CN101232286A - A/d转换器 - Google Patents

A/d转换器 Download PDF

Info

Publication number
CN101232286A
CN101232286A CNA2008100088549A CN200810008854A CN101232286A CN 101232286 A CN101232286 A CN 101232286A CN A2008100088549 A CNA2008100088549 A CN A2008100088549A CN 200810008854 A CN200810008854 A CN 200810008854A CN 101232286 A CN101232286 A CN 101232286A
Authority
CN
China
Prior art keywords
voltage
power supply
aanalogvoltage
converted
arithmetic unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100088549A
Other languages
English (en)
Other versions
CN101232286B (zh
Inventor
丸山正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ails Technology Co ltd
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN101232286A publication Critical patent/CN101232286A/zh
Application granted granted Critical
Publication of CN101232286B publication Critical patent/CN101232286B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • H03M1/0845Continuously compensating for, or preventing, undesired influence of physical parameters of noise of power supply variations, e.g. ripple
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0604Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/0607Offset or drift compensation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

提供一种A/D转换器,抑制对电源电压的A/D转换动作带来的影响。该A/D转换器,对1个或者多个被转换模拟电压、与由电压值在固定期间单调变化的斜坡电压的电压变化值或者和所述电压变化值成比例的电压提供的参考电压进行比较,将被转换模拟电压的每一个分别转换成与参考电压对应的数字值并输出,按每个被转换模拟电压具有使用于被转换模拟电压的每一个和所述参考电压之间的电压比较的运算器(12),对运算器(12)设置向各个运算器(12)单独地提供电源电压的第1电源供给线(VSN),在所述每一个第1电源供给线(12)和第2电源供给线(VDD)之间,分别设置栅极端子与稳定电压源(17)相连接的MOS晶体管MSN,且第1电源供给线(12)作为不受提供电源电压的第2电源供给线(VDD)的电压变动的影响的其它系统的电源供给线而构成。

Description

A/D转换器
技术领域
本发明涉及A/D(模拟/数字)转换器,该A/D转换器对1个或者多个被转换模拟电压进行采样保持,并将采样保持的所述1个或者多个被转换模拟电压和由电压值在固定期间单调变化的斜坡电压的电压变化值或者与所述电压变化值成比例的电压所提供的参考电压进行比较,将所述1个或者多个被转换模拟电压的每一个分别转换成与所述参考电压对应的数字值并输出,特别涉及平行列A/D转换器。
背景技术
近年来,固体摄像元件所使用的A/D转换器越发要求高速、低功耗。为了满足这种要求,采用平行列A/D转换器的情况较多(例如,参考特开2000-286706号公报)。
图1表示以往的平行列A/D转换器的方框图。平行列A/D转换器11作为电路要素,包括:反相器电路12、将反相器电路12的输入节点CPI以及输出节点CPO短路的开关RS、用于对被转换模拟电压进行采样的电容器CS、用于将电压值在固定期间单调变化的斜坡电压VRAMP传输到输入节点CPI的电容器CR和开关S3、用于对被转换模拟电压进行采样的开关SS、用于将与被转换模拟电压对应的计数器输出锁存的锁存电路13。进而,在图1中,对于平行列A/D转换器11,还一起图示了产生斜坡电压VRAMP的斜坡电压源14、对与斜坡电压的电压值变化相对应的数字值(n位的2值信号)进行计数并输出的计数器15、固体摄像元件的像素部16。
参考图2的动作定时图对平行列A/D转换器11的A/D转换动作进行说明。
在定时t1,使像素部16的开关RX接通,由此,节点FD被复位成电压VDD,节点VIN经由MOS晶体管MA被充电成高电位。而且,同时地,开关RS接通,反相器电路12的输入节点CPI和输出节点CPO短路,输入节点CPI被自动地复位成反相器电路12的输入判定电压(自动调零电平)。同时地,开关SS接通,但是,其它开关S3、TX为断开状态。
在定时t2,使开关RX断开,由此,节点VIN呈现复位电压。在定时t3,使开关RS断开,由此,电容器CS对复位电压进行采样。
接着,在定时t4,使开关Tx接通时,由像素部16的光电转换元件(光电二极管)PD进行光电转换后并存储的电荷被传送到节点FD,节点VIN转换成与进行光电转换后的电荷量对应的电压电平(光电转换电平)。在节点VIN的电压电平稳定的定时t5,使开关Tx断开并使开关S3接通时,电容器CR保持该时刻的节点VIN的电压电平(光电转换电平)和斜坡电压VRAMP的初始电压的差电压。
接着,在定时t6,使开关SS断开,由此,输入节点CPI保持节点VIN的复位电压(定时t3)和光电转换电平(定时t6)的差分值VSIG作为被转换模拟电压来保持。
在定时t7,使斜坡电压VRAMP的电压值开始缓慢增加时,输入节点CPI的电压也与斜坡电压VRAMP的电压增加量成比例地增加。另外,在定时t7,计数器15的增加计数也同时开始。
在定时t8,输入节点CPI的电压电平超过反相器电路12的输入判定电压时,反相器电路12使输入节点CPO的输出电平反转。锁存电路13响应输出节点CPO的输出变化而保持计数器输出的值。
这里,差分值VSIG是对应于针对光电转换元件PD的入射光量的电压,已被锁存的计数器输出的值是差分值VSIG的A/D转换值(数字值)。利用以上要点而输出由锁存电路13所保持的A/D转换值,由此,平行列A/D转换器11结束被转换模拟电压VSIG的A/D转换动作。
图3表示在平行列A/D转换器11中进行被转换模拟电压VSIG和斜坡电压VRAMP的电压增加值之间的电压比较的反相器电路12的输入输出特性。在反相器电路12中,将被转换模拟电压VSIG和斜坡电压VRAMP的电压增加值的差电压作为输入电压,与输入判定电压的自动调零电平进行比较,由此,执行上述电压比较。
自动调零电平是在将反相器电路12的输入输出间短路的状态下所获得的电压电平,是反相器输入输出特性曲线A和输入电压Vin与输出电压Vout为相同电压(Vin=Vout)的直线B相交叉的点的电压。
若将构成反相器电路12的P沟道型MOSFET和N沟道型MOSFET的各阈值电压设为Vthp、Vthn、将跨导设为βp、βn,则贯穿反相器电路12的两个MOSFET而流过的电流量相等,所以,以下的式子1成立。另外,在式子1中,VDD是提供给P沟道型MOSFET的源极端子的电源电压,Vx是自动调零电平,式子2的关系成立。
βn/2×(Vx-Vthn)2=βp/2×(VDD-Vx-Vthp)2
                                         (1)
Vx=Vin-Vout                             (2)
将式子1的方程式关于Vx求解,则获得自动调零电平Vx如以下的式子3所示。
Vx={(βn/βp)1/2×Vthn+VDD-Vthp}
/(1+(βn/βp)1/2)    (3)
根据式子3可知,自动调零电平Vx的电压变动与电源电压VDD的电压变动成比例。
图4表示电源电压VDD发生了变动的情况下的反相器电路的输入输出特性。如图4示意性地表示那样,可知电源电压VDD变动电压Δ时,自动调零电平Vx从Vx1变动到Vx2。
参照图5所示的时序图,说明电源电压变动引起的、对锁存器输出(由锁存电路13保持并输出的计数器输出值)的影响。
电源电压VDD在A/D转换处理中变动电压Δ时,自动调零电平从Vx1到Vx2这样变动,因此,反相器电路的输出节点CPO的下降定时从t8到t9这样变动。即,由于将计数器输出进行锁存的定时延迟,引起锁存器输出值发生变化。这样的电源电压变动产生的影响直接成为A/D转换输出的变动。所以,从固体摄像元件得到的数字图像成为重叠了与电源电压变动对应的噪声的图像。
发明内容
本发明鉴于以上问题而完成,其目的在于,提供一种A/D转换器,抑制电源电压变动对A/D转换动作带来的影响。
用于实现上述目的的本发明的A/D转换器,对1个或者多个被转换模拟电压进行采样保持,将采样保持的所述1个或者多个被转换模拟电压、与由电压值在固定期间单调变化的斜坡电压的电压变化值或者和所述电压变化值成比例的电压提供的参考电压进行比较,将所述1个或者多个被转换模拟电压的每一个分别转换成与所述参考电压对应的数字值并输出,其第1特征在于,按每个所述被转换模拟电压具有在所述1个或者多个被转换模拟电压的每一个与所述参考电压的电压比较中所使用的运算器,对所述运算器设置向所述各个运算器单独地提供电源电压的第1电源供给线,每一个所述第1电源供给线,作为不受对所述运算器以外的电路提供电源电压的第2电源供给线的电压变动的影响的其它系统的电源供给线来构成。
根据上述第1特征的A/D转换器,由于对运算器进行电源电压供给的第1电源供给线作为不受对运算器以外的电路提供电源电压的第2电源供给线的电压变动的影响的其它系统的电源供给线而构成,因此第1电源供给线的电源电压电平稳定而不受第2电源供给线的电压变动的影响。因此,能够提供一种A/D转换器,利用运算器的电压比较进行的A/D转换不受第2电源供给线的电压变动的影响,可进行稳定的低噪声的A/D转换动作。
本发明的A/D转换器除了上述第1特征之外,其第2特征在于,还具有:N沟道型MOSFET,其源极端子和漏极端子分别连接到所述第1电源供给线和所述第2电源供给线;第1稳定电压源,将不受所述第2电源供给线的电压变动的影响的稳定的电压输出到所述N沟道型MOSFET的栅极端子。
根据上述第2特征的A/D转换器,能够从第2电源供给线经由N沟道型MOSFET对第1电源供给线提供稳定的电压,因此,不需要单独对第1电源供给线提供稳定的电源电压,可谋求电路结构的简化。
本发明中的A/D转换器,除了上述第1个或者第2特征之外,其第3特征在于,对所述运算器提供接地电压的第1接地电压线作为不受对所述运算器以外的电路提供接地电压的第2接地电压线的电压变动的影响的其它系统的接地电压线来构成。
根据上述第3特征的A/D转换器,由于对运算器提供接地电压的第1接地电压线作为不受对运算器以外的电路提供接地电压的第2接地电压线的电压变动的影响的其它系统的接地电压线而构成,所以,第1接地电压线的接地电压电平稳定而不受第2接地电压线的电压变动的影响。因此,能够提供一种A/D转换器,利用运算器的电压比较进行的A/D转换不受第2接地电压线的电压变动的影响,可进行更稳定的低噪声的A/D转换动作。
本发明中的A/D转换器,除了上述第3特征之外,其第4特征在于,还具有:P沟道型MOSFET,其源极端子和漏极端子分别连接到所述第1接地电压和所述第2接地电压;第2稳定电压源,将不受所述第2接地电压线的电压变动的影响的稳定的电压输出到所述P沟道型MOSFET的栅极端子。
根据上述第4特征的A/D转换器,由于从第2接地电压线能够经由P沟道型MOSFET对第1接地电压线提供稳定的电压,因此,不需要对第1接地电压线单独提供稳定的接地电压,可谋求电路结构的简化。
本发明中的A/D转换器,除了上述第2特征之外,其第5特征在于,具有多个可将多个所述被转换模拟电压分别转换成所述数字值的所述运算器而成,将与所述多个运算器的所述第1电源供给线分别单独连接的多个所述N沟道型MOSFET的栅极端子相互连接,所述第1稳定电压源的输出电压共同地输出到所述多个N沟道型MOSFET的各个栅极端子。
根据上述第5特征的A/D转换器,能够提供一种A/D转换器,在对多个被转换模拟电压并列地进行A/D转换的情况下,能够利用简单的电路结构有效地抑制第2电源供给线的电压变动对运算器的电压比较进行的A/D转换产生的影响,可进行稳定的低噪声的A/D转换动作。
本发明中的A/D转换器,除了上述第4特征之外,其第6特征在于,具有可将多个所述被转换模拟电压分别转换成所述数字值的多个所述运算器而成,将与所述多个运算器的所述第1接地电压线分别单独连接的多个所述P沟道型MOSFET的栅极端子相互连接,所述第2稳定电压源的输出电压共用地输出到所述多个P沟道型MOFET的各个栅极端子。
根据上述第6特征的A/D转换器,可提供一种A/D转换器,在对多个被转换模拟电压并列地进行A/D转换的情况下,能够利用简单的电路结构有效地抑制第2电源供给线的电压变动对运算器的电压比较进行的A/D转换产生的影响,可进行稳定的低噪声的A/D转换动作。
本发明中的A/D转换器,除了上述第1至第6任意一项的特征之外,其第7特征在于,具有:斜坡电压发生部,产生所述斜坡电压;计数器,对与所述参考电压对应的数字值进行计数并输出;电压比较电路,对所述被转换模拟电压进行采样保持,使用所述运算器,比较所述参考电压和所述被转换模拟电压,在所述参考电压与所述被转换模拟电压相等的时刻进行输出变化;锁存电路,将从所述计数器输出的所述数字值在所述电压比较电路的输出变化时进行锁存并输出。
本发明中的A/D转换器,除了上述第1至第7任意一项的特征之外,其第8特征在于,所述运算器使用反相器电路构成,具有电压合成电路,产生对所述反相器电路的输入判定电压加上所述被转换模拟电压和所述参考电压的差电压后的合成电压,作为所述反相器电路的输入电压。
本发明中的A/D转换器,除了上述第1至第7任意一项的特征之外,其第9特征在于,所述运算器由分别将所述被转换模拟电压和所述斜坡电压作为输入电压的差动输入型的运算放大器构成。
根据上述第7至第9特征的A/D转换器,能够以简单的电路结构具体地实现起到上述第1至第6任意一项的特征的作用效果的A/D转换器。
附图说明
图1是表示以往的平行列A/D转换器的一个电路结构的电路方框图。
图2是示意性地表示图1所示的A/D转换器的电路动作的时序图。
图3是表示反相器电路的晶体管电路图和输入输出特性的图。
图4是表示反相器电路的输入输出特性和电源电压变动的影响的图。
图5是表示图1所示的A/D转换器的电源电压变动对锁存器输出的影响的图。
图6是表示本发明的A/D转换器的第1实施方式的电路结构例的电路方框图。
图7是表示本发明的A/D转换器的第2实施方式的电路结构例的电路方框图。
图8是表示本发明的A/D转换器的第3实施方式的电路结构例的电路方框图。
图9是表示本发明的A/D转换器的第4实施方式的电路结构例的电路方框图。
图10是将以往的平行列A/D转换器的接地电压供给线的布线电阻引起的电压上升模式化后的图。
图11是表示反相器电路的输入输出特性与接地电压变动的影响的图。
图12是表示本发明的A/D转换器的第5实施方式的电路结构例的电路方框图。
图13是表示本发明的A/D转换器的第6实施方式的电路结构例的电路方框图。
图14是表示本发明的A/D转换器的第7实施方式的电路结构例的电路方框图。
具体实施方式
以下基于附图说明本发明的A/D转换器(以下适当称为“本发明装置”)的实施方式。另外,在用于说明本发明装置的各个图中,为了使说明的理解变得简单,对于与图1所示的以往的A/D转换器相同的电路要素、节点、信号赋予相同的符号进行说明。
第1实施方式
图6表示本发明装置的第1实施方式的电路结构。第1实施方式中的本发明装置1具有反相器12、将反相器电路12的输入节点CPI以及输出节点CPO短路的开关RS、用于对从本发明装置1的输入节点VIN所输入的被转换模拟电压进行采样的开关SS和电容器CS、用于将与电压值在固定期间单调变化的斜坡电压VRAMP的电压变化成比例的参考电压传输到输入节点CPI的开关S3和电容器CR、用于对与被转换模拟电压对应的计数器输出进行锁存的锁存电路13、产生斜坡电压VRAMP的斜坡电压源14、以及对相应于与斜坡电压VRAMP的电压变化值成比例的参考电压的数字值(n位的2值信号)进行计数并输出的计数器15而构成。另外,对输入节点VIN输入电压VSIG等模拟电压,该VSIG等模拟电压是从图1的以往的平行列A/D转换器的方框图所例示的固体摄像元件的像素部16输出的、与针对光电转换元件PD的入射光量相应的电压,但是,被转换模拟电压并不限定于光电转换元件PD的光电转换输出。
构成上述的本发明装置1的电路要素与构成图1所示的以往的A/D转换器的电路要素相同。如图6所示,在本发明装置1中,除了上述电路要素之外,其构成为,还独立设置了对反相器电路12提供专用的电源电压VINV的第1电源供给线VSN、和对除了反相器电路12的系统整体提供系统电源电压VDD的系统电源供给线VDD(相当于第2电源供给线),系统电源电压VDD的电压变动的影响不会呈现在第1电源供给线VSN。在本发明装置1中,为了回避从外部对第1电源供给线VSN提供与系统电源电压VDD独立的单独的电源电压的情况,还设置了:N沟道型MOSFET(晶体管MSN),其源极端子和漏极端子分别与第1电源供给线VSN和系统电源供给线VDD相连接;以及第1稳定电压源17,对晶体管MSN的栅极端子提供不受系统电源电压VDD的电压变动的影响的稳定的电压VBN。晶体管MSN进行源极跟随器动作,所以,提供给第1电源供给线VSN的电压VINV由以下的式子4提供。在式子4中,Vthsn、βsn为晶体管MSN的阈值电压、和式子5提供的导电系数β,IB为在自动调零时(输入节点CPI和输出节点CPO短路时)贯通反相器电路12而流过的贯通电流。其中,在式子5中,W、L为晶体管的沟道宽度和沟道长度,εOX和tOX为栅极绝缘膜的介电常数和膜厚度,μ为沟道中的载流子迁移率。
VINV=VBN-Vthsn-(2×IB/βsn)1/2    (4)
β=W×εox×μ/(2×L×tox)    (5)
由式子4可知,将不受系统电源电压VDD的电压变动的影响的电源电压VINV提供给反相器电路12。即,本发明装置1的新的自动调零电平Vx’如式子6那样,不受系统电源电压的电压变动的影响。其结果是,系统电源电压VDD的电压变动引起的对A/D转换结果的影响非常小。
Vx’={(βn/βp)1/2×Vthn+VINV-Vthp}
/(1+(βn/βp)1/2)    (6)
在图6所示的电路结构中,由反相器电路12、开关RS、开关SS和电容器CS、开关S3和电容器CR、以及晶体管MSN构成电压比较电路,对被转换模拟电压进行采样保持,比较与斜坡电压VRAMP的电压变化值成比例的参考电压和被转换模拟电压,在参考电压和被转换模拟电压相等的时刻进行输出变化。在第1实施方式中,反相器电路12作为在参考电压和被转换模拟电压的电压比较中所使用的运算器而起作用。另外,构成电压比较电路的各个开关RS、SS、S3和各个电容器CS、CR作为电压合成电路而起作用,在输入节点CPI产生对反相器电路12的输入判定电压Vx(参照式子3)加上被转换模拟电压和参考电压的差电压后的合成电压,作为反相器电路12的输入电压。
本发明装置1的A/D转换动作与图1所示的以往的A/D转换器相同,但是,为了确认本发明装置1的电压比较电路的动作,再次参照图2的时序图来进行说明。
在定时t1~t3的期间内,在节点VIN呈现复位电压,并且,开关RS接通,反相器12的输入节点CPI和输出节点CPO短路,输入节点CPI被自动地复位成反相器电路12的输入判定电压(自动调零电平)。开关SS在相同期间内接通。
在定时t3,使开关RS断开,由此,在电容器CS对节点VIN的复位电压进行采样。
接着,在定时t4,节点VIN的电压开始转换,以使被转换模拟电压VSIG作为与复位电压的差电压出现。在节点VIN的电压电平稳定的定时t5,使开关S3接通时,电容器CR保持该时刻的节点VIN的电压电平和斜坡电压VRAMP的初始电压的差电压。
接着,在定时t6,使开关SS断开,由此,输入节点CPI保持节点VIN的复位电压(定时t3)和定时t6时刻的电压的差电压VSIG,作为被转换模拟电压。
在定时t7,使斜坡电压VRAMP的电压值开始缓慢增加时,输入节点CPI的电压也与斜坡电压VRAMP的电压增加量成比例地增加(输入节点CPI的电压增加量相当于参考电压)。另外,在定时t7,计数器15的增加计数也同时开始。所以,在输入节点CPI出现合成电压,该合成电压是对反相器电路12的输入判定电压Vx’(参考式子6)加上被转换模拟电压VSIG和与斜坡电压VRAMP的电压变化值成比例的参考电压的差电压后的电压。
在定时t8,输入节点CPI的电压电平超过反相器电路12的输入判定电压时,即,被转换模拟电压VSIG和上述参考电压相等时,反相器电路12使输出节点CPO的输出电平反转。锁存电路13响应输出节点CPO的输出变化,保持该时刻的与参考电压对应的计数器输出的值。锁存电路13输出在定时t8保持的A/D转换值,由此,本发明装置1结束被转换模拟电压VSIG的A/D转换动作。
第2实施方式
在图6所示的第1实施方式的本发明装置1的电路结构中,说明了被转换模拟电压的输入节点VIN为一个的情况,但是,在第2实施方式中,说明对多个(m个)被转换模拟电压可并行且同时进行A/D转换的本发明装置。
图7表示本发明装置的第2实施方式的电路结构。第2实施方式的本发明装置2具有进行每个被转换模拟电压的A/D转换动作的多个(m个)A/D转换单元18、斜坡电压源14、计数器15、以及稳定电压源17而构成。
各个A/D转换单元18由如下部分构成:由反相器电路12、晶体管MSN、开关RS、开关SS和电容器CS、以及开关S3和电容器CR构成的电压比较电路;锁存电路13。斜坡电压源14、计数器15以及稳定电压源17对于多个(m个)A/D转换单元18共用。
从斜坡电压源14输出的斜坡电压VRAMP分别提供给各个A/D转换单元18的开关S3的一端。另外,将计数器15的计数器输出提供给各个A/D转换单元18的锁存电路13的各个触发信号输入。并且,将从稳定电压源17输出的电压VBN提供给各个A/D转换单元18的晶体管MSNi(i=1~m)的栅极端子。各个A/D转换单元18、斜坡电压源14、以及计数器15与第1实施方式相同,所以省略重复说明。
在第1实施方式中,若稳定电压源17是提供不受系统电源电压VDD的电压变动的影响的稳压后的电压VBN的电路,则不限于特定的电路,所以,省略了具体的电路结构的说明,但是,在第2实施方式中,说明稳定电压源17的一个电路结构例。
在硅集成电路中,为了生成不依赖于电源电压、动作温度、晶体管的阈值电压的变动的稳定电压,可取出所谓的带隙电压来利用。
第2实施方式的稳定电压源17具有带隙基准电路21、运算放大器22、P沟道型MOSFET(晶体管MB)、电容器CC、电阻元件R1、R2而构成。由带隙基准电路21生成的电压VBGR不受提供给晶体管MB的源极端子的系统电源电压VDD的电压变动的影响。使用运算放大器22、晶体管MB、电容器CC、电阻元件R1、R2(电阻值为R1、R2)对该电压VBGR进行电压转换,从而如以下式子7所示,能够获得任意的电压值的电压VBN
VBN=VBGR×(R1+R2)/R1(7)
由式子7可知,能够生成不受系统电源电压VDD的电压变动的影响的任意的电压VBN
将稳定电压源17的输出端子VBN与各个列C1~Cm中准备的A/D转换单元18的晶体管MSNi(i=1~m)的栅极端子接线,从而将电压VBN提供给各个栅极端子。
如在第1实施方式已说明那样,晶体管MSN1~MSNm分别进行源极跟随器动作,所以,对各个A/D转换单元18的反相器电路12提供式子4所示的电压VINV。所以,各个列C1~Cm的A/D转换单元18在A/D转换动作时,能够不受系统电源电压VDD的电压变动的影响地进行A/D转换动作。
第3实施方式
对于图7所示的第2实施方式的稳定电压源17来说,在电路结构上,后级的放大电路为2级放大器。通常,具有2以上的级数的放大电路如果负载电容增大就容易变得不稳定。为了稳定的动作,需要适当选择相位补偿电容器CC。
图8是为了更稳定的电路动作的第3实施方式的稳定电压源23,由产生稳定电压VBN1的稳定电压生成电路24和1级结构的放大电路25构成。放大电路25具有运算放大器26、N沟道型MOSFET(晶体管MC)、使输入输出端子间短路后的反相器电路27而构成。反相器电路27是各个A/D转换单元18中的反相器电路12的复制,具有相同的电特性。晶体管MC是各个A/D转换单元18中的晶体管MSN的复制,具有相同的栅极长度、相同的栅极宽度、以及相同的晶体管特性。
根据图8所示的电路结构,可在节点28获得稳定电压VBN1。对使输入输出端子间短路后的反相器27提供稳定电压VBN1,作为电源电压,由此,确定自动调零时的参考电流IB。由于参考电流IB流过晶体管MC,所以,对各个A/D转换单元18中的晶体管MSN都流过相同的参考电流IB。所以,节点28和各个A/D转换单元18中的第1电源供给线VSN为相同的电压,第1电源供给线VSN为稳定电压VBN1。其结果是,A/D转换单元18能够在A/D转换动作时不受系统电源电压VDD的电压变动的影响地进行A/D转换动作。
第4实施方式
上述第1至第3实施方式的本发明装置,是使用反相器电路12作为在参考电压和被转换模拟电压的电压比较中所使用的运算器的电路结构,但是,第4实施方式的本发明装置使用差动放大器作为该运算器。
如图9所示,第4实施方式的本发明装置4具有由运算放大器构成的差动放大器29、将差动放大器29的反相输入节点CPI以及输出节点CPO短路的开关RS、用于对从本发明装置4的输入节点VIN输入的被转换模拟电压进行采样的开关SS和电容器CS、用于对与被转换模拟电压对应的计数器输出进行锁存的锁存电路13、产生斜坡电压VRAMP的斜坡电压源14、以及对与斜坡电压VRAMP的电压变化值即参考电压对应的数字值(n位的2值信号)进行计数并输出的计数器15而构成。在第4实施方式中,参考电压可以直接提供给差动放大器29的非反转输入节点,因此,可以省略在第1~第3实施方式为了将参考电压传输给输入节点CPI所需要的开关S3和电容器CR。根据本电路结构,可削减电路面积。
另外,差动放大器29与反相器电路12相比,电源电压变动除去比(PSRR)大,所以,如果在电压比较用的运算器中使用差动放大器29来代替反相器电路12,则系统电源电压VDD的电压变动对A/D转换结果的影响较小。
但是,为了增大差动放大器29的PSRR,存在一个需要大面积、大功率、复杂的放大器结构的折衷选择(trade-off)。在单纯的电路结构中,为了实现电路面积小、省功率且PSRR大的差动放大器,如图9所示,其构成为,独立设置对差动放大器29提供专用的电源电压VAMP的第1电源供给线VSN、和系统电源供给线VDD,系统电源电压VDD的电压变动的影响不呈现在第1电源供给线VSN。在本发明装置4中,与第1实施方式同样地,设置:N沟道型MOSFET(晶体管MSN),其源极端子和漏极端子分别与第1电源供给线VSN和系统电源供给线VDD连接;以及第1稳定电压源17,对晶体管MSN的栅极端子提供不受系统电源电压VDD的电压变动的影响的稳定的电压VBN。晶体管MSN进行源极跟随器动作,所以,在第1电源供给线VSN能够得到由下述的式子8提供的电压VAMP。在式子8中,Vthsn、βsn为晶体管MSN的阈值电压、和由式子5提供的导电系数β,IB为在自动调零时(输入节点CPI和输出节点CPO短路时)贯通差动放大器29而流过的偏置电流。
VAMP=VBN-Vthsn-(2×IB/βsn)1/2(8)
由式子8可知,不受系统电源电压VDD的电压变动的影响的电源电压VAMP提供给差动放大器29。其结果是,系统电源电压VDD的电压变动产生的对A/D转换结果的影响非常小。所以,在本发明装置4中,能够实现电路面积以及动作功率的削减,同时能够不受电源电压变动的影响地进行A/D转换。
第5实施方式
在上述第1至第4实施方式中,对抑制系统电源电压VDD的电压变动带来的对A/D转换结果的影响的本发明装置进行了说明。但是,接地电压的电压变动有时引起A/D转换结果的变动。在第5实施方式中,对也抑制系统接地电压的电压变动带来的对A/D转换结果的影响的本发明装置进行说明。
首先,参照图10模式图,说明接地电压供给线的布线电阻Rp产生的接地电压的电压上升机理。
在硅集成电路中,难以获得阻抗为零的接地电压。在使m个平行列A/D转换器并列地动作的情况下,提供给列C1、列C2、......列Cm的各个反相器电路12的接地电压不相同的情况较多。
图10表示将针对列C1、列C2、......列Cm的接地电压供给线连续连接的情况。从列C1~Cm各自流出的动作电流流过接地电压供给线的布线电阻Rp,因此,产生接地电压的电压上升。
其结果是,在系统共用的系统接地电压为VSS时,提供给各个列C1~Cm的A/D转换单元18(参照图7)的接地电压分别为VSS+Δ1、VSS+Δ2......VSS+Δm。这里,Δ1~Δm为流过布线电阻Rp的电流产生的电压降量。
图11表示节点电压VSS发生变动的情况下的反相器电路的输入输出特性。可知,如图11示意性地表示的那样,接地电压VSS变动电压Δ时,自动调零电平Vx从Vx1变动到Vx3。
提供给各个列C1~Cm的A/D转换单元18的接地电压因布线电阻Rp和流过其中的电流量而各不相同。各个列C1~Cm的A/D转换单元18在任意的定时动作时,动作电流的变动会导致各个A/D转换单元18的接地电压的变动。接地电压的变动导致自动调零电平Vx的变动,因此,会引起A/D转换结果的变动。
图12表示也抑制接地电压的电压变动带来的对A/D转换结果的影响的本发明装置5的主要部分电路结构。其构成为,独立地设置对各个列的C1~Cm的A/D转换单元18的反相器电路12提供专用的接地电压VSi(i=1~m)的第1接地电压线VSPi(i=1~m)、以及对除了反相器电路12的系统整体提供系统接地电压VSS的系统接地电压线VSS(相当于第2接地电压线),系统接地电压VSS的电压变动的影响不呈现在第1接地电压线VSPi(i=1~m)。另外,各个列C1~Cm的A/D转换单元18的电路结构、以及未图示的其周边的斜坡电压源14和计数器15(全部参照图7)与第1至第3实施方式相同,所以,省略重复的说明。
在本发明装置5中,为了回避从外部将与系统接地电压VSS独立的单个的接地电压提供给第1接地电压线VSPi(i=1~m)的复杂度,设置源极端子和漏极端子分别与第1接地电压线VSPi(i=1~m)和系统接地电压线VSS相连接的P沟道型MOSFET(晶体管MSPi,i=1~m),并在各个晶体管MSPi的栅极端子上连接由距外部较近的最端部分支出来的系统接地电压线VSS。各个晶体管MSPi由彼此相同的栅极长度、栅极宽度、晶体管特性的等效的晶体管构成。
如图12所示,各个晶体管MSPi的源极端子与第1接地电压线VSPi(i=1~m)相连接,获得源极跟随电压VSi(i=1~m)。具体而言,提供给第1接地电压线VSPi的接地电压VSi(i=1~m)由以下的式子9提供。在式子9中,Vthsp、βsp为晶体管MSP的阈值电压和由式子5提供的导电系数β,IBi(i=1~m)为在自动调零时(输入节点CPI和输出节点CPO短路时)贯通各个反相器电路12而流过的贯通电流。
VSi=VSS+Vthsp+(2×IBi/βsp)1/2(9)
由式子9可知,各个列C1~Cm的A/D转换单元18的接地电压VSi(i=1~m)仅依赖于各个反相器电路12的贯通电流IBi(i=1~m)而决定,从在任意的定时进行变动的系统接地电压的变动VSS+Δ1~VSS+Δm分离出。所以,根据图12所示的电路结构,能够抑制系统接地电压的变动产生的对A/D转换结果的影响。
第6实施方式
第6实施方式中的本发明装置6是第5实施方式的本发明装置5的变形例。与第5实施方式的不同点在于,如图13所示,在各个列C1~Cm的A/D转换单元18的各个晶体管MSPi的栅极端子公共地连接着第2稳定电压源30的输出端子。另外,第2稳定电压源30可以利用与第2实施方式或者第3实施方式中的第1稳定电压源17相同的电路结构(但是,成为使电源电压和接地电压的关系、MOSFET的导电型分别反转的对称的电路结构)。
其结果是,可以将不受从第2稳定电压源30输出的系统接地电压VSS的变动的影响的、稳压后的电压VBP提供给各个栅极端子,并且,在本发明装置6中,与第5实施方式同样地,抑制系统接地电压的变动产生的对A/D转换结果的影响。
第7实施方式
第7实施方式中的本发明装置如图14所示,是如下的电路结构,即,兼有第1实施方式中的本发明装置1和第6实施方式中的本发明装置6的特征,并且,可抑制系统电源电压VDD的电压变动带来的对A/D转换结果的影响、和系统接地电压的电压变动带来的对A/D转换结果的影响这两者。
具体而言,如图14所示,独立设置对反相器电路12提供专用的电源电压VINV的第1电源供给线VSN、和对除了反相器电路12的系统整体提供系统电源电压VDD的系统电源供给线VDD(相当于第2电源供给线),并且,设置了:N沟道型MOSFET(晶体管MSN),其源极端子和漏极端子分别连接到第1电源供给线VSN和系统电源供给线VDD;以及第1稳定电压源17,对晶体管MSN的栅极端子提供不受系统电源电压VDD的电压变动的影响的稳定后的电压VBN。进而,独立地设置对反相器电路12提供专用的接地电压VSP的第1接地电压线VSP、和对除了反相器电路12的系统整体提供系统接地电压VSS的系统接地电压线VSS(相当于第2接地电压线),并且,设置了:P沟道型MOSFET(晶体管MSP),其源极端子和漏极端子分别连接到第1电源供给线VSP和系统接地电压线VSS;以及第2稳定电压源30,对晶体管MSP的栅极端子提供不受系统电源电压VSS的变动的影响的稳定后的电压VBP。另外,图14所示的各个电路要素与在第1实施方式至第6实施方式说明过的相同,省略重复的说明。
以上,根据图14所示的电路结构,反相器电路12的自动调零电平Vx与系统电源电压VDD以及系统接地电压VSS各自的变动切断,能够获得稳定的A/D转换结果。
其它实施方式
以上,通过第1~第7实施方式详细地说明了本发明装置,但是本发明装置的电路结构并不限于上述各个实施方式的电路结构。对于如下的A/D转换器,在技术方案的范围内记载的本发明装置的特征结构有效地发挥作用,该A/D转换器为:对1个或多个被转换模拟电压进行采样保持,并使用反相器电路或者差动放大器等运算器,将采样保持的1个或者多个被转换模拟电压、和由电压值在固定期间单调变化的斜坡电压的电压变化值或者与所述电压变化值成比例的电压提供的参考电压进行比较,将1个或者多个被转换模拟电压的每一个分别转换成与参考电压对应的数字值并输出的A/D转换器,即用于电压比较的运算器的自动调零电平根据电源电压或者接地电压的变动而变化的电路结构的A/D转换器。
本发明可利用于A/D转换器,特别对平行列A/D转换器有用。

Claims (9)

1.一种A/D转换器,其中
对1个或者多个被转换模拟电压进行采样保持,将采样保持的所述1个或者多个被转换模拟电压、与由电压值在固定期间单调变化的斜坡电压的电压变化值或者和所述电压变化值成比例的电压所提供的参考电压进行比较,将所述1个或者多个被转换模拟电压的每一个分别转换成与所述参考电压对应的数字值并输出,
按每个所述被转换模拟电压具有在所述1个或者多个被转换模拟电压的每一个与所述参考电压的电压比较中所使用的运算器,
对所述运算器设置向所述各个运算器单独地提供电源电压的第1电源供给线,
每一个所述第1电源供给线,作为不受对所述运算器以外的电路提供电源电压的第2电源供给线的电压变动的影响的其它系统的电源供给线来构成。
2.根据权利要求1的A/D转换器,其特征在于,
具有:N沟道型MOSFET,源极端子和漏极端子分别连接到所述第1电源供给线和所述第2电源供给线;第1稳定电压源,将不受所述第2电源供给线的电压变动的影响的稳定的电压输出到所述N沟道型MOSFET的栅极端子。
3.根据权利要求1所述的A/D转换器,其特征在于,
对所述运算器提供接地电压的第1接地电压线,作为不受对所述运算器以外的电路提供接地电压的第2接地电压线的电压变动的影响的其它系统的接地电压线来构成。
4.根据权利要求3所述的A/D转换器,其特征在于,
具有:P沟道型MOSFET,源极端子和漏极端子分别连接到所述第1接地电压和所述第2接地电压;第2稳定电压源,将不受所述第2接地电压线的电压变动的影响的稳定的电压输出到所述P沟道型MOSFET的栅极端子。
5.根据权利要求2所述的A/D转换器,其特征在于,
具有多个可将多个所述被转换模拟电压分别转换成所述数字值的所述运算器而成,
将与所述多个运算器的所述第1电源供给线分别单独连接的多个所述N沟道型MOSFET的栅极端子相互连接,
所述第1稳定电压源的输出电压共同地输出到所述多个N沟道型MOSFET的各个栅极端子。
6.根据权利要求4所述的A/D转换器,其特征在于,
具有多个可将多个所述被转换模拟电压分别转换成所述数字值的所述运算器而成,
将与所述多个运算器的所述第1接地电压线分别单独连接的多个所述P沟道型MOSFET的栅极端子相互连接,
所述第2稳定电压源的输出电压共同地输出到所述多个P沟道型MOSFET的各个栅极端子。
7.根据权利要求1所述的A/D转换器,其特征在于,
具有:斜坡电压发生部,产生所述斜坡电压;计数器,对与所述参考电压对应的数字值进行计数并输出;电压比较电路,对所述被转换模拟电压进行采样保持,使用所述运算器,比较所述参考电压和所述被转换模拟电压,在所述参考电压与所述被转换模拟电压相等的时刻进行输出变化;锁存电路,将从所述计数器输出的所述数字值在所述电压比较电路的输出变化时进行锁存并输出。
8.根据权利要求1所述的A/D转换器,其特征在于,
所述运算器使用反相器电路构成,
具有电压合成电路,产生对所述反相器电路的输入判定电压加上所述被转换模拟电压和所述参考电压的差电压后的合成电压,作为所述反相器电路的输入电压。
9.根据权利要求1所述的A/D转换器,其特征在于,
所述运算器由分别将所述被转换模拟电压和所述斜坡电压作为输入电压的差动输入型的运算放大器构成。
CN2008100088549A 2007-01-25 2008-01-25 A/d转换器 Active CN101232286B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007014917 2007-01-25
JP2007-014917 2007-01-25
JP2007014917A JP4324202B2 (ja) 2007-01-25 2007-01-25 A/d変換器

Publications (2)

Publication Number Publication Date
CN101232286A true CN101232286A (zh) 2008-07-30
CN101232286B CN101232286B (zh) 2010-09-08

Family

ID=39706182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100088549A Active CN101232286B (zh) 2007-01-25 2008-01-25 A/d转换器

Country Status (4)

Country Link
US (1) US7586432B2 (zh)
JP (1) JP4324202B2 (zh)
KR (1) KR100940475B1 (zh)
CN (1) CN101232286B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873137A (zh) * 2009-04-24 2010-10-27 索尼公司 数字模拟转换器、固体摄像器件及照相机系统
CN101924555A (zh) * 2009-06-15 2010-12-22 夏普株式会社 A/d转换器、固态图像捕捉装置和电子信息设备
CN102082937A (zh) * 2009-11-30 2011-06-01 索尼公司 固体摄像器件和电子装置
CN102204097A (zh) * 2008-10-31 2011-09-28 国立大学法人东京工业大学 比较器以及模数转换器
CN102438109A (zh) * 2010-08-10 2012-05-02 佳能株式会社 恒流源和使用该恒流源的固态成像装置
CN102739230A (zh) * 2011-03-31 2012-10-17 株式会社东芝 输入电路
CN107360738A (zh) * 2015-04-03 2017-11-17 索尼半导体解决方案公司 固态成像元件、成像设备和电子器械
CN108233931A (zh) * 2017-12-29 2018-06-29 成都华微电子科技有限公司 采样保持与比较锁存电路

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4287884B2 (ja) * 2007-01-30 2009-07-01 シャープ株式会社 A/d変換器
JP6151530B2 (ja) * 2012-02-29 2017-06-21 株式会社半導体エネルギー研究所 イメージセンサ、カメラ、及び監視システム
DE102014110012B4 (de) * 2014-07-16 2022-09-01 Infineon Technologies Ag Verfahren und Vorrichtung zur Verwendung bei der Analog-zu-Digital-Umwandlung
JP7050130B2 (ja) * 2019-10-18 2022-04-07 シャープ株式会社 固体撮像素子
US11374559B2 (en) * 2020-05-18 2022-06-28 Nxp Usa, Inc. Low power comparator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160221A (en) 1981-03-28 1982-10-02 Olympus Optical Co Ltd Analog to digital conversion system
US5796673A (en) * 1994-10-06 1998-08-18 Mosaid Technologies Incorporated Delay locked loop implementation in a synchronous dynamic random access memory
JP3523718B2 (ja) * 1995-02-06 2004-04-26 株式会社ルネサステクノロジ 半導体装置
US5731735A (en) * 1995-08-25 1998-03-24 Advantest Corporation Power supply circuit for driving an integrated circuit, wherein the power supply is adjusted based on temperature so that a delay variation within the IC according to temperature may be cancelled
JP3335537B2 (ja) * 1996-11-19 2002-10-21 富士通株式会社 半導体集積回路
JPH10171774A (ja) 1996-12-13 1998-06-26 Fujitsu Ltd 半導体集積回路
JPH1165699A (ja) * 1997-06-13 1999-03-09 Toshiba Microelectron Corp 半導体集積回路装置
JP3587702B2 (ja) 1998-10-20 2004-11-10 富士通株式会社 Dll回路を内蔵する集積回路装置
JP3357858B2 (ja) 1999-03-30 2002-12-16 株式会社東芝 アナログデジタル変換器
CN1255937C (zh) * 2002-04-12 2006-05-10 旺宏电子股份有限公司 模拟对数字转换器及其共模回馈电路和放大级
JP4690105B2 (ja) * 2005-04-26 2011-06-01 パナソニック株式会社 逐次比較型a/dコンバータ

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102204097A (zh) * 2008-10-31 2011-09-28 国立大学法人东京工业大学 比较器以及模数转换器
CN102204097B (zh) * 2008-10-31 2014-04-30 国立大学法人东京工业大学 比较器以及模数转换器
CN101873137A (zh) * 2009-04-24 2010-10-27 索尼公司 数字模拟转换器、固体摄像器件及照相机系统
CN101924555A (zh) * 2009-06-15 2010-12-22 夏普株式会社 A/d转换器、固态图像捕捉装置和电子信息设备
US9344662B2 (en) 2009-11-30 2016-05-17 Sony Corporation Solid state imaging device and electronic apparatus
CN102082937A (zh) * 2009-11-30 2011-06-01 索尼公司 固体摄像器件和电子装置
US10121807B2 (en) 2009-11-30 2018-11-06 Sony Corporation Solid state imaging device and electronic apparatus
CN102082937B (zh) * 2009-11-30 2013-09-25 索尼公司 固体摄像器件和电子装置
US9716122B2 (en) 2009-11-30 2017-07-25 Sony Corporation Solid state imaging device and electronic apparatus
US9590007B2 (en) 2009-11-30 2017-03-07 Sony Corporation Solid state imaging device and electronic apparatus
CN102438109A (zh) * 2010-08-10 2012-05-02 佳能株式会社 恒流源和使用该恒流源的固态成像装置
CN102438109B (zh) * 2010-08-10 2015-04-29 佳能株式会社 恒流源和使用该恒流源的固态成像装置
US8836313B2 (en) 2010-08-10 2014-09-16 Canon Kabushiki Kaisha Constant current source and solid imaging apparatus using the same
CN102739230B (zh) * 2011-03-31 2015-05-27 株式会社东芝 输入电路
CN102739230A (zh) * 2011-03-31 2012-10-17 株式会社东芝 输入电路
CN107360738A (zh) * 2015-04-03 2017-11-17 索尼半导体解决方案公司 固态成像元件、成像设备和电子器械
CN107360738B (zh) * 2015-04-03 2020-10-27 索尼半导体解决方案公司 固态成像元件、成像设备和电子器械
CN108233931A (zh) * 2017-12-29 2018-06-29 成都华微电子科技有限公司 采样保持与比较锁存电路

Also Published As

Publication number Publication date
KR20080070596A (ko) 2008-07-30
KR100940475B1 (ko) 2010-02-04
CN101232286B (zh) 2010-09-08
JP2008182536A (ja) 2008-08-07
JP4324202B2 (ja) 2009-09-02
US7586432B2 (en) 2009-09-08
US20080198049A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
CN101232286B (zh) A/d转换器
CN103002228B (zh) 固态成像装置和用于驱动固态成像装置的方法
CN109587419B (zh) 一种图像传感器低功耗读出电路结构及工作时序控制方法
CN102164252B (zh) 固态图像拾取设备及其驱动方法
BR102012025528A2 (pt) Circuito de saída de sinal de rampa, circuito conversor analógico-digital, dispositivo de formação de imagens, método para acionar o circuito de sáida de sinal de rampa, método para acionar o circuito conversor analógico-digital, e método para acionar o dispositivo de formação de imagens
CN104568169B (zh) 带有失调消除功能的红外焦平面读出电路
CN109104157B (zh) 一种自调零运算放大器
JP2013146045A (ja) 電子回路
Tang et al. An 84 pW/Frame per pixel current-mode CMOS image sensor with energy harvesting capability
CN111431532B (zh) 一种宽输出范围高精度的积分器
CN102809436B (zh) 一种红外线列焦平面读出电路
CN102545806B (zh) 差动放大器
JP2010147992A (ja) 増幅回路及びa/d変換器
JP2013126173A (ja) 光電変換装置、及び光電変換装置の駆動方法
CN105306845A (zh) 一种可消除失调的相关双采样电路
JP2018117350A (ja) イメージセンサー
AU2005273991A1 (en) Auto-zoom sloped ADC
CN101841665A (zh) 箝位电路以及具有箝位电路的固体摄像装置
CN111371417B (zh) 积分器电路及其工作时序控制方法和电子装置
JP2007166449A (ja) 固体撮像素子のcds回路
CN114071034B (zh) 基于开关电容的复合介质栅双晶体管像素读出电路
US20140070074A1 (en) Semiconductor integrated circuit and image sensor
JP2013126172A (ja) 光電変換装置
MENSSOURI et al. In-Pixel CTIA & Readout Circuitry for an Active CMOS Image Sensor
Ay Boosted CMOS APS pixel readout for ultra low-voltage and low-power operation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240229

Address after: Tokyo, Japan

Patentee after: Ails Technology Co.,Ltd.

Country or region after: Japan

Address before: Osaka City, Osaka of Japan

Patentee before: Sharp Corp.

Country or region before: Japan

TR01 Transfer of patent right