CN101326715A - 数字滤波器 - Google Patents

数字滤波器 Download PDF

Info

Publication number
CN101326715A
CN101326715A CNA2006800465267A CN200680046526A CN101326715A CN 101326715 A CN101326715 A CN 101326715A CN A2006800465267 A CNA2006800465267 A CN A2006800465267A CN 200680046526 A CN200680046526 A CN 200680046526A CN 101326715 A CN101326715 A CN 101326715A
Authority
CN
China
Prior art keywords
output
unit
interface unit
input
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800465267A
Other languages
English (en)
Other versions
CN101326715B (zh
Inventor
安倍克明
宫野谦太郎
松冈昭彦
漆原伴哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN101326715A publication Critical patent/CN101326715A/zh
Application granted granted Critical
Publication of CN101326715B publication Critical patent/CN101326715B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0294Variable filters; Programmable filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0283Filters characterised by the filter structure
    • H03H17/0292Time multiplexed filters; Time sharing filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/065Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being integer
    • H03H17/0664Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being integer where the output-delivery frequency is lower than the input sampling frequency, i.e. decimation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/0671Cascaded integrator-comb [CIC] filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2220/00Indexing scheme relating to structures of digital filters
    • H03H2220/02Modular, e.g. cells connected in cascade

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Complex Calculations (AREA)

Abstract

公开了能够动态地变更特性且可对多个系统进行同时处理的面向无线通信处理的数字滤波器。在该数字滤波器中,配置能够进行功能变更的运算器芯群(1010)~(1017),通过输入接口单元(102)和输出接口单元(103)而将它们之间相互连接。随着通信模式的变更,基于所需的滤波特性的设定候补和运算资源的空闲状况,决定要使用的运算资源的数量和其设定内容,并基于该决定进行各个单元的功能变更且进行规定的动作控制,由此通过灵活地变更有限的积和运算资源的运算抽头数、动作时钟或连接关系能够同时并行地进行多个不同的FIR滤波处理,而且能够同时并行地进行多个滤波处理。

Description

数字滤波器
技术领域
本发明涉及数字滤波器,特别涉及在通信信号处理用途中对应于多个通信系统的数字滤波处理的数字滤波器。
背景技术
随着近年来的无线通信需要的急剧增加,多个不同的无线通信标准泛滥,成为多个无线通信系统按照各种各样的业务形态而混合存在的状况。在这样的状况中,对下述的需求日益高涨,即通过附加以一台终端或基站能够应对多个无线通信标准的所谓多模式功能,提供无缝的连接环境和提高产品开发效率。
作为用于以一台无线通信终端对应多个无线通信标准的结构例,公开了以下结构:例如分别设置与应对应的无线通信标准的各个标准对应的无线通信处理单元,根据需要进行切换至期望的处理系统的控制(例如,专利文献1和2)。另一方面,作为其他的结构,也已公开了以下结构:使用了通过对软件等功能记述进行切换来变更无线通信处理功能,即软件无线处理技术的结构(例如,专利文献3)。
以下,使用图1和图2,说明以往的多模式无线通信终端的结构例。在图1中,进行与无线通信标准A对应的无线通信处理的对应标准A无线通信处理单元4001a以及进行与无线通信标准B对应的无线通信处理的对应标准B无线通信处理单元4001b都被连接到切换控制单元4002。切换控制单元4002根据各种无线通信标准中的通信链接的状况或来自用户或应用程序的请求,对进行无线通信的通信系统进行选择切换,将选择出的无线通信处理系统与高层处理单元4003之间的数据输入输出进行连接。这样,根据需要选择切换要使用的无线通信处理系统来进行通信,从而能够通过一台无线通信终端应对多个无线通信标准的通信。
图2是表示使用了软件无线处理技术的多模式无线通信终端的结构例的图。在图2中,对应标准A模拟信号处理单元4004a和对应标准B模拟信号处理单元4004b都被连接到数字信号处理单元4005,所述对应标准A模拟信号处理单元4004a具有进行与无线通信标准A对应的无线通信处理中的模拟信号处理以及模拟信号与数字信号的变换的处理单元,所述对应标准B模拟信号处理单元4004b具有进行与无线通信标准B对应的无线通信处理中的模拟信号处理以及模拟信号与数字信号的变换的处理单元。数字信号处理单元4005为通过对程序等软件记述进行变更而可以变更其信号处理内容的信号处理单元,根据来自切换控制单元4006的控制,在将信号处理内容切换为与无线通信标准A对应的数字信号处理以及与无线通信标准B对应的数字信号处理后进行数字信号处理,将接收处理后的数据提供给高层处理单元4007而且在对高层处理单元4007提供的发送数据进行数字发送信号处理后,将发送数据输出到与期望的无线通信标准对应的模拟信号处理单元。这样,根据需要变更与要使用的无线通信标准对应的程序等软件记述来划分通信功能,从而能够通过一台无线通信终端应对多个无线通信标准的通信。
另一方面,着眼于滤波处理单元,特别是数字滤波处理单元时,要求以下功能:为了实现上述那样的多模式功能,根据因要对应的无线通信标准而不同的要求规格,能够灵活地对频率响应特性等特性进行变更,所述滤波处理单元为在进行无线通信处理时为了选择期望频带信号而必需的功能的单元。这样,在数字滤波器中作为能够灵活地变更抽头系数和动作模式的结构,例如,有在专利文献4和专利文献5中已公开的结构。在专利文献4中公开了能够设定任意的数字滤波器的结构和动作例,所述任意的数字滤波器为由多个的加法器、乘法器、延迟器、寄存器等结构要素形成规定的配置的、在各个结构要素的输入输出端子之间进行连接切换的数据总线群,和在它们彼此之间进行连接切换的切换电路构成的数字滤波器。此外,在专利文献5中公开了以下结构和动作例,能够任意地变更滤波器的抽头系数,同时能够根据需要将滤波器的处理型在串联型和并联型之间进行切换。
专利文献1:特开平10-174169号公报(第3-4页,图1)
专利文献2:特开2002-190769号公报(第6页,图4)
专利文献3:特开2004-153661号公报(第6页,图4)
专利文献4:特开昭63-252009号公报(第2-4页,图1)
专利文献5:专利2520451号公报(第2-5页,图1)
发明内容
发明要解决的问题
但是,在所述各个以往的技术中,存在以下所示问题。
在图1所示的以往的多模式无线通信终端的结构中,需要根据与要对应的无线通信标准的数量设置相对应的无线通信处理单元4001,其数量越多,无线通信终端中的电路规模越大。但是,着眼于各个无线通信处理单元的处理内容时,在大多数的无线通信处理单元中存在进行通信路径编码处理、数字调制解调处理和用于信道选择的滤波处理等处理单元,虽然由于无线通信标准的不同,详细的规格不同,但是进行相似的处理的部分很多。分别地设置相当于应对应的无线通信标准的数量的这些处理单元,从电路规模考虑,效率不高。
此外,在图2所示的使用了软件无线处理技术的多模式无线通信终端的结构中,需要将数字信号处理单元4005中的通信处理内容每次重写为应对应的无线通信标准用的程序,功能变更需要时间。特别是,在数字信号处理单元4005由FPGA(Field Programmable Gate Array:现场可编程门阵列)或DSP(Digital Signal Processor:数字信号处理器)那样的通过软件处理来执行处理的装置构成的情况下,用于功能设定的数据量变得庞大,所以功能变更特别需要时间。因此,在多模式无线通信终端中要动态地切换对应的无线通信标准时,产生用于功能切换的时间上的浪费。况且难以对于多个无线通信标准的通信链路同时进行通信。
进而,在数字滤波器的结构中,在专利文献4中公开的结构中存在以下问题,由于为了实现任意的滤波器形状而需要用于将各个结构元件间连接的庞大的数据总线群和连接切换电路,所以作为无线通信终端用的结构,电路规模变大。
此外,在专利文献5中公开的结构中,尽管通过限制了结构要素之间连接的冗余度而在电路规模上比专利文献4中公开的结构优秀,但是从数字滤波器的变更自由度的观点来看,仅局限于抽头系数的变更和对处理型以串联型和并联型进行切换的程度的控制,并且没有公开下述观点上的结构和处理控制方法,有效地利用与对应的滤波器处理的动作时钟频率和运算抽头数相对应的运算资源。况且也没有公开用于对多个无线通信标准的通信链路同时进行通信的输入输出接口的结构和控制方法。
本发明的目的在于提供能够动态地变更特性且可对多个系统进行同时处理的面向无线通信处理的数字滤波器。
解决问题的方案
本发明的数字滤波器采用以下的结构,包括:多个运算器群,根据功能变更控制信号,变更积和运算功能,进行与该功能变更对应的多个抽头的积和运算处理并输出累积运算结果;输出接口单元,根据功能变更控制信号,选择性地对来自所述各个运算器群的累积运算结果输出进行相加处理,同时输出所述累积运算结果输出作为反馈输出;输入接口单元,具有多个信号输入端子,根据所述功能变更控制信号将期望的输入信号同时或依次地提供给所述多个运算器群,同时根据所述功能变更控制信号,将所述反馈输出中的规定的输出提供给所述多个运算器群的累积运算输入级;资源分配控制单元,对于由所述多个运算器群构成的运算资源,基于当前的运算资源使用状况和设定了新的滤波处理所要求的运算资源的滤波器设定候补列表,决定可分配给新的滤波处理的所述运算资源并输出资源分配决定信息;功能设定控制单元,基于所述资源分配决定信息,对所述多个运算器群、所述输入接口单元以及所述输出接口单元的各个单元,输出用于进行功能设定的所述功能变更控制信号;以及滤波处理控制单元,对通过所述功能变更控制信号而被设定了各个功能的所述多个运算器群、所述输入接口单元以及所述输出接口单元的各个单元,输出用于进行期望的滤波处理的动作控制信号。
此外,本发明的数字滤波器采用以下的结构,包括:多个积分器群,多个积分器被级联;多个稀疏处理单元;多个的差分器群,多个差分器被级联;第一接口单元,将所述多个积分器群的输出提供给所述多个稀疏处理单元,同时将所述多个积分器群的输出作为第一反馈输出而输出;第二接口单元,根据功能变更控制信号,对来自所述多个稀疏处理单元的输出和第二反馈输出进行切换并提供给所述多个差分器;输入接口单元,具有多个信号输入端子,根据所述功能变更控制信号切换输入信号并提供给所述多个积分器群;输出接口单元,具有多个信号输出端子,根据所述功能变更控制信号,对所述多个差分器群和所述多个信号输出端子之间的连接关系进行切换;资源分配控制单元,对于由所述多个积分器群、所述多个稀疏处理单元以及所述多个差分器群构成的运算资源,基于当前的运算资源使用状况和设定了新的滤波处理所要求的运算资源的滤波器设定候补列表,决定可分配给新的滤波处理的所述运算资源并输出资源分配决定信息;功能设定控制单元,基于所述资源分配决定信息,对所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述第二接口单元、所述输入接口单元以及所述输出接口单元的各个单元,输出用于进行功能设定的所述功能变更控制信号;以及滤波处理控制单元,对通过所述功能变更控制信号而被设定了各个功能的所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述第二接口单元、所述输入接口单元以及所述输出接口单元的各个单元,输出用于进行期望的滤波处理的动作控制信号。
此外,本发明的数字滤波器采用以下的结构,包括:运算资源,由多个运算器群构成,所述多个运算器群输出基于一个以上的抽头数的积和运算处理的累积运算结果;输出接口单元,根据用于进行功能设定的功能变更控制信号,对所述运算资源的各个运算器群的累积运算结果选择性地进行相加处理;输入接口单元,具有多个信号输入端子,根据所述功能变更控制信号,将期望的输入信号同时地或依次地提供给所述多个运算器群;资源分配控制单元,输出资源分配决定信息,所述资源分配决定信息为基于所述运算资源的使用状况和设定了新的滤波处理所要求的运算资源的滤波器设定候补列表,决定可分配给新的滤波处理的所述运算资源的信息;功能设定控制单元,基于所述资源分配决定信息,对所述输入接口单元和所述输出接口单元,输出所述功能变更控制信号;以及滤波处理控制单元,对通过所述功能变更控制信号而被设定了功能的所述运算资源、所述输入接口单元以及所述输出接口单元,输出用于进行期望的滤波处理的动作控制信号。
此外,本发明的数字滤波器采用以下的结构,包括:运算资源,由级联了多个积分器的多个积分器群、多个稀疏处理单元以及级联了多个差分器的多个的差分器群构成;第一接口单元,将所述多个积分器群的输出,提供给所述多个稀疏处理单元;第二接口单元,将根据用于进行功能设定的功能变更控制信号进行了切换的、来自所述多个稀疏处理单元的输出提供给所述多个差分器;输入接口单元,具有多个信号输入端子,将根据所述功能变更控制信号进行了切换的输入信号提供给所述多个积分器群;输出接口单元,根据所述功能变更控制信号,选择并输出所述多个差分器群的输出信号;资源分配控制单元,输出资源分配决定信息,所述资源分配决定信息为基于所述运算资源使用状况和设定了新的滤波处理所要求的运算资源的滤波器设定候补列表,决定分配给新的滤波处理的所述运算资源的信息;功能设定控制单元,基于所述资源分配决定信息,对所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述输入接口单元以及所述输出接口单元,输出所述功能变更控制信号;以及滤波处理控制单元,对通过所述功能变更控制信号而被设定了功能的所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述输入接口单元以及所述输出接口单元,输出用于进行期望的滤波处理的动作控制信号。
发明的有益效果
根据本发明,随着无线通信装置中的通信模式的变更,基于所需的滤波特性的设定候补和运算资源的空闲状况,决定要使用的运算资源和其设定内容,基于该决定进行各个单元的功能变更,并且进行规定的动作控制,从而通过灵活地变更有限的积和运算资源的运算抽头数、动作时钟和连接关系,能够应对多个不同的FIR滤波处理,能够同时并行地进行多个滤波处理,与对于多个不同的动作模式分别地构成滤波器相比,能够降低电路规模。
附图说明
图1是表示以往的多模式无线通信装置的结构例的图;
图2是表示以往的多模式无线通信装置的结构例的图;
图3是表示本发明实施方式1的多模式FIR滤波处理单元的结构的图;
图4是表示本实施方式1的对多模式FIR滤波处理单元进行控制的控制单元的结构的图;
图5是表示本实施方式1的积和运算器的结构的图;
图6是表示本实施方式1的输入接口单元的结构的图;
图7是表示本实施方式1的输出接口单元的结构的图;
图8是表示一例本实施方式1的设定多模式FIR滤波处理单元的功能的功能设定表的图;
图9是表示本实施方式1的输入接口单元中的多路分用器的动作例的一部分的图;
图10是表示一例本实施方式1的将多模式FIR滤波处理单元的功能设定为串联连接型滤波器时的功能设定表的图;
图11是表示本实施方式1的作为多模式FIR滤波处理单元中的串联连接型滤波器的动作例的一部分的图;
图12是表示本实施方式1的图11的后续动作例的图;
图13是表示本实施方式1的作为多模式FIR滤波处理单元中的串联连接型滤波器的动作例的一部分的图;
图14是表示本实施方式1的图1 3的后续动作例的图;
图15是表示一例本实施方式1的将多模式FIR滤波处理单元的功能设定为多相型稀疏滤波器时的功能设定表的图;
图16是表示本实施方式1的作为多模式FIR滤波处理单元中的多相型稀疏滤波器的动作例的一部分的图;
图17是表示本实施方式1的图16的后续动作例的图;
图18是表示本实施方式1的作为多模式FIR滤波处理单元中的多相型稀疏滤波器的动作例的一部分的图;
图19是表示本实施方式1的图18的后续动作例的图;
图20是表示本实施方式1的作为多模式FIR滤波处理单元中的多相型稀疏滤波器的动作例的一部分的图;
图21是表示本实施方式1的图20的后续动作例的图;
图22是表示本实施方式1的将多模式FIR滤波处理单元的功能设定为多相型时分复用稀疏滤波器时的一例功能设定表的图;
图23是表示本实施方式1的作为多模式FIR滤波处理单元中的多相型时分复用稀疏滤波器的动作例的一部分的图;
图24是表示本实施方式1的图23的后续动作例的图;
图25是表示本实施方式1的作为多模式FIR滤波处理单元中的多相型时分复用稀疏滤波器的动作例的一部分的图;
图26是表示本实施方式1的图25的后续动作例的图;
图27是表示与本实施方式1的无线通信标准对应的滤波器设定候补列表的一例的图;
图28是表示本实施方式1的资源分配控制单元的结构的图;
图29是表示本实施方式1的图28的资源分配决定单元的处理步骤的流程图;
图30是表示本实施方式1的设定多模式FIR滤波处理单元的功能的一例其他功能设定表的图;
图31是表示本发明实施方式2的多模式CIC滤波处理单元的结构的图;
图32是表示本实施方式2的积分器的结构的图;
图33是表示本实施方式2的积分器的其他结构的图;
图34是表示本实施方式2的差分器的结构的图;
图35是表示本实施方式2的输入接口单元的结构的图;
图36是表示本实施方式2的输出接口单元的结构的图;
图37是表示本实施方式2的接口单元的结构的图;
图38是表示本实施方式2的接口单元的结构的图;
图39是表示一例在本实施方式2的控制单元的功能设定寄存器中写入和读出功能设定的各个结构单元和设定值的列表的图;
图40是表示一例本发明实施方式2的示出多模式CIC滤波处理单元中的各个单元的设定的列表的图;
图41是表示一例由本发明实施方式2的多模式CIC滤波处理单元构成的CIC滤波器的频率响应特性的图;以及
图42是表示本发明实施方式3的多模式接收滤波处理单元的结构的图。
具体实施方式
以下,参照附图详细地说明本发明的实施方式。
(实施方式1)
在本实施方式1中说明了下述情况下的结构和动作例:配置多个运算器芯群,设置对所述运算器芯群的输入输出连接关系进行切换的接口,通过对各个的积和运算器芯中的动作功能设定和输入输出接口的连接设定进行切换,根据通信处理所要求的滤波特性,动态地变更所述积和运算器芯的运算资源,并进行多个滤波处理的同时动作,所述运算器芯群将多个能够进行多个抽头的积和运算的积和运算器芯串联连接。
图3是表示在本实施方式的说明中所使用的多模式FIR(Finite ImpulseResponse:有限脉冲响应)滤波处理单元10的结构的图。多模式FIR滤波处理单元10具有两路信号输入端子1101和1102,分别被提供独立的通信系统的信号。此外,具有两路信号输出端子1103和1104,输出对应于信号输入端子1101和1102的滤波处理后的输出信号。此外,多模式FIR滤波处理单元10由积和运算器芯100、将四个这样的积和运算器芯100串联连接而构成的8个运算器芯群1010~1017、输入接口单元102、输出接口单元103以及输入输出之间连接线1106构成。
输入输出之间连接线1106连接在输入接口单元102中设置的输入输出之间连接端子1107和在输出接口单元103中设置的反馈输出端子1105。
积和运算器芯100进行相当于滤波处理中的多个抽头运算的积和运算,并且根据从后述的控制单元11输入的控制信号,进行该抽头系数、延迟抽头数以及伴随多个抽头的积和运算的信号连接的切换,输出所获得的积和运算输出。积和运算器芯100具有信号输入端子和累积运算输入端子作为输入端,并具有信号输出端子和累积运算输出端子作为输出端。此外,虽未图示,但是连接了用于切换抽头系数、延迟抽头数以及信号连接切换用的控制线。另外,使用图5在后面叙述积和运算器芯100的具体结构。
运算器芯群1010~1017为分别将四个积和运算器芯100串联连接,具体而言,连接了前后的积和运算器芯之间的信号输出端子和信号输入端子,并且连接了累积运算输出端子和累积运算输入端子。这样构成的运算器芯群1010~1017所包含的各个积和运算器芯100构成为,除了抽头系数的数值设定以外,进行相同的信号处理和连接动作。
另外,在图3中,根据所配置的多个积和运算器芯100的配置位置,附加(i,,j)的序号,它表示第i个运算器芯群中的第j个积和运算器芯。在本实施方式1中,配置了八组运算器芯群1010~1017,所述运算器芯群为将四个积和运算器芯100串联连接而构成。
输入接口单元102使用来自两路信号输入端子1101、1102和输入输出之间连接线1106的输入,根据从后述的控制单元11输入的控制信号进行路径切换和多路分用处理等,将规定的信号提供给运算器芯群1010至1017的各个运算器芯群。使用图6在后面叙述具体的结构。
输出接口单元103对于由运算器芯群1010~1017的各个运算器芯群的累积运算输出提供的信号,根据从后述的控制单元11输入的控制信号,进行规定的信号之间的相加处理和路径选择后将其从两路信号输出端子1103和1104输出,并且将来自所述运算器芯群1010~1017的各个运算器芯群的信号输出分支输出到输入输出之间连接线1106。使用图7在后面叙述具体的结构。
输入输出之间连接线1106用于在从输出接口单元103至输入接口单元102之间连接多个信号,更具体而言,其为用于将从多个运算器芯群1010~1017输出的各个累积运算输出反馈到输入接口单元102的连接线。
图4是表示,对图3的多模式FIR滤波处理单元10中的各个结构要素进行功能设定和动作控制的控制单元11的结构的方框图。控制单元11由多模式动作控制单元104、资源分配控制单元105、功能设定寄存器106、功能设定控制单元107以及滤波处理控制单元108构成。
多模式动作控制单元104对多模式无线通信装置中的通信模式进行选择控制,具体而言,基于各种判断条件,判断以与哪种无线通信标准或无线通信方式对应的通信模式进行通信处理,将对应的通信模式控制信号输出到资源分配控制单元105,所述多模式无线通信装置为在其结构要素中包含多模式FIR滤波处理单元。另外,在本实施方式1中,并不限定该多模式动作控制单元104以什么样的判断基准选择通信模式。
资源分配控制单元105基于从多模式动作控制单元104输入的通信模式控制信号,决定为了实现期望的滤波规格所需的积和运算资源,基于多模式FIR滤波处理单元10中的积和运算资源的空闲状况决定积和运算资源的分配,将决定的资源分配和伴随它的功能变更信息输出到功能设定寄存器106。关于该动作的细节,将在后面叙述。
功能设定寄存器106为存储资源分配和伴随它的功能变更信息的寄存器,被准备与多模式FIR滤波处理单元10中的各个设定单元相对应的寄存器,从资源分配控制单元105输入的功能变更信息被写入规定的寄存器位置,而且根据需要由功能设定控制单元107或滤波处理控制单元108读出。
功能设定控制单元107根据需要读出功能设定寄存器106中所存储的功能变更信息,并控制多模式FIR滤波处理单元10的各个积和运算器芯100、输入接口单元102以及输出接口单元103中的抽头系数、连接切换用选择器、多路分用器(demultiplexer)等。在图3中没有示出具体的功能变更控制信号的内容和连接关系,但是另外使用图8在后面叙述。
滤波处理控制单元108进行用于多模式FIR滤波处理单元10中的滤波处理动作的控制,控制线与运算器芯群1010~1017、输入接口单元102以及输出接口单元103中的各个动作单元相连接。将在后面叙述具体的控制线的内容。
图5是表示在图3中示出的积和运算器芯100的结构的图,通过该结构进行倒置型FIR滤波器中的积和运算处理。积和运算器芯100具有信号输入端子1201和累积运算输入端子1202作为输入端,并具有信号输出端子1203和累积运算输出端子1204,所述信号输出端子1203将输入到信号输入端子1201的信号作为输出直接输出。此外,积和运算器芯100由乘法器1001、加法器1002、延迟寄存器群1003、抽头系数存储器1004、选择器1005、选择器1006以及锁存电路1007构成。
乘法器1001将从信号输入端子1201输入的信号与从抽头系数存储器1004输入的抽头系数相乘,并将该相乘结果输出到加法器1002。
加法器1002将乘法器1001的相乘结果与选择器1005的输出相加,并将相加结果输出到延迟寄存器群1003。
延迟寄存器群1003为将7个延迟寄存器串联地连接,所述延迟寄存器将输入信号以1时钟周期为单位延迟后输出。
抽头系数存储器1004存储用于滤波处理时的积和运算的多个抽头的抽头系数,在本实施方式1中存储了八组抽头系数(Wi,j,0~Wi,j,7)。
选择器1005从两路的输入中选其一并将其输出。选择器1006从四路的输入中选其一并将其输出。
锁存电路1007将从选择器1006输入的信号以规定的时钟频率进行锁存并输出,例如,其由D触发器构成。这里,使锁存的时钟频率为与信号输入相同的频率。
抽头系数存储器1004中的抽头系数的变更写入和选择器1006中的延迟寄存器信号的输入选择的控制,基于从功能设定控制单元107输入的功能变更控制信号而受到控制。此外,抽头系数存储器1004中的抽头系数的读出、以及选择器1005中的累积运算输入与从延迟寄存器群1003通过选择器1006的输入信号之间的选择切换,基于从滤波处理控制单元108输入的动作控制信号而受到控制。这里,从滤波处理控制单元108输入到积和运算器芯100的动作控制信号,对同一运算器芯群所包含的四个积和运算器芯100输入相同的动作控制信号,各自进行相同的处理动作。
另外,积和运算器芯100中的各个单元的处理动作相对于被输入到信号输入端子1201的时钟频率,以与功能设定控制单元107设定的超频(overclock)动作比相对应的超频频率进行动作。
图6是表示在图3中示出的输入接口单元102的结构的图。输入接口单元102具有两路的独立的信号输入端子1101和1102和反馈输入端作为输入端,而且具有至各个运算器芯群1010~1017的信号输入端子和累积运算输入端子的输出端子,所述反馈输入端为通过与输入输出之间连接端子1107连接的输入输出之间连接线1106,从输出接口103输入的来自各个运算器芯群1010~1017的各个输出信号的反馈输入端。此外,输入接口单元102由选择器10210~10217、10220~10227以及多路分用器1023、1024构成。另外,在图6中没有图示,但是从功能设定控制单元107将功能变更控制用的连接线分别与各个结构要素独立地连接。
选择器10210~10217、10220~10227根据从功能设定控制单元107分别独立地输入的功能变更控制信号,从多个输入信号中选择一个,输出到分别与输出级连接的运算器芯群1010~1017。选择器10210~10217为三输入的选择器,其中第一输入端子连接到信号输入端子1101,第二输入端子连接到信号输入端子1102。选择器10210~10213的第三输入端子分别连接到多路分用器1023的第一输出端子10231、第二输出端子10232、第三输出端子10233以及第四输出端子10234。此外,选择器10214~10217的第三输入端子分别连接到多路分用器1024的第一输出端子10241、第二输出端子10242、第三输出端子10243以及第四输出端子10244。
选择器10220和10227为两输入的选择器,选择器10221~10226为三输入的选择器,根据从功能设定控制单元107分别独立地输入的功能变更控制信号而被选择输出信号。选择器10220~10227的各个输出分别连接到图3中的运算器芯群1010~1017的累积运算输入端子。相当于常数“0”的数据被输入到选择器10220~10227的第一输入端子。此外,选择器10220~10227的其他输入端子上,通过输出接口单元103和输入输出之间连接线1106,被连接图3的运算器芯群1010~1017中本选择器连接到输出的运算器芯群的上一级和下一级的运算器芯群的累积运算输出端子。也就是说,例如,运算器芯群1010的累积运算输出端子被连接到选择器10221的第二输入端子,运算器芯群1011的累积运算输出端子被连接到选择器10220的第二输入端子和选择器10222的第二输入端子。
图7是表示在图3示出的输出接口单元103的结构的图。输出接口单元103将图3中的各个运算器芯群1010~1017的累积运算输出作为输入,而且具有两路信号输出端子1103、1104和至输入接口单元102的反馈输出端子1105。此外,输出接口单元103具有路径选择用的多个选择器、多个加法器以及多个延迟寄存器。具体而言,由加法器10310~10319、选择器10320~10327、10330~10333、10340、10341、10350、10351以及延迟寄存器10360、10361构成。另外,在图7中没有图示,但是从功能设定控制单元107将功能变更控制用的连接线分别独立地连接各个结构要素。
加法器10310~10319将两路数字输入值相加并输出相加结果。加法器10310~10315分别将选择器10320和10321、10322和10323、10324和10325、10326和10327、10330和10331、10332和10333的输出作为输入。加法器10316将加法器10314和选择器10340的输出作为输入,加法器10317将加法器10315和选择器10341的输出作为输入。加法器10318将加法器10316和选择器10350的输出作为输入,加法器10319将加法器10317和选择器10351的输出作为输入。
选择器10320~10327、10330~10333、10340、10341、10350、10351为两输入的选择器,根据从功能设定控制单元107分别独立地输入的功能变更控制信号,选择输出信号。相当于常数“0”的数值被输入到除了选择器10340和10341以外的选择器的一个输入中。运算器芯群1010~1017的累积运算输出端子分别被连接到选择器10320~10327的其他的输入中。加法器10310、10311、10312、10313的输出分别被连接到选择器10330~10333的其他的输入中。延迟寄存器10360、10361的输出分别被连接到选择器10350、10351的其他的输入中。选择器10340、10341分别与加法器10312和10315的输出、加法器10311和10314的输出连接。
为了在加法器10318和10319中将多个滤波运算值进行累积相加,延迟寄存器10360和10361使相加结果延迟1周期,并将其分别输出到选择器10350和10351。
图8是例示了在功能设定寄存器106中写入和读出功能设定的结构单元和设定值的功能设定表600的一例。例如,设置对图6所示的输入接口单元102中的各个选择器10210~10217、10220~10227和多路分用器1023、1024的设定寄存器。选择器10210~10217、10220~10227可设定0、1、2的值,假设分别在图6所示的三路输入中从上端开始被依次选择。
对于运算器芯群1010~1017或输出接口单元103中的选择器,根据设定值的从大到小的顺序,以附图中的信号输入的上端至下端或左端至右端的顺序被选择输入。
运算器芯群1010~1017中的超频比表示各个运算芯群的输入信号的时钟频率与在运算器芯内的处理时钟频率之比,设定为1倍、2倍、4倍、8倍。在多路分用器1023和1024中,根据动作模式和分支数这两种类的设定值,改变输入信号的输出动作。动作模式设定多路分用器1023和1024的各个动作,设定值为“0”,将相同的信号输入输出到相当于分支数的输出,设定值为“1”,将依次切换相当于分支数的的输出而将输入输出。
图9是表示一例多路分用器1023中的各个设定值与输入输出的关系的图。在该图中,图9A表示一例通过信号输入端子1101,输入到多路分用器1023的输入信号的图,图9B是表示一例作为设定值设定了“模式:0,分支数:4”时的输出信号的图,图9C是表示一例作为设定值设定了“模式:1,分支数:2”时的输出信号的图;图9D是表示一例作为设定值设定了“模式:1,分支数:4”时的输出信号的图。
另外,假设图8所示的各个功能设定寄存器被分配规定的地址,通过地址指定能够对规定的寄存器进行写入和读出,但是对哪个地址分配哪个寄存器并不是本发明的要点,所以省略其说明。
此外,在基于图3至图7所示的结构的多模式FIR滤波处理单元10中,为了能够独立地设定关于信号输入端子1101的滤波处理和关于信号输入端子1102的滤波处理的处理时钟频率,所以其结构为,对各个处理单元分别提供两路动作时钟,还选择在功能设定时所使用的时钟。
在以上构成的多模式FIR滤波处理单元10中,首先说明实现什么样的种类的滤波处理动作。根据本实施方式1所示的结构,通过进行功能设定的切换和规定的滤波处理控制,能够对应串联连接型滤波器、多相型稀疏滤波器以及多相型复用稀疏滤波器等的滤波处理。以下,表示在各种形式下进行滤波处理时的功能设定和滤波处理控制的例子。
(1)串联连接型滤波器
这里,说明对于信号输入端子1101,使用运算器芯群1010~1017来构成128抽头FIR滤波器,并向信号输出端子1103输出时的设定和动作的例子。
图10是表示在本实施方式1的多模式FIR滤波处理单元10的结构中,在实现串联连接型滤波功能时,用于在功能设定寄存器106中设定各个单元的功能的一例功能设定表800的图。
在图6的输入接口单元102中,选择器10210~10217选择来自信号输入端子1101的输入,在选择器10221~10227中,选择输入以使中来自图3上一级的运算器芯群的累积运算输出为输入。因此,同一信号被输入到所有的积和运算器芯100的信号输入,累积运算芯100的输入被串联地连接。另外,在选择器10220中,选择“0”作为输入到累积运算芯100的输入初始值。此外,在这样的情况下,对多路分用器1023和1024的设定不会产生影响。
在各个积和运算器芯100中,在超频比为4的状态下进行动作,即对每一信号输入进行四抽头的积和运算处理,在选择器1006中输入10032被选择,由此每一个积和运算器芯100的四个延迟抽头的运算结果被存储,并且每进行四次积和运算,将延迟寄存器群1003所存储的累积运算结果输出到后级的积和运算器芯100一次。在各个积和运算器芯100的抽头系数存储器1004中,128个抽头的抽头系数的一部分被分别写入地址0至3为止的四个抽头的区域中。具体而言,假设128抽头FIR滤波器的抽头系数为c(m){m=0,1,····,127},则写入积和运算器(i,j)中的第k个地址中的抽头系数wi,j,k以如下所示的式(1)来表示。
wi,j,k=c(127-(i×16+j×4-k))···(1)
以下说明功能设定控制单元107如上所述进行各个单元的设定之后,由滤波处理控制单元108进行的控制内容。
图11至图14是表示多模式FIR滤波处理单元10的输入接口单元102和运算器芯群1010的各个单元的信号处理的过程中的动作内容的图。在这些图中,将一连串的动作内容分割为图11至图14来表示。
在这些图中表示了,在作为积和运算器芯100即构成图3的运算器芯群1010的积和运算器芯(0,0)和(0,1)中,从信号输入端子1101依次输入信号序列Sn时的动作内容。在图11至图14中,图中A是表示输入到信号输入端子1101的信号序列Sn的一例的图,图中B是表示从滤波处理控制单元108输入到各个积和运算器芯(0,0)、(0,1)的读出地址10041的一例的图,图中C是表示输入到各个积和运算器芯(0,0)、(0,1)内的选择器1005的控制信号的一例的图,图中D是表示积和运算器芯(0,0)内的处理动作例的图,图中E是表示积和运算器芯(0,1)内的处理动作例的图。
从滤波处理控制单元108输入到各个积和运算器芯(0,0)、(0,1)内的抽头系数存储器1004的读出地址(Add)10041((b)的0,1,2,3),以信号输入的四倍的速率,地址依次被更新,对于一个样本的信号输入四个抽头的抽头系数(W0,0,0,0,0,1,0,0,2,0,0,3)被读出,在乘法器1001中与信号序列Sn依次进行乘法处理,其各个相乘结果还在加法器1002中被累积相加。
根据输入到选择器1005的控制信号(Cont_Acc)10051选择被送往加法器1002的另一个输入,在4倍超频处理中仅有1个时钟输入来自前级的积和运算器芯100中的累积运算输出的信号,在其他的定时,通过选择器1006反馈来自延迟寄存器群1003的输出10032。
在锁存电路1007中,每四个时钟一次地,锁存延迟寄存器群1003的内容,并将其提供给后级的积和运算器芯100的累积运算输入。通过在各个积和运算器芯100和运算器芯群1010~1017中进行以上那样的动作,每个积和运算器芯进行四个抽头,每个运算器芯群进行16个抽头,作为系统整体进行128个抽头的积和运算处理,最终从运算器芯群1017的累积运算输出将整个的积和运算结果输出。
在输出接口单元103中,根据图7中的各个选择器10320~10327、10330、10333、10340、10341、10350、10351的设定,选择路径,最终选择出至信号输出端子1103的路径并输出运算器芯群1017的输出信号。
通过以上那样的结构,由多模式FIR滤波处理单元10以串联连接型进行128个抽头的FIR滤波处理。另外,在上述的例子中各个积和运算器芯进行四个抽头的积和运算,但不限于此,如果各个积和运算器芯中的超频频率为能够动作的频率,也可以为将超频比设定为8倍,每个积和运算器芯进行8个抽头的积和运算,仅使用运算器芯群1010至1013为止的16个积和运算资源进行同样的128抽头FIR滤波处理的结构。
(2)多相型稀疏滤波器
这里,说明对于信号输入端子1101,构成了使用运算器芯群1010~1013且每个积和运算器芯100以抽取率1/4进行8个抽头的积和运算的多相型128抽头FIR滤波器,并输出到信号输出端子1103时的设定和动作的例子。
图15是表示一例在本实施方式1的多模式FIR滤波结构中,在实现多相型稀疏滤波功能时的用于设定各个单元的功能的功能设定表900的图。
基于该功能设定表900的设定内容,设定多路分用器1023的动作和选择器10210~10213的路径选择,以使在输入接口单元102中,输入到信号输入端子1101的信号在多路分用器1023中按每一样本被依次切换地输出到10231、10232、10233、10234,通过选择器10210~10213而被提供给运算器芯群1010~1013。
此外,基于功能设定表900的设定内容进行设定,以使在选择器10220~10223中,对各个运算器芯群1010~1013的累积运算输入提供常数“0”。另外,在对该滤波处理的功能设定中,不会影响对运算器芯群1014~1017、输入接口单元102和输出接口单元103的下半部分的运算资源以及功能设定单元即选择器10214~10217、10224~10227以及选择器10324~10327等的设定,在对其他的输入系统的信号进行其他的滤波处理时,另外进行与这种滤波处理对应的功能设定。这样的动态的功能设定的动作将在后面叙述。
在多相型稀疏滤波器中,在进行1/4的稀疏滤波处理时,从输入接口单元102的多路分用器1023中的四路输出的10231~10234的各个输出以信号输入的1/4的速率输出信号,这些输出通过选择器10210~10213被提供给运算器芯群1010~1013。
然后,在各个运算器芯群1010~1013的积和运算器芯100(图3的(0,0)(1,0)(2,0)(3,0))中,对来自输入接口单元102的信号输入,以8倍的超频比进行积和运算处理。也就是说,对于原来的输入到信号输入端子1101的信号的速率,以4倍的超频比进行积和运算处理。
此外,通过在积和运算器芯100内的选择器1006中选择输入10033,每一个积和运算器芯100进行8个延迟抽头的运算结果被存储,每进行八次积和运算,将延迟寄存器群1003所存储的累积运算结果输出到后级的积和运算器芯100一次。在各个积和运算器芯100的抽头系数存储器1004中,128个抽头的抽头系数的一部分被分别写入地址0至7为止的八个抽头的区域中。具体而言,假设128抽头FIR滤波器的抽头系数为c(m){m=0,1,····,127},则写入积和运算器芯(i,j)中的第k个地址中的抽头系数wi,j,k以如下所示的式(2)来表示。
wi,j,k=c(99-(i+j×32-k×4))·····(2)
以下说明在功能设定控制单元107如上述那样进行了输入接口单元102、运算器芯群1010~1013以及输出接口单元103的各个单元的功能设定之后,由滤波处理控制单元108进行的控制内容。
图16~图21是表示以下的动作内容的图,在多模式FIR滤波单元104的输入接口单元102、运算器芯群1010~1013以及输出接口单元103的各个单元中,在进行多相型1/4抽取(decimation)128抽头FIR滤波信号处理的过程中的动作内容。在这些图中,将一连串的动作内容分割成图16~图21来进行表示。
在这些图中表示了,在作为积和运算器芯100构成图3的运算器芯群1010~1013的积和运算器芯(0,3)、(1,3)、(2,3)、(3,3)中,从信号输入端子1101依次输入信号序列Sn时的动作内容。在图16~图21中,图中A是表示一例输入到信号输入端子1101的信号序列Sn的图,图中B是表示输入接口单元102的多路分用器1023中的四路输出10231~10234的图,图中C是表示一例由积和运算器芯(0,3)内的各个单元处理的输入输出信号的图,图中D是表示一例由积和运算器芯(1,3)内的各个单元处理的输入输出信号的图,图中E是表示一例由积和运算器芯(2,3)内的各个单元处理的输入输出信号的图,图中F是表示一例由积和运算器芯(3,3)内的各个单元处理的输入输出信号的图,图中G是表示一例从输出接口单元103的信号输出端子1103输出的信号的图。
上述图16A和图17A所示的信号序列Sn被依次输入到输入接口单元102的信号输入端子1101,并且在多路分用器1023中对于每一样本,被依次切换地输出该图B所示的四路输出信号10231、10232、10233、10234。
通过从滤波处理控制单元108以信号输入端子1201的8倍的速率依次将地址提供给各个积和运算器芯(0,3)、(1,3)、(2,3)、(3,3)内的抽头系数存储器1004的读出地址(Add)10041,对于一样本的信号输入,读出8个抽头的抽头系数(例如,该图C的w0,7,0,0,7,1,0,7,2,0,7,3,0,7,4,0,7,5,0,7, 6,0,7,7),在乘法器1001中与信号序列Sn依次进行相乘处理,还在加法器1002中对该各个相乘结果进行累积相加。
根据输入到选择器1005的控制信号(Cont_Acc)10051选择被送往加法器1002的另一个输入,8倍超频处理中仅有1个时钟输入来自前级的积和运算器芯100中的累积运算输出的信号,在其他的定时,通过选择器1006反馈来自延迟寄存器群1003的输出10033。在锁存电路1007中,每八个时钟锁存一次通过了选择器1006的延迟寄存器群1003的输出10033,并将其提供给后级的积和运算器芯100的累积运算输入。
通过在各个积和运算器芯100和运算器芯群1010~1013中进行以上那样的动作,每个积和运算器芯100进行八个抽头,每个运算器芯群1010~1013进行32个抽头,作为系统整体进行128个抽头的积和运算处理,从运算器芯群1013的累积运算输出最终输出整个的积和运算结果。
在输出接口单元103中,根据图15所示的功能设定表900的设定,选择图7中的各个选择器10320~10323、10330、10331、10340、10350的路径,通过加法器10310、10311、10314、10316、10318对运算器芯群1010~1013的累积运算输出进行相加合成,并从信号输出端子1103最终输出图21G所示的信号。
通过以上那样的结构,由多模式FIR滤波处理单元10进行抽取率为1/4的多相型128个抽头FIR滤波处理。另外,在上述的例子中各个积和运算器芯进行八个抽头的积和运算,但不限于此,如果各个积和运算器芯中的超频频率为在装置上不能动作的频率,在将超频比设定为4倍的基础上,也可以为每个积和运算器芯进行4个抽头的积和运算,使用运算器芯群1010至1017为止的32个积和运算资源进行相同的128抽头FIR滤波处理的结构。
(3)多相型时分复用稀疏滤波器
这里,说明对于输入到信号输入端子1101的信号,构成了使用运算器芯群1010和1011且每个积和运算器芯100以抽取率为1/4进行8个抽头的积和运算的多相型64抽头FIR滤波器,并输出到信号输出端子1103时的设定和动作的例子。示出下述情况下的动作例,在抽取率为1/4的多相型FIR滤波器中,一般将信号输入依次分支为四路,每一路进行1/4的运算量的滤波处理,这里在一路上对两路积和运算处理进行时分复用,合计在两路上进行四路的多相型FIR滤波处理。
图22是表示一例在本实施方式1的多模式FIR滤波器结构中,在实现多相型时分复用稀疏滤波功能时的用于设定各个单元的功能的功能设定表1000的图。
基于该功能设定表1000的设定内容,设定多路分用器1023的动作和选择器10210、10211、10220、10221的路径选择,以使在输入接口单元102中,输入到信号输入端子1101的信号在多路分用器1011中按每一样本被依次切换地输出到10231和10232,并通过选择器10210和10211而被提供给运算器芯群1010和1011。
此外,基于功能设定表1000的设定内容进行设定,以使在选择器10220和10221中,对各个运算器芯群1010和1011的累积运算输入提供常数“0”。另外,在对该滤波处理的功能设定中,对运算器芯群1012~1017、以及在输入接口单元102和输出接口单元103中的未在信号路径上的选择器和多路分用器的功能设定单元的设定不会对动作产生影响,在对其他的输入系统的信号进行其他的滤波处理时,另外进行与这种滤波处理对应的功能设定。
在以多相型进行1/4的稀疏滤波处理且在路径的每一路中被进行两次时分复用处理时,在多路分用器1023中,来自信号输入端子1101的输入信号依次从两路输出10231和10232以原信号输入的1/2的速率被输出,这些输出通过选择器10210、10211、10220、10221被提供给运算器芯群1010和1011。
然后,在各个运算器芯群1010和1011的各个积和运算器芯100(图3的(0,0)(1,0))中,对来自输入接口单元102的信号输入以8倍的超频比进行积和运算处理。也就是说,对于输入到信号输入端子1101的信号的原速率,以4倍的超频比进行积和运算处理。
此外,通过在积和运算器芯100的选择器1006中选择输入10033,获得每一个积和运算器芯100的8个延迟抽头的运算结果,每进行8次积和运算,将延迟寄存器群1003所存储的累积运算结果输出到后级的积和运算器芯100一次。这里,在进行积和运算的8个抽头的数据中的前一半4个抽头和后一半4个抽头中,信号输入不同,分别以时分供给多相型处理中的另外的路的信号,各路中的积和运算结果以4个抽头为单位交替地被存储。在各个积和运算器芯100的抽头系数存储器1004中,64个抽头的抽头系数的一部分被分别写入到地址0至7为止的八个抽头的区域中。具体而言,假设64抽头FIR滤波的抽头系数为c(m){0,1,····,63},则写入积和运算器(i,j)中的第k个地址中的抽头系数wi,j,k以如下所示的式(3)来表示。
wi,j,k=c(49-(i+j×16-([k/4]×4+(kmod4))))
                                          ·····(3)
其中,式(3)中的[]表示不超过[]内的值的最大的整数,(k mod 4)表示用4除以k时的余数。
关于在功能设定控制单元107如上述那样进行了输入接口单元102、运算器芯群1010、1011以及输出接口单元103的各个单元的功能设定之后,由滤波处理控制单元108进行的控制内容,在下面进行说明。
图23~图26是表示,在多模式FIR滤波单元10的各个单元中,通过抽取率为1/4且时分处理进行多相型64抽头FIR滤波信号处理的过程中的动作内容的图。在这些图中,将一连串的动作内容分割为图23~图26来进行表示。
在这些图中表示了,在作为积和运算器芯100构成图3的运算器芯群1010和1011的积和运算器芯(0,7)和(1,7)中,从信号输入端子1101依次输入信号序列Sn时的动作内容。在图23~图26中,图中A是表示一例输入接口单元102中的进行处理的信号的图,图中B是表示一例由积和运算器芯(0,7)内的各个单元处理的输入输出信号的图,图中C是表示一例由积和运算器芯(1,7)内的各个单元处理的输入输出信号的图,图中D是表示一例从输出接口单元103的加法器10316和10318输出的信号的图。
上述图23和图24A所示的信号序列Sn被依次输入到输入接口单元102的信号输入端子1101,并且在多路分用器1023中对每一样本依次被切换输出该图A所示的输出信号10231和10232。
通过从滤波处理控制单元108以输入到信号输入端子1201的信号的8倍的速率,将地址依次提供给各个积和运算器芯(0,7)、(1,7)的抽头系数存储器1004的读出地址(Add)10041,对于一个样本的信号输入,读出四个抽头的抽头系数(例如,该图B的w0,7,0,0,7,1,0,7,2,0,7,3),在乘法器1001中与信号序列Sn依次进行相乘处理,还在加法器1002中进行累积相加。
根据输入到选择器1005的控制信号(Cont_Acc)10051选择送往加法器1002的另一个输入,8倍超频处理中仅1有时钟输入来自前级的积和运算器芯中的累积运算输出的信号,在其他的定时,通过选择器1006反馈来自延迟寄存器群1003的输出10033。
在锁存电路1007中,每四个时钟一次地锁存通过选择器1006的延迟寄存器群1003的输出10033,并将其提供给后级的积和运算器芯的累积运算输入。通过在各个积和运算器芯100和运算器芯群1010和1011中进行以上那样的动作,每个积和运算器芯100进行八个抽头,各个运算器芯群1010和1011进行32个抽头,作为系统整体进行64个抽头的积和运算处理,从运算器芯群1011的累积运算输出最终输出整个的积和运算结果。
在输出接口单元103中,根据图22所示的功能设定表1000的设定,选择图7中的各个选择器10320~10323、10330、10331、10340的路径,通过加法器103110对运算器芯群1010~1011的累积运算输出进行相加合成,还由加法器10318对时分地被积和运算处理的两路积和运算结果进行累积相加处理,并从信号输出端子1103最终输出图26D所示的输出信号。
通过以上那样的结构,由两路运算器群对抽取率为1/4的多相型FIR滤波处理进行时分处理,从而由多模式FIR滤波处理单元10进行64抽头FIR滤波处理。
接着,在以下说明,在如上述那样通过功能变更而能够进行多个不同种类的处理型的滤波处理的多模式FIR滤波处理单元10中,在通信模式被选择且滤波处理的要求规格被指定时,进行资源分配控制情况下的动作例。
在基于规定的判断条件进行多模式无线通信装置中的通信模式的选择,以及与所选择的通信模式对应的通信模式控制信号被输入时,多模式动作控制单元104将该通信模式控制信号输出到资源分配控制单元105,在资源分配控制单元105中基于通信模式控制信号,读出与应对应的通信标准所要求的规定的滤波规格有关的信息。
图27表示了使以下内容对应的列表2000,多模式无线通信装置所对应的无线通信标准的一例,进行与各种标准对应的通信处理的情况下所要求的滤波处理的要求规格,以及与此分别对应的设定内容的一例。另外,在该例中,表示了以多模式FIR滤波处理单元的最大积和运算处理频率是80MHz的情况为前提的例子。例如,表示出,为了与UMTS(Universal MobileTelecommunications System)相对应,要求47抽头长度的滤波器,以15.36MHz的速率将输入信号和输出信号进行输入输出,可以构成稀疏率为1/1且为串联型的滤波器。
此外,为了进行该滤波处理,表示出存在两组设定例。在第一个设定例中,使用三个运算器芯群的资源,以相当于原输入信号速率4倍的61.44MHz对每一个积和运算器芯4个抽头的积和运算进行处理。在第二个设定例中,使用六个运算器芯群的资源,以相当于原输入信号速率2倍的30.72MHz对每一个积和运算器芯2个抽头的积和运算进行处理。这样,在对应一个通信标准时,有可能在运算资源的使用量和处理频率的上限范围内,多个种类的滤波器设定候补被列出。
图28是表示资源分配控制单元105的结构、处理以及控制的流程的图。在滤波器设定候补存储单元1051中,在图27所示的列表2000中预先存储与对应于通信标准的滤波器设定例有关的信息,基于通信模式控制信号,读出与其对应的滤波处理的设定例的候补列表并输出到资源分配决定单元1052,所述通信模式控制信号表示切换至所选择的通信模式的请求。
在资源使用状况存储单元1053中,存储多模式FIR滤波处理单元10中的运算器芯群的使用状况。资源使用状况存储单元1053基于在资源分配决定单元1052中决定的资源分配结果对多模式FIR滤波处理单元10中的运算器资源的使用状况进行更新,同时将该信息提供给资源分配决定单元1052。另外,在资源使用状况存储单元1053中,基于通过功能设定寄存器106从滤波处理控制单元108提供的滤波处理结束信息,也进行将曾为使用状态的运算器资源更新为空闲状态的处理。
图29是在资源分配决定单元1052中从候补中选择资源分配可能的滤波器设定时的流程图,以下说明其步骤。
首先,资源分配决定单元1052在通过检测通信模式控制信号的输入而检测出资源分配请求时(步骤S11:“是”),从滤波器设定候补存储单元1051读出与所选择的通信模式对应的滤波器设定的候补(步骤S12)。这里,像滤波器设定候补存储单元1051所存储的上述图27的列表2000那样存在多个滤波器设定的候补时,从所需运算器芯群的数量较多的设定候补起被依次读出。
接着,在资源分配决定单元1052中,将读出的设定候补所需的运算器芯群的数量即所需资源量与从资源利用状况存储单元1053所提供的资源使用状况获得的未使用运算器芯群的数量即空闲的资源数进行比较(步骤S13)。资源分配决定单元1052在判断为所需资源量等于或少于空闲资源量时(步骤S13:“是”),转移到步骤S14,决定选择上述滤波器设定候补,并将资源分配的决定信息输出到功能变更控制单元1055和资源使用状况存储单元1053。
此外,资源分配决定单元1052在上述资源的比较中判断为所需资源大于空闲资源时(步骤S13:“否”),转移到步骤S15,判定在滤波器设定候补存储单元1051中是否存在剩余的滤波器设定候补,存在剩余的候补时(步骤S15:“是”),转移到步骤S12。
资源分配决定单元1052在判断为没有剩余的设定候补时(步骤S15:“否”),转移到步骤S16,直至在从资源使用状况存储单元1053供给的资源使用状况中发生变化为止处于待机状态。在所述资源使用状况中发生变化时(步骤S16:“是”),转移到步骤S12。
如以上那样,基于由资源分配决定单元1052决定的资源分配,在功能变更控制单元1055中输出用于在多模式FIR滤波处理单元10中进行各个单元的功能设定变更的功能控制信息。具体而言,将为了实现由功能变更控制单元1055选择的滤波器设定所需的值,写入到构成如图8所示的功能设定表600的功能设定寄存器106中的各个设定寄存器中,同时将与滤波处理控制单元108中的动作控制内容有关的设定内容也一起写入功能设定寄存器106中。
这里,作为资源分配控制的一例,以下说明在多模式FIR滤波处理单元10中已经以与IEEE802.11a对应的通信模式进行FIR滤波处理,在此基础上新加入以与UMTS相对应的通信模式进行FIR滤波处理时的动作例。如图27所示,适合于IEEE802.11a的FIR滤波处理需要四个运算器芯群。这里,假设为:从图3的信号输入端子1102输入与IEEE802.11a相对应的接收信号,将该接收信号通过输入接口单元102提供给运算器芯群1014~1017,进行规定的积和运算处理,并通过输出接口单元103从信号输出端子1104输出。
在资源分配控制单元105的滤波器设定候补存储单元1051中,作为与UMTS标准对应的滤波处理的设定候补,存储了在图27的列表2000的UMTS的行中所示出的两个候补。也就是说,为以下两个设定:使用六个运算器芯群,设定各个积和运算器芯以30.72MHz的动作时钟进行处理(以下,称为候补A),和使用三个运算器芯群,设定各个运算器芯群以61.44MHz的动作时钟进行处理(以下,称为候补B)。
资源分配决定单元1052在输入意味着资源分配的请求的通信模式控制信号时(步骤S11:“是”),通过步骤S12的动作模式候补读出处理,作为第一个滤波器设定信息的候补,首先读入所需运算器芯群较多的候补A的设定信息。此外,作为资源使用状况,从资源使用状况存储单元1053,将表示以下内容的信息输入到资源分配决定单元1052,当前用于对应IEEE802.11a的滤波处理,四个运算器芯群(1013~1017)处于使用中,即空闲的运算器芯群的数量为四个。
在这样的情况下,在步骤S 13的资源量比较处理中,由于所需的资源量超过空闲的资源量(步骤S13:“否”),所以转移到步骤S15,又由于存在剩余的滤波器设定候补(候补B)(步骤S15:“是”),所以再次转移到步骤S12。在步骤S12中,通过资源分配决定单元1052,再次从滤波器设定候补存储单元1051读出候补B的滤波器设定信息。此时,所需的运算器芯群的数量为3,由于在步骤S13中满足了为空闲资源数以下的条件(步骤S13:“是”),所以转移到步骤S14,选择候补B的滤波器设定,并将其作为资源分配决定信息输出到功能变更控制单元1055。在功能变更控制单元1055中,基于所决定的资源分配决定信息,设定信息从设定参数存储单元1054所存储的图30所示的功能设定表2100中被读出,并被写入功能设定寄存器106。
接着,在以下说明,在上述的例子中假设作为已使用中的某滤波处理的设定,进行与IEEE802.15.1标准对应的滤波处理以代替与上述IEEE802.11a标准对应的滤波处理时的动作例。
具体而言,在以下说明,以在图27的列表2000中由候补B所示的、使用六个运算器芯群的滤波器设定来进行动作时的动作例。
此时,为了进行与IEEE802.15.1标准对应的滤波处理,已使用了六个运算器芯群(1012~1017),在适合于UMTS标准的任一滤波器设定候补中,空闲的运算器器芯群的数量都不满足需要的运算器芯群的数量,所以不能对运算器器芯群的资源进行分配而进行滤波处理。在这样的情况下,在资源分配决定单元1052中,转移到图29所示的流程图中的步骤S16,由资源使用状况存储单元1053检测在资源使用状况中是否发生变化,在资源使用状况中发生变化时(步骤S16:“是”),再次转移到步骤S12,进行资源分配的判断。
根据以上的结构和动作,随着多模式无线通信装置中的通信模式的变更,基于所需的滤波特性的设定候补和运算资源的空闲状况,决定要使用的运算资源和其设定内容,基于该决定进行各个单元的功能变更,并进行规定的动作控制。因此,通过灵活地变更有限的积和运算资源的运算抽头数或动作时钟或连接关系,能够应对多个不同的FIR滤波处理,并能够同时并行地进行多个滤波处理。其结果,与对多个不同的动作模式的每个动作模式分别地构成滤波器相比,能够降低电路规模。
另外,在由本实施方式1例示出的多模式FIR滤波处理单元10的结构中,每个积和运算器芯能够处理的积和运算处理数最大为8个,每个运算器芯群为将四个积和运算器芯串联连接,并为设置8个运算器芯群的结构,而且信号输入端子的数量为两个,对每一信号输入端子由多路分用器将其分支为四个。但是,本发明并不限定这些结构的数量,根据多模式无线通信装置中所要求的滤波处理性能的要求规格,可扩展地变更设计。
此外,虽然为在各个积和运算器芯100中设置信号输入端子1201和信号输出端子1203的结构,但并不限定于该结构,不用说,如果是对于在多模式FIR滤波处理单元10中的同一运算器芯群所包含的各个积和运算器芯,将公用的信号输入提供给各个积和运算器芯的结构,则各个积和运算器芯中的信号输出是不需要的。
此外,图27所示的根据各个无线通信标准所要求的滤波器的规格仅仅是一个例子,不用说,根据无线通信装置内的包含了其他的设计规格的系统设计,也可以变更这些规格值。此时,将多模式FIR滤波处理单元所要求的规格和与其对应的设定例的候补列表预先存储在多模式动作控制单元104内的滤波器设定候补存储单元1051中即可。
此外,各个积和运算器芯中的处理频率并不限于图27所例示的频率,如果为直至最大积和运算处理频率(在本实施方式1的情况下假定为80MHz)为止之间的频率,也可以为使用更高速的频率进行处理的结构。此时,由于信号输入和积和运算器芯中的运算之间为非同步的处理,也可以为在信号输入的前级或信号输出的后级设置通常被使用的FIFO(First-In First-Out:先进先出)缓存器等,进行定时和数据量的调整的结构。
(实施方式2)
在本实施方式2中说明了下述情况下的结构和动作例,通过配置作为CIC(Cascaded Integrator Comb:积分梳状)滤波器的结构要素的多个的积分器、差分器以及稀疏处理单元,设置将各个结构要素之间的输入输出连接关系切换的接口,将这些各个的结构要素中的动作功能的设定和输入输出接口的连接设定切换,从而根据所要求的滤波特性,动态地变更各个结构要素的资源,进行多个滤波处理的同时动作。
图31是表示在本实施方式2的说明中使用的多模式CIC滤波处理单元20的结构的方框图。多模式CIC滤波处理单元20具有两路信号输入端子2101和2102,输入分别独立的通信系统的信号。此外,具有两路信号输出端子2103和2104,输出对应于信号输入端子2101和2102的滤波处理后的输出信号。此外,多模式CIC滤波处理单元20具有四路将多个积分器201级联而构成的积分器群,具有四路将多个差分器202级联而构成的差分器群,并具有四路稀疏处理单元203。此外,为以下结构,各个四路积分器群与稀疏处理单元203之间的连接通过接口单元206,以及差分器群与稀疏处理单元203之间的连接通过接口单元207。此外,为以下结构,信号输入端子2101和2102与四路积分器群之间的连接通过输入接口单元204,信号输出端子2103和2104与四路差分器群之间的连接通过输出接口单元205。
积分器201输出通过将输入信号累积相加而进行积分处理所得的结果,例如,为图32所示的结构。在图32中,加法器2011输出两路输入信号的相加结果,延迟抽头2012将输入信号存储并延迟1时钟周期后输出。加法器2011将积分器201的输入端子2013和延迟抽头2012的输出作为输入,延迟抽头2012的输出从积分器201的输出端子2014被输出。
差分器202输出从输入信号减去使所述输入信号延迟规定时间后的信号所得的结果,例如,为图34所示的结构。在图34中,延迟抽头2021将输入到差分器202的信号输入端子2023的输入信号存储并延迟规定的时钟周期后输出,减法器2022进行从所述输入信号减去延迟抽头2021的输出信号,并将相减结果即差分器202的输出从输出端子2024输出。在延迟抽头2021中延迟的时间长度,由后述的功能设定控制单元107提供。
稀疏处理单元203对输入信号以规定的比率进行稀疏处理并仅输出一部分的信号,对于规定的稀疏比率,根据后述的功能设定控制单元107提供的值而被设定。
另外,在图31中,根据配置了多个的积分器201和差分器202的位置,附加(i,j)的序号,而且对稀疏处理单元203也根据其位置附加(i)的序号。i表示是第i个处理系统的配置,积分器201和差分器202中的j表示第j个的级联配置的积分器和差分器。
输入接口单元204输入两路信号输入端子2101和2102的输入(Input#0,Input#1),并输入来自接口单元206和输出接口单元205的反馈,根据从后述的功能设定控制单元107输入的功能变更控制信号在四路积分器群之间切换连接。使用图35在后面叙述具体的结构例。
输出接口单元205将从四路差分器群输出的信号作为反馈输出而输出到输入接口单元204,同时根据由后述的功能设定控制单元107提供的功能变更控制信号,从四路差分器群的输出信号中选择规定的输出信号,并从信号输出端子2103和2104输出。使用图36在后面叙述具体的结构例。
接口单元206将从四路积分器群输出的信号作为反馈输出而输出到输入接口单元204,同时将各个输出信号输出到四路稀疏处理单元203。使用图37在后面叙述具体的结构例。另外,接口单元206发挥作为第一接口单元的作用。
接口单元207将从四路稀疏处理单元203输出的信号和从输出接口单元205输出的四路反馈输出作为输入,并根据由后述的功能设定控制单元107提供的功能变更控制信号,选择连接至后级的四路差分器群的信号而进行连接。使用图38在后面叙述具体的结构例。另外,接口单元207发挥作为第二接口单元的作用。
图35是表示输入接口单元204的结构例的图。在图35中,选择器2041~2044根据从功能设定控制单元107分别独立地提供的功能变更控制信号,从多个输入信号中选择一个,输出到各路的积分器群。在选择器2041中,将信号输入端子2101作为一个输入,在选择器2044中,将信号输入端子2102作为一个输入。此外,以通过反馈输入端子2045将相邻的处理系统中的积分器201输出和差分器202的输出分别输入到选择器2041~2044来进行连接。
图36是表示输出接口单元205的结构例的图。在图36中,选择器2051和2052根据从功能设定控制单元107分别独立地提供的功能变更控制信号,从多个差分器所输入的输入信号中选择一个,并将其分别输出到信号输出端子2103和2104。此外,输出接口单元205具有反馈输出端子2053,从反馈输出端子2053将来自多个差分器群的输入信号输出到输入接口单元204和接口单元207。
图37是表示接口单元206的结构例的图。在图37中,从四路积分器群输出的信号被输出到各路的稀疏处理单元203,同时作为反馈输出端子2071进行分支,从而被输出到输入接口单元204。
图38是表示接口单元207的结构例的图。在图38中,选择器2071~2074根据从功能设定控制单元107分别独立地提供的功能变更控制信号,从多个稀疏处理单元所输入的输入信号中选择一个,并将其输出到各路的差分器群。在选择器2071和2074中,输入四路稀疏处理单元203的各个输出,同时通过反馈输入端子2075与相邻的路的差分器群的输出相连接。在选择器2072和2073中,输入位于图中的各级位置的稀疏处理单元203的输出,而且通过反馈输入端子2075,输入相邻的路的差分器202的输出。
另外,对于图31所示的多模式CIC滤波处理单元20,与上述实施方式1中的多模式FIR滤波处理单元10的情况相同地,通过图4所示的控制单元11进行各个结构要素的功能设定和动作控制,但是在各个结构要素中,进行变更以进行与多模式CIC滤波处理单元20对应的功能设定和动作控制。例如,在资源分配控制单元105中进行设定,以基于通信模式控制信号决定与为了实现期望的滤波规格而需要的CIC滤波运算资源有关的请求信息,基于多模式CIC滤波处理单元20中的运算资源的空闲状况决定各个运算资源的分配,将决定的资源分配和伴随它的功能变更信息输出。
此外,在功能设定寄存器106中的存储功能变更信息的寄存器中,准备了与多模式CIC滤波处理单元20中的各个设定单元对应的寄存器,从资源分配控制单元105输出的功能变更信息被写入规定的寄存器位置,而且根据需要读出它们并输出到功能设定控制单元107。
此外,在功能设定控制单元107中进行设定,以根据需要读出功能设定寄存器106所存储的功能变更信息,并对多模式CIC滤波处理单元20中的积分器201、差分器202、稀疏处理单元203、各个接口单元204、205、206、207进行功能变更控制。进而,在滤波处理控制单元108中,构成为进行用于多模式CIC滤波处理单元20中的滤波处理动作的控制,
图39是表示在本实施方式2的控制单元11的功能设定寄存器106中写入或读出功能设定的各个结构单元和设定值的列表3000。例如,假设,设置图38所示的接口单元207中的各个选择器2071~2074的设定寄存器,按照设定值从0开始的升序,从图中的上端开始按顺序选择输入。此外,在分为四路的各个差分群中,为可改变延迟时钟数的结构,分别以整数值Mx设定延迟时钟数。在功能设定控制单元107中,基于图39所例示的列表3000,将写入功能设定寄存器106中的各个单元设定值读出,进行功能控制和动作控制。
以下说明在上述那样构成的多模式CIC滤波处理单元20中,构成多个规格的CIC滤波器的动作的一例。这里,假定以下的情况,对输入到信号输入端子2101的信号,使用图31中从上向下开始的三级的运算器群的资源,进行具有第一CIC滤波特性的处理并输出到信号输出端子2103,另一方面对输入到信号输入端子2102的信号,使用图31中从下向上开始的一级的运算器群的资源,进行具有第二CIC滤波特性的处理并输出到信号输出端子2104。
一般地,已知在CIC滤波器中,根据级联积分器和差分器的级数N,稀疏处理单元中的稀疏比率R以及差分器中的延迟时钟数M的值,能够实现以如下所示的式(4)所表示的频率响应特性。
H(Z)=(1-Z~RM)N/(1-Z-1)N····(4)
通过对多模式CIC滤波处理单元20中的各个单元的设定如图40所示的列表3100那样进行设定,对于第一滤波器,式(4)中的各个值设定为N=6、R=8、M=1,对于第二滤波器,设定为N=2、R=2、M=2。
图41是表示各个CIC滤波器设定的频率响应特性的图。这里,假定并图示双方的取样频率为相同时的情况。能够确认:分别使用不同的资源,实现各自的滤波特性。
此外,如上述那样,在通过功能变更而能够进行具有多个不同的频率响应特性的滤波处理的多模式CIC滤波处理单元20中,在通信模式被选择且滤波处理的要求规格被指定时,有关对积分群和差分群的资源进行分配控制的控制内容,基于实施方式1的使用图27~图29说明的内容,也能够适用于多模式CIC滤波处理单元。
根据以上的结构和动作,随着多模式无线通信装置中的通信模式的变更,基于所需的滤波特性的设定候补和运算资源的空闲状况,决定使用的运算资源和其设定内容,并基于该决定进行各个单元的功能变更且进行规定的动作控制,由此通过灵活地变更有限的积和运算资源的运算抽头数或动作时钟或连接关系,能够应对多个不同的CIC滤波处理,而且能够同时并行地进行多个CIC滤波处理,与对于多个不同的动作模式的每个动作模式分别地构成滤波器相比,能够降低电路规模。
另外,在本发明中并不限定于将取样速率通过稀疏进行下变频的稀疏CIC滤波处理,例如,通过调换积分器和差分器的配置,以及设置插值处理单元代替稀疏处理单元,也能够适用于在发送信号处理等中所使用的插值处理CIC滤波处理,这些都为所属技术领域的技术人员已知。
此外,与上述实施方式1中的多模式FIR滤波处理单元的情况相同地,各个的积分器、差分器的个数和路数并不限于本实施方式2所例示的个数,可以可扩展地变更。
(实施方式3)
在本实施方式3中说明,通过同时安装在上述实施方式1中说明的多模式FIR滤波处理单元和在上述实施方式2中说明的多模式CIC滤波处理单元,构成可以更灵活地变更功能和性能的多模式接收滤波处理单元时的结构和动作。
图42是表示在本实施方式3的说明中使用的多模式接收滤波处理单元30的结构的图。多模式接收滤波处理单元30与实施方式1和2相同地,具有两路的信号输入端子1101和1102,输入各自独立的通信系统的信号,而且具有两路的信号输出端子1103和1104,输出对应于信号输入端子1011和1012的滤波处理后的输出信号。此外,多模式接收滤波处理单元30具有在实施方式1中说明的多模式FIR滤波处理单元10和在实施方式2中说明的多模式CIC滤波处理单元20。多个信号输入、多个信号输出、多模式FIR滤波处理单元10以及多模式CIC滤波处理单元20之间通过输入接口单元31、输出接口单元32以及选择器33而被连接。
输入接口单元31基于从控制单元11中的功能设定控制单元107输入的功能变更控制信号,将信号输入端子1101和1102的各个端子与多模式CIC滤波处理单元20或选择器33的其中一个连接。
输出接口单元32将多模式CIC滤波处理单元20的输出和多模式FIR滤波处理单元10的输出作为输入,并基于从控制单元11内的功能变更控制单元107输入的功能变更控制信号,选择信号输出端子1103或1104。
从来自多模式CIC滤波处理单元20的输出和来自输入接口单元31的输出中,选择器33基于从控制单元11内的功能变更控制单元107输入的功能变更控制信号,选择输出到多模式FIR滤波处理单元10的信号。
控制单元11与在上述实施方式1的图4中说明的控制单元基本上为相同的结构,在资源分配控制单元105中进行设定,以基于通信模式控制信号决定与为了实现期望的滤波规格所需的FIR滤波运算资源和CIC滤波运算资源有关的请求信息,基于多模式FIR滤波处理单元10及多模式CIC滤波处理单元20中的运算资源的空闲状况决定各个运算资源的分配,将决定的资源分配和伴随它的功能变更信息输出。
此外,在功能设定寄存器106中的存储功能变更信息的寄存器中,准备了与多模式FIR滤波处理单元10和多模式CIC滤波处理单元20双方的各个设定单元对应的寄存器,从资源分配控制单元105输出的功能变更信息被写入到规定的寄存器位置,而且根据需要而将其读出并输出。
此外,在功能设定控制单元107中进行设定,以根据需要读出由功能设定寄存器106存储的功能变更信息,进行对多模式FIR滤波处理单元10中的各个积和运算器芯100、输入接口单元102以及输出接口单元103中的抽头系数、连接切换用选择器以及多路分用器的功能变更控制,以及对多模式CIC滤波处理单元20中的积分器201、差分器202、稀疏处理单元203以及各个接口单元204~207的功能变更控制。
进而,在滤波处理控制单元108中,进行多模式FIR滤波处理单元10和多模式CIC滤波处理单元20中的滤波处理动作的控制。
根据以上的结构和动作,随着多模式无线通信装置中的通信模式的变更,基于所需的滤波特性的设定候补和运算资源的空闲状况,决定使用的运算资源和其设定内容,并基于该决定进行各个单元的功能变更且进行规定的动作控制,由此通过灵活地变更有限的积和运算资源的运算抽头数或动作时钟或连接关系,能够对应多个不同的滤波处理,而且能够同时并行地进行多个滤波处理,与对于多个不同的动作模式的每个动作模式分别地构成滤波器相比,能够降低电路规模。特别是,在本实施方式3中,根据各个通信模式的要求规格,能够选择FIR型和CIC型中的任一滤波处理,还能够通过双方的级联而实现更高度的频率响应特性。
另外,在实施方式1~3中,以输入信号和输出信号为标量数据的情况为前提进行了说明,但是本发明并不限于此,例如,如果形成对每个矢量要素准备多模式FIR滤波处理单元10和多模式CIC滤波处理单元20中的各个的信号线和结构要素的结构,则即使输入为正交IQ信号那样的矢量数据也能够对应。但是,多模式FIR滤波处理单元10的积和运算器芯100中的抽头系数存储器1004也可以构成为由I信号和Q信号所共享。
此外,在多模式FIR滤波处理单元10中,通过对于一路信号输入,时分复用地交替插入矢量数据并输入,能够时分地进行各个矢量要素的滤波处理。但是,此时,在各个积和运算器芯100中能够处理的样本数减少了相当于增加的矢量要素数。例如,在以时分复用对应I和Q两个矢量要素时,图5所示的每个积和运算器芯100能够运算4个样本的抽头运算。
此外,在多模式CIC滤波处理单元20中,通过将积分器201的结构改变为图33所示的结构,能够时分复用地交替插入矢量数据并输入,且以时分进行滤波处理。这里,在图33的积分器208的结构中,与图32所示的积分器201的结构不同之处在于,在反馈延迟抽头2012的输出的系统中还设置延迟抽头2081,设置选择器2082,其选择经由延迟抽头2081的反馈和不经由延迟抽头2081的反馈中的一方。
在以上的以时分复用对矢量数据进行处理时,可以为以下结构,在多模式FIR滤波处理单元10、多模式CIC滤波处理单元20、多模式接收滤波处理单元30等的输入输出的外端进行时分复用并进行输入输出,或对每个矢量要素设置各个信号输入输出端子,在各个结构的内部的输入输出接口单元中进行时分复用。
另外,在上述实施方式3中,公开了将多模式FIR滤波处理单元和多模式CIC滤波处理单元组合,从而构成接收滤波处理单元时的实施方式,但本发明并不限定于接收滤波处理,例如,也能够适用于发送滤波处理,为此所需的变更点对于该技术领域的技术人员不言自明。
2005年12月16日申请的特愿2005-363847的日本专利申请中包含的说明书、附图及说明书摘要公开的内容全部在本申请中引用。
工业上的可利用性
本发明的数字滤波器具有动态地分配积和运算用的运算资源,同时并行地进行多个无线通信标准用的滤波处理的效果,例如,适合于在所谓的多模式无线通信装置中对应多个不同的无线通信标准,且同时并行地进行通信的情况。此外,本发明并不限于无线通信领域,也能够适用于在有线通信领域中一台通信装置应对多个通信标准且同时并行地进行通信时的用途。
权利要求书(按照条约第19条的修改)
1、一种数字滤波器,包括:
多个运算器群,根据功能变更控制信号,变更积和运算功能,进行与该功能变更对应的多个抽头的积和运算处理并输出累积运算结果;
输出接口单元,将来自所述各个运算器群的累积运算结果输出根据功能变更控制信号选择性进行相加处理,同时输出所述累积运算结果输出作为反馈输出;
输入接口单元,其具有多个信号输入端子,根据所述功能变更控制信号,将期望的输入信号同时或依次地提供给所述多个运算器群,同时根据所述功能变更控制信号,将所述反馈输出中规定的输出提供给所述多个运算器群的累积运算输入级;
资源分配控制单元,对于由所述多个运算器群构成的运算资源,基于当前的运算资源使用状况,和设定了新的滤波处理所要求的运算资源的滤波器设定候补列表,决定可分配给新的滤波处理的所述运算资源并输出资源分配决定信息;
功能设定控制单元,基于所述资源分配决定信息,对所述多个运算器群、所述输入接口单元以及所述输出接口单元的各个单元,输出用于进行功能设定的所述功能变更控制信号;以及
滤波处理控制单元,对根据所述功能变更控制信号而设定了各自功能的所述多个运算器群,输出用于进行期望的滤波处理的动作控制信号。
2、如权利要求1所述的数字滤波器,其中,将多个积和运算器串联连接而构成所述各个运算器群,所述积和运算器根据所述功能变更控制信号而能够变更对所述信号输入端子所输入的输入信号的抽头运算处理数和抽头系数。
3、如权利要求2所述的数字滤波器,其中,
所述积和运算器具有信号输入端子、累积运算输入端子和累积运算输出端子,
所述积和运算器包括:
抽头系数存储器,存储多个抽头系数,根据所述动作控制信号,在规定的定时读出并输出规定的地址的抽头系数;
乘法器,将来自所述信号输入端子的输入信号与从所述抽头系数存储器输出的抽头系数相乘并输出相乘结果;
第一选择器,根据所述动作控制信号,选择来自所述累积运算输入端子的累积运算输入和延迟寄存器输出的其中一个并输出;
加法器,将所述第一选择器的输出与所述相乘结果相加并输出相加结果;
延迟寄存器群,根据时钟依次延迟所述相加结果,并输出进行了该延迟的相加结果的一部分;
第二选择器,将从所述延迟寄存器群输出的延迟时间不同的一部分的相加结果作为输入,并根据所述动作控制信号选择该输入的其中一个,将其作为所述延迟寄存器输出而输出;以及
锁存电路,与基于所述动作控制信号的规定的时钟信号同步地存储所述延迟寄存器输出,并作为所述累积运算输出而将其输出。
4、如权利要求1所述的数字滤波器,其中,
所述输入接口单元包括:
多路分用器,根据所述功能变更控制信号,将从所述多个信号输入端子输入的各个输入信号依次切换并输出到所述多个运算器群;
第一选择器群,根据所述功能变更控制信号,选择所述各个输入信号和所述多路分用器的输出的其中一路并将其提供给所述各个运算器群的信号输入端子;以及
第二选择器群,根据所述功能变更控制信号,选择作为初始值的“0”或作为相邻的运算器群的累积运算输出的所述反馈输出的其中一个并输出到所述各个运算器群的各个累积运算输入端子。
5、如权利要求1所述的数字滤波器,其中,
所述资源分配控制单元包括:
滤波器设定候补存储单元,存储有关对应于滤波规格的多个滤波器设定候补的信息,根据通信模式控制信号的输入,读出并输出相对应的滤波器设定候补的信息;
资源分配决定单元,基于所述通信模式控制信号、所述滤波器设定候补的信息和资源使用状况信息,在未使用的运算资源的范围内决定可分配的滤波器设定候补并输出资源分配决定信息;
资源使用状况存储单元,基于所述资源分配决定信息和从所述滤波处理控制单元输出的滤波处理结束信息,存储所述运算资源的使用状况,并将该使用状况作为资源使用状况信息而输出;
设定参数存储单元,存储根据滤波器的种类而设定的多个参数;以及
功能变更控制单元,基于所述资源分配决定信息,从所述设定参数存储单元读出相应的参数,基于该参数,生成与所述多个运算器群、所述输入接口单元和所述输出接口单元的各个单元对应的功能变更控制信号,并输出到该各个单元。
6、一种数字滤波器,包括:
多个积分器群,多个积分器被级联;
多个稀疏处理单元;多个差分器群,多个差分器被级联;
第一接口单元,将所述多个积分器群的输出提供给所述多个稀疏处理单元,同时将所述多个积分器群的输出作为第一反馈输出而输出;
第二接口单元,将来自所述多个稀疏处理单元的输出与第二反馈输出根据功能变更控制信号进行切换并提供给所述多个差分器;
输入接口单元,具有多个信号输入端子,根据所述功能变更控制信号切换输入信号并提供给所述多个积分器群;
输出接口单元,具有多个信号输出端子,将所述多个差分器群和所述多个信号输出端子之间的连接关系根据所述功能变更控制信号进行切换;
资源分配控制单元,对于由所述多个积分器群、所述多个稀疏处理单元以及所述多个差分器群构成的运算资源,基于当前的运算资源使用状况和设定了新的滤波处理所要求的运算资源的滤波器设定候补列表,决定可分配给新的滤波处理的所述运算资源并输出资源分配决定信息;
功能设定控制单元,基于所述资源分配决定信息,对所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述第二接口单元、所述输入接口单元以及所述输出接口单元的各个单元,输出用于进行功能设定的所述功能变更控制信号;以及
滤波处理控制单元,对根据所述功能变更控制信号而分别设定了功能的所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述第二接口单元、所述输入接口单元以及所述输出接口单元的各个单元,输出用于进行期望的滤波处理的动作控制信号。
7、一种数字滤波器,包括:
运算资源,其由多个运算器群构成,输出基于一个以上的抽头数的积和运算处理的累积运算结果;
输出接口单元,根据用于进行功能设定的功能变更控制信号,对所述运算资源的各个运算器群的累积运算结果选择性地进行相加处理;
输入接口单元,具有多个信号输入端子,根据所述功能变更控制信号,将期望的输入信号同时地或依次地提供给所述多个运算器群;
资源分配控制单元,输出资源分配决定信息,所述资源分配决定信息为基于所述运算资源的使用状况和设定了新的滤波处理所要求的运算资源的滤波器设定候补列表,决定可分配给新的滤波处理的所述运算资源的信息;
功能设定控制单元,基于所述资源分配决定信息,对所述输入接口单元和所述输出接口单元,输出所述功能变更控制信号;以及
滤波处理控制单元,对通过所述功能变更控制信号而被设定了功能的所述运算资源、所述输入接口单元以及所述输出接口单元,输出用于进行期望的滤波处理的动作控制信号。
8、如权利要求7所述的数字滤波器,其中,
所述输出接口单元将所述累积运算结果选择性地进行相加处理,并将其作为反馈输出而输出,
所述输入接口单元将所述期望的输入信号提供给所述多个运算器群,同时将所述反馈输出中的规定的输出提供给所述多个运算器群的累积运算输入级。
9、如权利要求7所述的数字滤波器,其中,
所述功能设定控制单元除了将所述功能变更控制信号输出到所述输入接口单元和所述输出接口单元以外,还将其输出到所述多个运算器群,
所述多个运算器群根据所述功能变更控制信号,变更所述积和运算处理。
10、一种数字滤波器,包括:
运算资源,由级联了多个积分器的多个积分器群、多个稀疏处理单元以及级联了多个差分器的多个差分器群构成;
第一接口单元,将所述多个积分器群的输出提供给所述多个稀疏处理单元;
第二接口单元,将根据用于进行功能设定的功能变更控制信号进行了切换的来自所述多个稀疏处理单元的输出,提供给所述多个差分器;
输入接口单元,具有多个信号输入,并将根据所述功能变更控制信号进行了切换的输入信号提供给所述多个积分器群;
输出接口单元,根据所述功能变更控制信号,选择所述多个差分器群的输出信号并输出;
资源分配控制单元,输出资源分配决定信息,所述资源分配决定信息为基于所述运算资源使用状况和设定了新的滤波处理所要求的运算资源的滤波器设定候补列表,决定对新的滤波处理分配的所述运算资源的信息;
功能设定控制单元,基于所述资源分配决定信息,对所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述输入接口单元和所述输出接口单元,输出所述功能变更控制信号;以及
滤波处理控制单元,对于通过所述功能变更控制信号而被设定了功能的所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述输入接口单元和所述输出接口单元,输出用于进行期望的滤波处理的动作控制信号。
11、如权利要求10所述的数字滤波器,其中,
所述第一接口单元将所述多个积分器群的输出提供给所述多个稀疏处理单元,同时将其作为第一反馈输出而输出到输入接口单元,
所述输入接口单元,将所述第一反馈输出中的规定的输出与根据所述功能变更控制信号进行了切换的输入信号一起提供给所述多个积分器群,
所述输出接口单元将来自所述多个差分器的输出作为第二反馈输出而输出到所述第二接口单元,
所述功能设定控制单元除了将所述功能变更控制信号输出到所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述输入接口单元以及所述输出接口单元以外,还将其输出到所述第二接口单元,
所述滤波处理控制单元除了将所述动作控制信号输出到所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述输入接口单元以及所述输出接口单元以外,还将其输出到所述第二接口单元,
所述第二接口单元根据所述功能变更控制信号,使用所述第二反馈输出,切换来自所述多个稀疏处理单元的输出而提供给所述多个差分器。

Claims (11)

1、一种数字滤波器,包括:
多个运算器群,根据功能变更控制信号,变更积和运算功能,进行与该功能变更对应的多个抽头的积和运算处理并输出累积运算结果;
输出接口单元,根据功能变更控制信号,选择性地对来自所述各个运算器群的累积运算结果输出进行相加处理,同时输出所述累积运算结果输出作为反馈输出;
输入接口单元,具有多个信号输入端子,根据所述功能变更控制信号,将期望的输入信号同时或依次地提供给所述多个运算器群,同时根据所述功能变更控制信号,将所述反馈输出中的规定的输出提供给所述多个运算器群的累积运算输入级;
资源分配控制单元,对于由所述多个运算器群构成的运算资源,基于当前的运算资源使用状况和设定了新的滤波处理所要求的运算资源的滤波器设定候补列表,决定可分配给新的滤波处理的所述运算资源并输出资源分配决定信息;
功能设定控制单元,基于所述资源分配决定信息,对所述多个运算器群、所述输入接口单元以及所述输出接口单元的各个单元,输出用于进行功能设定的所述功能变更控制信号;以及
滤波处理控制单元,对根据所述功能变更控制信号而分别设定了功能的所述多个运算器群、所述输入接口单元以及所述输出接口单元的各个单元,输出用于进行期望的滤波处理的动作控制信号。
2、如权利要求1所述的数字滤波器,其中,将多个积和运算器串联连接而构成所述各个运算器群,所述积和运算器根据所述功能变更控制信号而能够变更对所述信号输入端子所输入的输入信号的抽头运算处理数和抽头系数。
3、如权利要求2所述的数字滤波器,其中,
所述积和运算器具有信号输入端子、累积运算输入端子和累积运算输出端子,
所述积和运算器包括:
抽头系数存储器,存储多个抽头系数,根据所述动作控制信号,在规定的定时读出并输出规定的地址的抽头系数;
乘法器,将来自所述信号输入端子的输入信号与从所述抽头系数存储器输出的抽头系数相乘并输出相乘结果;
第一选择器,根据所述动作控制信号,选择来自所述累积运算输入端子的累积运算输入和延迟寄存器输出的其中一个并输出;
加法器,将所述第一选择器的输出与所述相乘结果相加并输出相加结果;
延迟寄存器群,根据时钟依次延迟所述相加结果,并输出进行了该延迟的相加结果的一部分;
第二选择器,将从所述延迟寄存器群输出的延迟时间不同的一部分的相加结果作为输入,并根据所述动作控制信号选择该输入的其中一个,将其作为所述延迟寄存器输出而输出;以及
锁存电路,与基于所述动作控制信号的规定的时钟信号同步地存储所述延迟寄存器输出,并作为所述累积运算输出而将其输出。
4、如权利要求1所述的数字滤波器,其中,
所述输入接口单元包括:
多路分用器,根据所述功能变更控制信号,将从所述多个信号输入端子输入的各个输入信号依次切换并输出到所述多个运算器群;
第一选择器群,根据所述功能变更控制信号,选择所述各个输入信号和所述多路分用器的输出的其中一路并将其提供给所述各个运算器群的信号输入端子;以及
第二选择器群,根据所述功能变更控制信号,选择作为初始值的“0”或作为相邻的运算器群的累积运算输出的所述反馈输出的其中一个并输出到所述各个运算器群的各个累积运算输入端子。
5、如权利要求1所述的数字滤波器,其中,
所述资源分配控制单元包括:
滤波器设定候补存储单元,存储有关对应于滤波规格的多个滤波器设定候补的信息,根据通信模式控制信号的输入,读出并输出相对应的滤波器设定候补的信息;
资源分配决定单元,基于所述通信模式控制信号、所述滤波器设定候补的信息和资源使用状况信息,在未使用的运算资源的范围内决定可分配的滤波器设定候补并输出资源分配决定信息;
资源使用状况存储单元,基于所述资源分配决定信息和从所述滤波处理控制单元输出的滤波处理结束信息,存储所述运算资源的使用状况,并将该使用状况作为资源使用状况信息而输出;
设定参数存储单元,存储根据滤波器的种类而设定的多个参数;以及
功能变更控制单元,基于所述资源分配决定信息,从所述设定参数存储单元读出相应的参数,基于该参数,生成与所述多个运算器群、所述输入接口单元和所述输出接口单元的各个单元对应的功能变更控制信号,并输出到该各个单元。
6、一种数字滤波器,包括:
多个积分器群,多个积分器被级联;
多个稀疏处理单元;多个差分器群,多个差分器被级联;
第一接口单元,将所述多个积分器群的输出提供给所述多个稀疏处理单元,同时将所述多个积分器群的输出作为第一反馈输出而输出;
第二接口单元,将来自所述多个稀疏处理单元的输出与第二反馈输出根据功能变更控制信号进行切换并提供给所述多个差分器;
输入接口单元,具有多个信号输入端子,根据所述功能变更控制信号切换输入信号并提供给所述多个积分器群;
输出接口单元,具有多个信号输出端子,将所述多个差分器群和所述多个信号输出端子之间的连接关系根据所述功能变更控制信号进行切换;
资源分配控制单元,对于由所述多个积分器群、所述多个稀疏处理单元以及所述多个差分器群构成的运算资源,基于当前的运算资源使用状况和设定了新的滤波处理所要求的运算资源的滤波器设定候补列表,决定可分配给新的滤波处理的所述运算资源并输出资源分配决定信息;
功能设定控制单元,基于所述资源分配决定信息,对所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述第二接口单元、所述输入接口单元以及所述输出接口单元的各个单元,输出用于进行功能设定的所述功能变更控制信号;以及
滤波处理控制单元,对根据所述功能变更控制信号而分别设定了功能的所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述第二接口单元、所述输入接口单元以及所述输出接口单元的各个单元,输出用于进行期望的滤波处理的动作控制信号。
7、一种数字滤波器,包括:
运算资源,其由多个运算器群构成,输出基于一个以上的抽头数的积和运算处理的累积运算结果;
输出接口单元,根据用于进行功能设定的功能变更控制信号,对所述运算资源的各个运算器群的累积运算结果选择性地进行相加处理;
输入接口单元,具有多个信号输入端子,根据所述功能变更控制信号,将期望的输入信号同时地或依次地提供给所述多个运算器群;
资源分配控制单元,输出资源分配决定信息,所述资源分配决定信息为基于所述运算资源的使用状况和设定了新的滤波处理所要求的运算资源的滤波器设定候补列表,决定可分配给新的滤波处理的所述运算资源的信息;
功能设定控制单元,基于所述资源分配决定信息,对所述输入接口单元和所述输出接口单元,输出所述功能变更控制信号;以及
滤波处理控制单元,对通过所述功能变更控制信号而被设定了功能的所述运算资源、所述输入接口单元以及所述输出接口单元,输出用于进行期望的滤波处理的动作控制信号。
8、如权利要求7所述的数字滤波器,其中,
所述输出接口单元将所述累积运算结果选择性地进行相加处理,并将其作为反馈输出而输出,
所述输入接口单元将所述期望的输入信号提供给所述多个运算器群,同时将所述反馈输出中的规定的输出提供给所述多个运算器群的累积运算输入级。
9、如权利要求7所述的数字滤波器,其中,
所述功能设定控制单元除了将所述功能变更控制信号输出到所述输入接口单元和所述输出接口单元以外,还将其输出到所述多个运算器群,
所述多个运算器群根据所述功能变更控制信号,变更所述积和运算处理。
10、一种数字滤波器,包括:
运算资源,由级联了多个积分器的多个积分器群、多个稀疏处理单元以及级联了多个差分器的多个差分器群构成;
第一接口单元,将所述多个积分器群的输出提供给所述多个稀疏处理单元;
第二接口单元,将根据用于进行功能设定的功能变更控制信号进行了切换的来自所述多个稀疏处理单元的输出,提供给所述多个差分器;
输入接口单元,具有多个信号输入,并将根据所述功能变更控制信号进行了切换的输入信号提供给所述多个积分器群;
输出接口单元,根据所述功能变更控制信号,选择所述多个差分器群的输出信号并输出;
资源分配控制单元,输出资源分配决定信息,所述资源分配决定信息为基于所述运算资源使用状况和设定了新的滤波处理所要求的运算资源的滤波器设定候补列表,决定对新的滤波处理分配的所述运算资源的信息;
功能设定控制单元,基于所述资源分配决定信息,对所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述输入接口单元和所述输出接口单元,输出所述功能变更控制信号;以及
滤波处理控制单元,对于通过所述功能变更控制信号而被设定了功能的所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述输入接口单元和所述输出接口单元,输出用于进行期望的滤波处理的动作控制信号。
11、如权利要求10所述的数字滤波器,其中,
所述第一接口单元将所述多个积分器群的输出提供给所述多个稀疏处理单元,同时将其作为第一反馈输出而输出到输入接口单元,
所述输入接口单元,将所述第一反馈输出中的规定的输出与根据所述功能变更控制信号进行了切换的输入信号一起提供给所述多个积分器群,
所述输出接口单元将来自所述多个差分器的输出作为第二反馈输出而输出到所述第二接口单元,
所述功能设定控制单元除了将所述功能变更控制信号输出到所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述输入接口单元以及所述输出接口单元以外,还将其输出到所述第二接口单元,
所述滤波处理控制单元除了将所述动作控制信号输出到所述多个积分器群、所述多个稀疏处理单元、所述多个差分器群、所述输入接口单元以及所述输出接口单元以外,还将其输出到所述第二接口单元,
所述第二接口单元根据所述功能变更控制信号,使用所述第二反馈输出,切换来自所述多个稀疏处理单元的输出而提供给所述多个差分器。
CN2006800465267A 2005-12-16 2006-12-13 数字滤波器 Expired - Fee Related CN101326715B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP363847/2005 2005-12-16
JP2005363847A JP4982080B2 (ja) 2005-12-16 2005-12-16 デジタルフィルタ
PCT/JP2006/324858 WO2007069652A1 (ja) 2005-12-16 2006-12-13 デジタルフィルタ

Publications (2)

Publication Number Publication Date
CN101326715A true CN101326715A (zh) 2008-12-17
CN101326715B CN101326715B (zh) 2011-09-21

Family

ID=38162957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800465267A Expired - Fee Related CN101326715B (zh) 2005-12-16 2006-12-13 数字滤波器

Country Status (4)

Country Link
US (1) US8356063B2 (zh)
JP (1) JP4982080B2 (zh)
CN (1) CN101326715B (zh)
WO (1) WO2007069652A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661407B (zh) * 2009-09-30 2013-05-08 中兴通讯股份有限公司 一种并行结构的有限脉冲响应滤波器及其处理方法
WO2023050729A1 (zh) * 2021-09-30 2023-04-06 深圳市中兴微电子技术有限公司 数字滤波器、滤波方法及电子设备

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8620980B1 (en) 2005-09-27 2013-12-31 Altera Corporation Programmable device with specialized multiplier blocks
US8266199B2 (en) 2006-02-09 2012-09-11 Altera Corporation Specialized processing block for programmable logic device
US8266198B2 (en) 2006-02-09 2012-09-11 Altera Corporation Specialized processing block for programmable logic device
US8301681B1 (en) 2006-02-09 2012-10-30 Altera Corporation Specialized processing block for programmable logic device
US8041759B1 (en) 2006-02-09 2011-10-18 Altera Corporation Specialized processing block for programmable logic device
US7836117B1 (en) 2006-04-07 2010-11-16 Altera Corporation Specialized processing block for programmable logic device
US7822799B1 (en) 2006-06-26 2010-10-26 Altera Corporation Adder-rounder circuitry for specialized processing block in programmable logic device
US8386550B1 (en) 2006-09-20 2013-02-26 Altera Corporation Method for configuring a finite impulse response filter in a programmable logic device
US7930336B2 (en) 2006-12-05 2011-04-19 Altera Corporation Large multiplier for programmable logic device
US8386553B1 (en) 2006-12-05 2013-02-26 Altera Corporation Large multiplier for programmable logic device
US7814137B1 (en) * 2007-01-09 2010-10-12 Altera Corporation Combined interpolation and decimation filter for programmable logic device
US8650231B1 (en) 2007-01-22 2014-02-11 Altera Corporation Configuring floating point operations in a programmable device
US7865541B1 (en) 2007-01-22 2011-01-04 Altera Corporation Configuring floating point operations in a programmable logic device
US8645450B1 (en) 2007-03-02 2014-02-04 Altera Corporation Multiplier-accumulator circuitry and methods
US7949699B1 (en) 2007-08-30 2011-05-24 Altera Corporation Implementation of decimation filter in integrated circuit device using ram-based data storage
US8959137B1 (en) 2008-02-20 2015-02-17 Altera Corporation Implementing large multipliers in a programmable integrated circuit device
US8374232B2 (en) * 2008-03-31 2013-02-12 Stmicroelectronics S.A. Equalizer adapting circuit
US8307023B1 (en) 2008-10-10 2012-11-06 Altera Corporation DSP block for implementing large multiplier on a programmable integrated circuit device
US8645449B1 (en) 2009-03-03 2014-02-04 Altera Corporation Combined floating point adder and subtractor
US8468192B1 (en) 2009-03-03 2013-06-18 Altera Corporation Implementing multipliers in a programmable integrated circuit device
US8706790B1 (en) 2009-03-03 2014-04-22 Altera Corporation Implementing mixed-precision floating-point operations in a programmable integrated circuit device
US8650236B1 (en) 2009-08-04 2014-02-11 Altera Corporation High-rate interpolation or decimation filter in integrated circuit device
US8412756B1 (en) 2009-09-11 2013-04-02 Altera Corporation Multi-operand floating point operations in a programmable integrated circuit device
US8396914B1 (en) 2009-09-11 2013-03-12 Altera Corporation Matrix decomposition in an integrated circuit device
US7948267B1 (en) 2010-02-09 2011-05-24 Altera Corporation Efficient rounding circuits and methods in configurable integrated circuit devices
US8539016B1 (en) 2010-02-09 2013-09-17 Altera Corporation QR decomposition in an integrated circuit device
US8601044B2 (en) 2010-03-02 2013-12-03 Altera Corporation Discrete Fourier Transform in an integrated circuit device
US8484265B1 (en) 2010-03-04 2013-07-09 Altera Corporation Angular range reduction in an integrated circuit device
US8510354B1 (en) 2010-03-12 2013-08-13 Altera Corporation Calculation of trigonometric functions in an integrated circuit device
US8539014B2 (en) 2010-03-25 2013-09-17 Altera Corporation Solving linear matrices in an integrated circuit device
US8589463B2 (en) 2010-06-25 2013-11-19 Altera Corporation Calculation of trigonometric functions in an integrated circuit device
US8862650B2 (en) 2010-06-25 2014-10-14 Altera Corporation Calculation of trigonometric functions in an integrated circuit device
US8577951B1 (en) 2010-08-19 2013-11-05 Altera Corporation Matrix operations in an integrated circuit device
CN101977031B (zh) * 2010-11-09 2013-07-03 南开大学 一种时空均衡的数字滤波器优化设计方法
US8645451B2 (en) 2011-03-10 2014-02-04 Altera Corporation Double-clocked specialized processing block in an integrated circuit device
CN102185587B (zh) * 2011-03-21 2013-07-24 浙江大学 一种低功耗的两相结构多阶内插半带滤波器
US9600278B1 (en) 2011-05-09 2017-03-21 Altera Corporation Programmable device using fixed and configurable logic to implement recursive trees
CN102811036A (zh) * 2011-05-31 2012-12-05 中兴通讯股份有限公司 数字滤波方法和装置
US8812576B1 (en) 2011-09-12 2014-08-19 Altera Corporation QR decomposition in an integrated circuit device
US9053045B1 (en) 2011-09-16 2015-06-09 Altera Corporation Computing floating-point polynomials in an integrated circuit device
US8949298B1 (en) 2011-09-16 2015-02-03 Altera Corporation Computing floating-point polynomials in an integrated circuit device
US8762443B1 (en) 2011-11-15 2014-06-24 Altera Corporation Matrix operations in an integrated circuit device
US8957729B2 (en) * 2012-03-20 2015-02-17 Telefonaktiebolaget L M Ericsson (Publ) Memory structure having taps and non-unitary delays between taps
US8543634B1 (en) 2012-03-30 2013-09-24 Altera Corporation Specialized processing block for programmable integrated circuit device
US9098332B1 (en) 2012-06-01 2015-08-04 Altera Corporation Specialized processing block with fixed- and floating-point structures
US8996600B1 (en) 2012-08-03 2015-03-31 Altera Corporation Specialized processing block for implementing floating-point multiplier with subnormal operation support
US9207909B1 (en) 2012-11-26 2015-12-08 Altera Corporation Polynomial calculations optimized for programmable integrated circuit device structures
US9189200B1 (en) 2013-03-14 2015-11-17 Altera Corporation Multiple-precision processing block in a programmable integrated circuit device
US9348795B1 (en) 2013-07-03 2016-05-24 Altera Corporation Programmable device using fixed and configurable logic to implement floating-point rounding
KR101453950B1 (ko) * 2014-02-24 2014-11-04 엘아이지넥스원 주식회사 다중 모드 수신기를 위한 ddc의 운영 방법
KR101453949B1 (ko) 2014-02-24 2014-10-23 엘아이지넥스원 주식회사 다중 모드 수신기를 위한 ddc
KR101584917B1 (ko) 2014-10-14 2016-01-14 세종대학교산학협력단 멀티 스테이지 필터 장치 및 그것을 이용한 필터링 방법
US9684488B2 (en) 2015-03-26 2017-06-20 Altera Corporation Combined adder and pre-adder for high-radix multiplier circuit
US10942706B2 (en) 2017-05-05 2021-03-09 Intel Corporation Implementation of floating-point trigonometric functions in an integrated circuit device
CN207503225U (zh) * 2017-11-28 2018-06-15 北京比特大陆科技有限公司 一种运算系统及相应的电子设备
CN113098472B (zh) * 2019-12-23 2024-03-22 瑞昱半导体股份有限公司 取样电路与方法
JP7393519B2 (ja) * 2020-03-11 2023-12-06 株式会社エヌエスアイテクス 演算装置及び演算方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252009A (ja) 1987-04-09 1988-10-19 Fuji Photo Film Co Ltd 可変デジタル・フイルタ
JP2884571B2 (ja) * 1988-04-12 1999-04-19 ソニー株式会社 ディジタル信号処理回路
JP2520451B2 (ja) 1988-06-30 1996-07-31 日本電気ホームエレクトロニクス株式会社 デジタルフィルタ回路
JP2558846B2 (ja) 1988-10-31 1996-11-27 松下電器産業株式会社 デジタルフィルタバンク
JPH03145322A (ja) * 1989-10-31 1991-06-20 Yokogawa Electric Corp Firフィルタ
KR0142803B1 (ko) 1993-09-02 1998-07-15 모리시다 요이치 신호처리장치
JP3363974B2 (ja) * 1993-12-14 2003-01-08 松下電器産業株式会社 信号処理装置
JPH10174169A (ja) 1996-12-11 1998-06-26 Nec Corp 携帯電話機
JP2001250115A (ja) * 2000-03-03 2001-09-14 Sony Computer Entertainment Inc ディジタルフィルタ
JP2002190769A (ja) 2000-12-21 2002-07-05 Sharp Corp 移動体通信機及び移動体通信システム
JP4300272B2 (ja) * 2001-09-10 2009-07-22 Nsc株式会社 デジタルフィルタおよびその設計方法
JP2003229783A (ja) * 2002-01-31 2003-08-15 Toshiba Corp 無線通信装置
JP3584027B2 (ja) * 2002-03-12 2004-11-04 沖電気工業株式会社 デジタルフィルタ
US7353243B2 (en) * 2002-10-22 2008-04-01 Nvidia Corporation Reconfigurable filter node for an adaptive computing machine
JP4274309B2 (ja) 2002-10-31 2009-06-03 独立行政法人情報通信研究機構 ソフトウェア無線機、信号処理ユニット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661407B (zh) * 2009-09-30 2013-05-08 中兴通讯股份有限公司 一种并行结构的有限脉冲响应滤波器及其处理方法
WO2023050729A1 (zh) * 2021-09-30 2023-04-06 深圳市中兴微电子技术有限公司 数字滤波器、滤波方法及电子设备

Also Published As

Publication number Publication date
WO2007069652A1 (ja) 2007-06-21
CN101326715B (zh) 2011-09-21
US8356063B2 (en) 2013-01-15
JP4982080B2 (ja) 2012-07-25
US20090187615A1 (en) 2009-07-23
WO2007069652B1 (ja) 2007-08-09
JP2007166535A (ja) 2007-06-28

Similar Documents

Publication Publication Date Title
CN101326715B (zh) 数字滤波器
US8126949B1 (en) Reconfigurable filter node for an adaptive computing machine
CN103269212B (zh) 低成本低功耗可编程多级fir滤波器实现方法
JP2007166535A5 (zh)
US20070083733A1 (en) Reconfigurable circuit and control method therefor
CN102098004A (zh) 一种变带宽数字下变频器及实现方法
CN101282322A (zh) 一种应用于无线中程传感网物理层的内插数字滤波器装置
KR100542118B1 (ko) 소프트웨어 무선 시스템을 위한 디지털 여파기와 이를 구비한 디지털 중간 주파수 대역 신호 처리 장치 및 그 방법
JPH0435213A (ja) フィルタ回路
CN102412808A (zh) 一种基于fpga的高性能多路fir数字抽取滤波器及其读写方法
CN102025377B (zh) 一种改进型级联积分梳妆插值滤波器
CN113556101B (zh) Iir滤波器及其数据处理方法
CN101072019A (zh) 一种滤波器及其滤波方法
CN102457251B (zh) 一种实现通用数字滤波器的方法及装置
JPH08320858A (ja) フーリエ変換演算装置および方法
CN102685055A (zh) 一种多数据流插值与抽取复用装置及方法
CN202998021U (zh) 一种多通道梳状滤波器
KR20030010143A (ko) 고속 클럭 활용을 위한 에프아이알 필터의 곱셈 장치 및그 방법
CN112118019B (zh) 一种多通道信道化接收机及应用系统
CN115913857B (zh) 数据处理方法、装置、射频单元、基站和存储介质
CN112800387B (zh) 基-6蝶形运算单元、方法、电子设备及存储介质
CN202998022U (zh) 多通道梳状滤波器
JP5131346B2 (ja) 無線通信装置
Lavanya et al. High speed, low complexity, folded, polymorphic wavelet architecture using reconfigurable hardware
CN118074673A (zh) 一种多带宽实时切换的滤波器、滤波方法及芯片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110921

Termination date: 20191213