JP4982080B2 - デジタルフィルタ - Google Patents

デジタルフィルタ Download PDF

Info

Publication number
JP4982080B2
JP4982080B2 JP2005363847A JP2005363847A JP4982080B2 JP 4982080 B2 JP4982080 B2 JP 4982080B2 JP 2005363847 A JP2005363847 A JP 2005363847A JP 2005363847 A JP2005363847 A JP 2005363847A JP 4982080 B2 JP4982080 B2 JP 4982080B2
Authority
JP
Japan
Prior art keywords
unit
output
filter
interface unit
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005363847A
Other languages
English (en)
Other versions
JP2007166535A5 (ja
JP2007166535A (ja
Inventor
克明 安倍
謙太郎 宮野
昭彦 松岡
伴哉 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005363847A priority Critical patent/JP4982080B2/ja
Priority to US12/097,531 priority patent/US8356063B2/en
Priority to PCT/JP2006/324858 priority patent/WO2007069652A1/ja
Priority to CN2006800465267A priority patent/CN101326715B/zh
Publication of JP2007166535A publication Critical patent/JP2007166535A/ja
Publication of JP2007166535A5 publication Critical patent/JP2007166535A5/ja
Application granted granted Critical
Publication of JP4982080B2 publication Critical patent/JP4982080B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0294Variable filters; Programmable filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0283Filters characterised by the filter structure
    • H03H17/0292Time multiplexed filters; Time sharing filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/065Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being integer
    • H03H17/0664Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being integer where the output-delivery frequency is lower than the input sampling frequency, i.e. decimation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/0671Cascaded integrator-comb [CIC] filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2220/00Indexing scheme relating to structures of digital filters
    • H03H2220/02Modular, e.g. cells connected in cascade

Description

本発明はデジタルフィルタに関し、特に、通信信号処理用途において複数の通信系統に対するデジタルフィルタ処理に対応するデジタルフィルタに関する。
近年の無線通信需要の急増に伴い、複数の異なる無線通信規格が乱立し、様々なサービス形態に応じて複数の無線通信システムが混在する状況となっている。このような状況の中、一台の端末局や基地局で複数の無線通信規格に対応可能とする、いわゆるマルチモード化機能を付加することにより、シームレスな接続環境の提供や製品開発効率の向上への要求が高まっている。
一台の無線通信端末で複数の無線通信規格に対応するための構成例としては、例えば対応すべき無線通信規格の各々に対応した無線通信処理部を個別に設け、必要に応じて所望の処理系統へ切り替え制御する構成が開示されている(例えば、特許文献1、2)。一方、別の構成として、ソフトウェア等の機能記述を切り替えることにより無線通信処理機能を変更する、いわゆるソフトウェア無線処理技術を用いた構成についても既に開示されている(例えば、特許文献3)。
以下、図41および図42を用いて従来のマルチモード無線通信端末の構成例について説明する。図41において、無線通信規格Aに対応した無線通信処理を行う規格A対応無線通信処理部4001aと無線通信規格Bに対応した無線通信処理を行う規格B対応無線通信処理部4001bとが共に切替制御部4002に接続されている。切替制御部4002は、各々の無線通信規格における通信リンクの状況やユーザやアプリケーションからの要求に応じて無線通信を行う通信系統の選択切替を行い、選択された無線通信処理系統と上位レイヤ処理部4003との間のデータ入出力を接続する。このようにして、必要に応じて使用したい無線通信処理系統を選択切り替えして通信することにより、一台の無線通信端末により複数の無線通信規格に対応した通信が可能となる。
図42は、ソフトウェア無線処理技術を用いたマルチモード無線通信端末の構成例を示した図である。図42において、無線通信規格Aに対応した無線通信処理のうちアナログ信号処理およびアナログ信号とデジタル信号の変換を行う処理部を有する規格A対応アナログ信号処理部4004aと、無線通信規格Bに対応した無線通信処理のうちアナログ信号処理およびアナログ信号とデジタル信号の変換を行う処理部を有する規格B対応アナログ信号処理部4004bとが共にデジタル信号処理部4005に接続されている。デジタル信号処理部4005は、プログラム等のソフトウェア記述を変更することによりその信号処理内容を変更可能な信号処理部であり、切替制御部4006からの制御に応じて信号処理内容を無線通信規格Aに対応したデジタル信号処理と無線通信規格Bに対応したデジタル信号処理とに切り替えてデジタル信号処理を行い、受信処理後のデータを上位レイヤ処理部4007へ供給するとともに上位レイヤ処理部4007から供給される送信データをデジタル送信信号処理した後、送信データを所望の無線通信規格に対応したアナログ信号処理部の方へ出力する。このようにして、必要に応じて使用したい無線通信規格に対応したプログラム等のソフトウェア記述を変更し通信機能を切りけることにより、一台の無線通信端末により複数の無線通信規格に対応した通信が可能となる。
一方、無線通信処理を行うにあたって所望帯域信号の選択のために必須な機能の一つであるフィルタ処理部、特にデジタルフィルタ処理部に着目すると、前記のようなマルチモード機能を実現するためには、対応すべき無線通信規格によって異なる要求仕様に応じ、柔軟に周波数応答特性等の特性を変更可能な機能が要求される。このように、デジタルフィルタにおいてタップ係数や動作モードを柔軟に変更可能な構成としては、例えば、特許文献4、特許文献5などが既に開示されている。特許文献4では、複数の加算器、乗算器、遅延器、レジスタ等の構成要素が所定の配置に形成され、各々の構成要素の入出力端子間の接続切り替えを行うデータバスライン群とそれらの相互間の接続切り替えを行う切り替え回路により構成され、任意のデジタルフィルタを設定可能な構成および動作例が開示されている。また、特許文献5では、フィルタのタップ係数を任意に変更可能とすると共に、フィルタの処理型を必要に応じて直列型と並列型で切り替え可能とする構成および動作例が開示されている。
特開平10−174169号公報(第3〜4頁、図1) 特開2002−190769号公報(第6頁、図4) 特開2004−153661号公報(第6頁、図4) 特開昭63−252009号公報(第2〜4頁、図1) 特許第2520451号公報(第2〜5頁、図1)
しかしながら、前記各々の従来の技術では、以下に示すような課題を有する。
図41で示したような従来のマルチモード無線通信端末の構成では、対応すべき無線通信規格の数に応じて対応する無線通信処理部4001を設ける必要があり、その数が増えれば増えるほど無線通信端末における回路規模が増大することになる。ところが、それぞれの無線通信処理部の処理内容に着目すると、ほとんどの無線通信処理部には通信路符号化処理、デジタル変復調処理やチャネル選択のためのフィルタ処理などの処理部が存在し、無線通信規格の違いにより詳細な仕様は異なるものの、類似した処理を行う部分が多い。これらの処理部を対応すべき無線通信規格の数の分だけ個別に設けるのは回路規模の面から効率が良くない。
また、図42で示したようなソフトウェア無線処理技術を用いたマルチモード無線通信端末の構成では、デジタル信号処理部4005における通信処理内容を都度対応すべき無線通信規格用のプログラムに書き替える必要があり、機能変更に時間を要する。特に、デジタル信号処理部4005がFPGA(Field Programmable Gate Array)やDSP(Digital Signal Processor )のようにソフトウェア処理により実行されるデバイスにより構成される場合には、機能設定のためのデータ量が膨大になるため、特に機能変更に時間を要する。このため、マルチモード無線通信端末において動的に対応する無線通信規格を切り替えようとする場合には、機能切り替えのための時間的浪費を生じてしまう。ましてや、複数の無線通信規格の通信リンクに対して同時に通信を行うことは難しい。
さらに、デジタルフィルタの構成において、特許文献4で開示されている構成では、任意のフィルタ形状を実現するために個々の構成要素間を接続するための膨大なデータバスライン群と接続切り替え回路が必要となるため、無線通信端末用に構成するには回路規模が大きくなってしまう、という課題があった。
また、特許文献5で開示される構成では、構成要素間接続の冗長度を制限することにより特許文献4で開示される構成に比べて回路規模の面では優れているものの、デジタルフィルタの変更自由度という観点では、タップ係数の変更や処理型を直列型と並列型で切り替える程度の制御に留まっており、対応するフィルタ処理の動作クロック周波数や演算タップ数に応じた演算リソースの有効活用という観点での構成や処理制御方法については開示されていない。ましてや、複数の無線通信規格の通信リンクに対して同時に通信を行うための入出力インタフェースの構成や制御方法については一切開示されていない。
本発明は、かかる点に鑑みてなされたものであり、特性を動的に変更可能で、かつ複数系統の同時処理が可能な無線通信処理向けのデジタルフィルタを提供することを目的とする。
本発明のデジタルフィルタは、機能変更制御信号に応じて積和演算機能を変更し、その機能変更に応じた複数タップ分の積和演算処理を行って累積演算結果を出力する複数の演算器群と、前記各演算器群からの累積演算結果出力を機能変更制御信号に応じて選択的に加算処理するとともに、前記累積演算結果出力をフィードバック出力として出力する出力インタフェース部と、複数の信号入力端子を有し、前記機能変更制御信号に応じて所望の入力信号を同時又は順次に前記複数の演算器群に供給するとともに、前記機能変更制御信号に応じて前記フィードバック出力のうち所定の出力を前記複数の演算器群の累積演算入力段に供給する入力インタフェース部と、前記複数の演算器群により構成される演算リソースに対して、現在の演算リソース使用状況と、新たなフィルタ処理に要求される演算リソースを設定したフィルタ設定候補リストとに基づいて、新たなフィルタ処理に割り当て可能な前記演算リソースを決定してリソース割当決定情報を出力するリソース割当制御部と、前記リソース割当決定情報に基づいて、前記複数の演算器群と前記入力インタフェース部と前記出力インタフェース部の各部に対して機能設定を行うための前記機能変更制御信号を出力する機能設定制御部と、前記機能変更制御信号により各々機能が設定された前記複数の演算器群に対して所望のフィルタ処理をおこなうための動作制御信号を出力するフィルタ処理制御部と、を具備する構成を採る。
この構成によれば、無線通信装置における通信モードの変更に伴い、必要とするフィルタ特性の設定候補と演算リソースの空き状況に基づいて、使用する演算リソースとその設定内容を決定し、決定に基づいて各部の機能変更を行い、かつ所定の動作制御を行うようにしたので、限られた積和演算リソースの演算タップ数や動作クロックや接続関係を柔軟に変更することにより複数の異なるFIRフィルタ処理に対応可能とし、かつ複数のフィルタ処理を同時並列的に行うことが可能となり、複数の異なる動作モード毎に個別にフィルタを構成するよりも回路規模を低減することが可能となる。
また、本発明のデジタルフィルタは、請求項1記載のデジタルフィルタにおいて、前記各演算器群は、前記信号入力端子に入力される入力信号に対するタップ演算処理数、タップ係数を前記機能変更制御信号に応じて変更可能な積和演算器を複数直列接続する構成を採る。
この構成によれば、無線通信装置における通信モードの変更に伴い、複数の演算器群の演算機能を動的に変更可能となり、複数の異なる動作モード毎に個別にフィルタを構成するよりも回路規模を低減することが可能となる。
また、本発明のデジタルフィルタは、請求項2記載のデジタルフィルタにおいて、前記積和演算器は、信号入力端子と累積演算入力端子と累積演算出力端子とを有し、複数のタップ係数を記憶し、前記動作制御信号に応じて所定のタイミングで所定のアドレスのタップ係数を読み出して出力するタップ係数メモリと、前記信号入力端子からの入力信号と前記タップ係数メモリから出力されるタップ係数とを乗算して乗算結果を出力する乗算器と、前記動作制御信号に応じて前記累積演算入力端子からの累積演算入力と遅延レジスタ出力のいずれかを選択して出力する第1のセレクタと、前記第1のセレクタの出力と前記乗算結果を加算して加算結果を出力する加算器と、前記加算結果をクロックに応じて順次遅延し、該遅延させた加算結果の一部を出力する遅延レジスタ群と、前記遅延レジスタ群から出力される遅延時間の異なる一部の加算結果を入力とし、前記動作制御信号に応じて入力のいずれかを選択して前記遅延レジスタ出力として出力する第2のセレクタと、前記遅延レジスタ出力を、前記動作制御信号による所定のクロック信号に同期して保持して前記累積演算出力として出力するラッチ回路と、を具備する構成を採る。
この構成によれば、無線通信装置における通信モードの変更に伴い、複数の積和演算器の積和演算機能を動的に変更可能となり、複数の異なる動作モード毎に個別にフィルタを構成するよりも回路規模を低減することが可能となる。
また、本発明のデジタルフィルタは、請求項1記載のデジタルフィルタにおいて、前記入力インタフェース部は、前記複数の信号入力端子から入力される各入力信号を前記機能変更制御信号に応じて前記複数の演算器群へ順次切り替えながら出力するデマルチプレクサと、前記機能変更制御信号に応じて前記各入力信号と前記デマルチプレクサの出力のうちの一系統を選択して前記各演算器群の信号入力端子へ供給する第1のセレクタ群と、前記機能変更制御信号に応じて初期値としての0、もしくは隣接する演算器群の累積演算出力である前記フィードバック出力のうち、いずれか一つを選択して前記各演算器群の各累積演算入力端子に出力する第2のセレクタ群と、を具備する構成を採る。
この構成によれば、無線通信装置における通信モードの変更に伴い、演算リソースに対する入力インタフェース部の機能を動的に変更可能となる。
また、本発明のデジタルフィルタは、請求項1記載のデジタルフィルタにおいて、前記リソース割当制御部は、フィルタ仕様に応じた複数のフィルタ設定候補に関する情報を記憶し、通信モード制御信号の入力に応じて対応するフィルタ設定候補の情報を読み出して出力するフィルタ設定候補記憶部と、前記通信モード制御信号と前記フィルタ設定候補の情報とリソース使用状況情報に基づいて、未使用の演算リソースの範囲内で割当可能なフィルタ設定候補を決定してリソース割当決定情報を出力するリソース割当決定部と、前記リソース割当決定情報と前記フィルタ処理制御部から出力されるフィルタ処理完了情報に基づいて前記演算リソースの使用状況を記憶し、該使用状況をリソース使用状況情報として出力するリソース使用状況記憶部と、フィルタの種類に応じて設定する複数のパラメータを記憶する設定パラメータ記憶部と、前記リソース割当決定情報に基づいて前記設定パラメータ記憶部から該当するパラメータを読み出し、該パラメータに基づいて前記複数の演算器群と前記入力インタフェース部と前記出力インタフェース部の各部に対応する機能変更制御信号を生成して当該各部に出力する機能変更制御部と、を具備する構成を採る。
この構成によれば、無線通信装置における通信モードの変更に伴い、演算リソースの使用状況に応じて未使用の演算リソースを適宜利用することが可能となり、特性を動的に変更可能で、かつ複数系統の同時処理が可能な無線通信処理向けのデジタルフィルタを提供することができる。
また、本発明のデジタルフィルタは、複数の積分器が縦続接続された複数の積分器群と、複数の間引き処理部と、複数の差分器が縦続接続された複数の差分器群と、前記複数の積分器群の出力を前記複数の間引き処理部に供給するとともに、前記複数の積分器群の出力を第1のフィードバック出力として出力する第1のインタフェース部と、前記複数の間引き処理部からの出力と第2のフィードバック出力とを機能変更制御信号に応じて切り替えて前記複数の差分器に供給する第2のインタフェース部と、複数の信号入力端子を有し、前記機能変更制御信号に応じて入力信号を切り替えて前記複数の積分器群に供給する入力インタフェース部と、複数の信号出力端子を有し、前記複数の差分器群と前記複数の信号出力端子との間の接続関係を前記機能変更制御信号に応じて切り替える出力インタフェース部と、前記複数の積分器群と前記複数の間引き処理部と前記複数の差分器群により構成される演算リソースに対して、現在の演算リソース使用状況と、新たなフィルタ処理に要求される演算リソースを設定したフィルタ設定候補リストとに基づいて、新たなフィルタ処理に割り当て可能な前記演算リソースを決定してリソース割当決定情報を出力するリソース割当制御部と、前記リソース割当決定情報に基づいて、前記複数の積分器群と前記複数の間引き処理部と前記複数の差分器群と前記第2のインタフェース部と前記入力インタフェース部と前記出力インタフェース部の各々に対して機能設定を行うための前記機能変更制御信号を出力する機能設定制御部と、前記機能変更制御信号により各々機能が設定された前記複数の積分器群と前記複数の間引き処理部と前記複数の差分器群と前記第2のインタフェース部と前記入力インタフェース部と前記出力インタフェース部の各々に対して所望のフィルタ処理をおこなうための動作制御信号を出力するフィルタ処理制御部と、を具備する構成を採る。
この構成によれば、無線通信装置における通信モードの変更に伴い、必要とするフィルタ特性の設定候補と演算リソースの空き状況に基づいて、使用する演算リソースとその設定内容を決定し、決定に基づいて各部の機能変更を行い、かつ所定の動作制御を行うようにしたので、限られた演算リソースの演算タップ数や動作クロックや接続関係を柔軟に変更することにより複数の異なるFIRフィルタ処理に対応可能とし、かつ複数のフィルタ処理を同時並列的に行うことが可能となり、複数の異なる動作モード毎に個別にフィルタを構成するよりも回路規模を低減することが可能となる。
本発明によれば、無線通信装置における通信モードの変更に伴い、必要とするフィルタ特性の設定候補と演算リソースの空き状況に基づいて、使用する演算リソースとその設定内容を決定し、決定に基づいて各部の機能変更を行い、かつ所定の動作制御を行うようにしたので、限られた積和演算リソースの演算タップ数や動作クロックや接続関係を柔軟に変更することにより複数の異なるFIRフィルタ処理に対応可能とし、かつ複数のフィルタ処理を同時並列的に行うことが可能となり、複数の異なる動作モード毎に個別にフィルタを構成するよりも回路規模を低減することが可能となる。
以下、本発明の実施の形態について図面を参照して詳細に説明する。
(実施の形態1)
本実施の形態1では、複数タップ分の積和演算を実行可能な積和演算器コアを複数直列接続した演算器コア群を複数配置し、前記演算器コア群の入出力接続関係を切り替えるインタフェースを設け、これら個々の積和演算器コアにおける動作機能設定と入出力インタフェースの接続設定を切り替えることにより、通信処理に要求されるフィルタ特性に応じて前記積和演算器コアの演算リソースを動的に変更し、複数のフィルタ処理の同時動作を行う場合の構成および動作例を説明する。
図1は、本実施の形態の説明に用いるマルチモードFIR(Finite Impulse Response:有限インパルス応答)フィルタ処理部10の構成を示す図である。マルチモードFIRフィルタ処理部10は、2系統の信号入力端子1101、1102を有し、それぞれ独立した通信系統の信号が供給される。また、2系統の信号出力端子1103、1104を有し、信号入力端子1101、1102に対するフィルタ処理後の出力信号が出力される。また、マルチモードFIRフィルタ処理部10は、積和演算器コア100と、この積和演算器コア100を4個直列に接続して構成される8個の演算器コア群1010〜1017と、入力インタフェース部102と、出力インタフェース部103と、入出力間接続線1106と、から構成される。
入出力間接続線1106は、入力インタフェース部102に設けられた入出力間接続端子1107と、出力インタフェース部103に設けられたフィードバック出力端子1105とを接続している。
積和演算器コア100は、フィルタ処理における複数のタップ演算に相当する積和演算を実行し、かつ後述する制御部11から入力される制御信号に応じてそのタップ係数、遅延タップ数、ならびに複数タップ分の積和演算に伴う信号接続の切り替えを行い、得られた積和演算出力を出力するものである。積和演算器コア100は、入力として信号入力端子、累積演算入力端子を有し、出力として信号出力端子、累積演算出力端子を有する。また、図示していないが、タップ係数、遅延タップ数、ならびに信号接続切り替え用の制御線が接続される。なお、積和演算器コア100の具体的な構成については図3を用いて後述する。
演算器コア群1010〜1017は、それぞれ積和演算器コア100を4個直列に接続したものであり、具体的には、前後する積和演算器コア間の信号出力端子と信号入力端子が接続され、かつ累積演算出力端子と累積演算入力端子が接続されている。このように構成された演算器コア群1010〜1017に含まれる個々の積和演算器コア100は、タップ係数の値設定を除いては共通の信号処理および接続動作を行うように構成されている。
なお、図1では、複数配置された積和演算器コア100の配置位置に応じて(i,j)という番号を付しているが、これはi番目の演算器コア群におけるj番目の積和演算器コアであることをを表している。本実施の形態1では、積和演算器コア100を4個直列接続して構成された演算器コア群1010〜1017を8組配置する。
入力インタフェース部102は、2系統の信号入力端子1101、1102と入出力間接続線1106からの入力を用い、後述する制御部11から入力される制御信号に応じて経路切り替えやデマルチプレクス処理等を行い、個々の演算器コア群1010から1017へ所定の信号を供給するものである。具体的な構成については図4を用いて後述する。
出力インタフェース部103は、個々の演算器コア群1010〜1017の累積演算出力から供給された信号に対して、後述する制御部11から入力される制御信号に応じて所定の信号間の加算処理や経路選択を行った上で2系統の信号出力端子1103、1104から出力し、かつ前記個々の演算器コア群1010〜1017からの信号出力を入出力間接続線1106へ分岐出力するものである。具体的な構成については図5を用いて後述する。
入出力間接続線1106は、出力インタフェース部103から入力インタフェース部102との間で複数の信号を接続するものであり、さらに具体的には、複数の演算器コア群1010〜1017から出力される各累積演算出力を入力インタフェース部102へフィードバックする為の接続線である。
図2は、図1のマルチモードFIRフィルタ処理部10における各構成要素に対して機能設定および動作制御を行う制御部11の構成を示すブロック図である。制御部11は、マルチモード動作制御部104と、リソース割当制御部105と、機能設定レジスタ106と、機能設定制御部107と、フィルタ処理制御部108と、から構成される。
マルチモード動作制御部104は、マルチモードFIRフィルタ処理部10が構成要素に含まれるマルチモード無線通信装置における通信モードを選択制御するものであり、具体的には、種々の判断条件に基づいてどの無線通信規格もしくは無線通信方式に対応した通信モードで通信処理を行うかを判断し、対応する通信モード制御信号をリソース割当制御部105に出力するものである。なお、本実施の形態1では、このマルチモード動作制御部104がどのような判断基準で通信モードの選択を行うかについて限定するものではない。
リソース割当制御部105は、マルチモード動作制御部104から入力される通信モード制御信号に基づいて、所望のフィルタ仕様を実現するために必要な積和演算リソースと、マルチモードFIRフィルタ処理部10における積和演算リソースの空き状況に基づき積和演算リソースの割り当てを決定し、決定されたリソース割り当てとそれに伴う機能変更情報を機能設定レジスタ106に出力するものである。その動作の詳細については後述する。
機能設定レジスタ106は、リソース割り当てとそれに伴う機能変更情報を保持するレジスタであり、マルチモードFIRフィルタ処理部10における各設定部に対応したレジスタが用意されており、リソース割当制御部105から入力される機能変更情報が所定のレジスタ位置に書き込まれると共に、必要に応じて機能設定制御部107又はフィルタ処理制御部108により読み出される。
機能設定制御部107は、機能設定レジスタ106に保持されている機能変更情報を必要に応じて読み出し、マルチモードFIRフィルタ処理部10における個々の積和演算器コア100、入力インタフェース部102、出力インタフェース部103におけるタップ係数、接続切り替え用セレクタ、デマルチプレクサ等の制御を行うものである。具体的な機能変更制御信号の内容と接続関係については図1には図示していないが、別途図6を用いて後述する。
フィルタ処理制御部108は、マルチモードFIRフィルタ処理部10におけるフィルタ処理動作のための制御を行うものであり、演算器コア群1010〜1017、入力インタフェース部102、出力インタフェース部103における個々の動作部に対して制御線が接続されている。具体的な制御線の内容については後述する。
図3は、図1において示した積和演算器コア100の構成を示す図であり、この構成により転置型FIRフィルタにおける積和演算処理が行われる。積和演算器コア100は、入力として信号入力端子1201と累積演算入力端子1202を有し、出力として信号入力端子1201に入力される信号をそのまま出力する信号出力端子1203と累積演算出力端子1204を有する。また、積和演算器コア100は、乗算器1001と、加算器1002と、遅延レジスタ群1003と、タップ係数メモリ1004と、セレクタ1005と、セレクタ1006と、ラッチ回路1007と、から構成される。
乗算器1001は、信号入力端子1201から入力される信号と、タップ係数メモリ1004から入力されるタップ係数との乗算を行い、その乗算結果を加算器1002に出力するものである。
加算器1002は、乗算器1001による乗算結果とセレクタ1005の出力との加算を行い、その加算結果を遅延レジスタ群1003に出力するものである。
遅延レジスタ群1003は、入力信号を1クロックサイクル単位で遅延して出力する遅延レジスタが7個直列に接続されたものである。
タップ係数メモリ1004は、フィルタ処理時の積和演算に用いる複数タップ分のタップ係数を記憶しておくものであり、本実施の形態1では8通りのタップ係数(Wi,j,0〜Wi,j,7)を記憶するものである。
セレクタ1005は、2系統の入力を択一的に選択して出力するものである。セレクタ1006は、4系統の入力を択一的に選択して出力するものである。
ラッチ回路1007は、セレクタ1006から入力される信号を所定のクロック周波数でラッチし出力するものであり、例えば、Dフリップフロップにより構成される。ここで、ラッチするクロック周波数は信号入力と同様の周波数とする。
タップ係数メモリ1004におけるタップ係数の変更書き込みと、セレクタ1006における遅延レジスタ信号の入力選択の制御は、機能設定制御部107から入力される機能変更制御信号に基づいて制御される。また、タップ係数メモリ1004におけるタップ係数の読み出しと、セレクタ1005における累積演算入力と、遅延レジスタ群1003からセレクタ1006を介した入力信号との選択切り替えは、フィルタ処理制御部108から入力される動作制御信号に基づいて制御される。ここで、フィルタ処理制御部108から積和演算器コア100に入力される動作制御信号は、同じ演算器コア群内に含まれる4個の積和演算器コア100に対しては同様の動作制御信号が入力され、各々が同様の処理動作を行う。
なお、積和演算器コア100における各部の処理動作は、信号入力端子1201に入力されるクロックレートに対し、機能設定制御部107で設定されるオーバクロック動作比に応じたオーバクロック周波数で動作する。
図4は、図1において示した入力インタフェース部102の構成を示す図である。入力インタフェース部102は、入力として2系統の独立した信号入力端子1101、1102と、入出力間接続端子1107に接続される入出力間接続線1106を介して出力インタフェース部103から入力される個々の演算器コア群1010〜1017の各出力信号からのフィードバック入力とを有し、また個々の演算器コア群1010〜1017への信号入力端子と累積演算入力端子への出力端子を有する。また、入力インタフェース部102は、セレクタ10210〜10217、10220〜10227と、デマルチプレクサ1023、1024と、から構成される。なお、図4には図示していないが、各構成要素に対しては機能設定制御部107から独立に機能変更制御用の接続線が接続されている。
セレクタ10210〜10217、10220〜10227は、機能設定制御部107からそれぞれ独立に入力される機能変更制御信号に応じて複数の入力信号から一つを選択して、それぞれ出力段に接続された演算器コア群1010〜1017に出力するものである。セレクタ10210〜10217は、3入力のセレクタであり、そのうち第1の入力端子は信号入力端子1101に接続され、第2の入力端子は信号入力端子1102に接続される。セレクタ10210〜10213の第3の入力端子は、それぞれデマルチプレクサ1023の第1の出力端子10231、第2の出力端子10232、第3の出力端子10233、第4の出力端子10234に接続される。また、セレクタ10214〜10217の第3の入力端子は、それぞれデマルチプレクサ1024の第1の出力端子10241、第2の出力端子10242、第3の出力端子10243、第4の出力端子10244に接続される。
セレクタ10220と10227は2入力のセレクタであり、セレクタ10221〜10226は3入力のセレクタであり、機能設定制御部107からそれぞれ独立に入力される機能変更制御信号に応じて出力信号が選択される。セレクタ10220〜10227の各出力は、それぞれ図1における演算器コア群1010〜1017の累積演算入力端子に接続される。セレクタ10220〜10227の第1の入力端子には定数「0」に相当するデータが入力される。また、セレクタ10220〜10227の別の入力端子には、図1における演算器コア群1010〜1017のうち、自セレクタが出力に接続されている演算器コア群の上段と下段の演算器コア群の累積演算出力端子が出力インタフェース部103と入出力間接続線1106を介して接続される。すなわち、例えば、演算器コア群1010の累積演算出力端子はセレクタ10221の第2の入力端子へ接続され、演算器コア群1011の累積演算出力端子はセレクタ10220の第2の入力端子とセレクタ10222の第2の入力端子へ接続される。
図5は、図1において示した出力インタフェース部103の構成を示す図である。出力インタフェース部103は、図1における各演算器コア群1010〜1017の累積演算出力を入力とし、また2系統の信号出力端子1103、1104と入力インタフェース部102へのフィードバック出力端子1105を有する。また、出力インタフェース部103は、経路選択用の複数のセレクタと、複数の加算器と、複数の遅延レジスタを有する。具体的には、加算器10310〜10319と、セレクタ10320〜10327、10330〜10333、10340、10341、10350、10351と、遅延レジスタ10360、10361と、から構成される。なお、図5には図示していないが、各構成要素に対しては機能設定制御部107からそれぞれに独立に機能変更制御用の接続線が接続されている。
加算器10310〜10319は、2系統のデジタル入力値を加算し加算結果を出力するものである。加算器10310〜10315は、それぞれセレクタ10320と10321、10322と10323、10324と10325、10326と10327、10330と10331、10332と10333の出力を入力とする。加算器10316、10317は、それぞれ加算器10314とセレクタ10340、加算器10315とセレクタ10341の出力を入力とする。加算器10318、10319は、それぞれ加算器10316とセレクタ10350、加算器10317とセレクタ10351の出力を入力とする。
セレクタ10320〜10327、10330〜10333、10340、10341、10350、10351は、2入力のセレクタであり、機能設定制御部107からそれぞれ独立に入力される機能変更制御信号に応じて出力信号が選択される。セレクタ10340と10341を除くセレクタの一方の入力には、定数「0」に相当する値が入力される。セレクタ10320〜10327の他方の入力には、それぞれ演算器コア群1010〜1017の累積演算出力端子が接続される。セレクタ10330〜10333の他方の入力には、それぞれ加算器10310、10311、10312、10313の出力が接続される。セレクタ10350、10351の他方の入力には、それぞれ遅延レジスタ10360、10361の出力が接続される。セレクタ10340と10341は、それぞれ加算器10312と10315、10311と10314の出力が接続される。
遅延レジスタ10360、10361は、加算器10318と10319において複数のフィルタ演算値を累積加算するために加算結果を1サイクル遅延させ、それぞれセレクタ10350と10351へ出力するものである。
図6は、機能設定レジスタ106において機能設定書き込みおよび読み出しされる構成部と設定値を例示した機能設定テーブル600の一例である。例えば、図4に示した入力インタフェース部102における各セレクタ10210〜10217、10220〜10227とデマルチプレクサ1023、1024に対する設定レジスタが設けられている。セレクタ10210〜10217、10220〜10227は、0、1、2の値の設定が可能で、それぞれ図4に示した3系統の入力のうち上側から順に選択されるものとする。
演算器コア群1010〜1017や出力インタフェース部103におけるセレクタについても、設定値の昇順に応じて図面における信号入力の上側から下側もしくは左側から右側の順で入力が選択される。
演算器コア群1010〜1017におけるオーバクロック比は、各演算器コア群に対する信号入力のクロック周波数に対する演算器コア内での処理クロックレートの比を表しており、1倍、2倍、4倍、8倍に設定される。デマルチプレクサ1023、1024では、動作モード、分岐数の2種類の設定値に応じて入力信号の出力動作が変わる。動作モードは、デマルチプレクサ1023、1024の各動作を設定するものであり、設定値「0」は同じ信号入力を分岐数分の出力に出力し、設定値「1」は、入力を順次分岐数分の出力を切り替えて出力する。
図7は、デマルチプレクサ1023における各設定値と入出力の関係の一例を示した図である。同図において、(a)は信号入力端子1101を介してデマルチプレクサ1023に入力される入力信号の一例を示す図、(b)は設定値として「モード:0、分岐数:4」を設定した場合の出力信号の一例を示す図、(c)は設定値として「モード:1、分岐数:2」を設定した場合の出力信号の一例を示す図、(d)は設定値として「モード:1、分岐数:4」を設定した場合の出力信号の一例を示す図である。
なお、図6に示した各機能設定レジスタには所定のアドレスが割り当てられ、アドレス指定により所定のレジスタへの書き込みおよび読み出しができるものとするが、どのアドレスにどのレジスタを割り当てるかについては本発明の主眼とするところではないため割愛する。
また、図1から図5に示した構成によるマルチモードFIRフィルタ処理部10において、信号入力端子1101に対するフィルタ処理と信号入力端子1102に対するフィルタ処理の処理クロック周波数を独立に設定可能とするため、各処理部に対してそれぞれ2系統の動作クロックを供給し、機能設定時に使用するクロックも選択する構成とする。
以上のように構成されたマルチモードFIRフィルタ処理部10において、まずどのような種類のフィルタ処理動作を実現するかについて説明する。本実施の形態1で示した構成によれば、機能設定の切り替えと所定のフィルタ処理制御を行うことにより、直列接続型フィルタ、ポリフェーズ型間引きフィルタ、ポリフェーズ型多重化間引きフィルタ等のフィルタ処理に対応することが可能である。以下、それぞれの形態でフィルタ処理を行う場合における機能設定とフィルタ処理制御の例を示す。
(1)直列接続型フィルタ
ここでは、信号入力端子1101に対して、演算器コア群1010〜1017を用いて128タップFIRフィルタを構成し、信号出力端子1103へ出力する場合の設定と動作の例について説明する。
図8は、本実施の形態1におけるマルチモードFIRフィルタ処理部10の構成において、直列接続型フィルタ機能を実現する場合に、機能設定レジスタ106に各部の機能を設定する為の機能設定テーブル800の一例を示した図である。
図4の入力インタフェース部102において、セレクタ10210〜10217は信号入力端子1101からの入力を選択し、セレクタ10221〜10227では、図1において一つ上段の演算器コア群からの累積演算出力を入力とするように入力を選択する。これにより、全ての積和演算器コア100の信号入力には同一の信号が入力され、累積演算コア100の入力は直列に接続されたことになる。なお、セレクタ10220では累積演算コア100への入力初期値として0が選択される。また、この場合、デマルチプレクサ1023と1024への設定は影響を及ぼさない。
各々の積和演算器コア100では、オーバクロック比が4の状態で動作する、すなわち、一信号入力あたり4タップ分の積和演算処理が行われ、セレクタ1006において入力10032が選択されることにより、一つの積和演算器コア100あたり4遅延タップ分の演算結果が蓄積され、4積和演算毎に一度、遅延レジスタ群1003に保持された累積演算結果が後段の積和演算器コア100へ出力される。各々の積和演算器コア100におけるタップ係数メモリ1004には、アドレス0〜3までの4タップ分のエリアにそれぞれ128タップ分のタップ係数の一部が書き込まれる。具体的には、積和演算器(i,j)におけるk番目のアドレスに書き込まれるタップ係数wi,j,kは、128タップFIRフィルタのタップ係数をc(m){m=0,1,・・・・,127}とすると、以下に示す式(1)で表される。
i,j,k=c(127−(i×16+j×4−k))・・・・・(1)
機能設定制御部107から前記のように各部の設定を行った上で、フィルタ処理制御部108が行う制御内容について以下に説明する。
図9〜図12は、マルチモードFIRフィルタ処理部10の入力インタフェース部102及び演算器コア群1010の各部における信号処理の過程での動作内容を示した図である。これらの図では、一連の動作内容を図9〜図12に分割して示している。
これらの図では、積和演算器コア100として、図1の演算器コア群1010を構成する積和演算器コア(0,0)及び(0,1)において、信号入力端子1101から信号系列Sn が順次入力された場合の動作内容を示している。図9〜図12において、(a)は信号入力端子1101に入力される信号系列Sn の一例を示す図、(b)はフィルタ処理制御部108から各積和演算器コア(0,0)(0,1)に入力される読み出しアドレス10041の一例を示す図、(c)は各積和演算器コア(0,0)(0,1)内のセレクタ1005に入力される制御信号の一例を示す図、(d)は積和演算器コア(0,0)内の処理動作例を示す図、(e)は積和演算器コア(0,1)内の処理動作例を示す図である。
フィルタ処理制御部108から、各積和演算器コア(0,0)、(0,1)内のタップ係数メモリ1004に入力される読み出しアドレス(Add )10041((b)の0,1,2,3)は、信号入力の4倍のレートで順次アドレスが更新され、一サンプル分の信号入力に対して4タップ分のタップ係数(w0,0,0、0,0,1、0,0,2、0,0,3 )が読み出され、乗算器1001において信号系列Sn と順次積算処理が行われ、その各積算結果がさらに加算器1002において累積加算される。
加算器1002へのもう一方の入力は、セレクタ1005に入力される制御信号(Cont_Acc)10051に応じて選択され、4倍オーバクロック処理のうち1クロック分だけ前段の積和演算器コア100における累積演算出力からの信号が入力され、それ以外のタイミングでは遅延レジスタ群1003からの出力10032がセレクタ1006を介してフィードバックされる。
ラッチ回路1007では、4クロックに一度遅延レジスタ群1003の内容がラッチされ、後段の積和演算器コア100の累積演算入力へ供給される。以上のような動作を各積和演算器コア100および演算器コア群1010〜1017において行うことにより、積和演算器コア毎に4タップ分、演算器コア群毎に16タップ分、系全体としては128タップ分の積和演算処理が行われ、最終的に演算器コア群1017の累積演算出力から全体の積和演算結果が出力される。
出力インタフェース部103では、演算器コア群1017の出力信号が図5における個々のセレクタ10320〜10327、10330〜10333、10340、10341、10350、10351の設定に応じて経路選択され、最終的に信号出力端子1103へ経路選択されて出力される。
以上のような構成により、マルチモードFIRフィルタ処理部10により直列接続型で128タップ分のFIRフィルタ処理が行われる。なお、上記の例では各積和演算器コア当たり4タップ分の積和演算を行うこととしたが、必ずしもこれに限定されるものではなく、各積和演算器コアにおけるオーバクロック周波数が動作可能な周波数であれば、オーバクロック比を8倍に設定し、積和演算器コア毎に8タップ分の積和演算を行う構成とし、演算器コア群1010〜1013までの16個分の積和演算リソースのみを用いて同様の128タップFIRフィルタ処理を行う構成としてもよい。
(2)ポリフェーズ型間引きフィルタ
ここでは、信号入力端子1101に対して、演算器コア群1010〜1013を用いてポリフェーズ型でデシメーション率1/4で、積和演算器コア100当たり8タップ分の積和演算を行う128タップFIRフィルタを構成し、信号出力端子1103へ出力する場合の設定と動作の例について説明する。
図13は、本実施の形態1におけるマルチモードFIRフィルタ構成において、ポリフェーズ型間引きフィルタ機能を実現する場合の各部の機能を設定する為の機能設定テーブル900の一例を示した図である。
この機能設定テーブル900の設定内容に基づいて、入力インタフェース部102において、信号入力端子1101に入力された信号は、デマルチプレクサ1023において1サンプル毎に順次出力10231、10232、10233、10234へ切り替えて出力され、セレクタ10210〜10213を介して演算器コア群1010〜1013に供給されるよう、デマルチプレクサ1023の動作とセレクタ10210〜10213の経路選択が設定される。
また、機能設定テーブル900の設定内容に基づいて、セレクタ10220〜10223においては、各演算器コア群1010〜1013の累積演算入力に対して定数「0」が供給されるように設定される。なお、このフィルタ処理に対する機能設定では、演算器コア群1014〜1017、入力インタフェース部102、出力インタフェース部103の下半分の演算リソース及び機能設定部、すなわち、セレクタ10214〜10217、10224〜10227及びセレクタ10324〜10327等に対する設定には影響を与えず、別の入力系統の信号に対する別のフィルタ処理が行われる場合には、このフィルタ処理に対応した機能設定が別途行われる。このような動的な機能設定の動作については後述する。
ポリフェーズ型間引きフィルタにおいて、1/4の間引きフィルタ処理が行われる場合、入力インタフェース部102のデマルチプレクサ1023における4系統の出力10231〜10234の各々からは信号入力の1/4のレートで信号が出力され、これらの出力がセレクタ10210〜10213を介して演算器コア群1010〜1013に供給される。
そして、各演算器コア群1010〜1013の積和演算器コア100(図1の(0,0)(1,0)(2,0)(3,0))では、入力インタフェース部102からの信号入力に対して8倍のオーバックロック比で積和演算処理が行われる。すなわち、もとの信号入力端子1101に入力される信号のレートに対しては4倍のオーバクロック比で積和演算処理が行われることになる。
また、積和演算器コア100内のセレクタ1006では、入力10033が選択されることにより、一つの積和演算器コア100あたり8遅延タップ分の演算結果が蓄積され、8積和演算毎に一度、遅延レジスタ群1003に保持された累積演算結果が後段の積和演算器コア100へ出力される。各々の積和演算器コア100におけるタップ係数メモリ1004には、アドレス0〜7までの8タップ分のエリアにそれぞれ128タップ分のタップ係数の一部が書き込まれる。具体的には、積和演算器コア(i,j)におけるk番目のアドレスに書き込まれるタップ係数wi,j,kは、128タップFIRフィルタのタップ係数をc(m){m=0,1,・・・・,127}とすると、以下に示す式(2)で表される。
i,j,k=c(99−(i+j×32−k×4))・・・・・(2)
機能設定制御部107から上記のように入力インタフェース部102、演算器コア群1010〜1013及び出力インタフェース部103の各部の機能設定を行った上で、フィルタ処理制御部108が行う制御内容について以下に説明する。
図14〜図19は、マルチモードFIRフィルタ部10の入力インタフェース部102、演算器コア群1010〜1013及び出力インタフェース部103の各部において、ポリフェーズ型1/4デシメーション128タップFIRフィルタ信号処理を行う過程での動作内容を示した図である。これらの図では、一連の動作内容を図14〜図19に分割して示している。
これらの図では、積和演算器コア100として、図1の演算器コア群1010〜1013を構成する積和演算器コア(0,3)、(1,3)、(2,3)、(3,3)において、信号入力端子1101から信号系列Sn が順次入力された場合の動作内容を示している。図14〜図19において、(a)は信号入力端子1101に入力される信号系列Sn の一例を示す図、(b)は入力インタフェース部102のデマルチプレクサ1023における4系統の出力10231〜10234を示す図、(c)は積和演算器コア(0,3)内の各部で処理される入出力信号の一例を示す図、(d)は積和演算器コア(1,3)内の各部で処理される入出力信号の一例を示す図、(e)は積和演算器コア(2,3)内の各部で処理される入出力信号の一例を示す図、(f)は積和演算器コア(3,3)内の各部で処理される入出力信号の一例を示す図、(g)は出力インタフェース部103の信号出力端子1103から出力される信号の一例を示す図である。
入力インタフェース部102の信号入力端子1101には、上記図14、図15(a)に示す信号系列Sn が順次入力され、デマルチプレクサ1023において1サンプル毎に同図(b)に示す4系統の出力信号10231、10232、10233、10234が順次切り替えられて出力される。
各積和演算器コア(0,3)、(1,3)、(2,3)、(3,3)内のタップ係数メモリ1004の読み出しアドレス(Add )10041には、信号入力端子1201の8倍のレートでフィルタ処理制御部108から順次アドレス(例えば、同図(c)の0,1,2,3,4,5,6,7)が供給されることにより、一サンプル分の信号入力に対して8タップ分のタップ係数(例えば、同図(c)のw0,7,0、0,7,1、0,7,2、0,7,3、0,7,4、0,7,5、0,7,6、0,7,7)が読み出され、乗算器1001において信号系列Sn と順次積算処理が行われ、その各積算結果がさらに加算器1002において累積加算される。
加算器1002へのもう一方の入力は、セレクタ1005に入力される制御信号(Cont_Acc)10051に応じて選択され、8倍オーバクロック処理のうち1クロック分だけ前段の積和演算器コア100における累積演算出力からの信号が入力され、それ以外のタイミングでは遅延レジスタ1003からの出力10033がセレクタ1006を介してフィードバックされる。ラッチ回路1007では、8クロックに一度セレクタ1006を介した遅延レジスタ1003の出力10033がラッチされ、後段の積和演算器コア100の累積演算入力へ供給される。
以上のような動作を各積和演算器コア100及び演算器コア群1010〜1013において行うことにより、積和演算器コア100毎に8タップ分、演算器コア群1010〜1013毎に32タップ分、系全体としては128タップ分の積和演算処理が行われ、最終的に演算器コア群1013の累積演算出力から全体の積和演算結果が出力される。
出力インタフェース部103では、図5における個々のセレクタ10320〜10323、10330、10331、10340、10350が図13に示した機能設定テーブル900の設定に応じて経路選択され、演算器コア群1010〜1013の累積演算出力が加算器10310、10311、10314、10316、10318により加算合成され、最終的に信号出力端子1103から、図19(g)に示す信号が出力される。
以上のような構成により、マルチモードFIRフィルタ処理部10によりポリフェーズ型でデシメーション率1/4の128タップFIRフィルタ処理が行われる。なお、上記の例では各積和演算器コア当たり8タップ分の積和演算を行うこととしたが、必ずしもこれに限定されるものではなく、各積和演算器コアにおけるオーバクロック周波数がデバイス上で動作不可能な周波数であれば、オーバクロック比を4倍に設定した上で、積和演算器コア毎に4タップ分の積和演算を行う構成とし、演算器コア群1010〜1017までの32個分の積和演算リソースを用いて同様の128タップFIRフィルタ処理を行う構成としてもよい。
(3)ポリフェーズ型時分割多重化間引きフィルタ
ここでは、信号入力端子1101に入力される信号に対して、演算器コア群1010、1011を用いてポリフェーズ型でデシメーション率1/4で、積和演算器コア当たり8タップ分の積和演算を行う64タップFIRフィルタを構成し、信号出力端子1103へ出力する場合の設定と動作の例について説明する。デシメーション率1/4のポリフェーズ型FIRフィルタでは、通常信号入力を4系統に順次分岐して1系統あたり1/4の演算量のフィルタ処理を行うが、ここでは1系統で2系統分の積和演算処理を時間多重し、計2系統で4系等分のポリフェーズ型FIRフィルタ処理を行う場合の動作例を示す。
図20は、本実施の形態1におけるマルチモードFIRフィルタ構成においてポリフェーズ型時分割多重化間引きフィルタ機能を実現する場合の各部の機能を設定する為の機能設定テーブル1000の一例を示した図である。
この機能設定テーブル1000の設定内容に基づいて、入力インタフェース部102において、信号入力端子1101に入力された信号はデマルチプレクサ1023において1サンプル毎に順次出力10231、10232に切り替えて出力され、セレクタ10210、10211を介して演算器コア群1010、1011へ供給されるよう、デマルチプレクサ1023の動作とセレクタ10210、10211、10220、10221の経路選択が設定される。
また、機能設定テーブル1000の設定内容に基づいて、セレクタ10220、10221においては、各演算器コア群1010、1011の累積演算入力に対して定数「0」が供給されるように設定される。なお、このフィルタ処理に対する機能設定では、演算器コア群1012〜1017、及び入力インタフェース部102と出力インタフェース部103で信号経路上にないセレクタやデマルチプレクサの機能設定部の設定は動作に影響を与えず、別の入力系統の信号に対する別のフィルタ処理が行われる場合には、このフィルタ処理に対応した機能設定が別途行われる。
ポリフェーズ型で1/4の間引きフィルタ処理が行われ、かつ経路の系統毎に2時分割多重処理される場合、デマルチプレクサ1023では、信号入力端子1101からの入力信号が順次2系統の出力10231、10232から元の信号入力の1/2のレートで信号が出力され、これらの出力がセレクタ10210、10211、10220、10221を介して演算器コア群1010、1011に供給される。
そして、各演算器コア群1010、1011の各積和演算器コア100(図1の(0,0)(1,0))では、入力インタフェース部102からの信号入力に対して8倍のオーバックロック比で積和演算処理が行われる。すなわち、元の信号入力端子1101に入力された信号のレートに対しては4倍のオーバクロック比で積和演算処理が行われることになる。
また、積和演算器コア100のセレクタ1006では入力10033が選択されることにより、一つの積和演算器コア100当たり8遅延タップ分の演算結果が得られ、8積和演算毎に一度、遅延レジスタ1003に保持された累積演算結果が後段の積和演算器コア100へ出力される。ここで、積和演算される8タップ分のデータのうち、前半4タップ分と後半4タップ分では信号入力が異なり、それぞれポリフェーズ型処理における別の系統の信号が時分割で供給され、それぞれの系統における積和演算結果が4タップ分ずつ交互に蓄積される。各々の積和演算器コア100におけるタップ係数メモリ1004には、アドレス0〜7までの8タップ分のエリアにそれぞれ64タップ分のタップ係数の一部が書き込まれる。具体的には、積和演算器(i,j)におけるk番目のアドレスに書き込まれるタップ係数wi,j,kは、64タップFIRフィルタのタップ係数をc(m){0,1,・・・・,63}とすると、以下に示す式(3)で表される。
i,j,k=c(49−(i+j×16−([k/4]×4+(kmod4))))
・・・・・(3)
ここで、式(3)における[]は[]内における値を超えない最大の整数を表し、(k mod 4)はkを4で除した時の剰余を表す。
機能設定制御部107から上記のように入力インタフェース部102、演算器コア群1010、1011及び出力インタフェース部103の各部の機能の設定を行った上で、フィルタ処理制御部108が行う制御内容について以下で説明する。
図21〜図24は、マルチモードFIRフィルタ部10の各部において、ポリフェーズ型でデシメーション率1/4で、かつ時分割処理により64タップFIRフィルタ信号処理を行う過程での動作内容を示した図である。これらの図では、一連の動作内容を図21〜図24に分割して示している。
これらの図では、積和演算器コア100として、図1の演算器コア群1010、1011を構成する積和演算器コア(0,7)、(1,7)において、信号入力端子1101から信号系列Sn が順次入力された場合の動作内容を示している。図21〜図24において、(a)は入力インタフェース部102における処理される信号の一例を示す図、(b)は積和演算器コア(0,7)内の各部で処理される入出力信号の一例を示す図、(c)は積和演算器コア(1,7)内の各部で処理される入出力信号の一例を示す図、(d)は出力インタフェース部103の加算器10316、10318から出力される信号の一例を示す図である。
入力インタフェース部102の信号入力端子1101には、上記図21、図22(a)に示す信号系列Sn が順次入力され、デマルチプレクサ1023において1サンプル毎に同図(a)に示す出力信号10231、10232が順次切り替えられて出力される。
各積和演算器コア(0,7)、(1,7)のタップ係数メモリ1004の読み出しアドレス(Add )10041には、信号入力端子1201に入力される信号の8倍のレートでフィルタ処理制御部108から順次アドレスが供給されることにより、一サンプル分の信号入力に対して4タップ分のタップ係数(例えば、同図(b)のw0,7,0、0,7,1、0,7,2、0,7,3 )が読み出され、乗算器1001において信号系列Sn と順次積算処理が行われ、さらに加算器1002において累積加算される。
加算器1002へのもう一方の入力はセレクタ1005に入力される制御信号(Cont_Acc)10051に応じて選択され、8倍オーバクロック処理のうち1クロック分だけ前段の積和演算器コアにおける累積演算出力からの信号が入力され、それ以外のタイミングでは遅延レジスタ1003からの出力10033がセレクタ1006を介してフィードバックされる。
ラッチ回路1007では、4クロック毎に一度セレクタ1006を介した遅延レジスタ1003の出力10033がラッチされ、後段の積和演算器コアの累積演算入力へ供給される。以上のような動作を各積和演算器コア100及び演算器コア群1010、1011において行うことにより、積和演算器コア100毎に8タップ分、演算器コア群1010、1011毎に32タップ分、系全体としては64タップ分の積和演算処理が行われ、最終的に演算器コア群1011の累積演算出力から全体の積和演算結果が出力される。
出力インタフェース部103では、図5における個々のセレクタ10320〜10323、10330、10331、10340が図20に示した機能設定テーブル1000設定に応じて経路選択され、演算器コア群1010〜1011の累積演算出力が加算器103110より加算合成され、さらに加算器10318により時分割的に積和演算処理されていた2系統分の積和演算結果の累積加算処理が行われ、最終的に信号出力端子1103から図24(d)に示す出力信号が出力される。
以上のような構成により、マルチモードFIRフィルタ処理部10によりポリフェーズ型でデシメーション率1/4のFIRフィルタ処理を2系統の演算器群により時分割処理することにより64タップFIRフィルタ処理が行われる。
次に、上記のようにして機能変更により複数の種類の異なる処理型のフィルタ処理が可能なマルチモードFIRフィルタ処理部10において、通信モードが選択されフィルタ処理の要求仕様が指定された場合に、リソース割り当て制御を行う場合の動作例について以下に説明する。
マルチモード動作制御部104は、マルチモード無線通信装置における通信モードの選択が所定の判断条件に基づいて行われ、選択された通信モードに対応した通信モード制御信号が入力されると、その通信モード制御信号をリソース割当制御部105に出力し、リソース割当制御部105では通信モード制御信号に基づいて、対応すべき通信規格に要求される所定のフィルタ仕様に関する情報が読み出される。
図25は、マルチモード無線通信装置が対応する無線通信規格の一例と、それぞれの規格に対応した通信処理を行う場合に要求されるフィルタ処理の要求仕様と、それぞれに対応した設定内容の一例と対応付けたリスト2000を示している。なお、この例では、マルチモードFIRフィルタ処理部の最大積和演算処理周波数が80MHzである場合を前提とした例を示している。例えば、UMTS(Universal Mobile Telecommunications System)規格に対応するには、47タップ長のフィルタが要求され、入力信号、出力信号ともに15.36MHzのレートで入出力され、間引き率1/1で直列型によりフィルタが構成できることを示している。
また、このフィルタ処理を行うためには2通りの設定例があることを示している。一つ目の設定例では、演算器コア群3つ分のリソースを用い、一つの積和演算器コア当たり4タップ分の積和演算を元の入力信号レートの4倍に相当する61.44MHzで処理する。二つ目の設定例では、演算器コア群6つ分のリソースを用い、一つの演算器コア当たり2タップ分の積和演算を元の入力信号の2倍に相当する30.72MHzで処理する。このように、一つの通信規格に対応する場合に、演算リソースの使用量や処理周波数の上限までの範囲内で複数の種類のフィルタ設定候補がリストアップされるものがある。
図26は、リソース割当制御部105の構成と処理および制御の流れを示した図である。フィルタ設定候補記憶部1051では、図25に示したようなリスト2000には通信規格に応じたフィルタ設定例に関する情報が予め記憶されており、選択された通信モードへの切り替え要求を示す通信モード制御信号に基づいて、それに対応したフィルタ処理の設定例の候補リストが読み出されてリソース割当決定部1052に出力される。
リソース使用状況記憶部1053では、マルチモードFIRフィルタ処理部10における演算器コア群の使用状況が記憶される。リソース使用状況記憶部1053は、リソース割当決定部1052において決定されたリソース割当結果に基づいてマルチモードFIRフィルタ処理部10における演算器リソースの使用状況を更新するとともに、その情報をリソース割当決定部1052へ提供する。なお、リソース使用状況記憶部1053では、フィルタ処理制御部108から機能設定レジスタ106を介して供給されるフィルタ処理完了情報に基づいて、使用状態としていた演算器リソースを空き状態へ更新する処理も行われる。
図27は、リソース割当決定部1052において候補の中からリソース割当可能なフィルタ設定を選択する際のフローチャートであり、以下、その手順について説明する。
まず、リソース割当決定部1052は、通信モード制御信号の入力の検知によりリソース割当要求が検出されると(ステップS11:YES)、選択された通信モードに対応したフィルタ設定の候補がフィルタ設定候補記憶部1051から読み出される(ステップS12)。ここで、フィルタ設定候補記憶部1051に記憶された上記図25のリスト2000のようにフィルタ設定の候補が複数ある場合には、所要演算器コア群の数が多い設定候補から順に読み出される。
次いで、リソース割当決定部1052では、読み出された設定候補で必要とする演算器コア群の数、すなわち必要リソース量が、リソース利用状況記憶部1053から供給されるリソース使用状況から得られる使用されていない演算器コア群の数、すなわち空きリソースの数との比較が行われる(ステップS13)。リソース割当決定部1052は、必要とするリソース量が空きリソース量と等しいか少ないと判断した場合には(ステップS13:YES)、(ステップS14)に移行し、上記フィルタ設定候補を選択することに決定し、リソース割当の決定情報を機能変更制御部1055とリソース使用状況記憶部1053に出力する。
また、リソース割当決定部1052は、上記リソースの比較において必要リソースが空きリソースよりも大きいと判断した場合には(ステップS13:NO)、(ステップS15)へ移行し、フィルタ設定候補記憶部1051に残りのフィルタ設定候補が存在するか否かを判定し、残りの候補がある場合には(ステップS15:YES)、(ステップS12)へ移行する。
リソース割当決定部1052は、残りの設定候補がないと判断した場合には(ステップS15:NO)、(ステップS16)へ移行し、リソース使用状況記憶部1053から供給されるリソース使用状況に変化が生じるまで待機状態となる。前記リソース使用状況に変化が生じた場合には(ステップS16:YES)、(ステップS12)へ移行する。
以上のようにしてリソース割当決定部1052により決定されたリソース割当に基づいて、機能変更制御部1055においてマルチモードFIRフィルタ処理部10における各部の機能設定変更のための機能制御情報が出力される。具体的には、図6に示したような機能設定テーブル600を構成する機能設定レジスタ106における各設定レジスタに、機能変更制御部1055により選択されたフィルタ設定を実現するために必要な値が書き込まれるとともに、フィルタ処理制御部108における動作制御内容についての設定内容も合わせて機能設定レジスタ106に書き込まれる。
ここでは、リソース割当制御の一例として、マルチモードFIRフィルタ処理部10において既にIEEE802.11a対応の通信モードでFIRフィルタ処理が行われていて、新たにこれに加えてUMTSに対応した通信モードでFIRフィルタ処理を行う場合の動作例について以下に説明する。IEEE802.11a向けのFIRフィルタ処理は図25に示すように、4つの演算器コア群が必要となる。ここではIEEE802.11aに対応した受信信号は、図1の信号入力端子1102から入力され、入力インタフェース部102を介して演算器コア群1014〜1017へ供給され、所定の積和演算処理が施され、出力インタフェース部103を介して信号出力端子1104から出力されているものとする。
リソース割当制御部105のフィルタ設定候補記憶部1051では、UMTS規格に対応したフィルタ処理の設定候補として、図25のリスト2000におけるUMTSの行に示した二通りの候補が記憶されている。すなわち、演算器コア群を6つ用いて各積和演算器コアを30.72MHzの動作クロックで処理する設定(以下、候補Aという)と、演算器コア群を3つ用いて61.44MHzの動作クロックで処理する設定(以下、候補Bという)の二通りである。
リソース割当決定部1052は、リソース割当の要求を意味する通信モード制御信号が入力されると(ステップS11:YES)、(ステップS12)の動作モード候補読み出し処理により、まず一つ目のフィルタ設定情報の候補として、所要演算器コア群数が多い候補Aの設定情報を読み込む。また、リソース割当決定部1052には、リソース使用状況記憶部1053からリソース使用状況として、現在、IEEE802.11a対応のフィルタ処理用に4つの演算器コア群(1013〜1017)が使用中、すなわち空いている演算器コア群の数が4であるという情報が入力される。
この場合、(ステップS13)のリソース量比較処理において、必要リソース量が空きリソース量を超えているため(ステップS13:NO)、(ステップS15)へ移行し、残りのフィルタ設定候補(候補B)が存在するため(ステップS15:YES)、再び(ステップS12)へ移行する。(ステップS12)では、候補Bのフィルタ設定情報が改めてフィルタ設定候補記憶部1051からリソース割当決定部1052を介して読み出される。この場合、必要とする演算器コア群の数は3であり、(ステップS13)において空きリソース数以下の条件を満たすため(ステップS13:YES)、(ステップS14)へ移行し、候補Bのフィルタ設定が選択され、リソース割当決定情報として機能変更制御部1055へ出力される。機能変更制御部1055では、決定されたリソース割当決定情報に基づいて、設定パラメータ記憶部1054に記憶された図28に示すような機能設定テーブル2100から設定情報が読み出されて、機能設定レジスタ106へ書き込まれる。
次に、上記の例において仮に既に使用中であるフィルタ処理の設定が、上記IEEE802.11a規格に対応したフィルタ処理の代わりに、IEEE802.15.1規格に対応したフィルタ処理が行われている場合の動作例について以下に説明する。
具体的には、図25のリスト2000において候補Bで示した演算器コア群を6つ使用するフィルタ設定で動作している場合の動作例について以下に説明する。
この場合、IEEE802.15.1規格対応のフィルタ処理のために、既に6つの演算器コア群(1012〜1017)が使用されており、UMTS規格向けのフィルタ設定候補のいずれの場合においても、空いている演算器コア群の数が必要とする演算器コア群の数に満たないため、演算器コア群のリソースを割り当ててフィルタ処理を行うことができない。このような場合に、リソース割当決定部1052では、図27に示したフローチャートにおける(ステップS16)に移行し、リソース使用状況記憶部1053によるリソース使用状況に変化が生じたか否かの検出が行われ、リソース使用状況に変化が生じた場合に(ステップS16:YES)、改めて(ステップ12)へ移行し、リソース割当の判断が行われる。
以上の構成及び動作によれば、マルチモード無線通信装置における通信モードの変更に伴い、必要とするフィルタ特性の設定候補と演算リソースの空き状況に基づいて、使用する演算リソースとその設定内容を決定し、決定に基づいて各部の機能変更を行い、かつ所定の動作制御を行うようにした。このため、限られた積和演算リソースの演算タップ数や動作クロックや接続関係を柔軟に変更することにより複数の異なるFIRフィルタ処理に対応可能となり、かつ複数のフィルタ処理を同時並列的に行うことが可能となる。その結果、複数の異なる動作モード毎に個別にフィルタを構成するよりも回路規模を低減することが可能となる。
なお、本実施の形態1で例示したマルチモードFIRフィルタ処理部10の構成では、積和演算器コア当たりで処理可能な積和演算処理数を最大8とし、演算器コア群あたり積和演算器コアを4つ直列接続し、演算器コア群を8つ設ける構成とし、さらに信号入力端子の数を2つとし、一信号入力端子当たりにデマルチプレクサで分岐する数を4としている。しかし、本発明は、これら構成の数に限定されるものでなく、マルチモード無線通信装置において要求されるフィルタ処理性能の要求仕様に応じてスケーラブルに設計変更可能なものである。
また、個々の積和演算器コア100に信号入力端子1201と信号出力端子1203を設ける構成としたが、必ずしもこの構成に限定されることはなく、マルチモードFIRフィルタ処理部10における同一の演算器コア群に含まれる個々の積和演算器コアに対して共通の信号入力が各積和演算器コアに供給される構成とすれば、各積和演算器コアにおける信号出力は不要であることは言うまでも無い。
また、図25に示した各無線通信規格に応じて要求されるフィルタの仕様はあくまでも一例であり、無線通信装置内における他の設計仕様も含めたシステム設計によっては、これらの仕様値が変更されてもよいことは言うまでもない。この場合、マルチモードFIRフィルタ処理部に要求される仕様とそれに対応した設定例の候補リストが、予めマルチモード動作制御部104内のフィルタ設定候補記憶部1051に記憶しておけばよい。
また、個々の積和演算器コアにおける処理周波数は、図25で例示した周波数に限定されることはなく、最大積和演算処理周波数(本実施の形態1の場合は80MHzと仮定)までの間であれば、より高速な周波数を用いて処理する構成としてもよい。この場合、信号入力と積和演算器コアにおける演算との間は非同期な処理になるため、信号入力の前段や信号出力の後段に、一般的に用いられるFIFO(First-In First-Out)バッファ等を設け、タイミングとデータ量の調整を行う構成としてもよい。
(実施の形態2)
本実施の形態2では、CIC(Cascaded Integrator Comb)フィルタの構成要素である積分器、差分器と間引き処理部を複数配置し、各構成要素間の入出力接続関係を切り替えるインタフェースを設け、これら個々の構成要素における動作機能の設定と入出力インタフェースの接続設定を切り替えることにより、要求されるフィルタ特性に応じて、各構成要素のリソースを動的に変更し、複数のフィルタ処理の同時動作を行う場合の構成および動作例を説明する。
図29は、本実施の形態2の説明に用いるマルチモードCICフィルタ処理部20の構成を示すブロック図である。マルチモードCICフィルタ処理部20は、2系統の信号入力端子2101、2102を有し、それぞれ独立した通信系統の信号が入力される。また、2系統の信号出力端子2103、2104を有し、信号入力端子2101、2102に対するフィルタ処理後の出力信号が出力される。また、マルチモードCICフィルタ処理部20は、複数の積分器201が縦続接続されて構成される積分器群を4系統有し、複数の差分器202が従属接続されて構成される差分器群を4系統有し、4系統の間引き処理部203を有する。また、それぞれ4系統の積分器群と間引き処理部203の間の接続はインタフェース部206を介し、差分器群と間引き処理部203の間の接続はインタフェース部207を介する構成となっている。また、信号入力端子2101、2102と4系統の積分器群の間の接続は入力インタフェース部204を介し、信号出力端子2103、2104と4系統の差分器群の間の接続は出力インタフェース部205を介する構成となっている。
積分器201は、入力信号を累積加算することにより積分処理を行った結果を出力するものであり、例えば、図30に示すように構成される。図30において、加算器2011は2系統の入力信号の加算結果を出力するものであり、遅延タップ2012は、入力信号を1クロックサイクル分保持し遅延させて出力するものである。加算器2011は、積分器201の入力端子2013と遅延タップ2012の出力とを入力とし、遅延タップ2012の出力が積分器201の出力端子2014から出力される。
差分器202は、入力信号から前記入力信号を所定の時間遅延させた信号を減算した結果を出力するものであり、例えば、図32に示すように構成される。図32において、遅延タップ2021は、差分器202の信号入力端子2023に入力される入力信号を所定のクロックサイクル分保持し遅延させて出力するものであり、減算器2022は、前記入力信号から遅延タップ2021の出力信号の減算処理を行い、減算結果を差分器202の出力を出力端子2024から出力する。遅延タップ2021において遅延させる時間長は、後述の機能設定制御部107から供給される。
間引き処理部203は、入力信号に対して所定の比率で間引き処理を行い一部の信号のみを出力するものであり、所定の間引き比率については、後述の機能設定制御部107から供給される値によって設定される。
なお、図29では、複数配置された積分器201と差分器202の位置に応じて(i,j)という番号を付し、また間引き処理部203にも位置に応じて(i)という番号を付している。iはi番目の処理系統の配置であることを示しており、積分器201と差分器202におけるjはj番目に縦続に配置されたものであることを示している。
入力インタフェース部204は、2系統の信号入力端子2101、2102の入力(Input #0,Input #1 )と、インタフェース部206及び出力インタフェース部205からのフィードバック接続を入力とし、後述の機能設定制御部107から入力される機能変更制御信号に応じて4系統の積分器群との間の接続を切り替えるものである。具体的な構成例については、図33を用いて後述する。
出力インタフェース部205は、4系統の差分器群から出力される信号を、フィードバック出力として入力インタフェース部204に出力するとともに、後述の機能設定制御部107から供給される機能変更制御信号に応じて4系統の差分器群の出力信号から所定の出力信号を選択して信号出力端子2103、2104から出力するものである。具体的な構成例については、図34を用いて後述する。
インタフェース部206は、4系統の積分器群から出力される信号を、フィードバック出力として入力インタフェース部204に出力するとともに、それぞれの出力信号を4系統の間引き処理部203へ出力するものである。具体的な構成例については、図35を用いて後述する。なお、インタフェース部206は、第1のインタフェース部として機能する。
インタフェース部207は、4系統の間引き処理部203から出力される信号と出力インタフェース部205から出力される4系統のフィードバック出力を入力として、後述の機能設定制御部107から供給される機能変更制御信号に応じて、後段の4系統の差分器群へ接続する信号を選択して接続するものである。具体的な構成例については、図36を用いて後述する。なお、インタフェース部207は、第2のインタフェース部として機能する。
図33は、入力インタフェース部204の構成例を示す図である。図33において、セレクタ2041〜2044は、機能設定制御部107からそれぞれ独立に供給される機能変更制御信号に応じて複数の入力信号から一つを選択して各々の系統の積分器群へ出力するものである。セレクタ2041では、信号入力端子2101を入力の一つとし、セレクタ2044では、信号入力端子2102を入力の一つとする。また、それぞれのセレクタ2041〜2044には、フィードバック入力端子2045を介して、隣接する処理系統における積分器201の出力と、差分器202の出力も入力されるように接続されている。
図34は、出力インタフェース部205の構成例を示す図である。図34において、セレクタ2051、2052は、機能設定制御部107からそれぞれ独立に供給される機能変更制御信号に応じて、複数の差分器群から入力される入力信号から一つを選択して、それぞれ信号出力端子2103、2104へ出力するものである。また、出力インタフェース部205は、フィードバック出力端子2053を有し、複数の差分器群からの入力信号をフィードバック出力端子2053から入力インタフェース部204とインタフェース部207に出力する。
図35は、インタフェース部206の構成例を示す図である。図35において、4系統の積分器群から出力された信号は、それぞれの系統の間引き処理部203へ出力されると共に、フィードバック出力端子2071として分岐して入力インタフェース部204に出力される。
図36は、インタフェース部207の構成例を示す図である。図36において、セレクタ2071〜2074は、機能設定制御部107からそれぞれ独立に供給される機能変更制御信号に応じて複数の間引き処理部203から入力される入力信号から一つを選択して、それぞれの系統の差分器群へ出力するものである。セレクタ2071および2074では、4系統の間引き処理部203の各々の出力が入力されるとともに、フィードバック入力端子2075を介して隣接する系統における差分器群の出力が接続される。セレクタ2072と2073では、図中のそれぞれの段に位置する間引き処理部203の出力が入力されるとともに、隣接する系統の差分器202の出力がフィードバック入力端子2075を介して入力される。
なお、図29で示したマルチモードCICフィルタ処理部20に対しては、上記実施の形態1におけるマルチモードFIRフィルタ処理部10の場合と同様に、図2で示した制御部11により各構成要素の機能設定と動作制御が行われるものとするが、それぞれの構成要素においては、マルチモードCICフィルタ処理部20に対応した機能設定や動作制御をするような変更がなされる。例えば、リソース割当制御部105では、通信モード制御信号に基づいて、所望のフィルタ仕様を実現するために必要なCICフィルタ演算リソースに関する要求情報と、マルチモードCICフィルタ処理部20における演算リソースの空き状況に基づいて各々の演算リソースの割り当てを決定し、決定されたリソース割り当てとそれに伴う機能変更情報を出力するように設定される。
また、機能設定レジスタ106における機能変更情報を保持するレジスタでは、マルチモードCICフィルタ処理部20における各設定部に対応したレジスタが用意されており、リソース割当制御部105から出力される機能変更情報が所定のレジスタ位置に書き込まれると共に、必要に応じて読み出されて機能設定制御部107に出力される。
また、機能設定制御部107では、機能設定レジスタ106に保持されている機能変更情報を必要に応じて読み出し、マルチモードCICフィルタ処理部20における積分器201、差分器202、間引き処理部203、各インタフェース部204、205、206、207に対する機能変更制御を行うように設定される。さらに、フィルタ処理制御部108では、マルチモードCICフィルタ処理部20におけるフィルタ処理動作のための制御を行うように構成される。
図37は、本実施の形態2における制御部11の機能設定レジスタ106において機能設定書き込みおよび読み出しされる各構成部と設定値のリスト3000である。例えば、図36に示したインタフェース部207における各セレクタ2071〜2074の設定レジスタが設けられており、設定値は0からの昇順に従って、図中の上側からの順で入力が選択されるものとする。また、4つの系統に分けられた各差分器群では、遅延クロック数が可変な構成になっており、遅延クロック数をそれぞれ整数値Mxで設定する。機能設定制御部107では、図37に例示したリスト3000に基づいて機能設定レジスタ106に書き込まれた各部設定値が読み出され、機能制御および動作制御が行われる。
以上のように構成されたマルチモードCICフィルタ処理部20において、複数の仕様のCICフィルタを構成する動作の一例について以下に説明する。ここでは、信号入力端子2101に入力された信号に対し、図29における上から3段分の演算器群のリソースを用いて第1のCICフィルタ特性をもつ処理を行って信号出力端子2103へ出力し、もう一方で信号入力端子2102に入力された信号に対し、図29における下から1段分の演算器群のリソースを用いて第2のCICフィルタ特性をもつ処理を行って信号出力端子2104へ出力する場合を仮定する。
一般に、CICフィルタでは、積分器および差分器を縦続接続する段数N、間引き処理部における間引き比率R、差分器における遅延クロック数Mの値に応じて、以下に示す式(4)で表されるような周波数応答特性を実現できることが知られている。
H(Z)=(1−Z−RM/(1−Z−1・・・・(4)
マルチモードCICフィルタ処理部20における各部の設定を図38に示すリスト3100のように設定することにより、第1のフィルタは式(4)における各値が、N=6、R=8、M=1の設定となり、第2のフィルタはN=2、R=2、M=2の設定となる。
図39は、各CICフィルタ設定の周波数応答特性を示した図である。ここでは、双方のサンプリング周波数が同一の場合を仮定して図示している。それぞれ、異なるリソースを用いて別々のフィルタ特性を実現していることが確認できる。
また、上記のようにして機能変更により複数の異なる周波数応答特性をもつフィルタ処理が可能なマルチモードCICフィルタ処理部20において、通信モードが選択されフィルタ処理の要求仕様が指定された場合に、積分器群や差分器群のリソースの割当て制御を行う制御内容については、実施の形態1の図25〜図27を用いて説明した内容に基づいてマルチモードCICフィルタ処理部用に適用することが可能である。
以上の構成及び動作によれば、マルチモード無線通信装置における通信モードの変更に伴い、必要とするフィルタ特性の設定候補と演算リソースの空き状況に基づいて、使用する演算リソースとその設定内容を決定し、決定に基づいて各部の機能変更を行い、かつ所定の動作制御を行うようにしたので、限られた積和演算リソースの演算タップ数や動作クロックや接続関係を柔軟に変更することにより複数の異なるCICフィルタ処理に対応可能とし、かつ複数のCICフィルタ処理を同時並列的に行うことが可能となり、複数の異なる動作モード毎に個別にフィルタを構成するよりも回路規模を低減することが可能となる。
なお、本発明では間引きによりサンプリングレートをダウンコンバートする間引きCICフィルタ処理に限定されるものではなく、例えば、積分器と差分器の配置を入れ替え、間引き処理部の代わりに補間処理部を設けることにより、送信信号処理等に用いられる補間処理CICフィルタ処理にも適用可能であることは当業者には明らかである。
また、上記実施の形態1におけるマルチモードFIRフィルタ処理部の場合と同様に、各々の積分器、差分器の個数や系統数については本実施の形態2で例示した個数に限定されるものではなく、スケーラブルに変更可能である。
(実施の形態3)
本実施の形態3では、上記実施の形態1で説明したマルチモードFIRフィルタ処理部と上記実施の形態2で説明したマルチモードCICフィルタ処理部をともに実装することにより、機能や性能をより柔軟に変更可能なマルチモード受信フィルタ処理部を構成する場合の構成と動作について説明する。
図40は、本実施の形態3の説明に用いるマルチモード受信フィルタ処理部30の構成を示す図である。マルチモード受信フィルタ処理部30は、実施の形態1、2と同様に、2系統の信号入力端子1101、1102を有し、それぞれ独立した通信系統の信号が入力され、また2系統の信号出力端子1103、1104を有し、信号入力端子1011、1012に対するフィルタ処理後の出力信号が出力される。また、マルチモード受信フィルタ処理部30は、実施の形態1で説明したマルチモードFIRフィルタ処理部10と、実施の形態2で説明したマルチモードCICフィルタ処理部20を有する。複数の信号入力、複数の信号出力、マルチモードFIRフィルタ処理部10、マルチモードCICフィルタ処理部20の間は、入力インタフェース部31、出力インタフェース部32、セレクタ33により接続される。
入力インタフェース部31は、複数の信号入力端子1101、1102の各々を、制御部11における機能設定制御部107から入力される機能変更制御信号に基づいてマルチモードCICフィルタ処理部20もしくはセレクタ33のうちいずれかに接続する。
出力インタフェース部32は、マルチモードCICフィルタ処理部20の出力とマルチモードFIRフィルタ処理部10の出力を入力とし、制御部11内の機能変更制御部107から入力される機能変更制御信号に基づいて信号出力端子1103、1104が選択される。
セレクタ33は、マルチモードCICフィルタ処理部20からの出力と入力インタフェース部31からの出力のうち、制御部11内の機能設定制御部107から入力される機能変更制御信号に基づいてマルチモードFIRフィルタ処理部10に出力する信号が選択される。
制御部11は、基本的には上記実施の形態1の図2で説明したものと同様の構成であるが、リソース割当制御部105では、通信モード制御信号に基づいて、所望のフィルタ仕様を実現するために必要なFIRフィルタ演算リソースとCICフィルタ演算リソースに関する要求情報と、マルチモードFIRフィルタ処理部10とマルチモードCICフィルタ処理部20における演算リソースの空き状況に基づいて各々の演算リソースの割り当てを決定し、決定されたリソース割り当てとそれに伴う機能変更情報を出力するように設定される。
また、機能設定レジスタ106における機能変更情報を保持するレジスタでは、マルチモードFIRフィルタ処理部10とマルチモードCICフィルタ処理部20の双方における各設定部に対応したレジスタが用意されており、リソース割当制御部105から出力される機能変更情報が所定のレジスタ位置に書き込まれると共に、必要に応じて読み出され出力される。
また、機能設定制御部107では、機能設定レジスタ106に保持されている機能変更情報を必要に応じて読み出し、マルチモードFIRフィルタ処理部10における個々の積和演算器コア100、入力インタフェース部102、出力インタフェース部103におけるタップ係数、接続切り替え用セレクタ、デマルチプレクサに対する機能変更制御と、マルチモードCICフィルタ処理部20における積分器201、差分器202、間引き処理部203、各インタフェース部204〜207に対する機能変更制御を行うように設定される。
さらに、フィルタ処理制御部108では、マルチモードFIRフィルタ処理部10とマルチモードCICフィルタ処理部20の双方におけるフィルタ処理動作のための制御を行うこととする。
以上の構成及び動作によれば、マルチモード無線通信装置における通信モードの変更に伴い、必要とするフィルタ特性の設定候補と演算リソースの空き状況に基づいて、使用する演算リソースとその設定内容を決定し、決定に基づいて各部の機能変更を行い、かつ所定の動作制御を行うようにしたので、限られた積和演算リソースの演算タップ数や動作クロックや接続関係を柔軟に変更することにより複数の異なるフィルタ処理に対応可能とし、かつ複数のフィルタ処理を同時並列的に行うことが可能となり、複数の異なる動作モード毎に個別にフィルタを構成するよりも回路規模を低減することが可能となる。特に、本実施の形態3では、各通信モードの要求仕様に応じて、FIR型とCIC型のいずれかのフィルタ処理を選択することも可能であり、さらには双方の縦続接続によるより高度な周波数応答特性を実現することが可能となる。
なお、実施の形態1〜3では、入力信号および出力信号がスカラーデータである場合を前提として説明したが、本発明はこれに限定されるものではなく、例えば、マルチモードFIRフィルタ処理部10やマルチモードCICフィルタ処理部20における個々の信号線や構成要素をベクトル要素毎に用意する構成とすれば、入力が直交IQ信号のようなベクトルデータに対しても対応可能となる。但し、マルチモードFIRフィルタ処理部10の積和演算器コア100におけるタップ係数メモリ1004は、I信号とQ信号とで共有するように構成してもよい。
また、マルチモードFIRフィルタ処理部10では、一系統の信号入力に対し、ベクトルデータを時分割多重で交互に挿入して入力することにより、それぞれのベクトル要素のフィルタ処理を時分割に行うことも可能である。但し、この場合には、各積和演算器コア100において処理可能なサンプル数はベクトル要素数分が増えた分だけ、減ることになる。例えば、I、Qの2つのベクトル要素に時分割多重で対応する場合、図3で示した積和演算器コア100あたりに演算できるタップ演算は4サンプル分になる。
また、マルチモードCICフィルタ処理部20では、積分器201の構成を図31に示すような構成に変えることにより、ベクトルデータを時分割多重で交互に挿入して入力して時分割でフィルタ処理することが可能となる。ここで、図31の積分器208の構成において、図30で示した積分器201の構成と異なるのは、遅延タップ2012の出力をフィードバックする系にさらに遅延タップ2031を設け、遅延タップ2031を介したフィードバックと介さないフィードバックのうち一方を選択するセレクタ2082を設けた点である。
以上のベクトルデータの時分割多重での処理に際しては、マルチモードFIRフィルタ処理部10、マルチモードCICフィルタ処理部20、マルチモード受信フィルタ処理部30等の入出力の外側で時分割多重して入出力してもよいし、それぞれの信号入出力端子をベクトル要素毎に個別に設けた上で、各々の構成の内部の入出力インタフェース部において時分割多重するように構成してもよい。
なお、上記実施の形態3では、マルチモードFIRフィルタ処理部とマルチモードCICフィルタ処理部を組み合わせて、受信フィルタ処理部を構成する場合の実施の形態について開示したが、本発明は必ずしも受信フィルタ処理に限定されるものではなく、例えば、送信フィルタ処理に適用することも可能であり、そのための変更点については当業者には自明である。
本発明に係るデジタルフィルタは、積和演算用の演算リソースを動的に割り当てながら複数の無線通信規格用のフィルタ処理を同時並列的に行う、という効果を有し、例えば、いわゆるマルチモード無線通信装置において複数の異なる無線通信規格に対応し、かつ同時並列的に通信を行う場合に適用して好適である。また、本発明は必ずしも無線通信分野に限定されるものではなく、有線通信分野において一台の通信装置が複数の通信規格に対応して同時並列的に通信を行う場合の用途にも適用可能である。
本発明の実施の形態1に係るマルチモードFIRフィルタ処理部の構成を示す図 本実施の形態1に係るマルチモードFIRフィルタ処理部を制御する制御部の構成を示す図 本実施の形態1に係る積和演算器の構成を示す図 本実施の形態1に係る入力インタフェース部の構成を示す図 本実施の形態1に係る出力インタフェース部の構成を示す図 本実施の形態1に係るマルチモードFIRフィルタ処理部の機能を設定する機能設定テーブルの一例を示す図 本実施の形態1に係る入力インタフェース部におけるデマルチプレクサの動作例の一部を示す図 本実施の形態1に係るマルチモードFIRフィルタ処理部の機能を直列接続型フィルタに設定する際の機能設定テーブルの一例を示す図 本実施の形態1に係るマルチモードFIRフィルタ処理部における直列接続型フィルタとしての動作例の一部を示す図 本実施の形態1に係る図9に続く動作例を示す図 本実施の形態1に係るマルチモードFIRフィルタ処理部における直列接続型フィルタとしての動作例の一部を示す図 本実施の形態1に係る図11に続く動作例を示す図 本実施の形態1に係るマルチモードFIRフィルタ処理部の機能をポリフェーズ型間引きフィルタに設定する際の機能設定テーブルの一例を示す図 本実施の形態1に係るマルチモードFIRフィルタ処理部におけるポリフェーズ型間引きフィルタとしての動作例の一部を示す図 本実施の形態1に係る図14に続く動作例を示す図 本実施の形態1に係るマルチモードFIRフィルタ処理部におけるポリフェーズ型間引きフィルタとしての動作例の一部を示す図 本実施の形態1に係る図16に続く動作例を示す図 本実施の形態1に係るマルチモードFIRフィルタ処理部におけるポリフェーズ型間引きフィルタとしての動作例の一部を示す図 本実施の形態1に係る図18に続く動作例を示す図 本実施の形態1に係るマルチモードFIRフィルタ処理部の機能をポリフェーズ型時分割多重化間引きフィルタに設定する際の機能設定テーブルの一例を示す図 本実施の形態1に係るマルチモードFIRフィルタ処理部におけるポリフェーズ型時分割多重化間引きフィルタとしての動作例の一部を示す図 本実施の形態1に係る図21に続く動作例を示す図 本実施の形態1に係るマルチモードFIRフィルタ処理部におけるポリフェーズ型時分割多重化間引きフィルタとしての動作例の一部を示す図 本実施の形態1に係る図23に続く動作例を示す図 本実施の形態1に係る無線通信規格に応じたフィルタ設定候補リストの一例を示す図 本実施の形態1に係るリソース割り当て制御部の構成を示す図 本実施の形態1に係る図26のリソース割当決定部の処理手順を示すフローチャート 本実施の形態1に係るマルチモードFIRフィルタ処理部の機能を設定する他の機能設定テーブルの一例を示す図 本発明の実施の形態2に係るマルチモードCICフィルタ処理部の構成を示す図 本実施の形態2に係る積分器の構成を示す図 本実施の形態2に係る積分器の他の構成を示す図 本実施の形態2に係る差分器の構成を示す図 本実施の形態2に係る入力インタフェース部の構成を示す図 本実施の形態2に係る出力インタフェース部の構成を示す図 本実施の形態2に係るインタフェース部の構成を示す図 本実施の形態2に係るインタフェース部の構成を示す図 本実施の形態2に係る制御部の機能設定レジスタにおいて機能設定書き込みおよび読み出しされる各構成部と設定値のリストの一例を示す図 本実施の形態2に係るマルチモードCICフィルタ処理部における各部の設定を示すリストの一例を示す図 本実施の形態2に係るマルチモードCICフィルタ処理部により構成したCICフィルタの周波数応答特性の一例を示す図 本発明の実施の形態3に係るマルチモード受信フィルタ処理部の構成を示す図 従来のマルチモード無線通信装置の構成例を示す図 従来のマルチモード無線通信装置の構成例を示す図
符号の説明
10 マルチモードFIRフィルタ処理部
100 積和演算器コア
102 入力インタフェース部
103 出力インタフェース部
104 マルチモード動作制御部
105 リソース割当制御部
106 機能設定レジスタ
107 機能設定制御部
108 フィルタ処理制御部
1001 乗算器
1002 加算器
1003 遅延レジスタ群
1004 タップ係数メモリ
1005、1006 セレクタ
1007 ラッチ回路
1010〜1017 演算器コア群

Claims (7)

  1. 機能変更制御信号に応じて積和演算機能を変更し、その機能変更に応じた複数タップ分の積和演算処理を行って累積演算結果を出力する複数の演算器群と、
    前記各演算器群からの累積演算結果出力を機能変更制御信号に応じて選択的に加算処理するとともに、前記累積演算結果出力をフィードバック出力として出力する出力インタフェース部と、
    複数の信号入力端子を有し、前記機能変更制御信号に応じて所望の入力信号を同時又は順次に前記複数の演算器群に供給するとともに、前記機能変更制御信号に応じて前記フィードバック出力のうち所定の出力を前記複数の演算器群の累積演算入力段に供給する入力インタフェース部と、
    前記複数の演算器群により構成される演算リソースに対して新たなフィルタ処理に割り当て可能な前記演算リソースを決定して機能変更情報を出力するリソース割当制御部と、
    前記機能変更情報に基づいて、前記複数の演算器群と前記入力インタフェース部と前記出力インタフェース部の各部に対して機能設定を行うための前記機能変更制御信号を出力する機能設定制御部と、
    所望のフィルタ処理をおこなうための制御信号を、前記機能変更制御信号により各々機能が設定された前記複数の演算器群に対して出力するフィルタ処理制御部と、
    を具備し、
    前記リソース割当制御部は、
    フィルタ仕様に応じた複数のフィルタ設定候補に関する情報を記憶し、通信モード制御信号の入力に応じて対応するフィルタ設定候補の情報を読み出して出力するフィルタ設定候補記憶部と、
    前記フィルタ設定候補の情報における必要とされる演算器群の数と、リソース使用状況情報において使用されていない演算器群の数との比較結果に基づいて、未使用の演算リソースの範囲内で割当可能なフィルタ設定候補を決定し、リソース割当決定情報を出力するリソース割当決定部と、
    前記リソース割当決定情報と前記フィルタ処理制御部から出力されるフィルタ処理完了情報に基づいて前記演算リソースの使用状況を記憶し、該使用状況をリソース使用状況情報として出力するリソース使用状況記憶部と、
    フィルタの種類に応じて設定する複数のパラメータを記憶する設定パラメータ記憶部と、
    前記リソース割当決定情報に基づいて前記設定パラメータ記憶部から該当するパラメータを読み出し、該パラメータに基づいて前記複数の演算器群と前記入力インタフェース部と前記出力インタフェース部の各部に対応する前記機能変更情報を生成する機能変更制御部と、
    を有することを特徴とするデジタルフィルタ。
  2. 前記リソース割当決定部は、前記必要とされる演算器群の数が、前記使用されていない演算器群の数と等しいか少ないと判断された場合には、前記フィルタ設定候補を、未使用の演算リソースの範囲内で割当可能なフィルタ設定候補として決定する請求項1に記載のデジタルフィルタ。
  3. 複数の積分器が縦続接続された複数の積分器群と、
    複数の間引き処理部と、
    複数の差分器が縦続接続された複数の差分器群と、
    前記複数の積分器群の出力を前記複数の間引き処理部に供給するとともに、前記複数の積分器群の出力を第1のフィードバック出力として出力する第1のインタフェース部と、
    前記複数の間引き処理部からの出力と第2のフィードバック出力とを機能変更制御信号に応じて切り替えて前記複数の差分器に供給する第2のインタフェース部と、
    複数の信号入力端子を有し、前記機能変更制御信号に応じて入力信号を切り替えて前記複数の積分器群に供給する入力インタフェース部と、
    複数の信号出力端子を有し、前記複数の差分器群と前記複数の信号出力端子との間の接続関係を前記機能変更制御信号に応じて切り替える出力インタフェース部と、
    前記複数の積分器群と前記複数の間引き処理部と前記複数の差分器群により構成される演算リソースに対して、現在の演算リソース使用状況と、新たなフィルタ処理に要求される演算リソースを設定したフィルタ設定候補リストとに基づいて、新たなフィルタ処理に割り当て可能な前記演算リソースを決定して機能変更情報を出力するリソース割当制御部と、
    前記機能変更情報に基づいて、前記複数の積分器群と前記複数の間引き処理部と前記複数の差分器群と前記第2のインタフェース部と前記入力インタフェース部と前記出力インタフェース部の各々に対して機能設定を行うための前記機能変更制御信号を出力する機能設定制御部と、
    所望のフィルタ処理をおこなうための制御信号を、前記機能変更制御信号により各々機能が設定された前記複数の積分器群と前記複数の間引き処理部と前記複数の差分器群と前記第2のインタフェース部と前記入力インタフェース部と前記出力インタフェース部の各々に対して出力するフィルタ処理制御部と、
    を具備するデジタルフィルタ。
  4. 1以上のタップ数分の積和演算処理に基づく累積演算結果を出力する複数の演算器群により構成される演算リソースと、
    前記演算リソースの各演算器群による累積演算結果を、機能設定を行うための機能変更制御信号に応じて、選択的に加算処理する出力インタフェース部と、
    複数の信号入力を有し、前記機能変更制御信号に応じて、所望の入力信号を同時または順次に前記複数の演算器群に供給する入力インタフェース部と、
    前記演算リソースに対して新たなフィルタ処理に割り当てる前記演算リソースを決定して機能変更情報を出力するリソース割当制御部と、
    前記機能変更情報に基づいて、前記入力インタフェース部と前記出力インタフェース部とに対して、前記機能変更制御信号を出力する機能設定制御部と、
    所望のフィルタ処理をおこなうための制御信号を、前記機能変更制御信号により機能が設定された前記演算リソースと前記入力インタフェース部と前記出力インタフェース部とに対して出力するフィルタ処理制御部と、
    を具備し、
    前記リソース割当制御部は、
    フィルタ仕様に応じた複数のフィルタ設定候補に関する情報を記憶し、通信モード制御信号の入力に応じて対応するフィルタ設定候補の情報を読み出して出力するフィルタ設定候補記憶部と、
    前記フィルタ設定候補の情報における必要とされる演算器群の数と、リソース使用状況情報において使用されていない演算器群の数との比較結果に基づいて、未使用の演算リソースの範囲内で割当可能なフィルタ設定候補を決定し、リソース割当決定情報を出力するリソース割当決定部と、
    前記リソース割当決定情報と前記フィルタ処理制御部から出力されるフィルタ処理完了情報に基づいて前記演算リソースの使用状況を記憶し、該使用状況をリソース使用状況情報として出力するリソース使用状況記憶部と、
    フィルタの種類に応じて設定する複数のパラメータを記憶する設定パラメータ記憶部と、
    前記リソース割当決定情報に基づいて前記設定パラメータ記憶部から該当するパラメータを読み出し、該パラメータに基づいて前記複数の演算器群と前記入力インタフェース部と前記出力インタフェース部の各部に対応する前記機能変更情報を生成する機能変更制御部と、
    を有するデジタルフィルタ。
  5. 前記リソース割当決定部は、前記必要とされる演算器群の数が、前記使用されていない演算器群の数と等しいか少ないと判断された場合には、前記フィルタ設定候補を、未使用の演算リソースの範囲内で割当可能なフィルタ設定候補として決定する請求項4に記載のデジタルフィルタ。
  6. 複数の積分器が縦続接続された複数の積分器群と、複数の間引き処理部と、複数の差分器が縦続接続された複数の差分器群と、により構成される演算リソースと、
    前記複数の積分器群の出力を前記複数の間引き処理部に供給する第1のインタフェース部と、
    機能設定を行うための機能変更制御信号に応じて切り替えた、前記複数の間引き処理部からの出力を前記複数の差分器に供給する第2のインタフェース部と、
    複数の信号入力を有し、前記機能変更制御信号に応じて切り替えた入力信号を、前記複数の積分器群に供給する入力インタフェース部と、
    前記機能変更制御信号に応じて、前記複数の差分器群の出力信号を選択して出力する出力インタフェース部と、
    前記演算リソース使用状況と、新たなフィルタ処理に要求される演算リソースを設定したフィルタ設定候補リストとに基づいて、新たなフィルタ処理に割り当てる前記演算リソースを決定する機能変更情報を出力するリソース割当制御部と、
    前記機能変更情報に基づいて、前記複数の積分器群と前記複数の間引き処理部と前記複数の差分器群と前記入力インタフェース部と前記出力インタフェース部とに対して、前記機能変更制御信号を出力する機能設定制御部と、
    所望のフィルタ処理をおこなうための制御信号を、前記機能変更制御信号により機能が設定された前記複数の積分器群と前記複数の間引き処理部と前記複数の差分器群と前記入力インタフェース部と前記出力インタフェース部とに対して出力するフィルタ処理制御部と、
    を具備するデジタルフィルタ。
  7. 前記第1のインタフェース部は、前記複数の積分器群の出力を前記複数の間引き処理部に供給するとともに、入力インタフェース部に第1のフィードバック出力として出力し、
    前記入力インタフェース部は、前記機能変更制御信号に応じて、切り替えた入力信号とともに、前記第1のフィードバック出力のうち所定の出力を前記複数の積分器群に供給し、
    前記出力インタフェース部は、前記複数の差分器からの出力を第2のフィードバック出力として、前記第2のインタフェース部に出力し、
    前記機能設定制御部は、前記複数の積分器群と前記複数の間引き処理部と前記複数の差分器群と前記入力インタフェース部と前記出力インタフェース部に加えて前記第2のインタフェース部に前記機能変更制御信号を出力し、
    前記フィルタ処理制御部は、前記複数の積分器群、前記複数の間引き処理部、前記複数の差分器群、前記入力インタフェース部及び前記出力インタフェース部に対して前記所望のフィルタ処理をおこなうための制御信号を出力し、
    前記第2のインタフェース部は、前記機能変更制御信号に応じて、前記第2のフィードバック出力を用いて、前記複数の間引き処理部からの出力を切り替えて前記複数の差分器に供給する請求項6記載のデジタルフィルタ。
JP2005363847A 2005-12-16 2005-12-16 デジタルフィルタ Expired - Fee Related JP4982080B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005363847A JP4982080B2 (ja) 2005-12-16 2005-12-16 デジタルフィルタ
US12/097,531 US8356063B2 (en) 2005-12-16 2006-12-13 Reconfigurable digital filter
PCT/JP2006/324858 WO2007069652A1 (ja) 2005-12-16 2006-12-13 デジタルフィルタ
CN2006800465267A CN101326715B (zh) 2005-12-16 2006-12-13 数字滤波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005363847A JP4982080B2 (ja) 2005-12-16 2005-12-16 デジタルフィルタ

Publications (3)

Publication Number Publication Date
JP2007166535A JP2007166535A (ja) 2007-06-28
JP2007166535A5 JP2007166535A5 (ja) 2008-08-28
JP4982080B2 true JP4982080B2 (ja) 2012-07-25

Family

ID=38162957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005363847A Expired - Fee Related JP4982080B2 (ja) 2005-12-16 2005-12-16 デジタルフィルタ

Country Status (4)

Country Link
US (1) US8356063B2 (ja)
JP (1) JP4982080B2 (ja)
CN (1) CN101326715B (ja)
WO (1) WO2007069652A1 (ja)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8620980B1 (en) 2005-09-27 2013-12-31 Altera Corporation Programmable device with specialized multiplier blocks
US8266198B2 (en) 2006-02-09 2012-09-11 Altera Corporation Specialized processing block for programmable logic device
US8041759B1 (en) 2006-02-09 2011-10-18 Altera Corporation Specialized processing block for programmable logic device
US8266199B2 (en) 2006-02-09 2012-09-11 Altera Corporation Specialized processing block for programmable logic device
US8301681B1 (en) 2006-02-09 2012-10-30 Altera Corporation Specialized processing block for programmable logic device
US7836117B1 (en) 2006-04-07 2010-11-16 Altera Corporation Specialized processing block for programmable logic device
US7822799B1 (en) 2006-06-26 2010-10-26 Altera Corporation Adder-rounder circuitry for specialized processing block in programmable logic device
US8386550B1 (en) 2006-09-20 2013-02-26 Altera Corporation Method for configuring a finite impulse response filter in a programmable logic device
US8386553B1 (en) 2006-12-05 2013-02-26 Altera Corporation Large multiplier for programmable logic device
US7930336B2 (en) 2006-12-05 2011-04-19 Altera Corporation Large multiplier for programmable logic device
US7814137B1 (en) * 2007-01-09 2010-10-12 Altera Corporation Combined interpolation and decimation filter for programmable logic device
US7865541B1 (en) 2007-01-22 2011-01-04 Altera Corporation Configuring floating point operations in a programmable logic device
US8650231B1 (en) 2007-01-22 2014-02-11 Altera Corporation Configuring floating point operations in a programmable device
US8645450B1 (en) 2007-03-02 2014-02-04 Altera Corporation Multiplier-accumulator circuitry and methods
US7949699B1 (en) 2007-08-30 2011-05-24 Altera Corporation Implementation of decimation filter in integrated circuit device using ram-based data storage
US8959137B1 (en) 2008-02-20 2015-02-17 Altera Corporation Implementing large multipliers in a programmable integrated circuit device
US8374232B2 (en) * 2008-03-31 2013-02-12 Stmicroelectronics S.A. Equalizer adapting circuit
US8307023B1 (en) 2008-10-10 2012-11-06 Altera Corporation DSP block for implementing large multiplier on a programmable integrated circuit device
US8645449B1 (en) 2009-03-03 2014-02-04 Altera Corporation Combined floating point adder and subtractor
US8706790B1 (en) 2009-03-03 2014-04-22 Altera Corporation Implementing mixed-precision floating-point operations in a programmable integrated circuit device
US8468192B1 (en) 2009-03-03 2013-06-18 Altera Corporation Implementing multipliers in a programmable integrated circuit device
US8650236B1 (en) 2009-08-04 2014-02-11 Altera Corporation High-rate interpolation or decimation filter in integrated circuit device
US8396914B1 (en) 2009-09-11 2013-03-12 Altera Corporation Matrix decomposition in an integrated circuit device
US8412756B1 (en) 2009-09-11 2013-04-02 Altera Corporation Multi-operand floating point operations in a programmable integrated circuit device
CN101661407B (zh) * 2009-09-30 2013-05-08 中兴通讯股份有限公司 一种并行结构的有限脉冲响应滤波器及其处理方法
US8539016B1 (en) 2010-02-09 2013-09-17 Altera Corporation QR decomposition in an integrated circuit device
US7948267B1 (en) 2010-02-09 2011-05-24 Altera Corporation Efficient rounding circuits and methods in configurable integrated circuit devices
US8601044B2 (en) 2010-03-02 2013-12-03 Altera Corporation Discrete Fourier Transform in an integrated circuit device
US8484265B1 (en) 2010-03-04 2013-07-09 Altera Corporation Angular range reduction in an integrated circuit device
US8510354B1 (en) 2010-03-12 2013-08-13 Altera Corporation Calculation of trigonometric functions in an integrated circuit device
US8539014B2 (en) 2010-03-25 2013-09-17 Altera Corporation Solving linear matrices in an integrated circuit device
US8589463B2 (en) 2010-06-25 2013-11-19 Altera Corporation Calculation of trigonometric functions in an integrated circuit device
US8862650B2 (en) 2010-06-25 2014-10-14 Altera Corporation Calculation of trigonometric functions in an integrated circuit device
US8577951B1 (en) 2010-08-19 2013-11-05 Altera Corporation Matrix operations in an integrated circuit device
CN101977031B (zh) * 2010-11-09 2013-07-03 南开大学 一种时空均衡的数字滤波器优化设计方法
US8645451B2 (en) 2011-03-10 2014-02-04 Altera Corporation Double-clocked specialized processing block in an integrated circuit device
CN102185587B (zh) * 2011-03-21 2013-07-24 浙江大学 一种低功耗的两相结构多阶内插半带滤波器
US9600278B1 (en) 2011-05-09 2017-03-21 Altera Corporation Programmable device using fixed and configurable logic to implement recursive trees
CN102811036A (zh) * 2011-05-31 2012-12-05 中兴通讯股份有限公司 数字滤波方法和装置
US8812576B1 (en) 2011-09-12 2014-08-19 Altera Corporation QR decomposition in an integrated circuit device
US8949298B1 (en) 2011-09-16 2015-02-03 Altera Corporation Computing floating-point polynomials in an integrated circuit device
US9053045B1 (en) 2011-09-16 2015-06-09 Altera Corporation Computing floating-point polynomials in an integrated circuit device
US8762443B1 (en) 2011-11-15 2014-06-24 Altera Corporation Matrix operations in an integrated circuit device
US8957729B2 (en) * 2012-03-20 2015-02-17 Telefonaktiebolaget L M Ericsson (Publ) Memory structure having taps and non-unitary delays between taps
US8543634B1 (en) 2012-03-30 2013-09-24 Altera Corporation Specialized processing block for programmable integrated circuit device
US9098332B1 (en) 2012-06-01 2015-08-04 Altera Corporation Specialized processing block with fixed- and floating-point structures
US8996600B1 (en) 2012-08-03 2015-03-31 Altera Corporation Specialized processing block for implementing floating-point multiplier with subnormal operation support
US9207909B1 (en) 2012-11-26 2015-12-08 Altera Corporation Polynomial calculations optimized for programmable integrated circuit device structures
US9189200B1 (en) 2013-03-14 2015-11-17 Altera Corporation Multiple-precision processing block in a programmable integrated circuit device
US9348795B1 (en) 2013-07-03 2016-05-24 Altera Corporation Programmable device using fixed and configurable logic to implement floating-point rounding
KR101453949B1 (ko) 2014-02-24 2014-10-23 엘아이지넥스원 주식회사 다중 모드 수신기를 위한 ddc
KR101453950B1 (ko) * 2014-02-24 2014-11-04 엘아이지넥스원 주식회사 다중 모드 수신기를 위한 ddc의 운영 방법
KR101584917B1 (ko) 2014-10-14 2016-01-14 세종대학교산학협력단 멀티 스테이지 필터 장치 및 그것을 이용한 필터링 방법
US9684488B2 (en) 2015-03-26 2017-06-20 Altera Corporation Combined adder and pre-adder for high-radix multiplier circuit
US10942706B2 (en) 2017-05-05 2021-03-09 Intel Corporation Implementation of floating-point trigonometric functions in an integrated circuit device
CN207503225U (zh) * 2017-11-28 2018-06-15 北京比特大陆科技有限公司 一种运算系统及相应的电子设备
CN113098472B (zh) * 2019-12-23 2024-03-22 瑞昱半导体股份有限公司 取样电路与方法
JP7393519B2 (ja) * 2020-03-11 2023-12-06 株式会社エヌエスアイテクス 演算装置及び演算方法
CN115882821A (zh) * 2021-09-30 2023-03-31 深圳市中兴微电子技术有限公司 一种数字滤波器、滤波方法及电子设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252009A (ja) 1987-04-09 1988-10-19 Fuji Photo Film Co Ltd 可変デジタル・フイルタ
JP2884571B2 (ja) * 1988-04-12 1999-04-19 ソニー株式会社 ディジタル信号処理回路
JP2520451B2 (ja) 1988-06-30 1996-07-31 日本電気ホームエレクトロニクス株式会社 デジタルフィルタ回路
JP2558846B2 (ja) 1988-10-31 1996-11-27 松下電器産業株式会社 デジタルフィルタバンク
JPH03145322A (ja) * 1989-10-31 1991-06-20 Yokogawa Electric Corp Firフィルタ
KR0142803B1 (ko) * 1993-09-02 1998-07-15 모리시다 요이치 신호처리장치
JP3363974B2 (ja) * 1993-12-14 2003-01-08 松下電器産業株式会社 信号処理装置
JPH10174169A (ja) 1996-12-11 1998-06-26 Nec Corp 携帯電話機
JP2001250115A (ja) * 2000-03-03 2001-09-14 Sony Computer Entertainment Inc ディジタルフィルタ
JP2002190769A (ja) 2000-12-21 2002-07-05 Sharp Corp 移動体通信機及び移動体通信システム
EP1441440A1 (en) * 2001-09-10 2004-07-28 Neuro Solution Corp. Digital filter and its designing method
JP2003229783A (ja) * 2002-01-31 2003-08-15 Toshiba Corp 無線通信装置
JP3584027B2 (ja) * 2002-03-12 2004-11-04 沖電気工業株式会社 デジタルフィルタ
US7353243B2 (en) * 2002-10-22 2008-04-01 Nvidia Corporation Reconfigurable filter node for an adaptive computing machine
JP4274309B2 (ja) 2002-10-31 2009-06-03 独立行政法人情報通信研究機構 ソフトウェア無線機、信号処理ユニット

Also Published As

Publication number Publication date
US20090187615A1 (en) 2009-07-23
CN101326715A (zh) 2008-12-17
JP2007166535A (ja) 2007-06-28
CN101326715B (zh) 2011-09-21
WO2007069652A1 (ja) 2007-06-21
US8356063B2 (en) 2013-01-15
WO2007069652B1 (ja) 2007-08-09

Similar Documents

Publication Publication Date Title
JP4982080B2 (ja) デジタルフィルタ
JP4307987B2 (ja) 複数のフィルタ処理モードを有する再構成可能型デジタルフィルタ
US7353243B2 (en) Reconfigurable filter node for an adaptive computing machine
US7409417B2 (en) Polyphase filter with optimized silicon area
JP2007166535A5 (ja)
KR100542118B1 (ko) 소프트웨어 무선 시스템을 위한 디지털 여파기와 이를 구비한 디지털 중간 주파수 대역 신호 처리 장치 및 그 방법
US20040095951A1 (en) Digital filter of a mobile communication system and operating method thereof
CN113556101B (zh) Iir滤波器及其数据处理方法
US7864080B1 (en) Sample rate conversion by controlled selection of filter outputs
JPWO2006011232A1 (ja) リコンフィギュラブル回路およびリコンフィギュラブル回路の制御方法
EP2418773A1 (en) Glitch-free switchable FIR-filter
JPWO2008018197A1 (ja) デジタルフィルタ、その合成装置、合成プログラム、及び合成プログラム記録媒体
CN102457251B (zh) 一种实现通用数字滤波器的方法及装置
EP1701251B1 (en) Reconfigurable circuit and configuration switching method
JP3322030B2 (ja) サンプリングレート変換装置
US6625628B1 (en) Method and apparatus for digital filter
Meher et al. Reconfigurable fir filter for dynamic variation of filter order and filter coefficients
Zhu et al. ASIC implementation architecture for pulse shaping FIR filters in 3G mobile communications
JP3243831B2 (ja) Fir型フィルタ
JP4748944B2 (ja) 処理装置
JP2590291B2 (ja) 切換型iirフィルタ
Vaithiyanathan et al. Comparative Study of Single MAC FIR Filter Architectures with Different Multiplication Techniques
JPH0378310A (ja) Firデジタルフイルタ
CN112118019A (zh) 一种多通道信道化接收机及应用系统
Schmidt-Knorreck et al. Hardware optimized sample rate conversion for software defined radio

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4982080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees