CN101292423A - 兰姆波器件 - Google Patents

兰姆波器件 Download PDF

Info

Publication number
CN101292423A
CN101292423A CNA2006800392745A CN200680039274A CN101292423A CN 101292423 A CN101292423 A CN 101292423A CN A2006800392745 A CNA2006800392745 A CN A2006800392745A CN 200680039274 A CN200680039274 A CN 200680039274A CN 101292423 A CN101292423 A CN 101292423A
Authority
CN
China
Prior art keywords
lamb wave
piezoelectric membrane
idt electrode
devic
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800392745A
Other languages
English (en)
Other versions
CN101292423B (zh
Inventor
小上贵史
山本观照
门田道雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN101292423A publication Critical patent/CN101292423A/zh
Application granted granted Critical
Publication of CN101292423B publication Critical patent/CN101292423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • H03H3/10Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves

Abstract

本发明提供一种兰姆波器件,其具有:衬底基板(2);压电薄膜(3),其形成在所述衬底基板(2)上,具有从该衬底基板(2)浮起的部分,该浮起的部分具有与衬底基板(2)相对的第一面(3a)和相反一侧的面即第二面(3b)。所述压电薄膜(3)由LiTaO3或LiNbO3构成。所述压电薄膜(3)的c轴处于与相对于所述压电薄膜(3)的第一、第二面的法线大致相同的方向,并且是把c轴作为旋转轴的旋转双晶。利用该兰姆波的器件,能有效抑制不希望的模式引起的乱真的构造。

Description

兰姆波器件
技术领域
本发明涉及利用在压电薄膜内传播的兰姆波的兰姆波器件,更具体而言,涉及共振子或滤波器中使用的兰姆波器件。
背景技术
以往,提案了利用使用压电效应激励的各种波的器件,并被使用。其中,在弹性体的表面附近集中能量传播的弹性表面波的器件在共振子或滤波器中广泛使用。
另外,在以下的专利文献1中描述与表面波不同,使用在弹性体中传播的兰姆波的器件。兰姆波是体波的一种,是与弹性体的波长相比,当压电体的厚度为同等或其以下时,一边在压电体的两个主面使弹性波反射一边在压电体内传播的称作板波的波的一种。作为板波,除了兰姆波,知道有SH波。根据弹性波元件技术手册(欧姆社,平成3年发行),记载“SV波和纵波(疏密波)在板的两面发生模式变化,复杂地结合,成为称作兰姆波的板波”的意思。
如非专利文献1所述,兰姆波因为在板状的弹性体的两面把弹性波反射,一边在板状的压电体内传播,所以兰姆波具有与表面波不同的性质。在兰姆波中,存在速度分散性,能使用2个表面,存在与使用表面波时相比,具有更大的机电耦合系数K2的可能性。
在非专利文献1中,描述使用由旋转Y-XLiNbO3构成的压电薄膜的兰姆波器件。这里,表示高音速、具有大的机电耦合系数的反对称模式的A1模式激励。
非专利文献1:电子通信学会杂志’85/5Vol.J68-ANo.5第496页~第503页“旋转Y切X传播LiNbO3平板的兰姆波传播特性的分析”
曾经指出在上述的非专利文献1中记载的兰姆波器件中,在压电薄膜上形成IDT电极的构造中,利用兰姆波能提高机电耦合系数的可能性。可是,实际制作非专利文献1中记载的兰姆波器件时,能在高频区域中取得通过频带,但是在通过频带或衰减频带中容易出现不希望的乱真。
发明内容
本发明的目的在于,提供解决上述的以往技术的缺点,提高机电耦合系数,不仅能谋求高频化,还能抑制不希望的乱真的影响的兰姆波器件。
根据本发明的宽阔的局面,提供一种兰姆波器件,其中,具有:衬底基板;压电薄膜,其形成在所述衬底基板上,具有从该衬底基板浮起的部分,该浮起的部分具有与衬底基板相对的第一面以及相反侧的面即第二面;IDT电极,其配置在所述压电薄膜的第一、第二面的至少一方,所述压电薄膜由LiTaO3或LiNbO3构成,所述压电薄膜的c轴,处于与相对于所述压电薄膜的第一、第二面的法线大致相同的方向,该压电薄膜的晶体结构是以c轴为旋转轴的旋转双晶。
在本发明的兰姆波器件的某特定的局面中,其特征在于:所述压电薄膜是LiNbO3,所述IDT电极由Al或以Al为主成分的合金构成,设所述IDT电极的厚度为h,所述压电薄膜的膜厚为d,兰姆波的利用模式的波长为λ时,h和d满足以下I~III的其中一个条件:
I 0.01≤h/d≤0.24并且0.090≤d/λ≤0.107
II 0.01≤h/d≤0.24并且0.133≤d/λ≤0.233
III 0.01≤h/d≤0.24并且0.257≤d/λ≤0.300。
在本发明的兰姆波器件的其他特定的局面中,其特征在于:述压电薄膜是LiTaO3,所述IDT电极由Al或以Al为主成分的合金构成,设所述IDT电极的厚度为h,所述压电薄膜的膜厚为d,兰姆波的利用模式的波长为λ时,h和d满足以下IV~VI的其中一个条件:
IV 0.01≤h/d≤0.26并且0.093≤d/λ≤0.125
V 0.01≤h/d≤0.26并且0.141≤d/λ≤0.240
VI 0.01≤h/d≤0.26并且0.260≤d/λ≤0.300。
在本发明的兰姆波器件的其他特定的局面中,所述IDT电极形成在压电薄膜的第二面上。
此外,在本发明的兰姆波器件的其他特定的局面中,所述IDT电极形成在压电薄膜的第一面上。
(发明的效果)
在本发明的兰姆波器件中,压电薄膜由LiTaO3或LiNbO3构成,压电薄膜的c轴是与对于压电薄膜的第一、第二面的法线大致相同的方向,并且电薄膜的晶体结构是旋转双晶,所以不发生对称模式的基本模式S0或SH模式的基本模式SH0,能抑制基于这些模式的频带外乱真。因此,能提供频率特性优异的兰姆波器件。
因此,根据本发明,能提供中心频率2~10GHz,百分比带宽1~10%的装置。本发明的兰姆波器件并不局限于带通滤波器,也能在共振子等各种仪器中应用。
特别是,在本发明中,压电薄膜是LiNbO3,IDT电极由Al或以Al为主成分的合金构成,h和d满足所述I~III的任意的条件时,能有效抑制通过频带附近的乱真模式的发生,据此,能抑制通过频带内出现的脉动和频带附近的乱真响应。
此外,压电薄膜是LiTaO3,IDT电极由Al或以Al为主成分的合金构成,h和d满足所述IV~VI的任意的条件时,同样能抑制通过频带附近的乱真模式的发生,据此,能有效抑制通过频带内的脉动和频带附近的乱真响应。
IDT电极形成在与压电薄膜的面对衬底基板侧相反侧的面即第二面上时,能容易在设置在衬底基板上的压电薄膜的第二面形成IDT电极,所以能提供兰姆波器件。
IDT电极也可以在压电薄膜的第一主面形成,这时,IDT电极与衬底基板相对,不在外部露出,所以从构成外壳的金属材料产生的金属粉难以附着在IDT电极上。因此,能抑制金属粉等的附着引起的特性不良,并且能提供耐环境特性或耐湿性优异的兰姆波器件。
附图说明
图1是本发明的一个实施例的兰姆波器件的略图的正面剖视图。
图2是表示在ZnO外延膜上形成的LiNbO3薄膜的XRD频谱的图。
图3A是表示实际测量实施例的兰姆波器件的LiNbO3薄膜具有双晶构造时的阻抗的音速引起的变化的结果的图。
图3B是表示通过仿真,求出实施例的兰姆波器件的LiNbO3薄膜具有双晶构造时的阻抗的音速引起的变化的结果的图。
图3C是表示由LiNbO3薄膜为单晶时的仿真求出的阻抗和音速的关系的图。
图4是表示在实施例的兰姆波器件中,在LiNbO3薄膜上用Al构成IDT电极,电极的厚度d相对于波长λ的比d/λ为0.10时的各模式的机电耦合系数K2的h/d引起的变化的图。
图5是表示把h/d固定在0.24,使d/λ在0.08~0.3的范围中变化时的兰姆波的各模式的机电耦合系数K2的变化的图。
图6是表示在实施例的兰姆波器件中,在LiTaO3薄膜上用Al构成IDT电极,电极的厚度d相对于波长λ的比d/λ为0.10时的各模式的机电耦合系数K2的h/d引起的变化的图。
图7是表示在实施例的兰姆波器件中,在LiTaO3薄膜上用Al构成IDT电极,电极的厚度d相对于波长λ的比d/λ为0.26时的各模式的机电耦合系数K2的由h/d引起的变化的图。
图中;1—兰姆波器件;2—衬底基板;3—压电薄膜;3a—第一面;3b—第二面;4—IDT电极。
具体实施方式
以下,参照附图,说明本发明的具体的实施例,本发明变得清楚。
(实验例1)
图1是用于说明本发明的一个实施例的兰姆波器件的模式式正面剖视图。兰姆波器件1具有衬底基板2和形成在衬底基板2上的压电薄膜3。压电薄膜3形成在衬底基板2的上表面2a上,但是压电薄膜3的一部分从衬底基板2的上表面2a浮起。在该浮起的部分,压电薄膜3的第一面3a与衬底基板2的上表面2a隔开间隔而相面对,在与第一面3a相反一侧的面即外侧的面的第二面3b上形成IDT电极4。为了构成所希望的共振子或滤波器而设置IDT电极4。
在本实施例中,衬底基板2由LiNbO3单晶衬底构成。此外,所述压电薄膜3由LiNbO3薄膜构成,该压电薄膜3的c轴是与相对于压电薄膜3的第一、第二面3a、3b的法线大致相同的方向,并且压电薄膜3结晶构造是把c轴作为旋转轴的旋转双晶。
通过说明本实施例的兰姆波器件1的制造方法,更详细地说明所述构造。
首先,在衬底基板2上,通过溅射等一般的成膜方法,以c轴成为垂直于衬底基板2的上表面2a的方向的方式形成作为底层的ZnO外延(エピタキシヤル)膜。
只要以c轴成为垂直于衬底基板2的上表面2a的方向的方式形成垂直方向的外延膜,构成衬底基板2的材料就不局限于所述材料。例如,衬底基板2也可以由LiTaO3单晶或兰宝石等其他压电单晶形成。
按照接着形成的压电薄膜3的浮起的部分的平面形状,把作为所述底层的ZnO外延膜图案化后,使用CVD成膜装置,形成压电薄膜3。压电薄膜3在本实施例中由LiNbO3薄膜形成。另外,也可以代替LiNbO3薄膜,形成LiTaO3薄膜。
所述压电薄膜3,在以上述方式形成的作为底层的ZnO外延膜上形成,所以压电薄膜3的c轴成为垂直于衬底基板2的上表面2a的方向,由LiNbO3薄膜构成的压电薄膜3成为双晶外延膜。
本来,LiNbO3单晶或LiTaO3单晶以c轴为中心,具有3次旋转对称性,形成压电薄膜3后,但是通过XRD进行评价,取得图2所示的结果。即从图2可知,在实际形成的LiNbO3膜的XRD频谱中,确认具有6次旋转对称性。而且,形成的LiNbO3膜是旋转双晶外延膜。
作为底层的ZnO外延膜自身具有6次旋转对称性,所以认为在其上形成的LiNbO3或LiTaO3能取得2个定向方向。只要LiNbO3薄膜或LiTaO3薄膜能变为旋转双晶外延膜,作为底层使用的材料就不局限于ZnO,也可以是Cu或Pt那样的金属的外延膜。
接着,通过Ar离子蚀刻或反应性蚀刻等干工艺,在所述LiNbO3薄膜或LiTaO3薄膜上形成蚀刻孔。然后,使用光刻和成膜法,形成IDT电极4。接着,通过基于酸的蚀刻,除去所述底层的ZnO外延膜,据此,形成图1所示的空隙A。
如上所述,取得本实施例的兰姆波器件1。通过网络分析仪测定兰姆波器件1的LiNbO3薄膜的共振子的阻抗和音速的关系。图3A表示结果。
此外,图3B表示通过基于有限元法的仿真,求出兰姆波器件1的LiNbO3薄膜的阻抗和音速的关系的结果。
此外,图3C是表示通过除了兰姆波器件1的LiNbO3薄膜不具有双晶构造而变更为单晶,其他为同样的比较例的构造的仿真,而求出的阻抗和音速的关系的图。
从图3C可知,LiNbO3薄膜是单晶时,基于SH波的基本模式SH0和波的对称模式的基本模式S0的响应很大地出现,相对于要使用的反对称模式的一次模式式A1,成为大的乱真。而在图3A和图3B中,出现基于反对称模式A1的响应,几乎不出现成为使衰减区恶化的原因的SH波的基本模式SH0、或对称模式的基本模式S0。
即所述压电薄膜3具有双晶构造,所以能有效抑制不希望的乱真。
图3B和图3C的结果是根据有限元法,求出的,这里,采用IDT的波长为λ时,LiNbO3薄膜的厚度为0.155λ,通过Al形成IDT电极4,该厚度为0.03λ,占空比为0.47,关于双晶构造,把压电薄膜部分相对于弹性波传播方向,等分为80个区域,欧拉角(0°、0°、φ0)部分和欧拉角(0°、0°、φ0+180°)部分交替配置的构造,φ0=15°。另外,无论哪个传播方向,对于φ0都取得同样的效果。
另外,图3A~图3C是压电薄膜3为LiNbO3薄膜时的结果,但是为LiTaO3薄膜时,也取得同样的结果。
(实验例2)
在与实验例1同样的兰姆波器件中,求出IDT电极4的厚度和压电薄膜3的膜厚分别变化时的兰姆波的机电耦合系数。图4和图5表示该结果。在图4和图5中,h是IDT电极的膜厚,d是压电薄膜的膜厚,λ表示兰姆波的波长。另外,在计算时使用有限元法。图4关于兰姆波的各模式,表示d/λ=0.1时的对于h/d的变化的机电耦合系数的变化。从图4可知,从h/d超过0.24开始,主模式的A1模式的机电耦合系数K2下降,其他模式的机电耦合系数K2增大。因此,在d/λ=0.1时,h/d的上限值大约为0.24,由此能实现抑制乱真响应的兰姆波器件。
另外,关于图4所示的各模式的记录方法,如下所述。定义兰姆波的模式表示为Xn(i)。X是表示模式的种类的记号,在表示为A时,表示反对称模式,表示为S时,表示是对称模式。n是0以上的整数,表示模式的次数,表示最大变位成分的压电薄膜的厚度方向的波节的数量。i是1以上的整数,表示最大变位成分的兰姆波的传播方向半波长区间的波节的数量。在i是1时,省略(i)的表示。
接着,表示d/λ变化时的各模式的机电耦合系数K2的变化。图5是表示把h/d固定在0.24,d/λ在0.08~0.3的范围中变化时的兰姆波的各模式的机电耦合系数K2的变化的图。从图5可知,在d/λ的几个范围中,主模式的A1模式的机电耦合系数K2下降,其他模式的机电耦合系数K2增大。这样的d/λ的范围不适合于滤波器。
如果综合图4和图5进行判断,则h/d≤0.24,如果d/λ处于满足以下的I~III的条件的范围,
I 0.090≤d/λ≤0.107
II 0.133≤d/λ≤0.233
III 0.257≤d/λ≤0.300
主模式的A1模式以外的模式的机电耦合系数被抑制在充分小,据此,能够抑制乱真的发生,并能实现良好的特性的兰姆波器件。另外,IDT电极的材料并不局限于Al,即使是以Al为主成分的合金,也能够取得相同的效果。如果h/d低于0.01,就由于伴随着电极的电阻的增大的电流的实际损失,插入损失恶化,所以h/d是0.01以上。
(实验例3)
在实验例3中,除了实验例1的兰姆波器件的衬底基板2和压电薄膜3变为LiTaO3以外,基本结构与实验例1同样。与实验例2同样,求出IDT电极4的厚度和压电薄膜3的膜厚分别变化时的兰姆波的机电耦合系数。图6和图7表示该结果。在图6、图7中,与图4和图5同样,h表示IDT电极的膜厚,d表示压电薄膜的膜厚,λ表示兰姆波的波长。另外,在计算时使用有限元法。图6关于兰姆波的各模式,表示d/λ=0.1时的相对于h/d的变化的机电耦合系数的变化。从图6可知,从h/d超过0.26开始,主模式的A1模式的机电耦合系数K2下降,其他模式的机电耦合系数K2增大。
接着,表示d/λ变化时的各模式的机电耦合系数的变化。图5是表示把h/d固定在0.26,使d/λ在0.08~0.3的范围中变化时的兰姆波的各模式的机电耦合系数K2的变化的图。从图7可知,在d/λ的几个范围中,主模式的A1模式的机电耦合系数K2下降,其他模式的机电耦合系数K2增大。这样的d/λ的范围不适合于滤波器。
如果综合图6和图7进行判断,则h/d≤0.26,如果d/λ处于满足以下的IV~VI的条件的范围:
IV 0.093≤d/λ≤0.125
V 0.141≤d/λ≤0.240
VI 0.260≤d/λ≤0.300,
则主模式的A1模式以外的模式的机电耦合系数被抑制在充分小,据此,能抑制乱真的发生,能实现良好的特性的兰姆波器件。另外,IDT电极的材料并不局限于Al,即使是以Al为主成分的合金,也取得相同的效果。如果h/d低于0.01,就由于伴随着电极的电阻的增大的电流的实际损失,插入损失恶化,所以h/d是0.01以上。
另外,在图1所示的兰姆波器件1中,IDT电极4形成在vd第二面3b。这时,在压电薄膜3的上表面即在外侧露出的面形成IDT电极4,所以能容易形成IDT电极。因此,能提供廉价的兰姆波器件1。
IDT电极4形成在压电薄膜3的第一面3a即与衬底基板2相对的内侧的面上。在面对空隙A的内侧的第一面3a上形成IDT电极4时,即使从外壳金属分离的金属粉落下,也难以产生短路或特性不良。因此,能提供难以产生因金属粉等的附着引起的变动、并且耐湿性优异的兰姆波器件。
另外,在本说明书中,双晶是一个物质的单晶为2个以上,彼此按照特定的对称关系结合的一个固体,c轴为旋转轴的旋转双晶是双晶,用欧拉角表现各构成要素的单晶时,具有欧拉角彼此以c轴为中心旋转,能表现的对称关系。

Claims (5)

1.一种兰姆波器件,其中,
具有:
衬底基板;
压电薄膜,其形成在所述衬底基板上,具有从该衬底基板浮起的部分,该浮起的部分具有与衬底基板相对的第一面以及相反侧的面即第二面;
IDT电极,其配置在所述压电薄膜的第一、第二面的至少一方,
所述压电薄膜由LiTaO3或LiNbO3构成,
所述压电薄膜的c轴,处于与相对于所述压电薄膜的第一、第二面的法线大致相同的方向,该压电薄膜的晶体结构是以c轴为旋转轴的旋转双晶。
2.根据权利要求1所述的兰姆波器件,其特征在于,
所述压电薄膜是LiNbO3
所述IDT电极由Al或以Al为主成分的合金构成,
设所述IDT电极的厚度为h,所述压电薄膜的膜厚为d,兰姆波的利用模式的波长为λ时,h和d满足以下I~III的其中一个条件:
I 0.01≤h/d≤0.24并且0.090≤d/λ≤0.107
II 0.01≤h/d≤0.24并且0.133≤d/λ≤0.233
III 0.01≤h/d≤0.24并且0.257≤d/λ≤0.300。
3.根据权利要求1所述的兰姆波器件,其特征在于,
所述压电薄膜是LiTabO3,所述IDT电极由Al或以Al为主成分的合金构成,
设所述IDT电极的厚度为h,所述压电薄膜的膜厚为d,兰姆波的利用模式的波长为λ时,h和d满足以下IV~VI的其中一个条件:
IV 0.01≤h/d≤0.26并且0.093≤d/λ≤0.125
V 0.01≤h/d≤0.26并且0.141≤d/λ≤0.240
VI 0.01≤h/d≤0.26并且0.260≤d/λ≤0.300。
4.根据权利要求1~3中任一项所述的兰姆波器件,其特征在于,
所述IDT电极形成在压电薄膜的第二面上。
5.根据权利要求1~3中任一项所述的兰姆波器件,其特征在于,
所述IDT电极形成在所述压电薄膜的第一面上。
CN2006800392745A 2005-10-19 2006-10-04 兰姆波器件 Active CN101292423B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005304218 2005-10-19
JP304218/2005 2005-10-19
PCT/JP2006/319852 WO2007046236A1 (ja) 2005-10-19 2006-10-04 ラム波デバイス

Publications (2)

Publication Number Publication Date
CN101292423A true CN101292423A (zh) 2008-10-22
CN101292423B CN101292423B (zh) 2010-08-25

Family

ID=37962332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800392745A Active CN101292423B (zh) 2005-10-19 2006-10-04 兰姆波器件

Country Status (6)

Country Link
US (1) US7535152B2 (zh)
EP (1) EP1947765B1 (zh)
JP (1) JP4613960B2 (zh)
KR (1) KR100904368B1 (zh)
CN (1) CN101292423B (zh)
WO (1) WO2007046236A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741344A (zh) * 2008-11-19 2010-06-16 日本碍子株式会社 兰姆波装置
CN103308609A (zh) * 2013-06-26 2013-09-18 哈尔滨工业大学 一种基于电磁超声发射换能器的Lamb波模式控制方法
CN105337586A (zh) * 2015-12-03 2016-02-17 天津大学 兰姆波谐振器

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315174B2 (ja) 2006-02-16 2009-08-19 セイコーエプソン株式会社 ラム波型高周波デバイスの製造方法
FR2922696B1 (fr) * 2007-10-22 2010-03-12 St Microelectronics Sa Resonateur a ondes de lamb
GB0723526D0 (en) * 2007-12-03 2008-01-09 Airbus Uk Ltd Acoustic transducer
US8482184B2 (en) 2008-07-11 2013-07-09 Panasonic Corporation Plate wave element and electronic equipment using same
JP2010088109A (ja) 2008-09-05 2010-04-15 Panasonic Corp 弾性波素子と、これを用いた電子機器
EP2377176B1 (en) 2008-12-17 2016-12-14 Analog Devices, Inc. Mechanical resonating structures including a temperature compensation structure
US8686614B2 (en) * 2008-12-17 2014-04-01 Sand 9, Inc. Multi-port mechanical resonating devices and related methods
US8689426B2 (en) 2008-12-17 2014-04-08 Sand 9, Inc. Method of manufacturing a resonating structure
JP5367612B2 (ja) * 2009-02-17 2013-12-11 日本碍子株式会社 ラム波装置
FR2947398B1 (fr) * 2009-06-30 2013-07-05 Commissariat Energie Atomique Dispositif resonant a ondes acoustiques guidees et procede de realisation du dispositif
US8604888B2 (en) * 2009-12-23 2013-12-10 Sand 9, Inc. Oscillators having arbitrary frequencies and related systems and methods
US8704604B2 (en) 2009-12-23 2014-04-22 Sand 9, Inc. Oscillators having arbitrary frequencies and related systems and methods
US8736388B2 (en) * 2009-12-23 2014-05-27 Sand 9, Inc. Oscillators having arbitrary frequencies and related systems and methods
WO2011109382A1 (en) 2010-03-01 2011-09-09 Sand9, Inc. Microelectromechanical gyroscopes and related apparatus and methods
US8833161B2 (en) 2010-04-20 2014-09-16 Sand 9, Inc. Microelectromechanical gyroscopes and related apparatus and methods
WO2012040043A1 (en) 2010-09-20 2012-03-29 Sand9, Inc. Resonant sensing using extensional modes of a plate
SG190064A1 (en) 2010-11-08 2013-06-28 Agency Science Tech & Res A piezoelectric resonator
JP5648695B2 (ja) 2010-12-24 2015-01-07 株式会社村田製作所 弾性波装置及びその製造方法
WO2013021948A1 (ja) * 2011-08-08 2013-02-14 株式会社村田製作所 弾性波装置
US9383208B2 (en) 2011-10-13 2016-07-05 Analog Devices, Inc. Electromechanical magnetometer and applications thereof
JP2013214954A (ja) * 2012-03-07 2013-10-17 Taiyo Yuden Co Ltd 共振子、周波数フィルタ、デュプレクサ、電子機器及び共振子の製造方法
JP5817928B2 (ja) * 2012-05-15 2015-11-18 株式会社村田製作所 弾性波装置
US10800649B2 (en) 2016-11-28 2020-10-13 Analog Devices International Unlimited Company Planar processing of suspended microelectromechanical systems (MEMS) devices
US10784833B2 (en) 2017-04-04 2020-09-22 Vanguard International Semiconductor Singapore Pte. Ltd. Lamb acoustic wave resonator and filter with self-aligned cavity via
JP6662490B2 (ja) * 2017-04-26 2020-03-11 株式会社村田製作所 弾性波装置
WO2019082806A1 (ja) * 2017-10-23 2019-05-02 京セラ株式会社 弾性波素子
US11509279B2 (en) 2020-07-18 2022-11-22 Resonant Inc. Acoustic resonators and filters with reduced temperature coefficient of frequency
US10756697B2 (en) 2018-06-15 2020-08-25 Resonant Inc. Transversely-excited film bulk acoustic resonator
US11323096B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with periodic etched holes
US10601392B2 (en) 2018-06-15 2020-03-24 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US20220116015A1 (en) 2018-06-15 2022-04-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11146232B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US10491192B1 (en) 2018-06-15 2019-11-26 Resonant Inc. Transversely-excited film bulk acoustic resonator
US20210328574A1 (en) 2020-04-20 2021-10-21 Resonant Inc. Small transversely-excited film bulk acoustic resonators with enhanced q-factor
US11323090B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US10790802B2 (en) 2018-06-15 2020-09-29 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated Y-X cut lithium niobate
US11323089B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US10911023B2 (en) 2018-06-15 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with etch-stop layer
US10637438B2 (en) 2018-06-15 2020-04-28 Resonant Inc. Transversely-excited film bulk acoustic resonators for high power applications
US11206009B2 (en) 2019-08-28 2021-12-21 Resonant Inc. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US11870424B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Filters using transversly-excited film bulk acoustic resonators with frequency-setting dielectric layers
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US10998882B2 (en) 2018-06-15 2021-05-04 Resonant Inc. XBAR resonators with non-rectangular diaphragms
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11323095B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Rotation in XY plane to suppress spurious modes in XBAR devices
US10868513B2 (en) 2018-06-15 2020-12-15 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US11329628B2 (en) 2020-06-17 2022-05-10 Resonant Inc. Filter using lithium niobate and lithium tantalate transversely-excited film bulk acoustic resonators
US11374549B2 (en) 2018-06-15 2022-06-28 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers
US10992283B2 (en) 2018-06-15 2021-04-27 Resonant Inc. High power transversely-excited film bulk acoustic resonators on rotated Z-cut lithium niobate
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US10917072B2 (en) 2019-06-24 2021-02-09 Resonant Inc. Split ladder acoustic wave filters
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US11146238B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Film bulk acoustic resonator fabrication method
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11264966B2 (en) 2018-06-15 2022-03-01 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11171629B2 (en) 2018-06-15 2021-11-09 Resonant Inc. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US10819309B1 (en) 2019-04-05 2020-10-27 Resonant Inc. Transversely-excited film bulk acoustic resonator package and method
US11201601B2 (en) 2018-06-15 2021-12-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11228296B2 (en) 2018-06-15 2022-01-18 Resonant Inc. Transversely-excited film bulk acoustic resonator with a cavity having a curved perimeter
US10998877B2 (en) 2018-06-15 2021-05-04 Resonant Inc. Film bulk acoustic resonator fabrication method with frequency trimming based on electric measurements prior to cavity etch
US11349450B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Symmetric transversely-excited film bulk acoustic resonators with reduced spurious modes
US11349452B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US11323091B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US10985728B2 (en) 2018-06-15 2021-04-20 Resonant Inc. Transversely-excited film bulk acoustic resonator and filter with a uniform-thickness dielectric overlayer
US11728785B2 (en) 2018-06-15 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US10826462B2 (en) 2018-06-15 2020-11-03 Resonant Inc. Transversely-excited film bulk acoustic resonators with molybdenum conductors
US10797675B2 (en) 2018-06-15 2020-10-06 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated z-cut lithium niobate
US10992284B2 (en) 2018-06-15 2021-04-27 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with multiple frequency setting layers
US10843920B2 (en) 2019-03-08 2020-11-24 Analog Devices International Unlimited Company Suspended microelectromechanical system (MEMS) devices
WO2020186261A1 (en) 2019-03-14 2020-09-17 Resonant Inc. Transversely-excited film bulk acoustic resonator with half-lambda dielectric layer
US11901873B2 (en) 2019-03-14 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with partial BRAGG reflectors
US10911021B2 (en) 2019-06-27 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with lateral etch stop
US11329625B2 (en) 2019-07-18 2022-05-10 Resonant Inc. Film bulk acoustic sensors using thin LN-LT layer
US10862454B1 (en) 2019-07-18 2020-12-08 Resonant Inc. Film bulk acoustic resonators in thin LN-LT layers
CN113328721A (zh) * 2020-02-28 2021-08-31 谐振公司 一种带有多节距叉指式换能器的横向激励的薄膜体声波谐振器
US20210273629A1 (en) 2020-02-28 2021-09-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with multi-pitch interdigital transducer
WO2021222409A1 (en) * 2020-04-29 2021-11-04 Resonant Inc. Transversely-excited film bulk acoustic resonator with controlled conductor sidewall angles
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11469733B2 (en) 2020-05-06 2022-10-11 Resonant Inc. Transversely-excited film bulk acoustic resonators with interdigital transducer configured to reduce diaphragm stress
US10992282B1 (en) 2020-06-18 2021-04-27 Resonant Inc. Transversely-excited film bulk acoustic resonators with electrodes having a second layer of variable width
US11742828B2 (en) 2020-06-30 2023-08-29 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with symmetric diaphragm
US11482981B2 (en) 2020-07-09 2022-10-25 Resonanat Inc. Transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate
US11264969B1 (en) 2020-08-06 2022-03-01 Resonant Inc. Transversely-excited film bulk acoustic resonator comprising small cells
US11671070B2 (en) 2020-08-19 2023-06-06 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators using multiple dielectric layer thicknesses to suppress spurious modes
US11271539B1 (en) 2020-08-19 2022-03-08 Resonant Inc. Transversely-excited film bulk acoustic resonator with tether-supported diaphragm
US11894835B2 (en) 2020-09-21 2024-02-06 Murata Manufacturing Co., Ltd. Sandwiched XBAR for third harmonic operation
US11728784B2 (en) 2020-10-05 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with split die sub-filters
US11476834B2 (en) 2020-10-05 2022-10-18 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters with switches in parallel with sub-filter shunt capacitors
US11658639B2 (en) 2020-10-05 2023-05-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with noncontiguous passband
US11929733B2 (en) 2020-10-05 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with input and output impedances matched to radio frequency front end elements
US11405017B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Acoustic matrix filters and radios using acoustic matrix filters
US11405019B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters
US11463066B2 (en) 2020-10-14 2022-10-04 Resonant Inc. Transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate
US11496113B2 (en) 2020-11-13 2022-11-08 Resonant Inc. XBAR devices with excess piezoelectric material removed
US11405020B2 (en) 2020-11-26 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonators with structures to reduce acoustic energy leakage
US11239816B1 (en) 2021-01-15 2022-02-01 Resonant Inc. Decoupled transversely-excited film bulk acoustic resonators
WO2023234383A1 (ja) * 2022-06-01 2023-12-07 京セラ株式会社 弾性波装置および通信装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036912A (ja) 1989-06-02 1991-01-14 Fujitsu Ltd 弾性表面波素子
US5003822A (en) * 1989-10-02 1991-04-02 Joshi Shrinivas G Acoustic wave microsensors for measuring fluid flow
JP2983252B2 (ja) * 1990-05-14 1999-11-29 株式会社東芝 圧電薄膜デバイス
JP2002152007A (ja) * 2000-11-15 2002-05-24 Hitachi Ltd ラム波型弾性波共振器
CN1382979A (zh) * 2001-04-20 2002-12-04 中国科学院长春光学精密机械与物理研究所 静电叠层式兰姆波微型传感器
JP2003017969A (ja) 2001-06-27 2003-01-17 Takaya Watanabe 弾性表面波装置
JP3904073B2 (ja) * 2002-02-12 2007-04-11 セイコーエプソン株式会社 弾性表面波装置
JP4134627B2 (ja) * 2002-08-02 2008-08-20 株式会社日立製作所 窒化アルミニウム圧電薄膜を用いた高周波弾性波素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741344A (zh) * 2008-11-19 2010-06-16 日本碍子株式会社 兰姆波装置
CN103308609A (zh) * 2013-06-26 2013-09-18 哈尔滨工业大学 一种基于电磁超声发射换能器的Lamb波模式控制方法
CN103308609B (zh) * 2013-06-26 2015-05-20 哈尔滨工业大学 一种基于电磁超声发射换能器的Lamb波模式控制方法
CN105337586A (zh) * 2015-12-03 2016-02-17 天津大学 兰姆波谐振器
CN105337586B (zh) * 2015-12-03 2018-04-17 天津大学 兰姆波谐振器

Also Published As

Publication number Publication date
US7535152B2 (en) 2009-05-19
EP1947765A4 (en) 2009-09-02
EP1947765A1 (en) 2008-07-23
JP4613960B2 (ja) 2011-01-19
EP1947765B1 (en) 2012-04-11
KR100904368B1 (ko) 2009-06-23
CN101292423B (zh) 2010-08-25
JPWO2007046236A1 (ja) 2009-04-23
US20080179989A1 (en) 2008-07-31
KR20080063310A (ko) 2008-07-03
WO2007046236A1 (ja) 2007-04-26

Similar Documents

Publication Publication Date Title
CN101292423B (zh) 兰姆波器件
JP6856820B2 (ja) 弾性波装置、分波器および通信装置
TWI762832B (zh) 聲表面波器件
CN103119847B (zh) 弹性波元件及使用该弹性波元件的弹性波装置
KR100678797B1 (ko) 표면 탄성파 소자 및 이를 포함한 전자 기기
CN1902817B (zh) 边界声波装置
JP5187444B2 (ja) 弾性表面波装置
JP2007300287A (ja) 弾性表面波素子および弾性表面波デバイス並びに電子機器
JPWO2015156232A1 (ja) 弾性波フィルタ装置
JP5817928B2 (ja) 弾性波装置
CN113708739A (zh) 一种声波滤波器
CN111971897A (zh) 具有改进的品质因数的tf-saw谐振器、rf滤波器和制造tf-saw谐振器的方法
KR100889231B1 (ko) 탄성경계파 장치
JP2010177819A (ja) 弾性表面波素子
KR100510563B1 (ko) G㎐ 대역용으로 바람직한 탄성표면파 소자
JP2006270360A (ja) 弾性表面波素子
JP5277993B2 (ja) 弾性表面波素子の製造方法
WO2022153943A1 (ja) 弾性波装置
Omori et al. SAW reflection characteristics of Cu electrodes and their application to SAW IF devices
JP2003179461A (ja) 縦多重モード型sawフィルタ
JPS6346605B2 (zh)
CN117674758A (zh) 兰姆波谐振器及制备方法、滤波器、射频模组、电子设备
JP2005303518A (ja) 弾性表面波フィルタ
JP2003229741A (ja) 表面弾性波素子用基板及びこれを用いた表面弾性波素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant