CN101238402B - 用于眼镜的结构部件、包含该结构部件的眼镜框架和用于制备结构部件和眼镜框架的方法 - Google Patents

用于眼镜的结构部件、包含该结构部件的眼镜框架和用于制备结构部件和眼镜框架的方法 Download PDF

Info

Publication number
CN101238402B
CN101238402B CN2006800286604A CN200680028660A CN101238402B CN 101238402 B CN101238402 B CN 101238402B CN 2006800286604 A CN2006800286604 A CN 2006800286604A CN 200680028660 A CN200680028660 A CN 200680028660A CN 101238402 B CN101238402 B CN 101238402B
Authority
CN
China
Prior art keywords
alloy
weight
glasses
structure member
mirror leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800286604A
Other languages
English (en)
Other versions
CN101238402A (zh
Inventor
王新敏
多田弘幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Charmant Co Ltd
Original Assignee
Japan Basic Material Co Ltd
Charmant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Basic Material Co Ltd, Charmant Co Ltd filed Critical Japan Basic Material Co Ltd
Publication of CN101238402A publication Critical patent/CN101238402A/zh
Application granted granted Critical
Publication of CN101238402B publication Critical patent/CN101238402B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C5/00Constructions of non-optical parts

Abstract

本发明公开的是:用于眼镜的结构部件,尽管不含Ni,但其具有超弹力特性和形状记忆特性,同时保持了优异的生物相容性,且也具有优异的冷加工性;包含该结构部件的眼镜框架;和一种用于制备结构部件或眼镜框架的方法。一种包含Ti-Nb-Zr合金的用于眼镜的结构部件,该合金包含(A)40-75%重量的Ti,(B)18-30%重量的Nb,(C)10-30%重量的Zr和(D)0.2-3.7%重量的至少一种选自Al、Sn、In和Ga的附加金属元素。

Description

用于眼镜的结构部件、包含该结构部件的眼镜框架和用于制备结构部件和眼镜框架的方法
技术领域
本发明涉及用于眼镜的结构部件,其使用具有优异的冷加工性和生物相容性的形状记忆和超弹力的合金,和包含该结构部件的眼镜框架,及其制备方法。 
更具体地,本发明涉及用于眼镜的结构部件,除了不含Ni,包含具有超弹力特性和形状记忆特性的形状记忆和超弹力的合金,并具有优异的生物相容性,且也具有优异的冷加工性;以及包含该结构部件的眼镜框架;和它们的制备方法。 
背景技术
Ti-Ni合金,作为具有形状记忆特性和超弹力特性的典型合金通常是已知的(例如参见专利文献1)。 
在此,形状记忆是指当加热金属时残余应变被消除的现象。 
进一步,残余应变是指当具有某一初始形状(例如卷材形状)的金属负载拉伸超过其弹性极限而导致塑性变形,之后,在去负载的金属中发生的应变。 
此外,该形状记忆是利用马氏体转变-反向马氏体转变的现象,例如,它是在涡轮式热动机、管接头、胸罩金属线等方面使用。 
另一方面,超弹性是指当金属以上述同样方式负载拉伸超过其弹性极限而导致塑性变形,在从该状态去负载后又回复到原始状态(残余应变几乎为零态),同时出现滞后的现象。 
超弹性在马氏体转变-反向马氏体转变中发生并不增加温度,因此它是与形状记忆基本相同的现象。 
换言之,对于具有形状记忆特性的金属,通过加热消除残余应变,而对具有超弹力特性的金属,不用加热消除残余应变。 
Ti-Ni合金除了是由至少两种金属组成的所谓金属间化合物,其具有形状记忆特性和超弹力特性,且它可通过塑性加工成形为板或线的形状。 
而且,Ti-Ni合金的马氏体转变-反向马氏体转变在接近室温的具体温度范围的两端点都发生。 
因此,该Ti-Ni合金在该温度范围内显示出形状记忆特性和超弹力特性。 
然而,由于Ti-Ni合金包含Ni组分,它不具有良好的生物相容性。 
在此,生物相容性是指当皮肤接触金属时的金属过敏反应程度。 
此外,优异的生物相容性是指皮肤几乎不显示金属过敏反应。 
因此,难以利用Ti-Ni合金作为接触脸皮肤的眼镜的结构部件。 
而且,另一个问题,因为Ti-Ni合金在接近室温显示出马氏体转变-反向马氏体转变,其在-5℃或更低时强烈地变软。 
即,Ti-Ni合金具有不好的低温特性。 
在此情况下,尝试开发一种形状记忆和超弹力的合金,其具有高温特性而不包含对人体高毒性的Ni(参见非专利文献1)。 
专利文献1:日本未审查专利,公开号2002-205164 
非专利文献1:“Development of Ti-Sc-Mo shape memory alloy”,TheJapan Institute of Metals,报告摘要144页,2003春季会议。 
发明内容
本发明要解决的问题 
然而,常规无Ni合金仅具有一点超弹力特性或形状记忆特性,且其难以利用无Ni合金作为眼镜的结构部件。 
而且,常规无Ni合金具有缺点,其具有不好的冷加工性并难以加工成薄和弯曲的板材,如眼镜的结构部件。 
本发明根据背景技术创造并实现以解决如上述背景技术的问题。 
即,本发明目的是提供用于眼镜的结构部件,其具有超弹力特性和形状记忆特性,且不含Ni,并具有优异的生物亲和性,还具有优异的冷加工性;还提供包含该结构部件的眼镜框架,和制备它们的方法。 
解决问题的方法 
这样,本发明者深入研究了该问题的背景,结果,发现上述问题可通过使用具有一定组成的Ti-Nb-Zr合金解决,且基于该发现完成本发明。 
即,本发明是(1)用于包含Ti-Nb-Zr合金的眼镜的结构部件,该合金组成为:(A)Ti:40-75%重量;(B)Nb:18-30%重量;(C)Zr:10-30%重量;和(D)至少一种选自Al、Sn、In和Ga的附加金属元素:0.2-3.7%重量。 
而且,本发明是(2)如上述(1)中的眼镜用的结构部件,由在550℃-1100℃进行固溶处理而得到。 
而且,本发明是(3)如上述(2)中的眼镜用的结构部件,由在固溶处理后在100℃或更高进行时效处理而得到。 
而且,本发明是(4)如上述(2)中的眼镜用的结构部件,其中进行固溶处理,且在表面电镀或涂覆之后,通过在100℃或更高进行时效处理同时烘烤该电镀或涂层。 
而且,本发明是(5)如上述(1)中的眼镜用的结构部件,其为镜圈(rim)、鼻架(bridge)、桩头(bracket)、鼻托(nose pad support)或镜腿(temple)。 
而且,本发明是(6)包含上述用于眼镜的结构部件的眼镜框架。 
而且,本发明是(7)用于制备眼镜用的结构部件的方法,包含:以50%或更多的断面压缩率冷加工Ti-Nb-Zr合金以延长为最终形状,该合金组成为:(A)Ti:40-75%重量;(B)Nb:18-30%重量;(C)Zr:10-30%重量;和(D)至少一种选自Al、Sn、In和Ga的附加金属元素:0.2-3.7%重量;和之后,进行固溶处理以提供形状记忆特性和超弹力特性。 
而且,本发明是(8)用于制备上述(7)的眼镜用结构部件的方法,其中固溶处理的温度为550℃-1100℃。 
而且,本发明是(9)用于制备上述(7)的眼镜用结构部件的方法,其中时效处理是在固溶处理后在100℃或更高进行。 
而且,本发明是(10)用于制备上述(7)的眼镜用结构部件的方法,其中进行固溶处理,且在表面电镀或涂覆之后,通过在100℃或更高进行时效处理同时烘烤该电镀或涂层。 
而且,本发明是(11)用于制备上述(9)的眼镜用结构部件的方法,其中多次进行时效处理以提高超弹性的表观屈服应力。 
而且,本发明是(12)用于制备上述(7)的眼镜用结构部件的方法,其中眼镜用结构部件为镜圈、鼻架、桩头、鼻托或镜腿。 
而且,本发明是(13)用于制备包含上述制备方法得到的的眼镜用结构部件的眼镜框架的方法。 
此外,可以采用上述(1)至(13)的适当结合,只要它适合本发明目的。 
发明效果 
本发明眼镜用结构部件的合金形成坚固且精细的氧化物层,且由Ti、Nb和Zr组成,具有优异的生物相容性。 
即,Ti-Nb-Zr合金用于本发明的眼镜用合金部件。 
上述Ti-Nb-Zr合金具有形状记忆合金功能,且其适用于直接接触脸皮肤的眼镜材料。 
该用于本发明的眼镜用结构部件的Ti-Nb-Zr合金具有优异的冷加工性,且其能承受滚轧加工高达50%或更多的断面压缩率。 
而且,用于本发明的眼镜用结构部件的Ti-Nb-Zr合金可通过分成多个加工步骤加工成高达95%或更多的断面压缩率而不用退火处理。 
在用于本发明的眼镜用结构部件的Ti-Nb-Zr合金中,马氏体转变-反向马氏体转变在-50℃至-30℃发生。 
因此,用于本发明的眼镜用结构部件的Ti-Nb-Zr合金的硬度在接近0℃时不会强烈的降低,因此其在实际使用的温度范围内具有优异的低温性能。 
而且,因为本发明的眼镜框架包含上述眼镜用结构部件,所以可以实现上述效果。 
附图说明
图1是表示实施例35的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图2是表示实施例36的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图3是表示实施例37的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图4是表示实施例38的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图5是表示实施例39的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图6是表示实施例40的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图7是表示实施例41的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图8是表示实施例42的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图9是表示实施例43中不进行时效处理的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图10是表示实施例43中进行时效处理的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图11是表示实施例44的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图12是表示实施例45的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图13是表示实施例46的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图14是表示实施例47的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图15是表示对比例37的镜腿成形体(眼镜用结构部件)的应力-伸长曲线的示意图。 
图16是眼镜用结构部件的示意图。 
数字和符号的说明 
1眼镜用结构部件 
2镜圈 
3鼻架 
4镜腿 
5桩头 
6鼻托 
具体实施方式
本发明的眼镜用结构部件的Ti-Nb-Zr合金包含Ti、Ni和Zr作为主要成分,具体合金组成为:(A)Ti:40-75%重量;(B)Nb:18-30%重量;(C)Zr:  10-30%重量;和(D)至少一种选自Al、Sn、In和Ga的附加金属元素:0.2-3.7%重量。 
此外,附加元素的添加量,即使当附加元素为多种时总共为0.2-3.7%重量。 
随后,组分(A)至(D)进一步详细描述。 
[组分(A)] 
组分(A)是包含于本发明的眼镜用结构部件的Ti-Nb-Zr合金的Ti。 
Ti的晶体结构优选为体心立方结构。 
在此情况下,由于Ti具有高延展性,Ti-Nb-Zr合金的超弹性变好。 
而且,尽管Ti在常温是六角密积结构(α相),其能通过加热至882℃或更高转变为体心立方结构(β相)。 
此外,转变为体心立方结构后,该体心立方结构即使当冷却后也能保持。 
通常,Ti在空气中接触氧后易于氧化为TiO2。 
此外,纯Ti(2级,JIS H2151)具有106GPa的杨氏模量,当其在610℃或更高温度加热,在表面上形成细TiO2氧化物层。 
这种TiO2氧化物层在常温空气中不发生化学变化,且具有优异的强度和耐腐蚀性。 
上述Ti和纯Ti具有优异的比强度(抗拉强度除以比重的值),因此它们常用作合金的基础。 
具有Ti作为基础的Ti-Nb-Zr合金当合金化时变为固溶体,且有合金的延展性被降低的情况。 
在这种情况下,不能进行锻造,其为促进Ti-Nb-Zr合金的铸态组织的塑性加工之一,因而使用的Ti-Nb-Zr合金优选具有高塑性加工性。 
包含于Ti-Nb-Zr合金中的Ti含量为40-75%重量。 
当该含量低于40%重量,就有趋势不足以获得是Ti的优点的强度、比强度、耐腐蚀性和稳定性,而当超过75%重量时,就有在Ti-Nb-Zr合金中具有可加工性显著降低的趋势,这是Ti的固有的弱点,其在常温时不能加工。 
[组分(B)] 
组分(B)是包含于本发明的眼镜用结构部件的Ti-Nb-Zr合金的Zr。 
Zr的晶体结构优选为体心立方结构。 
而且,尽管Zr在常温是六角密积结构(α相),其能通过加热至862℃或更高转变为体心立方结构(β相)。 
此外,转变为体心立方结构后,该体心立方结构即使当冷却后也能保持。 
当Zr暴露于空气中,在Zr的表面形成致密的氧化物层。 
在这种情况下,Zr具有优异的耐腐蚀性。 
而且,Zr在高温水中的耐腐蚀性明显高于其它金属。 
而且,Zr通过形成氧化物层几乎不反应,即使是在熔碱中。 
即,Zr具有优异的耐腐蚀性。 
具有优异的耐腐蚀性和耐酸性的Zr作为生物亲和性用的或各种机器中所必要的部件的合金组分。 
本发明的眼镜用结构部件的Ti-Nb-Zr合金中的Zr的含量基于组成元素为10-30%重量范围。 
当Zr的含量低于10%重量,Ti-Nb-Zr合金的可加工性降低。 
而且,当Zr含量高于30%重量,Ti-Nb-Zr合金的耐腐蚀性没有提高,仅导致增加比重。 
本发明的眼镜用结构部件的Ti-Nb-Zr合金将具有优异的强度和优异的耐腐蚀性两者,其为Ti或Zr的特性,通过调节Zr在具体范围的含量比。 
结果,本发明的眼镜用结构部件显示良好的耐腐蚀性和耐酸性。 
[组分(C)] 
组分(C)是包含于本发明的眼镜用结构部件的Ti-Nb-Zr合金的Nb。 
Nb具有延展性,其杨氏模量为105GPa,且其强度与熟铁程度相当。 
而且,通常当Nb添加到合金,该合金即具有柔软性(低弹性)。 
当Nb接触空气,在其表面形成氧化物层。 
因此,Nb显示耐腐蚀性。 
因此,通过使用Nb作为本发明的眼镜用结构部件的Ti-Nb-Zr合金的组分,可与Zr一起协同促进Ti-Nb-Zr合金的耐腐蚀性和耐酸性。 
本发明的眼镜用结构部件的Ti-Nb-Zr合金中的Nb的含量为18-30%重量。 
当Nb含量低于18%重量,所得合金不足以具有柔软性。 
另一方面,上述Ti-Nb-Zr合金的杨氏模量增加,引起塑性可加工性降低的问题。 
而且,当Nb的含量高于30%重量,所得合金的柔软性或耐腐蚀性都不增加。 
而且,上述Ti-Nb-Zr合金对身体组织的生物亲和性没有增加,仅其比重增加。 
[组分(D)] 
组分(D)是包含于本发明的眼镜用结构部件的Ti-Nb-Zr合金的至少一种选自Al、Sn、In和Ga的附加金属元素。 
当附加金属元素的含量为0.2-3.7%重量,所得合金具有形状记忆特性和超弹力特性。 
当附加金属元素的含量少于0.2%重量,所得Ti-Nb-Zr合金变得太软,因此,它不能用作生物材料或机器和设备的零件。 
而且,当附加金属元素的总含量超过3.7%重量,所得Ti-Nb-Zr合金不具有形状记忆特性和超弹力特性(参见表3),且所得合金的可加工性变差。 
随后,将阐明用于制备本发明的眼镜用结构部件的方法。 
用于制备本发明的眼镜用结构部件的方法是通过施加物理压力而进行上述Ti-Nb-Zr合金的冷加工并通过加热进行固溶处理。 
即,具体地,首先以50%或更多的断面压缩率(减面率,surface reductionredio)冷加工Ti-Nb-Zr合金以延长和变薄,该合金组成为(A)Ti:40-75%重量;(B)Nb:18-30%重量;(C)Zr:10-30%重量;和(D)至少一种选自Al、Sn、In和Ga的附加金属元素:0.2-3.7%重量。 
然后,该变薄的Ti-Nb-Zr合金成形为根据本发明眼镜用结构部件的形状。 
在此,眼镜用结构部件包括镜圈、鼻架、桩头、鼻托或镜腿。 
在此,“冷加工”是指金属或合金在生成应变硬化的温度范围进行的塑性加工。 
而且,“断面压缩率”是指在压力加工之前和之后横截面变化的比率。 
此外,当Ti-Nb-Zr合金的横截面是矩形的,上述“断面压缩率”也可用“压轧比”或“压缩比”表示。 
此外,为形成具有断面压缩率50%或更多的眼镜用结构部件,重要的是考虑最终形成的眼镜用结构部件的体积与原始材料Ti-Nb-Zr合金的体积的比率。 
然后该眼镜用结构部件中形成的Ti-Nb-Zr合金在550℃至1100℃加热,从而制备成具有形状记忆特性和超弹力特性的眼镜用结构部件。 
通过在上述温度范围加热Ti-Nb-Zr合金,可以给予Ti-Nb-Zr合金合适的形状记忆特性和超弹力特性,同时保持具有断面压缩率50%或更多的形状。 
而且,可以通过加热温度和加热时间适当地调整要提供的形状记忆特性和超弹力特性程度的平衡。 
当Ti-Nb-Zr合金在550℃或更高温度加热时,该Ti-Nb-Zr合金显示出比在低于550℃加热更强的形状记忆特性和超弹力特性。 
而且,当Ti-Nb-Zr合金在1100℃或更低温度加热,该Ti-Nb-Zr合金相比在超过1100℃温度加热具有更好的形状稳定性,其适用于本发明的眼镜用结构部件。 
为改善接触脸的眼镜用结构部件的功能,优选对Ti-Nb-Zr合金进行固溶处理以提供形状记忆特性和超弹力特性,且固溶处理之后更优选对其进行时效处理。 
在此,固溶处理是碳化物或其类似物迅速从高温的固溶态冷却以使高温的结构象常温一样的热处理。 
而且,时效处理是随着时间而改变合金质量的处理,具体地,在100℃或更高温度加热上述Ti-Nb-Zr合金。 
通过进行时效处理,上述Ti-Nb-Zr合金相对于没有时效处理的合金具有超弹力特性的高表观屈服应力(apparent yield stress)。 
在此,表观屈服应力是,例如,当预定的应力负载在Ti-Nb-Zr合金上时,Ti-Nb-Zr合金在弹性变形和塑性变形之间的变化界限的应力。 
通过增加时效处理的次数,上述Ti-Nb-Zr合金可以提高根据各种眼镜用结构部件的超弹性的表观屈服应力。 
而且,电镀或涂层的烘烤处理可以在进行时效处理的同时进行。 
因此,通过对上述Ti-Nb-Zr合金进行时效处理,在涂覆或电镀之后不再需要烘烤处理,其可以减少制备工作时间。 
此外,通过上述涂覆或电镀,可以给予眼镜用结构部件装饰如着色和形成图案。 
按固溶处理、涂覆(电镀)和时效处理顺序加工的Ti-Nb-Zr合金具有比按固溶处理、时效处理、涂覆(电镀)和烘烤顺序加工的Ti-Nb-Zr合金更高的表观屈服应力,因此,在弯曲本发明的眼镜用结构部件时,在时效处理之前进行电镀与在时效处理之后进行电镀相比产生硬度。 
用这种方法,获得本发明的眼镜用结构部件,图16是眼镜用结构部件示意图。 
如图16所示,本发明的眼镜用结构部件被用作,例如镜圈、鼻架、桩头(也称为接合点)、鼻托、镜腿或其它眼镜用零件。 
实施例 
本发明的实施方案已经进行了描述,随后,将会参考实施例对本发明进行阐述。 
(实施例1-15和对比例1-34) 
按以下设定制备Ti-Nb-Zr合金:Al:1.3%重量,Nb和Zr的含量如下表1所示,Ti的值为100减去Nb、Zr和Al的含量。 
对该Ti-Nb-Zr合金,在室温进行冷加工,其断面压缩率为70%,得到镜腿形状(宽=2.5mm,厚=1.2mm,长=70mm)。 
之后,具有该镜腿形状的Ti-Nb-Zr合金在800℃加热(即通过升高温度)以进行固溶处理。 
然后,通过冷却得到镜腿成形体(眼镜用结构部件)。 
使用该得到的镜腿成形体,进行形状记忆特性和超弹力特性的测试和时效特性的测试。 
此外,时效特性是用来表示当进行时效处理时显示出的形状记忆特性和超弹力特性是否适用于眼镜用结构部件,因此,它深受材料组成的影响。 
<形状记忆特性和超弹力特性的测试> 
通过对实施例1-15和对比例1-34中得到的镜腿成形体施加力,产生4.0%的塑性伸长。 
之后,通过在去负载时测量残余应变,通过塑性伸长和残余应变之间的差异计算超弹力伸长。 
该算出的超弹力伸长如下评价:A:当在3.0%或更高的范围,B:当在2.5%或更高,低于3.0%的范围,C:当在2.0%或更高,低于2.5%的范围和D:当在低于2.0%的范围。 
所得的结果示于表2。 
此外,当测试结果为A,该形状记忆特性和超弹力特性是优异的,而当测试结果为B,该形状记忆特性和超弹力特性是相对良好的,可以采用其作为本发明眼镜用结构部件。 
<时效特性测试> 
对实施例1-15和对比例1-34中得到的镜腿成形体在800℃进行固溶处理,对固溶处理的镜腿成形体进行涂覆。 
之后,该涂覆的镜腿成形体在200℃进行时效处理,对所得镜腿成形体施加力得到4.0%的塑性伸长。 
之后,通过测试去负载时的残余应变,通过塑性伸长和残余应变之间的差异计算超弹力伸长。 
该算出的超弹力伸长如下评价:A:当在3.0%或更高的范围,B:当在2.5%或更高,低于3.0%的范围,C:当在2.0%或更高,低于2.5%的范围和D:当在低于2.0%的范围。 
所得的结果示于表2。 
此外,当测试结果为A,该时效特性是优异的,而当测试结果为B,该时效特性是相对良好的,可以采用其作为本发明眼镜用结构部件。 
表1 
   Nb含量(%) Zr含量(%)   Nb含量(%) Zr含量(%)
实施例1  18 10 对比例11 10 20
实施例2  18 15 对比例12 10 25
实施例3  18 20 对比例13 10 30
实施例4  18 25 对比例14 10 35
实施例5  18 30 对比例15 15 5
实施例6  25 10 对比例16 15 10
实施例7  25 15 对比例17 15 15
实施例8  25 20 对比例18 15 20
实施例9  25 25 对比例19 15 25
实施例10  25 30 对比例20 15 30
实施例11  30 10 对比例21 15 35
实施例12  30 15 对比例22 18 5
实施例13  30 20 对比例23 18 35
实施例14  30 25 对比例24 25 5
实施例15  30 30 对比例25 25 35
对比例1  5 5 对比例26 30 5
对比例2  5 10 对比例27 30 35
对比例3  5 15 对比例28 35 5
对比例4  5 20 对比例29 35 10
对比例5  5 25 对比例30 35 15
对比例6  5 30 对比例31 35 20
对比例7  5 35 对比例32 35 25
对比例8  10 5 对比例33 35 30
对比例9  10 10 对比例34 35 35
对比例10  10 15      
 表2 
  形状记忆特性超弹力特性 时效特性   形状记忆特性超弹力特性 时效特性
实施例1 A B 对比例11 B D
实施例2 A B 对比例12 B D
实施例3 A B 对比例13 B D
实施例4 A B 对比例14 C D
实施例5 B B 对比例15 B C
实施例6 A A 对比例16 B C
实施例7 A A 对比例17 B C
实施例8 A A 对比例18 B C
实施例9 A A 对比例19 B C
实施例10 B B 对比例20 B C
实施例11 A B 对比例21 B C
实施例12 A B 对比例22 B C
实施例13 A B 对比例23 C D
实施例14 A B 对比例24 A C
实施例15 B B 对比例25 C C
对比例1 C D 对比例26 A C
对比例2 C D 对比例27 C C
对比例3 C D 对比例28 B C
对比例4 C D 对比例29 B C
对比例5 C D 对比例30 B C
对比例6 C D 对比例31 B C
对比例7 C D 对比例32 B C
对比例8 C D 对比例33 B C
对比例9 B D 对比例34 C D
对比例10 B D      
从表2所知,当包含于实施例1-15的镜腿成形体的Nb为18-30%重量而Zr为10-30%重量时,在形状记忆特性和超弹力特性测试和时效特性测试中都得到B或更好的测试结果。 
即,已知当各组分(A至D)的含量比在上述Ti-Nb-Zr合金的范围内时,Ti-Nb-Zr合金提供充分的形状记忆特性和超弹力特性作为眼镜用结构部件,且也提供充分的装饰特性作为眼镜用结构部件。 
(实施例16-30和对比例35、36) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Zr:22%重量,Nb:23%重量,Al含量示于以下表3,Ti的值为100减去Nb、Zr和Al的含量。 
<弹性变形伸长> 
通过对得到的镜腿成形体施加力,产生4.0%的塑性伸长。 
之后,通过在去负载时测量残余应变计算塑性伸长和残余应变。 
然后,从塑性伸长和残余应变的值计算下式的弹性变形伸长(%): 
所得的结果示于表3。 
超弹性变形伸长(%)=塑性伸长(%)-残余应变(%) 
表3 
      Al(%重量)     超弹性变形伸长(%)
  实施例16     0.3     2.8
  实施例17     0.8     3.6
  实施例18     1.3     4.0
  实施例19     1.5     3.8
  实施例20     1.7     3.8
  实施例21     1.9     3.7
  实施例22     2.1     3.6
  实施例23     2.3     3.6
  实施例24     2.5     3.0
  实施例25     2.7     2.8
  实施例26     2.9     2.8
  实施例27     3.1     2.7
  实施例28     3.3     2.7
  实施例29     3.5     2.6
  实施例30     3.7     2.5
  对比例35     0.1     1.9
  对比例36     3.9     1.3
从表3所知,实施例16-30的镜腿成形体具有2.0或更多的超弹性变形伸长。 
此外,这种超弹性变形伸长优选为2.5%或更多。 
而且,当Al含量为1.3%重量时,超弹性变形伸长显示4%的最大值,  且当超弹性变形伸长为2.5%或更多时,Al含量的范围为0.3-3.7%重量。 
(实施例31-34) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Zr:22%重量,Nb:23%重量,附加金属元素含量示于以下表4,Ti的值为100减去Nb、Zr和金属元素的含量。 
使用得到的镜腿成形体,进行上述形状记忆特性和超弹力特性的测试。所得结果示于表4。 
表4 
      附加金属元素     含量(%重量)     形状记忆特性    超弹力特性
    实施例31     Al     1.3     A
    实施例32     Sn     3.0     A
    实施例33     In     3.5     A
    实施例34     Ga     1.3     A
从表4可知,实施例31-34的镜腿成形体各具有优异的形状记忆特性和超弹力特性。 
从该事实,证实了Al、Sn、In和Ga可用作附加金属元素。 
(实施例35) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Ti:53.4%重量,Nb:23%重量,Zr:22%重量和Al:1.6%重量。 
使用得到的镜腿成形体,进行拉伸试验。 
(实施例36) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Ti:53.1%重量,Nb:23%重量,Zr:22%重量和Al:1.9%重量。 
使用得到的镜腿成形体,进行拉伸试验。 
(实施例37) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下  Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Ti:52.7%重量,Nb:23%重量,Zr:22%重量和Al:2.3%重量。 
使用得到的镜腿成形体,进行拉伸试验。 
<拉伸测试> 
实施例35-37所得的镜腿成形体放置于拉力试验机上,缓慢加以负载以拉长到4%的超弹性变形伸长。 
从该状态,通过缓慢去负载使镜腿成形体回复到原始形状。 
然后,测量镜腿成形体的原始长度与当回复到原始形状(超弹性变形伸长)的镜腿成形体的长度的比率之差。 
实施例35-37的镜腿成形体此时的应力-伸长曲线分别示于图1至3。 
如图1至3所示,当为实施例35的镜腿成形体时(Al:1.6%重量),发生约0.2%的残余应变,结果,其显示3.8%的超弹性伸长。 
当为实施例36的镜腿成形体时(Al:1.9%重量),发生约0.3%的残余应变,结果,其显示3.7%的超弹性伸长。 
当为实施例37的镜腿成形体时(Al:2.3%重量),发生约0.4%的残余应变,结果,其显示3.6%的超弹性伸长如图3所示。 
从这些可知,超弹性伸长通过添加的Al的量的改变而改变。 
此外,所有所列的实施例是在常温进行的拉伸测试,不是在-50℃至-30℃范围发生的马氏体转变-反向马氏体转变的区域内进行的测试,因此,仅显示超弹力特性。 
显然,如果如果在马氏体转变-反向马氏体转变的区域内进行测试,将会显示形状记忆特性。 
(实施例38) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Ti:53.7%重量,Nb:23%重量,Zr:22%重量和Al:1.3%重量,且该镜腿成形体的厚度被设置为1.0mm而不是1.2mm。 
使用得到的镜腿成形体,进行上述拉伸试验。 
实施例38的镜腿成形体在此时的应力-伸长曲线如图4所示。 
如图4所示,当对上述镜腿成形体施加580MPa的应力时,显示4%的塑性伸长,当去负载时,发生约0.6%的残余应变,且显示3.4%(=4%-0.6  %)的超弹性伸长。 
(实施例39) 
使用实施例38中所用的Ti-Nb-Zr合金,上述拉伸测试连续进行两次,保持试样在安放在试验机中。 
实施例39的镜腿成形体在此时的应力-伸长曲线如图5所示。 
如图5所示,当对上述镜腿成形体第一次施加约620MPa的应力时[图5中(a)],显示4%的塑性伸长,当去负载时,发生1.5%的残余应变。 
在该状态,当对该镜腿成形体再一次施加约650MPa的应力时[图5中(b)],该镜腿成形体显示5.2%的塑性伸长,当去负载时,从第一次负载为零时的点发生1.6%的残余应变。 
从该事实,证实了该镜腿成形体显示了超弹力特性和形状记忆特性。 
(实施例40) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Ti:52.0%重量,Nb:23%重量,Zr:22%重量和Sn:3.0%重量,且该镜腿成形体的厚度被设置为1.0mm而不是1.2mm。 
使用得到的镜腿成形体,进行上述拉伸试验。 
实施例40的镜腿成形体在此时的应力-伸长曲线如图6所示。 
如图6所示,当对上述镜腿成形体第一次施加约770MPa的应力时[图6中(a)],显示4%的塑性伸长,当去负载时,发生1.0%的残余应变。 
在该具有1.0%的残余应变的状态,当对该镜腿成形体再一次施加约800MPa的应力时[图6中(b)],该镜腿成形◎体显示5.0%的塑性伸长,当去负载时,从伸长为零时的点发生1.8%的残余应变。 
从该事实,证实了该镜腿成形体显示了超弹力特性和形状记忆特性。 
(实施例41) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Ti:51.5%重量,Nb:23%重量,Zr:22%重量和In:3.5%重量,且该镜腿成形体的厚度被设置为1.0mm而不是1.2mm。 
使用得到的镜腿成形体,进行上述拉伸试验。 
实施例41的镜腿成形体在此时的应力-伸长曲线如图7所示。 
如图7所示,当对上述镜腿成形体施加620MPa的应力时,显示4%的塑性伸长,当去负载时,发生约0.4%的残余应变,且显示3.6%(=4%-0.4%)的超弹性伸长。 
而且,在图中未显示,当对该镜腿成形体施加750MPa的应力时,该镜腿成形体显示4%的塑性伸长,当去负载时,发生0.9%的残余应变,且显示3.1%(=4%-0.9%)的超弹性伸长。 
从该事实,证实了该镜腿成形体显示了超弹力特性和形状记忆特性。 
(实施例42) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Ti:53.7%重量,Nb:23%重量,Zr:22%重量和Ga:1.3%重量,且该镜腿成形体的厚度被设置为1.0mm而不是1.2mm。 
使用得到的镜腿成形体,进行上述拉伸试验。 
实施例42的镜腿成形体在此时的应力-伸长曲线如图8所示。 
如图8所示,当对上述镜腿成形体施加820MPa的应力时,显示4%的塑性伸长,当去负载时,发生0.8%的残余应变,且显示3.2%(=4%-0.8%)的超弹性伸长。 
而且,在图中未显示,当对该镜腿成形体施加750MPa的应力时,该镜腿成形体显示4%的塑性伸长。 
从该事实,证实了该镜腿成形体显示了超弹力特性和形状记忆特性。 
此外,上述实施例35-42的镜腿成形体各进行断面压缩率(即,横截面压缩比)超过50%的冷加工(滚轧加工),但此时没有镜腿成形体破裂。 
而且,如果对镜腿成形体进行多次滚轧加工,已知可能有95%或更多的断面压缩率的冷加工而不用退火。 
(实施例43) 
(时效处理的优越性) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Ti:54.9%重量,Nb:22%重量,Zr:22%重量和Al:1.1%重量。 
使用得到的镜腿成形体,进行上述拉伸试验。 
镜腿成形体在此时的应力-伸长曲线如图9所示。 
拉伸试验之后,上述镜腿成形体在200℃加热以进行时效处理。 
然后,再次进行拉伸试验。 
镜腿成形体在此时的应力-伸长曲线如图10所示。 
如图9和10所示,已知上述镜腿成形体通过时效处理具有更高的超弹力特性的表观屈服应力。 
(实施例44) 
(加热烘烤) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Ti:54.9%重量,Nb:22%重量,Zr:22%重量和Al:1.1%重量。 
之后,所得镜腿成形体在200℃加热以进行时效处理,然后进行涂覆。 
使用得到的镜腿成形体,进行上述拉伸试验。 
实施例44的镜腿成形体在此时的应力-伸长曲线如图11所示。 
如图11所示,已知上述镜腿成形体具有更高的超弹力特性的表观屈服应力。 
(实施例45) 
(同时获得烘烤效果) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Ti:54.9%重量,Nb:22%重量,Zr:22%重量和Al:1.1%重量。 
之后,涂覆所得镜腿成形体,然后在200℃加热以进行时效处理。 
使用如此得到的镜腿成形体,进行上述拉伸试验。 
实施例45的镜腿成形体在此时的应力-伸长曲线如图12所示。 
如图12所示,已知上述镜腿成形体具有更高的超弹力特性的表观屈服应力。 
而且,该在镜腿成形体表面的涂层必然进行烘烤。 
因此,从实施例45的结果,已知通过时效处理同时获得电镀或涂层的烘烤而不用进行电镀或涂层的热处理。 
从该实事,与实施例44相比,可以说其生产效率高。 
(实施例46) 
(固溶处理的加热温度:500℃) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Ti:53.7%重量,Nb:22%重量,Zr:23%重量和Al:1.3%重量,该镜腿成形体的厚度被设置为1.0mm而不是1.2mm,且该固溶处理的温度设定为500℃而不是800℃。 
使用得到的镜腿成形体,进行上述拉伸试验。 
实施例46的镜腿成形体在此时的应力-伸长曲线如图13所示。 
如图13所示,当对上述镜腿成形体施加970MPa的应力时,显示3%的塑性伸长,当去负载时,发生1.5%的残余应变。 
从该事实,证实了当固溶处理温度为500℃时,与800℃的情况相比超弹力特性和形状记忆特性变得不充分。 
(实施例47) 
(多次时效处理) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Ti:54.9%重量,Nb:22%重量,Zr:22%重量和Al:1.1%重量。 
之后,在200℃加热所得镜腿成形体以进行时效处理,并使用所得镜腿成形体,进行上述拉伸试验。 
之后,再次在200℃加热以进行时效处理,并使用所得镜腿成形体,再次进行上述拉伸试验。 
实施例47的镜腿成形体在此时的应力-伸长曲线如图14所示。 
此外,图14中的虚线(a)是第一次时效处理后拉伸试验所得的镜腿成形体的应力-伸长曲线,而实线(b)是第二次时效处理后拉伸试验所得的镜腿成形体的应力-伸长曲线。 
如图14所示,已知上述两次时效处理的镜腿成形体相比于一次时效处理的具有更高的表观屈服应力。 
从该实事,得知超弹性的表观屈服应力,即变形的风格(touch)通过时效处理的次数向更硬的方向转变。 
(对比例37) 
与实施例1同样的方式得到镜腿成形体(眼镜用结构部件),除了用以下Ti-Nb-Zr合金替换实施例1中使用的Ti-Nb-Zr合金,该Ti-Nb-Zr合金为Ti:  67.5%重量,Nb:25%重量,Zr:5%重量和Al:2.5%重量。 
使用得到的镜腿成形体,进行上述拉伸试验。 
拉伸试验后,在200℃加热上述镜腿成形体以进行时效处理。然后,再次进行拉伸试验。 
对比例37的镜腿成形体在此时的应力-伸长曲线如图15所示。此外,图15中(a)是固溶处理后镜腿成形体的应力-伸长曲线,且(b)是时效处理后镜腿成形体的应力-伸长曲线。 
如图15所示,得知上述具有或不具有时效处理的镜腿成形体都不具有优异的超弹力特性。 
工业应用 
本发明涉及眼镜用结构部件,其使用具有优异的冷加工性和优异的生物相容性的形状记忆和超弹力合金,和涉及包含该结构部件的眼镜框架,以及制备它们的方法,本发明可用于各种零件,只要它用作结构部件。 
此外,本发明不必须限制于这些实施例。 

Claims (7)

1.超弹性眼镜用结构部件,其包含Ti-Nb-Zr合金,该合金组成为:
(A)Ti:40-53.7%重量;
(B)Nb:18-30%重量;
(C)Zr:20-30%重量;和
(D)至少一种选自Al、Sn、In和Ga的附加金属元素:0.2-3.7%重量,
其中,超弹性在马氏体转变-反向马氏体转变中发生而不增加温度。
2.根据权利要求1的超弹性眼镜用结构部件,其为镜圈、鼻架、桩头、鼻托或镜腿。
3.制备超弹性眼镜用结构部件的方法,其中:以50%或更多的断面压缩率冷加工Ti-Nb-Zr合金以延长为最终形状,该合金组成为:(A)Ti:40-53.7%重量;(B)Nb:18-30%重量;(C)Zr:20-30%重量;和(D)至少一种选自Al、Sn、In和Ga的附加金属元素:0.2-3.7%重量;然后,进行固溶处理以提供形状记忆特性和超弹力特性,
在表面电镀或涂覆之后,再在100℃或更高进行多次时效处理以提高超弹性的表观屈服应力,并同时烘烤上述电镀或涂层,
并且,超弹性在马氏体转变-反向马氏体转变中发生而不增加温度。
4.根据权利要求3的制备超弹性眼镜用结构部件的方法,其中,Ti和Zr的晶体结构为体心立方结构,
所得眼镜用结构部件的超弹性变形伸长为2.5%或更多。
5.根据权利要求3的制备超弹性眼镜用结构部件的方法,其中固溶处理的温度为550℃至1100℃。
6.根据权利要求3所述的制备超弹性眼镜用结构部件的方法,其中眼镜用结构部件为镜圈、鼻架、桩头、鼻托或镜腿。
7.一种制备超弹性眼镜框架的方法,该眼镜框架通过安装权利要求3~6任一项的制备方法获得的眼镜用结构部件而获得。
CN2006800286604A 2005-06-10 2006-06-12 用于眼镜的结构部件、包含该结构部件的眼镜框架和用于制备结构部件和眼镜框架的方法 Active CN101238402B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP170439/2005 2005-06-10
JP2005170439 2005-06-10
PCT/JP2006/311711 WO2006132409A1 (ja) 2005-06-10 2006-06-12 眼鏡用部材及びこれを含む眼鏡用フレーム並びにこれらの製造方法

Publications (2)

Publication Number Publication Date
CN101238402A CN101238402A (zh) 2008-08-06
CN101238402B true CN101238402B (zh) 2012-07-04

Family

ID=37498591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800286604A Active CN101238402B (zh) 2005-06-10 2006-06-12 用于眼镜的结构部件、包含该结构部件的眼镜框架和用于制备结构部件和眼镜框架的方法

Country Status (5)

Country Link
US (1) US7988281B2 (zh)
EP (1) EP1890183A4 (zh)
CN (1) CN101238402B (zh)
HK (1) HK1120616A1 (zh)
WO (1) WO2006132409A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103797140A (zh) * 2011-09-05 2014-05-14 国立大学法人筑波大学 活体组织用超弹性锆合金、医疗用器具和眼镜

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160237537A1 (en) * 2012-04-25 2016-08-18 Crucible Intellectual Property, Llc Articles containing shape retaining wire therein
CN103060611B (zh) * 2012-12-26 2015-06-03 宁波市瑞通新材料科技有限公司 一种眼镜框架用弹性记忆合金材料的制备方法
CN103667790B (zh) * 2014-01-16 2015-07-29 徐茂航 一种高强度钛合金的热处理方法
CN105316526B (zh) * 2015-12-07 2017-06-13 哈尔滨工业大学 一种具有良好记忆效应和加工性能的高温记忆合金
CN108130473A (zh) * 2017-12-23 2018-06-08 洛阳名力科技开发有限公司 镜架用弹性合金材料及其制备方法
CN109518036A (zh) * 2018-12-04 2019-03-26 湖北第二师范学院 三温区形状记忆转变的钛铝铬形状记忆合金及其生产方法、应用和材料
CN111074098B (zh) * 2020-01-14 2020-12-15 浙江帝力眼镜股份有限公司 一种轻质高强度钛合金眼镜架及其制备方法
US11780013B2 (en) 2020-07-30 2023-10-10 Raytheon Company Property tailored additively manufactured composite structural elements using congruently melted titanium-niobium-zirconium alloy matrix
US11714258B2 (en) 2020-07-30 2023-08-01 Raytheon Company Congruently melting high purity titanium alloy for optical mounts, flexures, and structural elements requiring compliance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1461816A (zh) * 2002-05-30 2003-12-17 王新敏 Ti基3元合金制品及应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573401A (en) * 1989-12-21 1996-11-12 Smith & Nephew Richards, Inc. Biocompatible, low modulus dental devices
JP3023730U (ja) * 1994-08-23 1996-04-30 株式会社ホリカワ ワンタッチ取り付け式パッド
JP2000102602A (ja) * 1998-07-31 2000-04-11 Daido Steel Co Ltd 硬質組織代替材
JP2000273597A (ja) * 1999-03-19 2000-10-03 Japan Steel Works Ltd:The 析出強化型Ni−Fe基超合金の製造方法
US6767418B1 (en) * 1999-04-23 2004-07-27 Terumo Kabushiki Kaisha Ti-Zr type alloy and medical appliance formed thereof
US6238491B1 (en) * 1999-05-05 2001-05-29 Davitech, Inc. Niobium-titanium-zirconium-molybdenum (nbtizrmo) alloys for dental and other medical device applications
JP3282809B2 (ja) * 1999-12-27 2002-05-20 株式会社豊田中央研究所 携帯品
JP3521253B2 (ja) * 2000-05-18 2004-04-19 株式会社東北テクノアーチ 生体用形状記憶合金
JP2001348635A (ja) 2000-06-05 2001-12-18 Nikkin Material:Kk 冷間加工性と加工硬化に優れたチタン合金
JP4048035B2 (ja) * 2001-05-01 2008-02-13 明久 井上 Ti系3元合金を用いた眼鏡フレームならびに該眼鏡フレームの製造方法
AU2003280722A1 (en) * 2002-11-05 2004-06-07 Aichi Steel Corporation Low rigidity and high strength titanium ally excellent in cold worability, and eyeglass frame and golf club head
JPWO2004042096A1 (ja) * 2002-11-05 2006-03-09 愛知製鋼株式会社 冷間加工性に優れた低剛性・高強度チタン合金、並びにめがねフレーム及びゴルフクラブヘッド
WO2005005677A1 (ja) * 2003-07-15 2005-01-20 Minoru Fumoto ばね特性にすぐれたチタン合金及びめがねフレーム
JP2005301167A (ja) * 2004-04-16 2005-10-27 Sanmei:Kk 眼鏡フレーム材およびこれを用いた眼鏡フレーム
JP4302604B2 (ja) * 2004-09-27 2009-07-29 株式会社古河テクノマテリアル 生体用超弾性チタン合金
CN100351411C (zh) 2005-05-13 2007-11-28 王新敏 形状记忆合金及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1461816A (zh) * 2002-05-30 2003-12-17 王新敏 Ti基3元合金制品及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103797140A (zh) * 2011-09-05 2014-05-14 国立大学法人筑波大学 活体组织用超弹性锆合金、医疗用器具和眼镜

Also Published As

Publication number Publication date
HK1120616A1 (en) 2009-04-03
US7988281B2 (en) 2011-08-02
CN101238402A (zh) 2008-08-06
EP1890183A4 (en) 2010-10-06
US20100073624A1 (en) 2010-03-25
WO2006132409A1 (ja) 2006-12-14
EP1890183A1 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
CN101238402B (zh) 用于眼镜的结构部件、包含该结构部件的眼镜框架和用于制备结构部件和眼镜框架的方法
US5951793A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
JP4118832B2 (ja) 銅合金及びその製造方法
US5958159A (en) Process for the production of a superelastic material out of a nickel and titanium alloy
EP2995694A1 (en) Cu-Al-Mn-BASED BAR MATERIAL AND PLATE MATERIAL DEMONSTRATING STABLE SUPERELASTICITY, METHOD FOR MANUFACTURING SAID BAR MATERIAL AND PLATE MATERIAL, SEISMIC CONTROL MEMBER IN WHICH SAID BAR MATERIAL AND PLATE MATERIAL ARE USED, AND SEISMIC CONTROL STRUCTURE IN WHICH SEISMIC CONTROL MEMBER IS USED
US5733667A (en) Plated nickel-titanium alloy product
TW200936786A (en) Copper-nickel-silicon alloys
US4046596A (en) Process for producing spectacle frames using an age-hardenable nickel-bronze alloy
JPS619563A (ja) 銅合金の製造方法
JP5224569B2 (ja) 眼鏡用部材及びこれを含む眼鏡用フレーム並びにこれらの製造方法
JP5278987B2 (ja) メガネフレームの製造方法
CN112853230B (zh) 一种低层错能面心立方结构高熵形状记忆合金及其制备方法
Mercier et al. Mechanical properties of the cold-worked martensitic NiTi type alloys
JP4224859B2 (ja) 耐応力緩和特性に優れた銅基合金
JP3085099B2 (ja) NiTi基合金眼鏡部材とその製法
JP4718273B2 (ja) 強化α黄銅及びその製造方法
JP2541802B2 (ja) 形状記憶TiNiV合金及びその製造方法
JPH11269585A (ja) Ti−V−Al系超弾性合金とその製造方法
JP5032011B2 (ja) 硬質α黄銅及びその硬質α黄銅の製造方法
JPS63127225A (ja) 眼鏡部品
JPH0860277A (ja) NiTi基合金
JPH07207390A (ja) 超弾性バネ
CN101724766B (zh) 弹性耐磨的眼镜架材料及其制备方法
JP2002182162A (ja) 超弾性材を用いた眼鏡フレームの製造方法
JPH0524983B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1120616

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1120616

Country of ref document: HK

ASS Succession or assignment of patent right

Free format text: FORMER OWNER: JAPAN BASIC MATERIAL CO., LTD.

Effective date: 20130228

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130228

Address after: Fukui Prefecture of Japan

Patentee after: Charmant Co., Ltd.

Address before: Fukui Prefecture of Japan

Patentee before: Charmant Co., Ltd.

Patentee before: Japan Basic Material Co., Ltd.