FIFO(先入先出存储器)32、和读FIFO 33。控制器31包括最大行地址计算单元311、地址计数单元312和命令发生器单元313。图2还示出了通过示例性SDRAM控制电路3控制的SDRAM 4。因而,图2还示出了包括SDRAM4和SDRAM控制电路3的示例性存储系统。
在实际操作中,如上所解释的,在同一帧周期期间,在SDRAM控制电路3的控制下,连续执行读取存储在SDRAM 4中的先前帧的图像数据和将当前帧的图像数据存储在SDRAM 4中。然而,在下面的段落中,将假设仅执行图像数据的写入来对SDRAM控制电路3的功能进行解释。
图3是示出了在SDRAM内的存取区域的示例性设置的示意图。图3所示的示例性SDRAM 4具有通过在垂直方向的行地址和在水平方向的列地址限定的地址空间。在图3所示的示例性SDRAM 4中,地址空间被物理地划分为第一组41和第二组42。每一个组被逻辑地划分为四个区域,每一个区域包括64个连续的列地址,即,第一区域包括列地址0—63,第二区域包括列地址64—127,第三区域包括列地址128—191,以及第四区域包括列地址192—255。
图3示出了通过在被划分为两组的地址空间内布置编号从B0—B158的159个块,来设置用于存储每一个帧的图像数据的存取区域的状态。行地址和列地址的范围限定每一个块。就是说,每一个块包括位于同一行地址和指定数量的连续列地址的多个存储单元。具体地说,在图2所示的示例中,每一个块包括位于在行地址和所划分区域的其中之一的64个连续列地址的存储单元。
就是说,块的每一个包括能存储64个字的数据的许多个存储单元。换句话说,每一个块包括“在每一个字中的位数”×64个存储单元。每一个帧的图像数据包括正好能够利用159个块来存储的多个字。对块的每一个给出的数字0—158表示用于存储图像数据的存取SDRAM 4的次序,所述图像数据被划分为各包括64个字的159个块。
例如,帧的图像数据的第一64个字被写入块B0,该块B0位于第一组41的第一区域内的行地址0。图像数据的下一64个字被写入块B1,该块B1位于第二组42的第一区域内的行地址0。图像数据的再下一64个字被写入块B2,该块B2位于第一组41的第一区域内的行地址1。图像数据的又一64个字被写入块B3,该块B3位于第二组42的第一区域内的行地址1。
以这种方式,图像数据被连续写入被布置在第一区域中的块中,同时以从位于最低行地址的块到位于较高行地址的块的次序交替改变组。当完成在块B41中的写入时,下一64个字被写入块B42,其中所述块B41位于第二组内的行地址20,并且所述块B42位于第一组41的第二区域内。然后,图像数据以相同方式进一步被连续写入被布置在第一组和第二组的第二区域中的块中。
如上所解释的,多个块被布置在两个组中,每一个块由行地址和64个列地址限定,并且每一个包括64个字的图像数据被连续写入多个块中。将参照图2和图3对写图像数据的方式进行进一步解释。注意,在SDRAM 4中需要具有预定周期的刷新操作,然而,在组中的行地址的块的写入或者读取和对在同一组中具有相同行地址的存储单元进行刷新具有相同效果。
在图2所示的示例性SDRAM控制电路3中的控制器31具有第一信号线31a、第二信号线31b、和第三信号线31c。表示帧的图像数据的尺寸的信号“帧尺寸”被输入到第一信号线31a,所述信号“帧尺寸”通过未在图中示出的电路产生。表示开始读取图像数据的信号“读开始”,被输入到第二信号线31b。表示开始写入图像信号的信号“写开始”被输入到第三信号线31c。
输入到第一信号线31a的信号被输入到最大行地址计算单元311,其根据输入信号计算最大行地址。最大行地址限定其中设置存取区域的行地址的指定范围。图3示出了其中将行地址20设置为最大行地址并且行将地址0—20的范围设置为其中设置存取区域的行地址的指定范围的示例。这里,最大行地址20小于SDRAM 4的最大物理行地址。换句话说,行地址0—20的指定范围小于由图3中的矩形41或42来表示的地址空间的行地址的范围。
在每一个组的第一到第三区域的每一个中提供块的完全列,其中将块布置在行地址的指定范围的全部中。另外,在每一个组的第四区域提供块的不完全列,其中将块仅布置在行地址的指定范围的一部分中。
根据以上解释的示例性存储器存取方法,在组的每一个中沿列地址的方向布置块的两个或更多个完全列。另外,除了块的该两个或更多个完全列外,也可以在组的每一个中布置块的不完全列。例如,在图3所示的示例中,在第一组41和第二组42的每一个中布置了块的三个完全列和块的不完全列。
在示例性存储器存取方法中,沿列地址的方向布置块的两个或更多个完全列,以设置存取区域。因此,可以省去施加在SDRAM 4上的刷新操作。就是说,当对被划分为各具有64个字的多个块的图像数据进行写入时,布置在块的完全列中的块被连续存取。而且,通过对布置在块的完全列的每一个中的块进行连续存取,来连续存取块的两个或更多个完全列。
结果是,即使在最糟的情况中,在指定范围内的行地址的每一个以短于帧周期的间隔被存取。因此,即使所需的刷新周期短于帧周期,在不执行刷新操作的条件下,也能维持存储在存取区域的存储单元中的数据。
首先,通过增加行地址将图像数据连续存储在每一个组的第一区域中的块中。例如,在位于第二组42的第一区域中的最大行地址20的块B41中存储数据之后,数据的下一部分被存储在位于第一组41的第二区域中的行地址0的块B42中,然后,存储在位于在第二组42的第二区域中的行地址0处的块B43中。
将图像数据存储在块B42中具有与对包括在块B0中的存储单元进行刷新相同的效果,其中在该块B0中已存储同一帧的图像数据。将图像数据存储在块B42中还具有与对包括在第三区域中的块B84和在第四区域中的块B126中的存储单元进行刷新相同的效果,其中在该块B84和B126中存储了先前帧的图像数据。同样,将图像数据存储在块B43中具有与对包括在块B1中的存储单元、和包括在第三区域的块B85中以及在第四区域中的块B127中的存储单元进行刷新相同的效果,其中在该块B1中已存储同一帧的图像数据,在该块B85和B127中存储了先前帧的图像数据。
假设将图像数据存储在块B0到B158中需要等于帧周期的周期。然后,如图3所示,当块的四列被布置在每一个组中时,从将图像数据存储在块的第一列中的第一块B0中到将图像数据存储在块的下一列中的第一块B42中的间隔是约1/4帧周期。从将图像数据存储在块B1中到将图像数据存储在块B43中的间隔相同。块B0和B1以该间隔被有效刷新。在以下解释中,该间隔被标示为“间隔A”。
类似地,将图像数据存储在块B44到B83中与以相同间隔A对包括在块B2到B41中的每一个、块B86到B125中的每一个、以及块B128到B158中的每一个中的存储单元进行刷新具有相同效果。将图像数据存储在被布置在第三区域的块的完全列中的块B84到B125中与以相同间隔A对包括在块B0到B83中的每一个、和块B128到B158中的每一个中的存储单元进行刷新具有相同效果。
此外,将图像数据存储在被布置在第四区域的块的不完全列中的块B126到B158中与以相同间隔A对包括在块B0到B32中的每一个、块B42到B74中的每一个、以及块B84到B116中的每一个中的存储单元进行刷新具有相同效果。
对于在第一组的第一区域中的块B34到B40、第二区域中的块B76到B82,或者第三区域中的块B118到B124来说,在第四区域的块的不完全列中不存在具有相同行地址的对应块。因此,当将图像数据存储在被布置在第四区域中的块的不完全列中时,在第一组的第一到第三区域中布置的这些块中包含的存储单元不被刷新。
当图像数据在下一帧周期期间被写入到布置在第一区域中的同一行地址的块中时,在第四区域中未布置块的行地址被下次存取。因此,假设在构成存取区域的全部块中存储图像数据需要一帧周期,通过以最大为约2/4=1/2帧周期的周期对相同行地址进行存取,来对在块的不完全列中未布置块的行地址处的块中包含的存储单元进行刷新。
该周期仍短于帧周期。因此,即使用于维持数据所需的刷新周期变得短于帧周期,如果所需的刷新周期是在与帧周期可比的范围内,则也不需要执行刷新操作。对于在第二组的第一区域中的块B33到B41、在第二区域中的块B75到B83,和第三区域中的块B117到B125来说,这种情况是相同的。就是说,即使在最差的情况中,通过以帧周期的约1/2的周期对同一行地址的存取,来刷新包括在这些块中的存储单元。因此,不需要刷新操作。
表示在最大行地址计算单元311中计算的最大行地址的信号被发送到地址计数单元312和命令发生器单元313。输入到第二信号线31b的表示开始读取图像数据以及向第二图像处理单元5发送读数据的信号“读开始”被发送到地址计数单元312、命令发生器单元313、和读FIFO 33。输入到第三信号线31c的表示开始写入从第一图像处理电路2输入的图像数据的信号“写开始”被发送到地址计数单元312、命令发生器单元313、和写FIFO 32。
例如,如在日本专利特开11-133917中描述的,在此通过引用合并其全部内容,通过各个FIFO写入和读取数据使得DRAM能够用作帧存储器。
未在图2中示出的表示帧的开始的垂直同步信号、和时钟信号,也被输入到地址计数单元312。未在图2中示出的计数寄存器被提供在地址计数单元312中,所述计数寄存器对时钟信号的数量计数。地址计数单元312根据计数寄存器的计数值生成地址信号,并将所生成的地址信号发送给SDRAM 4。
参照计数寄存器的计数值,命令发生器单元313生成诸如组激活、写和读命令信号的存取命令信号,并将所生成的存取命令信号发送给SDRAM 4。SDRAM 4参照与地址信号同时接收的存取命令信号,确定从地址计数单元312接收的地址信号是否表示组地址、行地址或列地址。因此,由地址信号和存取命令信号指定的地址被存取。
图4是示出了示例性计数寄存器的内部结构的示意图。图4的上部示出了提供在地址计数单元312中的第一计数寄存器3121,以及对输入到地址计数单元312的时钟信号计数的第二计数寄存器3122。图4的下部示出了这两个计数寄存器的计数值如何组合以生成SDRAM 4的组地址、行地址、和列地址。
当地址计数单元312接收未在图2中示出的垂直同步信号,以及检测帧的开始,第一计数寄存器3121和第二计数寄存器3122被重设为零。之后,当“写开始”信号被接收时,第二计数寄存器3122开始对时钟信号计数。第二计数寄存器3122的计数值的低6位表示列地址的低6位(0到63)。同时,第一计数寄存器3121的2位计数值表示列地址的高2位。列地址的高2位在0到3之间变化,并且表示第一区域到第四区域。
高于低6位的第二计数寄存器的计数值的下一位表示组。第二计数寄存器的计数值的其余高X位表示行地址。
图5是解释第一计数寄存器的示例性升值计数操作的示意图。如图5所示,除了第一计数寄存器3121和第二计数寄存器3122外,地址计数器312包括存储参考值的参考值寄存器3123。参考值寄存器的低6位存储值“111111”,而其下一高位存储“1”。参考值寄存器的更高位存储值“xxx0010100”,其表示通过最大行地址计算单元311计算的最大行地址20。
地址计数器312将第二计数寄存器3122的计数值和存储在参考值寄存器3123中的参考值连续进行比较。当这些值匹配时,地址计数器将第一计数寄存器3121的2位计数值增加1,并将第二计数寄存器3122的计数值重设为零。
再参照图2,当外部信号“写开始”被输入时,图像数据通过写FIFO 32被写入SDRAM 4。为了将数据写入SDRAM 4,地址计数单元312生成地址信号并将所生成的地址信号发送给SDRAM 4。因此,构成帧的图像数据在帧周期期间被写入图3所示的159个块中。
实际上,在每一个块内的列地址中仅第一个被从地址计数单元312提供给SDRAM 4。通过利用SDRAM 4的突发存取能力,在每一个块内的后续列地址被连续存取。因而,存储系统的操作频率可以得以增加。虽然如此,第二计数寄存器3122继续对时钟信号进行计数,同时对在块内的后续列地址进行存取,以便生成下一块的地址。
如上所解释的,通过最大行地址计算单元311计算的最大行地址被存储在参考寄存器3123的高位中。地址计数单元312和命令发生器单元313生成地址信号和存取命令信号,并且将所生成的地址信号和存取命令信号发送到SDRAM 4。因此,构成帧的图像数据被存储在SDRAM 4的地址空间内设置的存取区域中。
实际上,如上所解释的,在同一帧周期内执行对构成先前帧的图像数据的读取和对构成当前帧的图像数据的写入。因此,在如上所解释的情况,即仅执行写的情况,以更高的频率对在行地址的指定范围内的行地址执行存取。
然而,在从第一组41中的特定数量的块以及从在第二组42中的相应块读取之后的读/写序列内,可以应用相同块被再次存取以在其中写数据,以便使写FIFO 32和读FIFO 33的所需存储容量最小。例如,在存取特定数量的块以读取构成在先前帧内的行的图像数据之后,相同块被再次存取以写入构成在当前帧内的相应行的图像数据。在这种情况中,对行地址进行连续存取之间的最大间隔与如上所解释的情况大致相同。
为了在每一个帧周期期间执行图像数据的读和写,实际上,提供各个第一计数寄存器3121、第二计数寄存器3122、参考寄存器3123、以及比较器用来在地址计数单元312中生成读地址和写地址。
如上所解释的,示例性SDRAM控制电路3利用SDRAM 4的特征,所述特征对位于组中的行地址的块进行存取提供与对在同一块中和在相同组中具有相同行地址的其他块中包含的存储单元进行刷新相同的效果。因此,通过对存取区域进行存取来进行写和/或读数据能够维持所存储的数据,而不需要执行刷新操作。
就是说,根据要存储的图像数据的字的数量,来确定其中设置存取区域的行地址的指定范围。在组的每一个中沿列地址的方向布置块的两个或更多个完全列,其中块被布置在全部指定范围的行地址中。结果是,通过在存取区域中写数据或从存取区域中读数据,在指定范围内的行地址的每一个以短于帧周期的间隔被存取。
更具体地说,在图3所示的示例中,通过在组的每一个中布置块的三个完全列和块的不完全列来设置存取区域。在这种情况中,当需要一帧周期来写入或读取构成帧的图像数据时,包括在块的不完全列中的块的每一个行地址以大约1/4帧周期的间隔被存取。因此,在这些行地址的块中的存储单元以约1/4的帧周期间隔被有效地刷新。即使在最糟的情况中,对没有包括在块的不完全列中的块的每一个行地址的存取的间隔约是1/2帧周期。因而,在这些行地址的块中的存储单元以短于约1/2帧周期的间隔被有效刷新。
实际上,需要准备周期来对在不同行中的SDRAM 4的存储单元进行存取。因此,如果图像数据被写入在同一组的块中,同时增加行地址,则在连续存取之间需要等待,并且需要较长的总周期来存储全部数据。因此,示例性SDRAM控制电路3将块布置在两组中,并且通过对在不同组中布置的块进行交替存取来写入数据。
就是说,在将一部分数据写入在第一组41中的特定行地址的块中之后,将下一部分数据写入在第二组42中的同一行地址的块中。在将数据写入在第二组42的特定行地址的块中时,从该特定行地址以行地址的顺序的高一位的行地址被激活从而对在第一组中的块进行存取不需要等待。在从SDRAM 4读数据时也应用相同顺序。
为了无等待地对在不同组中的块进行交替存取,在对在组的其中之一中的块进行存取时,命令发生器单元313生成组激活命令,并将所生成的命令发送给SDRAM 4。同时,地址计数单元312生成指定下一个将被存取的块的地址信号,并将所生成的地址信号发送给SDRAM4。地址计数单元312根据第二计数寄存器3122的计数值生成地址信号。然而,由于计数寄存器的计数值对应于现在正在进行存取的块内的地址,因此需要调整地址。
例如,在日本专利特开2000-315386中公开了对被划分为多组的SDRAM的存取,其全部内容通过引用合并于此。优选使用具有被划分为多组的地址空间的SDRAM,从而在连续存取之间不需要等待。因此,读或存储数据的总周期能够被缩短。然而,对于本发明来说,使用具有被划分为多组的地址空间的SDRAM不是必需的。
图6是示出了在SDRAM内存取区域的另一示例性设置的示意图。图6示出了在两组的每一个中布置块的两个完全列和块的不完全列的示例。在每一个块内的列地址的数量是64,其与图3所示的情况相同。存储构成帧的图像数据所需的块的数量是159(块0到158),而行地址的指定范围被设置为0到38。就是说,最大行地址被设置为38。
行地址的指定范围被设置为使得在两组的每一个中布置块的两个完全列。具体地说,存储构成帧的图像数据所需的块数量(159)除以组的数量(2),并再除以将要布置在每一个组中的块的完全列的数量(2)。最大行地址可以被设置为商的整数部分(39)减去1。在0到最大行地址之间的行地址可以被设置为行地址的指定范围,所述行地址包括等于商(39)的多个行地址。
行地址的指定范围可以从在地址空间内的不同行地址设置以使得行地址的指定范围包括等于最大行地址加1(即,所述商的整数部分)的多个行地址。
在图6所示的示例性块中,在第三区域中布置块的不完全列。然而,布置在块的不完全列中的块的数量远小于布置在块的完全列中的块的数量。因此,当需要一个帧周期来对全部存取区域进行存取时,对在行地址的指定范围内的每一个行地址进行存取的间隔大约是二分之一帧周期,所述行地址的指定范围包括未布置在块的不完全列中的块的行地址。因此,不需要刷新操作。
当块的不完全列包括布置在行地址的几乎全部指定范围中的块时,对未布置在块的不完全列中的块的行地址进行存取的最大间隔约是2/3帧周期。存取间隔仍短于帧周期。因此,当刷新周期比帧周期短且与帧周期可比时不需要刷新操作。
在图6所示的示例性块结构中,行地址的指定范围被设置为0到最大行地址,其是在块的完全列的每一个中的块的数量减1。在这种情况中,最大行地址可以通过以下步骤设置:i)将存储构成帧的数据所需的块的总数量除以组的数量,以及除以将要布置在所述每一个组中的块的完全列的数量;以及ii)将商的整数部分减去1。结果是,可以使对在行地址的指定范围内的行地址的每一个进行存取的最大间隔短于帧周期。
如果刷新周期远短于帧周期,可以设置例如如图3所示的存取区域。就是说,将要布置在每一个组中的块的完全列的数量增加,并且行地址的指定范围相应缩小。
根据各种示例性实施例,根据在将要存储的数据中包含的字的数量、组的数量和要布置在所述每一个组中的块的完全列的数量,可以计算最大行地址。在参考寄存器3123的高位中存储所计算的最大行地址可以设置存取区域。可以在外部计算最大行地址,并将其输入到参考寄存器3123。因此,在控制器31中不提供最大行地址计算单元311的情况下,也能够设置存取区域。
如图2所示,根据示例性实施例的控制器31可以包括三个物理单元,即最大行地址计算单元311、地址计数单元312和命令发生器单元313。如上所解释的,控制器31生成适合于诸如图3和6所示的存取区域的结构的地址信号和存取命令信号,并将所生成的地址信号和存取命令信号发送给SDRAM 4。换句话说,控制器31设置SDRAM 4的存取区域,并生成和发送适合于在SDRAM 4中设置的存取区域的地址信号和存取命令信号。
因此,如图7所示,可以认为控制器31包括两个功能单元,即存取区域设置单元341和存取控制单元342,所述存取区域设置单元341设置在SDRAM 4的地址空间中的存取区域,所述存取控制单元342生成地址信号和存取命令信号。就是说,图7是示出了示例性SDRAM控制电路3的功能结构的示意图。根据示例性实施例,如图4所示的第一和第二计数寄存器3121和3122的地址和计数值之间的对应,和在参考寄存器3123中存储的最大行地址设置存取区域。
具体地,用于表示列地址的低位的第二计数寄存器3122的低位的数量确定在块内的列地址的数量。用于表示组地址的第二计数寄存器3122的位的数量确定块的列被布置在其中的组的数量。通过最大行地址计算单元311计算的并存储在参考寄存器3123中的最大行地址确定在块被布置在其中的行地址的指定范围。最后,在要存储的数据中包含的字的数量和在块内的列地址的数量、组的数量、以及行地址的指定范围之间的关系确定布置在每一个组中的块的完全列的数量和布置在块的不完全列内的块的数量。
因此,在图2所示的三个单元311到313中,地址计数单元312和最大行地址计算单元311可以被认为组成存取区域设置单元341。另一方面,地址计数单元312和命令发生器单元313可以被认为组成存取控制单元342。
图8是示出了在SDRAM内的存取区域的又一示例性设置的示意图。
在图8所示的示例性实施例中,在构成帧的数据中的字的数量大于图3和图6中所示的示例性实施例中的字的数量。当在要存储在存储器中的数据中的字的数量改变时,优选通过改变块的布置来设置存取区域,而不需要改变能够存储在块中的字的数量,或在块内的列地址的数量。就是说,优选根据存储数据所需的块的数量的改变来改变行地址的指定范围。
实际上,图8示出了其中当在每一个块中的列地址的数量是64时需要164个块来存储构成帧的图像数据的示例性实施例,所述列地址的数目与图3和6中所示的实施例中的相同。为了在两个组的每一个中布置块的至少两个完全列,将最大行地址设置为40,或者将行地址的范围设置为0到40。就是说,与图6所示的示例性实施例相同,将块的所需数量(164)除以组的数量(2)和将要布置在每一个组中的块的完全列的数量(2)。将商的整数部分(41)减去1设置为最大行地址。
在图8所示的示例性实施例中,块的两个完全列并且没有块的不完全列被布置在组的每一个中。在该示例性实施例中,存取的间隔与在图6中所示的示例性实施例的间隔基本相同。就是说,当需要帧周期对全部存取区域存取时,对在行地址的指定范围内的每一个行地址的存取间隔约是1/2帧周期。结果是,不需要刷新操作。
此外,在图8所示的示例性实施例中,即使改变要存储在SDRAM中的数据的字的数量,在每一个块中的列地址的数量也不改变。因此,仅改变存储在参考寄存器3123的高位中的表示最大行地址的值使得能够使用相同控制器31。
至此,已经参照特定示例对根据本发明的示例性存储器存取方法、示例性存储控制电路和示例性存储系统进行了详细解释。然而,显然,本发明不限于以上所述的特定示例。本发明可以接受在本发明的精神内的各种改进和修改。

Claims (23)

1.一种对在地址空间中布置有存储单元的动态随机存取存储器的存取方法,该方法包括:
通过沿列地址的方向布置块的两个或更多个完全列,以及块的可选不完全列,来在所述地址空间内设置用于存储由指定数量的字组成的数据的存取区域,其中
所述块的每一个包括位于同一行地址和指定数量的连续列地址处的多个所述存储单元;
块的所述完全列的每一个包括布置在行地址的指定范围中的全部中的第一数量的所述块,块的所述不完全列包括布置在行地址的所述指定范围中的一部分中的小于所述第一数量的所述块;以及
布置在块的所述两个或更多个完全列中的所述块和布置在块的所述可选不完全列中的所述块的总数正好能够存储所述指定数量的字;以及
通过对布置在块的所述列的每一个中的所述块进行连续存取,来对块的所述两个或更多个完全列和块的所述可选不完全列进行连续存取,以在所述存储器中写入和存储数据或者读取先前存储在所述存储器中的数据,其中:
所述存储器是同步动态随机存取存储器,所述存储单元需要在刷新周期内被刷新,以及对位于所述行地址的每一个处的所述块的其中之一进行存取刷新位于同一行地址的所述块中的其他块中所包含的所述存储单元。
2.根据权利要求1所述的方法,其中:
所述地址空间被划分成n组,其中n是不小于2的整数;
执行对所述存取区域的所述设置,以使得在所述n组的每一个中沿列地址的方向布置块的所述两个或更多个完全列和块的所述可选不完全列,其中所述块的总数是布置在所述n组中的所述块的数量的总和;以及
对布置在块的所述列的每一个中的所述块进行的连续存取包括在所述行地址的每一个处对布置在所述n组中的所述块进行连续存取。
3.根据权利要求1或2所述的方法,其中行地址的所述指定范围小于所述地址空间的行地址的范围。
4.根据权利要求1或2所述的方法,其中对所述存取区域的所述设置包括:当所述数据的字的所述指定数量改变时,改变行地址的所述指定范围,而不改变所述块的每一个的连续列地址的所述指定数量。
5.根据权利要求1或2所述的方法,其中:
所述数据构成在长于所述刷新周期的帧周期内提供的运动图像的连续帧的其中之一;以及
在所述帧周期内,对块的所述两个或更多个完全列和块的所述可选不完全列连续存取一次。
6.一种对在被划分为n组的地址空间中布置有存储单元的动态随机存取存储器的存取方法,其中n是不小于2的整数,所述方法包括:
通过在所述n组的每一个中沿列地址的方向布置不小于2的所需数量的块的完全列以及块的可选不完全列,来在所述地址空间内设置用于存储由指定数量的字组成的数据的存取区域,其中
所述块的每一个包括位于同一行地址和指定数量的连续列地址处的多个所述存储单元;
块的所述完全列的每一个包括布置在行地址的指定范围中的全部中的第一数量的所述块,块的所述不完全列包括布置在行地址的所述指定范围中的一部分中的小于所述第一数量的所述块;以及
行地址的所述指定范围通过以下步骤设置,i)将存储所述指定数量的字所需的所述块的总数除以n和块的所述完全列的所需数量以获得商,以及(ii)设置行地址的所述指定范围以便行地址的所述指定范围包括等于所述商的整数部分的多个行地址;以及
通过对布置在块的所述列的每一个中的所述块进行连续存取,来对块的所述所需数量的完全列和块的所述可选不完全列进行连续存取,以在所述存储器中写入和存储数据或者读取先前存储在所述存储器中的数据,其中:
对布置在块的所述列的每一个中的所述块进行的所述连续存取包括在所述行地址的每一个处对布置在n组中的所述块进行连续存取;以及
所述存储器是同步动态随机存取存储器,所述存储单元需要在刷新周期内被刷新,以及对位于所述组的每一个中的所述行地址的每一个处的所述块的其中之一进行存取刷新位于同一组中的同一行地址处的所述块中的其他块中所包含的所述存储单元。
7.根据权利要求6所述的方法,其中:
所述数据构成在长于所述刷新周期的帧周期内提供的运动图像的连续帧的其中之一;以及
在所述帧周期内对块的所述所需数量的完全列和块的所述可选不完全列连续存取一次。
8.一种存储控制电路,用于控制在地址空间中布置有存储单元的动态随机存取存储器,所述电路包括:
存取区域设置单元,所述存取区域设置单元通过沿列地址的方向布置块的两个或更多个完全列以及块的可选不完全列,来在所述地址空间内设置用于存储由指定数量的字组成的数据的存取区域,其中:
所述块的每一个包括位于同一行地址和指定数量的连续列地址处的多个所述存储单元;
块的所述完全列的每一个包括布置在行地址的指定范围中的全部中的第一数量的所述块,块的所述不完全列包括布置在行地址的所述指定范围中的一部分中的小于所述第一数量的块;以及
布置在块的所述两个或更多个完全列中的所述块和布置在块的所述可选不完全列中的所述块的总数正好能够存储所述指定数量的字;
以及
存取控制单元,所述存取控制单元向所述存储器提供地址信号和存取控制信号,以便通过对布置在块的所述列的每一个中的所述块进行连续存取来对块的所述两个或更多个完全列和块的所述可选不完全列进行连续存取,以在所述存储器中写入和存储数据或者读取先前存储在所述存储器中的数据,其中:
所述存储器是同步动态随机存取存储器,所述存储单元需要在刷新周期内被刷新,以及对位于所述行地址的每一个处的所述块的其中之一进行存取刷新位于同一行地址处的所述块中的其他块中所包含的所述存储单元。
9.根据权利要求8所述的电路,其中:
所述存储器的所述地址空间被划分成n组,其中n是不小于2的整数;
所述存取区域设置单元设置所述存取区域,以使得在所述n组的每一个中沿列地址的方向布置块的所述两个或更多个完全列和块的所述可选不完全列,其中所述块的总数是布置在所述n组中的所述块的数量的总和;以及
所述存取控制单元向所述存储器提供所述地址信号和所述存取控制信号,以便对布置在块的所述列的每一个中的所述块进行的连续存取包括在所述行地址的每一个处对布置在所述n组中的所述块进行连续存取。
10.根据权利要求8或9所述的电路,其中行地址的所述指定范围小于所述地址空间的行地址的范围。
11.根据权利要求8或9所述的电路,其中:
所述存取区域设置单元包括行地址范围设置单元,所述行地址范围设置单元根据所述数据的字的所述指定数量来设置行地址的所述指定范围,而不改变所述块的每一个的连续列地址的所述指定数量。
12.根据权利要求11所述的电路,其中所述行地址范围设置单元接收表示字的所述指定数量的数据尺寸信号。
13.根据权利要求8或9所述的电路,其中:
所述数据构成在长于所述刷新周期的帧周期内提供的运动图像的连续帧的其中之一;以及
所述存取控制单元提供所述地址信号和所述存取控制信号,以便在所述帧周期内对块的所述两个或更多个完全列和块的所述可选不完全列连续存取一次。
14.一种存储控制电路,所述存储控制电路用于控制在被划分成n组的地址空间中布置有存储单元的动态随机存取存储器,其中n是不小于2的整数,所述电路包括:
存取区域设置单元,所述存取区域设置单元通过在所述n组的每一个中沿列地址的方向布置不小于两个的所需数量的块的完全列以及块的可选不完全列,来在所述地址空间内设置用于存储由指定数量的字组成的数据的存取区域,其中:
所述块的每一个包括位于同一行地址和指定数量的连续列地址处的多个所述存储单元;
块的所述完全列的每一个包括布置在行地址的指定范围中的全部中的第一数量的所述块,块的所述不完全列包括布置在行地址的所述指定范围中的一部分中的小于所述第一数量的所述块;以及
所述存取区域设置单元通过以下步骤设置行地址的所述指定范围,i)将存储所述指定数量的字所需的块的总数除以n和块的所述完全列的所需数量以获得商,以及(ii)设置行地址的所述指定范围以便行地址的所述指定范围包括等于所述商的整数部分的多个行地址;以及
存取控制单元,所述存取控制单元向所述存储器提供地址信号和存取控制信号,以便通过对布置在块的所述列的每一个中的所述块进行连续存取,来对块的所述所需数量的完全列和块的所述可选不完全列进行连续存取,以在所述存储器中写入和存储数据或者读取先前存储在所述存储器中的数据,其中:
所述存取控制单元向所述存储器提供所述地址信号和所述存取控制信号,以便对布置在块的所述列的每一个中的所述块进行的所述连续存取包括在所述行地址的每一个处对布置在所述n组中的所述块进行连续存取;以及
所述存储器是同步动态随机存取存储器,所述存储单元需要在刷新周期内被刷新,以及对位于所述组的每一个中的所述行地址的每一个处的所述块的其中之一进行存取刷新位于同一组中的同一行地址处的所述块中的其他块中所包含的所述存储单元。
15.根据权利要求14所述的电路,其中:
所述数据构成在长于所述刷新周期的帧周期内提供的运动图像的连续帧的其中之一;以及
所述存取控制单元提供所述地址信号和所述存取控制信号,以便在所述帧周期内对块的所述所需数量的完全列和块的所述可选不完全列连续存取一次。
16.一种存储系统,包括:
在地址空间中布置有存储单元的同步动态随机存取存储器;
输入端,所述输入端在帧周期内接收构成运动图像的连续帧的其中之一的数据;以及
存储控制电路,用于控制所述同步动态随机存取存储器,所述存储控制电路包括:
存取区域设置单元,所述存取区域设置单元通过沿列地址的方向布置块的两个或更多个完全列以及块的可选不完全列,来在所述地址空间内设置用于存储由指定数量的字组成的数据的存取区域,其中:
所述块的每一个包括位于同一行地址和指定数量的连续列地址处的多个所述存储单元;
块的所述完全列的每一个包括布置在行地址的指定范围中的全部中的第一数量的所述块,块的所述不完全列包括布置在行地址的所述指定范围中的一部分中的小于所述第一数量的所述块;以及
布置在块的所述两个或更多个完全列中的所述块和布置在块的所述可选不完全列中的所述块的总数正好能够存储所述指定数量的字;以及
存取控制单元,所述存取控制单元向所述存储器提供地址信号和存取控制信号,以便通过对布置在块的所述列的每一个中的所述块进行连续存取,在所述帧周期内对块的所述两个或更多个完全列和块的所述可选不完全列连续存取一次,以在所述存储器中写入和存储数据或者读取先前存储在所述存储器中的数据,其中:
所述存储单元需要在刷新周期内被刷新,以及对位于所述行地址的每一个处的所述块的其中之一进行存取刷新位于同一行地址处的所述块中的其他块中所包含的所述存储单元。
17.根据权利要求16所述的存储系统,其中:
所述地址空间被划分成n组,其中n是不小于2的整数;
所述存取区域设置单元设置所述存取区域,以使得在所述n组的每一个中沿列地址的方向布置块的所述两个或更多个完全列和块的所述可选不完全列,其中所述块的总数是布置在所述n组中的块的数量的总和;以及
所述存取控制单元向所述存储器提供所述地址信号和所述存取控制信号,以便对布置在块的所述列的每一个中的所述块进行的连续存取包括在所述行地址的每一个处对布置在所述n组中的所述块进行连续存取。
18.根据权利要求16到17所述的存储系统,其中行地址的所述指定范围小于所述地址空间的行地址的范围。
19.根据权利要求16到17所述的存储系统,其中所述帧周期比所述刷新周期长。
20.根据权利要求16到17所述的存储系统,其中:
所述存取区域设置单元包括行地址范围设置单元,所述行地址范围设置单元根据所述数据的字的所述指定数量来设置行地址的所述指定范围,而不改变所述块的每一个的连续列地址的所述指定数量。
21.根据权利要求20所述的存储系统,其中所述行地址范围设置单元接收表示字的所述指定数量的数据尺寸信号。
22.一种存储系统,包括:
在被划分为n组的地址空间中布置有存储单元的同步动态随机存取存储器,其中n是不小于2的整数;
输入端,所述输入端在帧周期内接收构成运动图像的连续帧的其中之一的数据;以及
存储控制电路,用于控制所述同步动态随机存取存储器,所述存储控制电路包括:
存取区域设置单元,所述存取区域设置单元通过在所述n组的每一个中沿列地址的方向布置不小于2的所需数量的块的完全列以及块的可选不完全列,来在所述地址空间内设置用于存储由指定数量的字组成的数据的存取区域,其中:
所述块的每一个包括位于同一行地址和指定数量的连续列地址处的多个所述存储单元;
块的所述完全列的每一个包括布置在行地址的指定范围中的全部中的第一数量的所述块,块的所述不完全列包括布置在行地址的所述指定范围中的一部分中的小于所述第一数量的所述块;以及
所述存取区域设置单元通过以下步骤设置行地址的所述指定范围,i)将存储所述指定数量的字所需的所述块的总数除以n和块的所述完全列的所需数量以获得商,以及(ii)设置行地址的所述指定范围以便行地址的所述指定范围包括等于所述商的整数部分的多个行地址;以及
存取控制单元,所述存取控制单元向所述存储器提供地址信号和存取控制信号,以便通过对布置在块的所述列的每一个中的所述块进行连续存取,在所述帧周期内对块的所述所需数量的完全列和块的所述可选不完全列连续存取一次,以在所述存储器中写入和存储数据或者读取先前存储在所述存储器中的数据,其中:
所述存取控制单元向所述存储器提供所述地址信号和所述存取控制信号,以便对布置在块的所述列的每一个中的所述块进行的所述连续存取包括在所述行地址的每一个处对布置在所述n组中的所述块进行连续存取;以及
所述存储单元需要在刷新周期内被刷新,以及对位于所述组的每一个中的所述行地址的每一个处的所述块的其中之一进行存取刷新位于同一组中的同一行地址处的所述块中的其他块中所包含的所述存储单元。
23.根据权利要求22所述的存储系统,其中所述帧周期比所述刷新周期长。
CN2008101751356A 2007-10-30 2008-10-30 存储器的存取方法、存储控制电路和存储系统 Active CN101425040B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007281979 2007-10-30
JP2007-281979 2007-10-30
JP2007281979A JP4964091B2 (ja) 2007-10-30 2007-10-30 メモリアクセス方法およびメモリ制御装置

Publications (2)

Publication Number Publication Date
CN101425040A true CN101425040A (zh) 2009-05-06
CN101425040B CN101425040B (zh) 2013-01-16

Family

ID=40582638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101751356A Active CN101425040B (zh) 2007-10-30 2008-10-30 存储器的存取方法、存储控制电路和存储系统

Country Status (3)

Country Link
US (1) US8064282B2 (zh)
JP (1) JP4964091B2 (zh)
CN (1) CN101425040B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511021A (zh) * 2009-03-24 2009-08-19 北京中星微电子有限公司 在sdram中存取图像数据的方法
CN104620308A (zh) * 2012-05-01 2015-05-13 三星显示有限公司 帧存储器的控制电路、显示设备及帧存储器的控制方法
CN111831212A (zh) * 2019-04-19 2020-10-27 杭州海康威视数字技术股份有限公司 一种数据写入、读取方法、装置及设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169257A (ja) * 2008-01-18 2009-07-30 Kawasaki Microelectronics Inc メモリ制御回路および画像処理装置
US20110194606A1 (en) * 2010-02-09 2011-08-11 Cheng-Yu Hsieh Memory management method and related memory apparatus

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710879A (en) 1980-06-20 1982-01-20 Mitsubishi Electric Corp Picture memory device
US4482979A (en) 1982-02-04 1984-11-13 May George A Video computing system with automatically refreshed memory
JPS5954095A (ja) 1982-09-20 1984-03-28 Toshiba Corp ビデオramリフレッシュ方式
US4587559A (en) 1983-03-11 1986-05-06 Welch Allyn, Inc. Refreshing of dynamic memory
JPS60113395A (ja) 1983-11-25 1985-06-19 Hitachi Ltd メモリ制御回路
JPS6251095A (ja) 1985-08-29 1987-03-05 Nec Corp 画像メモリ駆動方式
KR920009770B1 (ko) * 1990-10-31 1992-10-22 삼성전자 주식회사 영상기록재생장치에서 메모리내 프레임 데이타 어드레싱 방식
JPH04285790A (ja) * 1991-03-14 1992-10-09 Murata Mach Ltd テレビ電話機用フレームメモリ装置
JPH07287668A (ja) * 1994-04-19 1995-10-31 Hitachi Ltd データ処理装置
JPH08123953A (ja) * 1994-10-21 1996-05-17 Mitsubishi Electric Corp 画像処理装置
JPH08204921A (ja) * 1995-01-31 1996-08-09 Sony Corp スキャナ装置
US5784698A (en) * 1995-12-05 1998-07-21 International Business Machines Corporation Dynamic memory allocation that enalbes efficient use of buffer pool memory segments
JP3359270B2 (ja) 1997-10-24 2002-12-24 キヤノン株式会社 メモリー制御装置と液晶表示装置
JP2000284771A (ja) 1999-03-31 2000-10-13 Fujitsu General Ltd 映像データ処理装置
JP2000315386A (ja) * 1999-04-30 2000-11-14 Sony Corp メモリのアドレシング方法およびデータ処理装置
JP2003068072A (ja) 2001-08-30 2003-03-07 Fujitsu General Ltd フレームメモリ回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511021A (zh) * 2009-03-24 2009-08-19 北京中星微电子有限公司 在sdram中存取图像数据的方法
CN101511021B (zh) * 2009-03-24 2014-10-29 北京中星微电子有限公司 在sdram中存取图像数据的方法
CN104620308A (zh) * 2012-05-01 2015-05-13 三星显示有限公司 帧存储器的控制电路、显示设备及帧存储器的控制方法
CN111831212A (zh) * 2019-04-19 2020-10-27 杭州海康威视数字技术股份有限公司 一种数据写入、读取方法、装置及设备

Also Published As

Publication number Publication date
US20090109784A1 (en) 2009-04-30
US8064282B2 (en) 2011-11-22
CN101425040B (zh) 2013-01-16
JP2009110600A (ja) 2009-05-21
JP4964091B2 (ja) 2012-06-27

Similar Documents

Publication Publication Date Title
CN101425040B (zh) 存储器的存取方法、存储控制电路和存储系统
US7675800B2 (en) Semiconductor memory, memory controller, system, and operating method of semiconductor memory
CN107068174A (zh) 刷新控制器以及包括刷新控制器的存储器设备
KR102021401B1 (ko) 메모리 장치
JPH01201785A (ja) グラフィックシステム
CN101286361A (zh) 半导体存储器件
EP2035934A2 (en) Dual-port sram memory using single-port memory cell
US9383857B2 (en) Driver IC and display device
JP2593060B2 (ja) ダイナミックランダムアクセスメモリ、ダイナミックランダムアクセスメモリのアクセス方法及びシステム
JP2004170467A (ja) フレームメモリアクセス方法及び回路
CN102834812B (zh) 大存储器块的阶层组织
JPS61288240A (ja) 半導体記憶装置
JPH07295534A (ja) ビデオディスプレイシステム
JPS6216294A (ja) メモリ装置
CN102651120B (zh) 用于影像处理的存储器存取方法及影像处理装置
KR100714396B1 (ko) 메모리의 처리속도를 향상시킨 컴퓨터 시스템
JPH03176887A (ja) 半導体メモリ装置
US5579484A (en) System for performing fast data accessing in multiply/accumulate operations while using a VRAM
JPH02192096A (ja) 選択的リフレツシユ制御装置
CN1921008B (zh) 存储器控制系统和存储器控制电路
US20060239098A1 (en) Dram architecture enabling refresh and access operations in the same bank
KR0174512B1 (ko) 리플레쉬 타이밍 발생회로
JPS62295091A (ja) 表示回路
JP5322519B2 (ja) メモリ制御装置
JP2001184855A (ja) メモリ制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant