CN101338386A - 一种TiNiSn基热电化合物的制备方法 - Google Patents
一种TiNiSn基热电化合物的制备方法 Download PDFInfo
- Publication number
- CN101338386A CN101338386A CNA2008101191922A CN200810119192A CN101338386A CN 101338386 A CN101338386 A CN 101338386A CN A2008101191922 A CNA2008101191922 A CN A2008101191922A CN 200810119192 A CN200810119192 A CN 200810119192A CN 101338386 A CN101338386 A CN 101338386A
- Authority
- CN
- China
- Prior art keywords
- sintering
- powder
- ball milling
- tinisn
- milling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 17
- 229910010380 TiNi Inorganic materials 0.000 title 1
- 239000000843 powder Substances 0.000 claims abstract description 36
- 238000005245 sintering Methods 0.000 claims abstract description 34
- 238000000498 ball milling Methods 0.000 claims abstract description 15
- 238000002360 preparation method Methods 0.000 claims abstract description 13
- 239000000126 substance Substances 0.000 claims abstract description 13
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- 229910052718 tin Inorganic materials 0.000 claims abstract description 7
- 238000001238 wet grinding Methods 0.000 claims abstract description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000009837 dry grinding Methods 0.000 claims abstract description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- 229910005887 NiSn Inorganic materials 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 229960000935 dehydrated alcohol Drugs 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 21
- 238000005265 energy consumption Methods 0.000 abstract 1
- 238000009776 industrial production Methods 0.000 abstract 1
- 238000002490 spark plasma sintering Methods 0.000 description 24
- 239000010936 titanium Substances 0.000 description 23
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 238000005551 mechanical alloying Methods 0.000 description 11
- 229910001291 heusler alloy Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000005619 thermoelectricity Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- 229910002665 PbTe Inorganic materials 0.000 description 2
- 244000137852 Petrea volubilis Species 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000000713 high-energy ball milling Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000013456 study Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000002305 electric material Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- -1 is provided Chemical class 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000003701 mechanical milling Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
一种TiNiSn基热电化合物的制备方法,属于新能源材料技术领域。采用高纯的Ti、Ni、Sn单质作为初始原料,按Ti1+xNiSn化学式配料;将原料装入球磨罐中,进行干法球磨;干磨后加入无水乙醇作为介质进行湿磨;将球磨后的粉末取出,烘干,得到中间化合物粉末;将所得中间化合物粉末装入石墨模具中,用石墨压头压实后,安装在放电等离子体烧结机中进行烧结,得到TiNiSn热电化合物。优点在于,本发明的MA+SPS工艺具有流程短,效率高,耗能少,适于工业化大规模生产,烧结温度较低,烧结时间短,可获得细小、均匀的组织,并能保持原始材料的自然状态,所得到的温差电材料具有优异的热电性能。
Description
技术领域
本发明属于新能源材料领域,特别是提供了一种TiNiSn基热电化合物的制备方法,涉及到机械合金化和放电等离子烧结这两种制备工艺。
背景技术
热电材料是一种利用固体内部载流子运动实现热能和电能直接相互转换的功能材料。热电器件具有体积小、质量轻、无运动部件、可靠易维护、无噪音、无污染等优点,因而在温差发电和热电制冷方面都有广泛应用。
热电材料的性能用“热电优值”Z=a2s/k表征。其中,a是温差电势系数(即赛贝克系数),s是电导率,k是热导率。在保持足够高的a和s值的前提下,最大幅度地降低k是提高热电材料性能的关键。
目前,研究较为成熟的传统热电材料包括:应用于低温区的Bi2Te3及其固溶体合金,应用于中温区的PbTe及其合金,应用于高温区的SiGe合金。TiNiSn基half-Heusler合金是一种近几年受到关注的新型热电材料体系,其主要特点是赛贝克系数较大、电导率较高,但热导率也较高。该类材料的电传导性随掺杂的改变较大,在塞贝克系数降低较少的情况下,适当的掺杂可大幅度提高化合物的电导率,从而获得高热电性能的TiNiSn基Half-Heusler热电材料。此外,TiNiSn基Half-Heusle化合物没有PbTe基合金等存在的Pb污染问题,而且其组成元素的价格相对比较便宜,另外,它的热电性能随温度的变化相对较小。因此,高性能TiNiSn基Half-Heusler热电材料具有应用潜力。
目前,国内外研究TiNiSn基Half-Heusler热电材料的工作者主要是采用固相反应法、熔融法和电弧融炼法合成该材料,这些制备方法存在着工序繁多,设备复杂,生产周期长,耗能大等缺点。同时,利用这些方法制备的块体材料的晶粒一般较为粗大,这对降低材料的热导率不利。近期有文献(N Shutoh,S Sakurada,Applied PhysicsLetters,86(2005),082105-1)报道指出N Shutoh等利用电弧熔炼和热压法相结合的方法制备了掺杂的TiNiSn基half-Heusler热电材料块体,其ZT值最大达到了1.5。但其制备周期较长,工序较为复杂,且烧结的温度较高、时间较长,因而不利于保持较小的晶粒尺寸。其他的一些相关研究表明TiNiSn基half-Heusler热电材料的ZT值均较小,相对较高的ZT值约为0.78。
研发高性能TiNiSn基half-Heusler合金需要解决两个主要问题:其一是制备单相合金。以往的研究表明,即使用高温熔炼工艺,一般难以获得单相TiNiSn基half-Heusler合金。其二是通过细化晶粒降低热导率。
发明内容
本发明的目的是提供一种TiNiSn基half-Heusler化合物的制备方法,解决了使用高温熔炼工艺,难以获得单相TiNiSn基half-Heusler合金,通过细化晶粒降低热导率这两个问题。本发明的MA+SPS工艺具有流程短,效率高,耗能少,适于工业化大规模生产,烧结温度较低,烧结时间短,可获得细小、均匀的组织,并能保持原始材料的自然状态等优点,所得到的温差电材料具有优异的热电性能。
本发明利用机械合金化(Mechanical Alloying,MA)和放电等离子烧结(Spark Plasma Sintering,SPS)制备TiNiSn基half-Heusler合金。MA可以通过高能球磨细化粉末,SPS可以通过快速烧结抑制固化过程中的晶粒生长。本发明还通过调控原料组成制备单相TiNiSn基half-Heusler合金的方法。具体工艺流程:
1.采用高纯的Ti、Ni、Sn单质作为初始原料,按Ti1+xNiSn(x=0,0.1,0.2,0.3,0.4)化学式配料。其中,x为Ti元素偏离化学计量比的量,Ti元素过量是为了补偿在球磨过程中的损失。
2.将原料装入球磨罐中,在手套箱中经过预抽真空,通入保护气体高纯氩气后,将球磨罐取出并安装在行星式球磨机上进行干法球磨。采用200~300转/分的转速,球磨时间为2~8小时,具体球磨时间和转速由所用球磨机类型以及球磨罐和磨球的具体情况确定。本发明所述的高纯氩气的纯度为99.99%。
3.干磨后加入无水乙醇作为介质进行湿磨,转速为50~300转/分,时间为2~12小时,主要是防止粉末结块,使其粉末更加均匀。
4.将球磨后的粉末取出,烘干。
5.将所得中间化合物粉末装入Φ15mm的石墨模具中,用石墨压头压实后,安装在SPS机中,在小于10Pa的真空条件下进行烧结。SPS机中升温速度为40~60℃/min,烧结温度为750~850℃,SPS压力为30~60Mpa,保温5~15分钟后,使烧结炉降温至室温,得到TiNiSn热电化合物。
6.取出样品后,用砂纸磨对样品表面进行打磨后,进行物相鉴定和显微结构分析,并进行热电性能测试。
本发明与现有技术相比优点在于:
(1)不需高温熔炼,成分偏析少;
(2)以单质粉末为原料,配料简单;
(3)通过高能球磨可获得微细的前驱体粉末;
(4)SPS烧结温度较低,烧结时间短,可获得细小、均匀的组织。
附图说明
图1.机械合金化合成的中间化合物粉末(原料配比化学式为Ti1+xNiSn,x=0.3)及其SPS烧结块体(烧结温度=850℃)的X射线衍射图谱。
图2.在850℃通过SPS烧结的化合物块体样品(原料配比化学式为Ti1+xNiSn,x=0.3)断面的扫描电镜(SEM)照片。
图3.不同Ti元素含量SPS烧结块体的X射线衍射图谱(x=0.0-0.4)
图4.不同SPS烧结温度样品的电阻率与温度的关系(x=0.3)
图5.不同SPS烧结温度样品的赛贝克系数与温度的关系(x=0.3)
图6.不同SPS烧结温度样品的功率因子与温度的关系(x=0.3)
具体实施方式
采用高纯的Ti、Ni、Sn单质作为初始原料,按Ti1+xNiSn(x=0,0.1,0.2,0.3,0.4)化学式配料。将粉末装入球磨罐中,在手套箱中经过预抽真空,通入保护气体高纯氩气后,将球磨罐取出并安装在行星式球磨机上进行干法球磨。采用300转/分的转速,球磨时间为2.5小时。干磨后加入无水乙醇作为介质湿磨,转速为200转/分,时间为2~12小时,主要是防止粉末结块,使其粉末更加均匀。然后,将球磨后的粉末取出,烘干。随后,将粉末装入Ф15mm的石墨模具中,用石墨压头压实后,安装在SPS机中,在小于10Pa真空条件下进行烧结。SPS升温速度为50℃/min,最高保温温度为750-850℃,SPS压力为50Mpa,保温5~15分钟后,使烧结炉降温至室温。最后,取出样品,用砂纸磨对样品表面进行打磨,然后进行物相鉴定和显微结构分析,并进行热电性能测试。
下面列举实施例予以说明。
实施例1
以钛(Ti)粉,镍(Ni)粉,锡(Sn)粉为原料,按Ti1+xNiSn(x=0.3)化学式称取总量共10g的粉末,放入ZrO2内衬的不锈钢球磨罐(容积250mL)中,并加入不同直径的ZrO2磨球(磨球与粉末的重量比30∶1)。球磨罐内充入氩气作为保护气体,在行星式球磨机(Pulverisette-6型,德国Fritsch)球磨2.5h(转速为300r/min),通过机械合金化(MA)反应制备中间化合物粉末。如图1所示,经上述MA处理后,所得到粉末的组成相为Ti,Ni和Ni3Sn4。烧结之后块体的组成相主要为TiNiSn。图2所示的是烧结温度为850℃,SPS烧结后样品断面的扫描电镜(SEM)照片,表明通过MA和SPS制备的TiNiSn热电化合物的密度较高、晶粒细小。
实施例2
以钛(Ti)粉,镍(Ni)粉,锡(Sn)粉为原料,按照Ti1+xNiSn(x=0.0,0.1,0.2,0.3,0.4)化学式各称取总量共10g的粉末。粉末合成条件与实施例1相同。SPS烧结的温度均为800℃。图3表示不同Ti元素含量SPS烧结块体的X射线衍射图谱(x=0.0-0.4)。随着Ti含量的增加,经SPS烧结后的样品中TiNiSn化合物的含量逐渐增加。
实施例3
以钛(Ti)粉,镍(Ni)粉,锡(Sn)粉为原料,按照Ti1+xNiSn(x=0.3)化学式称取总量共10g的粉末。粉末合成条件与实施例1相同。SPS烧结的温度分别为750℃,800℃和850℃。图4和图5分别比较了不同SPS烧结温度下所制备样品的电阻率和塞贝克系数与温度的关系。在850℃进行烧结的样品其电阻率最大,但是同时其塞贝克系数的绝对值也是最大的。图6是根据电阻率和塞贝克系数计算得到的功率因子与温度的关系。如图所示,在850℃烧结的样品的功率因子最高,在460℃左右达到1620μW/mK2。熔炼法制备的TiNiSn化合物的最高功率因子的文献数据(S.W.Kim等,Intermetallics,15(2007)349-356)是2500μW/mK2,对应温度是700K。虽然本发明得到的功率因子比报道值低,但是,由于采用本发明方法制备的材料的热导率低很多,室温热导率约3.1W/Km,大约为熔炼法制备的TiNiSn化合物的1/3。所以,最终本发明得到的TiNiSn化合物的ZT约提高2倍。
Claims (5)
1、一种TiNiSn基热电化合物的制备方法,其特征在于,制备工艺为:
(1)采用高纯的Ti、Ni、Sn单质作为初始原料,按Ti1+xNiSn化学式配料;其中,x为Ti元素偏离化学计量比的量,x=0,0.1,0.2,0.3,0.4;
(2)将原料装入球磨罐中,在手套箱中经过预抽真空,通入保护气体高纯氩气后,将球磨罐取出并安装在行星式球磨机上进行干法球磨;
(3)干磨后加入无水乙醇作为介质进行湿磨;
(4)将球磨后的粉末取出,烘干,得到中间化合物粉末;
(5)将所得中间化合物粉末装入石墨模具中,用石墨压头压实后,安装在放电等离子烧结SPS机中进行烧结,得到TiNiSn热电化合物。
2、按照权利要求1所述的方法,其特征在于,所述的高纯氩气的纯度为99.99%。
3、按照权利要求1所述的方法,其特征在于,所述的干法球磨采用200~300转/分的转速,球磨时间为2~8小时。
4、按照权利要求1所述的方法,其特征在于,所述的湿磨转速为50~300转/分,时间为2~12小时。
5、按照权利要求1所述的方法,其特征在于,所述的烧结在SPS机中升温速度为40~60℃/min,烧结温度为750~850℃,SPS压力为30~60Mpa,保温5~15分钟后,使烧结炉降温至室温。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101191922A CN101338386B (zh) | 2008-08-29 | 2008-08-29 | 一种TiNiSn基热电化合物的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101191922A CN101338386B (zh) | 2008-08-29 | 2008-08-29 | 一种TiNiSn基热电化合物的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101338386A true CN101338386A (zh) | 2009-01-07 |
CN101338386B CN101338386B (zh) | 2010-06-02 |
Family
ID=40212557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101191922A Expired - Fee Related CN101338386B (zh) | 2008-08-29 | 2008-08-29 | 一种TiNiSn基热电化合物的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101338386B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102699334A (zh) * | 2012-06-04 | 2012-10-03 | 北京工业大学 | 一种纳米晶富锂单相Li-Si化合物块体材料的制备方法 |
WO2014146485A1 (zh) * | 2013-03-19 | 2014-09-25 | 武汉理工大学 | 基于自蔓延燃烧合成新判据的热电化合物制备 |
CN108258110A (zh) * | 2018-01-18 | 2018-07-06 | 中国工程物理研究院核物理与化学研究所 | 一种制备SiGe热电材料的方法 |
CN110649147A (zh) * | 2019-09-11 | 2020-01-03 | 大连理工大学 | 一种第二相掺杂的TiNiSn基Half-Heusler热电材料及其制备方法 |
CN111334685A (zh) * | 2020-04-03 | 2020-06-26 | 济南大学 | 一种高致密度的Half-Heusler热电材料的制备方法及所得产品 |
CN113013315A (zh) * | 2021-02-05 | 2021-06-22 | 西安交通大学 | N型银硫属化合物热电材料的制备方法及其多孔块体 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006203186A (ja) * | 2004-12-24 | 2006-08-03 | Showa Denko Kk | 熱電半導体合金の製造方法および熱電変換モジュールならびに熱電発電装置 |
JP2007158191A (ja) * | 2005-12-07 | 2007-06-21 | Toshiba Corp | 熱電材料およびこの材料を用いた熱電変換素子 |
CN100491554C (zh) * | 2007-09-28 | 2009-05-27 | 清华大学 | 一种细晶择优取向Bi2Te3热电材料的制备方法 |
-
2008
- 2008-08-29 CN CN2008101191922A patent/CN101338386B/zh not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102699334A (zh) * | 2012-06-04 | 2012-10-03 | 北京工业大学 | 一种纳米晶富锂单相Li-Si化合物块体材料的制备方法 |
CN102699334B (zh) * | 2012-06-04 | 2013-12-04 | 北京工业大学 | 一种纳米晶富锂单相Li-Si化合物块体材料的制备方法 |
US10913117B2 (en) | 2013-03-19 | 2021-02-09 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
WO2014146485A1 (zh) * | 2013-03-19 | 2014-09-25 | 武汉理工大学 | 基于自蔓延燃烧合成新判据的热电化合物制备 |
US11433456B2 (en) | 2013-03-19 | 2022-09-06 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
US10500642B2 (en) | 2013-03-19 | 2019-12-10 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
US10913118B2 (en) | 2013-03-19 | 2021-02-09 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
EP2977129A4 (en) * | 2013-03-19 | 2017-03-15 | Wuhan University Of Technology | Thermoelectric compound preparation based on self-propagating combustion synthesis new criterion |
US10913115B2 (en) | 2013-03-19 | 2021-02-09 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
US10913116B2 (en) | 2013-03-19 | 2021-02-09 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
US10913119B2 (en) | 2013-03-19 | 2021-02-09 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
US10913114B2 (en) | 2013-03-19 | 2021-02-09 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
CN108258110A (zh) * | 2018-01-18 | 2018-07-06 | 中国工程物理研究院核物理与化学研究所 | 一种制备SiGe热电材料的方法 |
CN110649147A (zh) * | 2019-09-11 | 2020-01-03 | 大连理工大学 | 一种第二相掺杂的TiNiSn基Half-Heusler热电材料及其制备方法 |
CN111334685A (zh) * | 2020-04-03 | 2020-06-26 | 济南大学 | 一种高致密度的Half-Heusler热电材料的制备方法及所得产品 |
CN111334685B (zh) * | 2020-04-03 | 2021-11-02 | 济南大学 | 一种高致密度的Half-Heusler热电材料的制备方法及所得产品 |
CN113013315A (zh) * | 2021-02-05 | 2021-06-22 | 西安交通大学 | N型银硫属化合物热电材料的制备方法及其多孔块体 |
Also Published As
Publication number | Publication date |
---|---|
CN101338386B (zh) | 2010-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100391021C (zh) | Ag-Pb-Sb-Te热电材料及其制备方法 | |
CN102655204B (zh) | 一种Sr掺杂氧化物BiCuSeO热电材料的制备方法 | |
CN101338386B (zh) | 一种TiNiSn基热电化合物的制备方法 | |
CN101656292B (zh) | 一种铋碲系纳米多孔热电材料的制备方法 | |
CN100377378C (zh) | 一种Bi-Sb-Te系热电材料的制备方法 | |
CN103934459B (zh) | 一种超快速低成本制备高性能Half-Heusler块体热电材料的方法 | |
CN107681043B (zh) | 一种柔性热电器件的碲化铋基复合热电材料及制备方法 | |
CN101694010B (zh) | 一种层状纳米结构InSb热电材料的制备方法 | |
CN105695774A (zh) | Mg3Sb2基热电材料的制备方法 | |
CN104046876B (zh) | 一种石墨烯/Cu2AX3型热电复合材料及制备方法 | |
CN101271955B (zh) | 一种Bi-S二元体系热电材料及制备方法 | |
CN105018767B (zh) | 一种微波快速合成‑烧结制备ZrNiSn块体热电材料的方法 | |
CN111848165B (zh) | 一种p型碲化铋热电材料及其制备方法 | |
CN101736172B (zh) | 一种SiGe合金热电材料的制备方法 | |
CN101478026A (zh) | 一种热电化合物及其制备方法 | |
CN102931335A (zh) | 一种石墨烯复合锑化钴基方钴矿热电材料及其制备方法 | |
CN102694116A (zh) | 一种p型纳米结构碲化铋基块体热电材料的制备方法 | |
CN105895795A (zh) | 一种复合硒化锡基热电材料的制备方法 | |
CN111446357A (zh) | 一种制备Cu2Se热电材料的方法 | |
CN101358313B (zh) | 一种提高Bi-S二元体系热电材料性能的方法 | |
CN103320636B (zh) | 一种快速制备高性能Mg2Si0.3Sn0.7基热电材料的新方法 | |
CN110818415A (zh) | 一种调控P型Bi2Te3基材料组织和取向性的方法 | |
CN104004935A (zh) | 一种超快速制备高性能高锰硅热电材料的方法 | |
CN104762501B (zh) | 低温固相反应结合热压工艺制备碲化银锑热电材料的方法 | |
CN101307392B (zh) | 液体急冷结合放电等离子烧结制备CoSb3基热电材料的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100602 Termination date: 20140829 |
|
EXPY | Termination of patent right or utility model |