CN101178552B - 树脂粒子的制造方法 - Google Patents

树脂粒子的制造方法 Download PDF

Info

Publication number
CN101178552B
CN101178552B CN200710170073.5A CN200710170073A CN101178552B CN 101178552 B CN101178552 B CN 101178552B CN 200710170073 A CN200710170073 A CN 200710170073A CN 101178552 B CN101178552 B CN 101178552B
Authority
CN
China
Prior art keywords
melting mixing
mixing thing
particle
resin
resin particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200710170073.5A
Other languages
English (en)
Other versions
CN101178552A (zh
Inventor
松本香鹤
纪川敬一
长冈彩绘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN101178552A publication Critical patent/CN101178552A/zh
Application granted granted Critical
Publication of CN101178552B publication Critical patent/CN101178552B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0804Preparation methods whereby the components are brought together in a liquid dispersing medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/081Preparation methods by mixing the toner components in a liquefied state; melt kneading; reactive mixing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0815Post-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种树脂粒子的制造方法,从作为树脂粒子的原料的熔融混炼物表面除去气泡,充分确保熔融混炼物表面上的表面活性剂的作用点,从而可以稳定且有效地制造控制了粒径的树脂粒子。在粗粉碎工序中,将包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物以15MPa~120MPa加压,从而除去在包含合成树脂的熔融混炼物上附着的气泡。在微粒化工序中,将在粗粉碎工序中经过耐压喷嘴而处于除去了附着在表面的气泡的状态的熔融混炼物的粗粉的水性浆液,通过高压均化法微粒化。

Description

树脂粒子的制造方法
技术领域
本发明涉及到一种树脂粒子的制造方法。
背景技术
利用电子照相方式形成图像的图像形成装置包括感光体、带电部、曝光部、显影部、转印部、定影部、和清洁部。带电部使感光体表面带电。曝光部将信号光照射到处于带电状态的感光体表面,形成与图像信息对应的静电潜影。显影部将显影剂中的色粉提供到形成于感光体表面的静电潜影,将静电潜影显影,形成色粉图像。转印部将形成于感光体表面的色粉图像转印到记录材料。定影部使转印的色粉图像定影到记录材料。清洁部清洁色粉图像转印后的感光体表面。在这种图像形成装置中,作为显影剂使用包含色粉的单成分显影剂、或包含色粉和载体的双成分显影剂,将静电潜影显影并形成图像。这里使用的色粉是在作为基体的粘合树脂中分散着色剂及作为脱模剂的蜡等并将其粒状化的树脂粒子。
使用电子照相方式的图像形成装置,可高速且廉价地形成图像品位良好的图像,因此用于复印机、打印机、传真机等,最近利用电子照相方式的图像形成装置得到明显的普及。与之相伴,对图像形成装置的要求也变得更为严格。其中,尤其重视通过图像形成装置形成的图像的高精细化、高分辨率、图像品位的稳定化、图像形成速度的高速化等。为了实现这些目标,必须从图像形成工艺及显影剂两个方面来进行研究。
对于图像的高精细化、高分辨率,从显影剂这方面来说,从忠实再现静电潜影较为重要这一观点出发,色粉粒子的小径化是应解决的课题之一。作为小径化色粉粒子的制造方法,例如公知乳化凝聚法。在乳化凝聚法中,在水等水性介质中生成含有粘合树脂、着色剂及脱模剂等的树脂粒子,通过凝聚该树脂粒子,制造出色粉粒子。
作为乳化凝聚法例如有熔融混炼乳化凝聚法。在熔融混炼乳化凝聚法中,首先对包含粘合树脂、着色剂及脱模剂等的原料进行熔融混炼,将其熔融混炼物冷却并固化。接着将固化的熔融混炼物粉碎、投入到水性介质中并在水性介质中搅拌,从而使熔融混炼物的粉碎物分散到水性介质中而获得树脂粒子。此时,有时会因为搅拌部的搅拌而产生气泡、且产生的气泡附着在熔融混炼物的粉碎物表面。气泡附着在熔融混炼物的粉碎物表面上时,存在以下问题:用于使熔融混炼物的粉碎物分散到水性介质中的表面活性剂无法在熔融混炼物的粉碎物表面发生作用,无法使熔融混炼物的粉碎物在水性介质中充分地分散。
鉴于这种问题,提出了以防止产生气泡为目的的色粉的制造方法(例如参照日本专利公开2005-173263号公报)。在日本专利公开2005-173263号公报所公开的技术中,对包含具有色粉原料的分散质的水性介质、即分散液进行脱气处理,该脱气处理利用将上述分散液置于优选80kPa以下、进一步优选0.1~40kPa的氛围中的减压法进行脱气,其后从直径5~500μm左右的喷出口喷射分散液,将分散质微粒化。日本专利公开2005-173263号公报所公开的色粉的制造方法,通过进行上述脱气处理,除去气泡及溶存于分散液中的气体。
但是在日本专利特开2005-173263号公报所公开的色粉的制造方法中,在脱气处理中赋予的能量较小,因此存在无法从水性介质充分地除去气泡及溶存气体的问题。对于气泡,虽然可以除去例如可通过目视确认的宏观气泡,但对于比其小的微观气泡,无法从分散质的表面充分地除去。无法从分散质表面除去微观气泡时,分散质表面的表面活性剂的作用点减少,无法进行通过使分散质分散到水性介质中而进行的微粒化及粒径控制。
在水性介质中存在气泡或溶存气体时,该气泡或溶存气体成为气穴现象(以下有时称为“空洞化现象”)的起点,在水性介质中产生气泡。产生了气泡的部分比其周围的压力低,因此用于微粒化的外力而产生的能量被消耗到去挤压产生的气泡。因此无法有效地对分散质施加外力,无法充分地进行微粒化。此外,在水性介质中对分散质、特别是微米~亚微米尺寸的分散质施加外力而使其微粒化时,如果在分散质的表面带有气泡,则无法用表面活性剂浸润分散质,因此在水性介质中对分散质施加外力而微粒化时,无法充分进行微粒化。
发明内容
本发明的目的在于提供一种树脂粒子的制造方法,在水性介质中施加外力将熔融混炼物微粒化从而制造树脂粒子时,可以从作为树脂粒子的原料的熔融混炼物表面除去气泡,可以充分确保熔融混炼物表面的表面活性剂的作用点,此外为了微粒化可以高效地对熔融混炼物赋予外力。
本发明是一种树脂粒子的制造方法,其特征在于,包括以下工序:粗粉碎工序,将包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物加压至15MPa~120MPa,获得包含熔融混炼物的粗粉的水性浆液;和微粒化工序,通过高压均化法对在粗粉碎工序中获得的包含熔融混炼物的粗粉的水性浆液进行处理,将熔融混炼物的粗粉微粒化。
根据本发明,在粗粉碎工序中,将包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物加压至15MPa~120MPa,获得包含熔融混炼物的粗粉的水性浆液(以下有时简称“浆液”)。接着在微粒化工序中,通过高压均化法对在粗粉碎工序中获得的包含熔融混炼物的粗粉的水性浆液进行处理,将熔融混炼物的粗粉微粒化。在粉碎工序中,通过将混合物加压至15MPa~120MPa,可以高效地除去在包含合成树脂的熔融混炼物表面附着的气泡。通过除去在包含合成树脂的熔融混炼物表面附着的气泡,在微粒化工序中,在通过高压均化法施加外力以将熔融混炼物微粒化时,可以充分确保熔融混炼物表面上的表面活性剂的作用点。此外,为了微粒化可以高效地将外力施加到熔融混炼物。因此,可以稳定且有效地制造进行了粒径控制的小粒径的树脂粒子。
此外在本发明中优选的是,包括脱泡工序,在粗粉碎工序之前,对包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物进行脱泡,以使混合物的溶存氧气量为7.5mg/L以下。
根据本发明,在粗粉碎工序之前,在脱泡工序中,对包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物进行脱泡,以使混合物的溶存氧气量为7.5mg/L以下。在液体中施加外力制作微米~亚微米的粒子时,液体中存在气泡或溶存气体时成为气穴现象的起点,在此能量被消耗,因此无法有效地对处理物施加外力。此外在处理物表面上附着有气泡时,无法用表面活性剂充分地浸润,因此难以粉碎及微粒化。通过脱泡工序得到的混合物的溶存氧气量为7.5mg/L以下时,气泡或溶存气体充分脱离,因此与混合物的溶存氧气量超过7.5mg/L的情况相比,在之后的粗粉碎工序及微粒化工序中可以更有效地对混合物中的熔融混炼物施加外力。因此,可以高效地将熔融混炼物粉碎及微粒化,可以大幅缩短粉碎及微粒化所花费的处理时间来制造树脂粒子。进而,液体中气泡较少,因此例如在粗粉碎工序中向混合物添加分散稳定剂并进行粗粉碎时,分散稳定剂不会被无端消耗,实现分散稳定剂量的减少。
此外在本发明中优选的是,包括预备粉碎工序,在脱泡工序之前,对包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物进行预备粉碎以使熔融混炼物的粒径为500μm以下,获得包含熔融混炼物的预备粉碎物的水性浆液。
根据本发明,在粗粉碎工序之前,在预备粉碎工序中,对包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物进行预备粉碎以使熔融混炼物的粒径为500μm以下。在微粒化工序中使用的高压均化器的结构上,如果进行处理的处理物、例如包含合成树脂的熔融混炼物不是亚微米程度以下的大小的处理物,则无法通过高压均化器中的细径的喷嘴。经过预备粉碎工序,可以获得不含粒径超过500μm的熔融混炼物的粗粉粒子的水性浆液,在之后的粗粉碎工序及微粒化工序中,不会引起高压均化器中的细径喷嘴堵塞,可以顺利地进行处理物的粗粉碎及微粒化。
此外在本发明中优选的是,在预备粉碎工序中,向上述混合物添加增粘剂,将上述混合物预备粉碎。
根据本发明,在预备粉碎工序中,向包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物,添加增粘剂并进行预备粉碎。通过添加增粘剂,对包含合成树脂的熔融混炼物的进一步微粒化有效,可以提高在粗粉碎工序及微粒化工序中的处理效率。此外,通过在预备粉碎工序中例如添加难分散到水性介质中的合成生物聚合胶之类的增粘剂,从而在粗粉碎工序及微粒化工序之前可以使之均匀分散到包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物中,因此可以提高粗粉碎工序及微粒化工序中的处理效率。
此外在本发明中优选的是,在预备粉碎工序中,利用包含转子部件和定子部件的胶体研磨机,使上述混合物通过胶体研磨机中的定子部件和转子部件的间隙,从而进行预备粉碎,所述转子部件被设置为能够绕预先确定的旋转轴线旋转,所述定子部件在圆周方向外部包围转子部件。
根据本发明,在预备粉碎工序中,利用包含转子部件和定子部件的胶体研磨机,使包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物通过胶体研磨机中的定子部件和转子部件的间隙,从而进行预备粉碎,所述转子部件被设置为能够绕预先确定的旋转轴线旋转,所述定子部件在圆周方向外部包围转子部件。使包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物通过定子部件和转子部件的间隙,从而可以高效且以比较短的时间对包含合成树脂的熔融混炼物进行预备粉碎以使粒径为500μm以下。此外,在预备粉碎工序中,可以尽可能地抑制气泡附着在熔融混炼物的预备粉碎物的表面。此外,可以使预备分散工序后的合成树脂的预备粉碎物的形状一致,可以缩小粒度分布宽度。
本发明的目的、特色及优点通过以下详细说明及附图可得以明确。
附图说明
图1是表示本发明的一个实施方式的树脂粒子的制造方法的流程图。
图2是表示本发明的其他实施方式的树脂粒子的制造方法的流程图。
图3A及图3B是示意地表示胶体研磨机的主要部分的构成的图。
图4是简化表示粉碎用高压均化器的构成的系统图。
图5是表示加热器的构成的透视图。
图6A是将图5所示的加热器5的线圈状配管50投影到与轴线153平行的假想平面上的平面投影图。
图6B是将图5所示的加热器的线圈状配管投影到与轴线垂直的假想平面上的平面投影图。
图7是示意地表示耐压喷嘴的构成的剖视图。
图8是示意地表示其他方式的耐压喷嘴的构成的剖视图。
图9是示意地表示减压喷嘴的构成的长度方向剖视图。
图10是表示凝聚粒子的制造方法的流程图。
图11A及图11B是用于说明二分之一线圈节距及线圈整体的长度的求法的图。
图12是示意地表示减压喷嘴的构成的长度方向剖视图。
图13是示意地表示其他方式的减压喷嘴的构成的长度方向剖视图。
图14是简化表示用于实施凝聚粒子的制造方法中的凝聚工序的凝聚用高压均化器的构成的系统图。
图15是简化表示其他方式的凝聚用高压均化器的构成的系统图。
具体实施方式
以下参照附图详细说明本发明的优选实施方式。
本发明的一个实施方式的树脂粒子的制造方法,其特征在于,包括以下工序:粗粉碎工序,对包含合成树脂的熔融混炼物、和包含表面活性剂的水性介质的混合物(以下也简称为“混合物”)加压到15MPa~120MPa,获得包含熔融混炼物的粗粉的水性浆液(以下也称为“粗粉碎分散液”);和微粒化工序,通过高压均化法处理在粗粉碎工序中得到的包含熔融混炼物的粗粉的水性浆液,将熔融混炼物的粗粉微粒化。
图1是表示树脂粒子的制造方法的流程图。图1所示的树脂粒子的制造方法包括:步骤S1的混合物调制工序、步骤S2的粗粉碎工序、和步骤S3的微粒化工序。
(混合物调制工序)
在步骤S1的混合物调制工序中,制作包含合成树脂的熔融混炼物,并调制该熔融混炼物和包含表面活性剂的水性介质的混合物。此时,合成树脂可以包含合成树脂用添加剂的一种或两种以上。合成树脂的熔融混炼物可以如下制造:将合成树脂、以及根据需要包含合成树脂用添加剂的一种或两种以上的合成树脂熔融混炼,并冷却使之固化后,将其粉碎。
熔融混炼如下进行:在混合机中将合成树脂以及根据需要将合成树脂用添加剂的一种或两种以上干式混合,在混炼机中对得到的粉体混合物进行混炼。混炼温度为合成树脂的1/2软化温度以上的温度(通常为80~200℃左右,优选为100~150℃左右)。
作为混合机可以使用公知的机器,例如包括:亨舍尔混合机(ヘンシエルミキサ一)(商品名,三井矿山株式会社制造)、高速混合机(ス一パ一ミキサ一)(商品名,株式会社カワタ制造)、机械研磨机(メカノミル,商品名,冈田精工株式会社制造)等亨舍尔型混合装置,オングミル(ONGU Mill,商品名,ホソカワミクロン株式会社制造)、ハイブリダイゼ一シヨンシステム(Hybridization System,商品名,株式会社奈良机械制作所制造)、コスモシステム(Cosmo System,商品名,川崎重工业株式会社制造)等。
作为混炼机可以使用公知的机器,例如可使用双轴压出机、三辊滚轧机、及ラボプラストミル(laboplast mill)等混练机,进一步具体地说,例如包括:TEM-100B(商品名,东芝机械株式会社制造)、PCM-65/87、PCM-30(以上均为商品名,株式会社池贝制造)等单轴或双轴压出机,以及ニ一デイツクス(Kneadics,商品名,三井矿山株式会社制造)等开口辊方式的混练机。其中优选开口辊方式的混炼机。
固化物可通过冷却混炼物来得到。固化物的粉碎,使用切磨机(cutter mill)、绒磨机(feather mill)、喷磨机等粉体粉碎机。从而获得合成树脂的粉碎物。在本实施方式中,将该熔融混炼的合成树脂固化并粉碎而得到的粉碎物称为熔融混炼物。熔融混炼物的粒径没有特别限制,优选为450μm~1000μm,进一步优选为500μm~800μm。固化物可以不是在混炼后进行冷却处理及粉体粉碎机的粉碎处理,而使在后述步骤Sa的预备粉碎工序中,由粉碎装置进行粉碎的处理。例如,用开口辊方式的混炼机对粉体混合物进行混炼时,由位于开口辊方式的混炼机的排出侧的冷却辊对粉体混合物进行急冷,从而在从开口辊方式的混炼机排出时冷却到35℃~40℃左右,此外作为也进行了粉碎处理的熔融混炼物排出,因此不是在混炼后进行冷却及粉碎的处理,而供于预备粉碎工序。
作为合成树脂只要是可在熔融状态下造粒即可,没有特别限制,例如包括:聚氯乙烯、聚乙酸乙烯、聚乙烯、聚丙烯、聚酯、聚酰胺、苯乙烯类聚合物、(甲基)丙烯酸树脂、聚缩丁醛、硅树脂、聚氨酯、环氧树脂、酚醛树脂、二甲苯树脂、松香改性树脂、萜烯树脂、脂肪烃树脂、脂环烃树脂、及芳香族类石油树脂等。合成树脂可单独使用一种、也可同时使用两种以上。其中,优选容易通过水系的湿式造粒得到具有高表面平滑性的粒子的聚酯、苯乙烯类聚合物、(甲基)丙烯酸树脂、聚氨酯及环氧树脂等。
作为聚酯可以使用公知物质,包括多元酸和多元醇的缩聚体。作为多元酸可以使用公知作为聚酯用单体的物质,例如包括:对苯二甲酸、间苯二甲酸、邻苯二甲酸酐、偏苯三酸酐、均苯四酸、及萘二甲酸等芳香族羧酸类,马来酸酐、富马酸、琥珀酸、烯基琥珀酸酐、及己二酸等脂肪族羧酸类,以及这些多元酸的甲酯化物等。多元酸可以单独使用一种,或同时使用两种以上。作为多元醇也可以使用公知作为聚酯用单体的物质,例如包括:乙二醇、丙二醇、丁二醇、己二醇、新戊二醇、甘油等脂肪族多元醇,环己二醇、环己二甲醇、及氢化双酚A等脂环式多元醇,双酚A的环氧乙烷附加物、双酚A的环氧丙烷附加物等芳香族二醇类等。多元醇可以单独使用一种,也可以同时使用两种以上。
多元酸与多元醇的缩聚反应可以按照常用方法实施,例如,在有机溶剂存在的状态下或不存在的情况下以及缩聚催化剂存在的情况下,通过使多元酸与多元醇接触而进行,并使其在生成的聚酯的酸值、1/2软化温度等达到预定值时结束。由此,可以得到聚酯。若用多元酸的甲酯化物作为多元酸的一部分,则进行脱甲醇缩聚反应。在该缩聚反应中,通过适当地改变多元酸与多元醇的混合比、反应率等,例如可以调整聚酯末端的羧基含量,进而可以使得到的聚酯的特性改变。而且,若用偏苯三酸酐作为多元酸,则也由于能容易地将羧基导入聚酯的主链中而得到改性聚酯。另外可以使用自身分散性聚酯,其通过在聚酯的主链及/或侧链上结合羧基及磺酸基等亲水性基团而具有在水性介质中的分散性。
作为苯乙烯类聚合物,包括苯乙烯类单体的均聚体、苯乙烯类单体与可与苯乙烯类单体共聚的单体的共聚物等。作为苯乙烯类单体,例如包括苯乙烯、邻甲基苯乙烯、乙基苯乙烯、对甲氧基苯乙烯、对苯基苯乙烯、2,4-二甲基苯乙烯、对正辛基苯乙烯、对正癸基苯乙烯、对正十二烷基苯乙烯等。作为可与苯乙烯类单体共聚的单体,例如包括:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸正辛酯、(甲基)丙烯酸十二烷酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸硬脂酰、(甲基)丙烯酸苯酯、(甲基)丙烯酸二甲基氨基乙酯等(甲基)丙烯酸酯类,丙烯腈、甲基丙烯酰胺、甲基丙烯酸缩水甘油酯、N-羟甲基丙烯酰胺、N-羟甲基甲基丙烯酰胺、2-羟基乙基丙烯酸酯等(甲基)丙烯酸类单体类,乙烯基甲基醚、乙烯基乙基醚、乙烯基异丁基醚等乙烯基醚类,乙烯基甲基酮、乙烯基己基酮、甲基异丙烯基酮等乙烯基酮类,N-乙烯基吡咯烷酮、N-乙烯基咔唑、N-乙烯基吲哚等N-乙烯基化合物等。苯乙烯类单体及可与苯乙烯类单体共聚的单体可分别使用一种或两种以上。“(甲基)丙烯酸”包括丙烯酸及甲基丙烯酸。
作为(甲基)丙烯酸树脂包括:(甲基)丙烯酸酯类的均聚体、(甲基)丙烯酸酯类及可与(甲基)丙烯酸酯类共聚的单体的共聚物等。(甲基)丙烯酸酯类可使用与以上相同的物质。作为可与(甲基)丙烯酸酯类共聚的单体包括:(甲基)丙烯酸类单体类、乙烯基醚类、乙烯基酮类、N-乙烯基化合物等。这些也可使用和以上相同的物质。作为(甲基)丙烯酸树脂,也可以使用含酸性基团的丙烯酸树脂。含酸性基团的丙烯酸树脂例如可通过以下方法制造:在丙烯酸树脂单体或丙烯酸树脂单体与乙烯类单体聚合时,并用含有酸性基团或亲水性基团的丙烯酸树脂单体和/或具有酸性基团或亲水性基团的乙烯类单体来制造。丙烯酸树脂单体可使用公知的,例如包括具有取代基的丙烯酸、具有取代基的甲基丙烯酸、具有取代基的丙烯酸酯、具有取代基的甲基丙烯酸酯等。丙烯酸树脂单体可以单独使用一种,或同时使用两种以上。作为乙烯类单体可使用公知的,例如包括苯乙烯、α-甲基苯乙烯、氯乙烯、乙酸乙烯、丙烯腈、及甲基丙烯腈等。乙烯类单体可单独使用一种,或同时使用两种以上。苯乙烯类聚合物和(甲基)丙烯酸树脂的聚合使用一般的自由基引发剂,通过溶液聚合、悬浮聚合、乳化聚合等来进行。
作为聚氨酯可使用公知的,例如优选使用含酸性基团或碱性基团的聚氨酯。含酸性基团或碱性基团的聚氨酯例如可通过公知的方法制造。例如,可以使含酸性基团或碱性基团的二醇、多元醇和聚异氰酸酯加聚而制造。作为含酸性基团或碱性基团的二醇,例如可以列举二羟甲基丙酸和N-甲基二乙醇胺等。作为多元醇,例如可以列举聚乙二醇等聚醚多醇、聚酯多醇、丙烯酸多元醇和聚丁二烯多元醇等。作为聚异氰酸酯,例如可以列举甲苯二异氰酸酯、六甲撑二异氰酸酯和异氟尔酮二异氰酸酯等。这些成分可单独使用一种,也可同时使用两种以上。
作为环氧树脂,没有特别的限定,但可以优选含酸性基团或碱性基团的环氧树脂。含酸性基团或碱性基团的环氧树脂,例如可以通过将己二酸和偏苯三酸酐等多元羧酸或二丁胺、乙二胺等胺加成或加聚到成为基础的环氧树脂上而制造。
在本发明中,作为合成树脂,可以使用自身分散性树脂。自身分散性树脂是指,在其分子内具有亲水性基团、对水等液体具有分散性的树脂。作为亲水性基团,例如包括:-COO-基、-SO3 -基、-CO-基、-OH基、-OSO3 -基、-PO3H2、-PO4 -基、及其盐等。其中优选-COO-基、-SO3 -基等阴离子性亲水性基团。具有一种或两种以上这种亲水性基团的自身分散性树脂,无需使用分散剂,或仅使用极少量的分散剂,即可分散到水中。自身分散性树脂中含有的亲水性基团量没有特别限制,但优选相对于100g自身分散性树脂,为0.001摩尔~0.050摩尔,进一步优选0.005摩尔~0.030摩尔。自身分散性树脂,例如可以通过在树脂上结合具有亲水性基团及不饱和双键的化合物(以下称为“含亲水性基团化合物”)来制造。含亲水性基团化合物在树脂上的结合,可以按照接枝聚合及嵌段聚合等方法来实施。此外,也可以通过使含亲水性基团化合物或含亲水性基团化合物及可与其共聚的化合物聚合,来制造自身分散性树脂。
作为可以结合含亲水性基团化合物的树脂,例如包括:聚苯乙烯、聚-α-甲基苯乙烯、氯代聚苯乙烯、苯乙烯-氯苯乙烯共聚物、苯乙烯-丙烯共聚物、苯乙烯-丁二烯共聚物、苯乙烯-氯乙烯共聚物、苯乙烯-醋酸乙烯共聚物、苯乙烯-马来酸共聚物、苯乙烯-丙烯酸酯共聚物、苯乙烯-甲基丙烯酸酯共聚物、苯乙烯-丙烯酸酯-甲基丙烯酸酯共聚物、苯乙烯-α-氯代丙烯酸甲酯共聚物、苯乙烯-丙烯腈-丙烯酸酯共聚物、苯乙烯-乙烯基甲基醚共聚物等苯乙烯类树脂、(甲基)丙烯酸树脂、聚碳酸酯、聚酯、聚乙烯、聚丙烯、聚氯乙烯、环氧树脂、氨基甲酸乙酯改性环氧树脂、硅酮改性环氧树脂、松香改性马来酸树脂、离子交联聚合物树脂、聚氨酯、硅酮树脂、酮树脂、乙烯-丙烯酸乙酯共聚物、二甲苯树脂、聚乙烯醇缩丁醛、萜烯树脂、酚醛树脂、脂肪烃树脂以及脂环烃树脂等。
含亲水基团的化合物,例如包括不饱和羧酸化合物及不饱和磺酸化合物等。作为不饱和羧酸化合物,例如包括:(甲基)丙烯酸、巴豆酸及异巴豆酸等不饱和单羧酸、马来酸、富马酸、四氢邻苯二甲酸、衣康酸及柠康酸等不饱和二羧酸、马来酸酐及柠康酸酐等酸酐、以及它们的烷基酯、二烷基酯、碱金属盐、碱土金属盐及铵盐等。作为不饱和磺酸化合物,例如包括:苯乙烯磺酸类、磺基(甲基)丙烯酸烷基酯类、它们的金属盐、铵盐等。含有亲水基团的化合物可以单独使用一种,也可以同时使用两种以上。另外,作为含亲水基团的化合物之外的单体化合物,例如可以使用磺酸化合物等。作为磺酸化合物,例如包括:磺基间苯二酸、磺基对苯二酸、磺基邻苯二酸、硫代琥珀酸、硫代苯甲酸、硫代水杨酸及它们的金属盐和铵盐等。
作为本发明所使用的合成树脂中添加的合成树脂用添加剂的具体例,例如包括:各种形状(粒子状、纤维状、鳞片状)的无机质填充剂、着色剂、抗氧化剂、脱模剂、防带电剂、电荷控制剂、润滑剂、热稳定剂、阻燃剂、防水剂、紫外线吸收剂、光稳定剂、遮光剂、金属惰性剂、抗老化剂、滑剂、增塑剂、冲撞强度改良剂、及相溶化剂等。
着色剂等合成树脂用添加剂,为了将合成树脂用添加剂均匀分散到混炼物中,可以将其母炼胶化使用。此外可以将合成树脂用添加剂的两种以上复合粒子化使用。复合粒子例如可以如下制造:在两种以上的合成树脂用添加剂中添加适量的水及低级醇,用高速研磨机等一般的造粒机进行造粒,并使之干燥。母炼胶及复合粒子在干式混合时与合成树脂混合。
如上得到的熔融混炼物与包含表面活性剂的水性介质混合。表面活性剂具有作为使熔融混炼物表面和水性介质很好地溶合的湿润剂的作用。表面活性剂优选使用高分子的表面活性剂。通过使用高分子的表面活性剂,与使用低分子表面活性剂时相比,冒泡少,此外可以防止在之后的工序中产生难以脱泡的亚微米以下的微小气泡。作为水性介质,只要是通过添加表面活性剂不会将包含合成树脂的熔融混炼物溶解、且可使之均匀分散的液状物,就没有特别限制,但是考虑到工序管理的容易度、所有工序后的废液处理及操作容易度等,优选为水。优选在将熔融混炼物添加到水性介质中之前,将表面活性剂添加到水性介质中。
包含合成树脂的熔融混炼物、和包含表面活性剂的水性介质的混合,利用一般的混合机进行,从而获得包含熔融混炼物和水性介质的混合物。这里熔融混炼物相对于水性介质的添加量没有特别限制,但优选为熔融混炼物和包含表面活性剂的水性介质的总量的3重量%~45重量%,进一步优选为5重量%~30重量%。
包含合成树脂的熔融混炼物、和包含表面活性剂的水性介质的混合可以在加热下或冷却下进行,但通常在室温下进行。作为混合机例如包括:亨舍尔混合机(ヘンシエルミキサ一)(商品名,三井矿山株式会社制造)、高速混合机(ス一パ一ミキサ一)(商品名,株式会社カワタ制造)、机械研磨机(メカノミル,商品名,冈田精工株式会社制造)等亨舍尔型混合装置,オングミル(ONGU Mill,商品名,ホソカワミクロン株式会社制造)、ハイブリダイゼ一シヨンシステム(HybridizationSystem,商品名,株式会社奈良机械制作所制造)、コスモシステム(Cosmo System,商品名,川崎重工业株式会社制造)等。
作为表面活性剂优选阴离子类表面活性剂。阴离子类表面活性剂具有良好的使熔融混炼物及后述凝聚工序S4中的树脂粒子在水性介质中的分散性提高的能力。作为阴离子类表面活性剂例如包括:磺酸型阴离子类分散剂、硫酸酯型阴离子类分散剂、环氧乙烷醚型阴离子类分散剂、磷酸酯型阴离子类分散剂、及聚丙烯酸盐等。作为阴离子类表面活性剂的具体例,例如可以优选使用:琥珀酸二异辛酯磺酸钠、十二烷基苯磺酸钠、聚丙烯酸钠、及聚环氧乙烷苯基醚等。阴离子类表面活性剂可以单独使用一种,也可以同时使用两种以上。此外作为表面活性剂,不限于阴离子类表面活性剂,也可以是后述作为凝聚剂使用的阳离子类分散剂。
表面活性剂的添加量没有特别限制,但优选为包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物的总重量的0.1重量%~5重量%。小于0.1重量%时,在后述凝聚工序S4中由表面活性剂产生的树脂粒子的分散效果不充分,可能会引起过凝聚。即使添加超过5重量%,分散效果也不会进一步提高,反而会提高树脂粒子分散液的粘性,从而降低树脂粒子的分散性。其结果会引起过凝聚。
可以在水性介质中添加分散稳定剂、增粘剂等。其中,在后述本发明的其他实施方式中,分散稳定剂的添加可以在后述步骤Sb的脱泡工序之后进行,增粘剂的添加可以在后述预备粉碎工序Sa之前进行。分散稳定剂可以使水性介质中熔融混炼物的分散稳定。增粘剂例如对熔融混炼物的进一步微粒化有效。
作为分散稳定剂,可以使用该领域中常用的物质。其中优选水溶性高分子分散稳定剂。作为水溶性高分子分散稳定剂,例如包括:(甲基)丙烯酸类聚合物、聚环氧乙烷类聚合物、纤维素类聚合物、聚环氧烷基烷基芳基醚硫酸盐、聚环氧烷基烷基醚硫酸盐等。
(甲基)丙烯酸类聚合物包括选自以下单体的一种或两种亲水性单体:(甲基)丙烯酸、α-氰基丙烯酸、α-氰基甲基丙烯酸、衣康酸、巴豆酸、富马酸、马来酸、马来酸酐等丙烯酸类单体,丙烯酸-β-羟乙酯、甲基丙烯酸-β-羟乙酯、丙烯酸-β-羟丙酯、甲基丙烯酸-β-羟丙酯、丙烯酸-γ-羟丙酯、甲基丙烯酸-γ-羟丙酯、丙烯酸-3-氯-2-羟丙酯、甲基丙烯酸-3-氯-2-羟丙酯等含羟基的丙烯酸类单体,二甘醇单丙烯酸酯、二甘醇单甲基丙烯酸酯、甘油单丙烯酸酯、甘油单甲基丙烯酸酯等酯类单体,N-羟甲基丙烯酰胺、N-羟甲基甲基丙烯酰胺等乙烯醇类单体,乙烯基甲基醚、乙烯基乙基醚、乙烯基丙基醚等乙烯基烷基醚类单体,醋酸乙烯酯、丙酸乙烯酯、酪酸乙烯酯等乙烯基烷基酯类单体,苯乙烯、α-甲基苯乙烯、乙烯基甲苯等芳香族乙烯类单体,丙烯酰胺、甲基丙烯酰胺、双丙酮丙烯酰胺、它们的羟甲基化合物等酰胺类单体,丙烯腈、甲基丙烯腈等腈类单体,丙烯酸氯化物、甲基丙烯酸氯化物等酸性氯化物类单体,乙烯基吡啶、乙烯基吡咯烷酮、乙烯基咪唑、乙撑亚胺等乙烯基含氮杂环类单体,乙二醇二甲基丙烯酸酯、二甘醇二甲基丙烯酸酯、甲基丙烯酸烯丙酯、二乙烯基苯等交联性单体。
作为聚环氧乙烷类聚合物包括:聚环氧乙烷、聚环氧丙烷、聚环氧乙烷烷基胺、聚环氧丙烷烷基胺、聚环氧乙烷烷基酰胺、聚环氧丙烷烷基酰胺、聚环氧乙烷壬基苯基醚、聚环氧乙烷十二烷基苯基醚、聚环氧乙烷硬脂酰基苯基酯、聚环氧乙烷壬基苯基酯等。
作为纤维素类聚合物包括:甲基纤维素、羟乙基纤维素、羟丙基纤维素等。
作为聚环氧烷基烷基芳基醚硫酸盐包括:聚环氧乙烷十二烷基苯基醚硫酸钠、聚环氧乙烷十二烷基苯基醚硫酸钾、聚环氧乙烷壬基苯基醚硫酸钠、聚环氧乙烷油烯基苯基醚硫酸钠、聚环氧乙烷十六烷基苯基醚硫酸钠、聚环氧乙烷十二烷基苯基醚硫酸铵、聚环氧乙烷壬基苯基醚硫酸铵、聚环氧乙烷油烯基苯基醚硫酸铵等。
作为聚环氧烷基烷基醚硫酸盐包括:聚环氧乙烷十二烷基醚硫酸钠、聚环氧乙烷十二烷基醚硫酸钾、聚环氧乙烷油烯基醚硫酸钠、聚环氧乙烷十六烷基醚硫酸钠、聚环氧乙烷十二烷基醚硫酸铵、聚环氧乙烷油烯基醚硫酸铵等。
分散稳定剂可以单独使用一种,也可以同时使用两种以上。另外,分散稳定剂的添加量没有特别限制,但优选为熔融混炼物和包含表面活性剂的水性介质的混合物总量的0.05重量%~10重量%,进一步优选0.1重量%~3重量%。
作为增粘剂优选选自合成高分子多糖类及天然高分子多糖类的多糖类增粘剂。作为合成高分子多糖类可以使用公知的物质,例如包括:阳离子化纤维素、羟乙基纤维素、淀粉、离子化淀粉衍生物、及淀粉和合成高分子的嵌段聚合物等。作为天然高分子多糖类,例如包括:透明质酸、角叉菜胶、槐豆胶、合成生物聚合胶、瓜尔胶、结冷胶等。增粘剂可以单独使用一种,也可以同时使用两种以上。增粘剂的添加量没有特别限制,但优选为熔融混炼物和包含表面活性剂的水性介质的混合物总量的0.01重量%~2重量%。
在混合物调制工序中得到的熔融混炼物和包含表面活性剂的水性介质的混合物,可以在供于粗粉碎工序之前,供于预备粉碎工序及脱泡工序。
图2是表示本发明的其他实施方式的树脂粒子的制造方法的流程图。图2所示的本发明的其他实施方式的树脂粒子的制造方法包括:步骤S1的混合物调制工序、步骤Sa的预备粉碎工序、步骤Sb的脱泡工序、步骤S2的粗粉碎工序、和步骤S3的微粒化工序。图2所示的本发明的其他实施方式的树脂粒子的制造方法,在图1所示的树脂粒子的制造方法中,在步骤S1的混合物调制工序和步骤S2的粗粉碎工序之间包含步骤Sa的预备粉碎工序和步骤Sb的脱泡工序。
(预备粉碎工序)
在步骤Sa的预备粉碎工序中,由可湿式粉碎的粉碎装置对在步骤S1的混合物调制工序中得到的包含合成树脂的熔融混炼物进行处理,粉碎到亚微米级别,使熔融混炼物的预备粉碎物的粒径为500μm以下。高压均化器在结构上,如果不是粉碎到某种程度(亚微米程度)的处理物就无法通过细径的喷嘴。处理物具有毫米级别的大小时,需要预先粉碎到亚微米级别,但在开始就含有分散稳定剂这种会产生大量气泡的物质的液体中,粉碎时会产生亚微米以下的气泡,很难脱泡。因此,在不含分散稳定剂的状态下由胶体研磨机(コノイドミル)等进行预备粉碎,从而可以从一开始就断绝难以脱泡的亚微米以下的气泡,可以高效地推进之后的高压均化处理。
作为粉碎装置只要可以湿式粉碎就没有特别限制,例如包括:振动研磨机、自动研钵、砂磨机、戴诺磨机(DYNO-Mill)、CoBall磨机(CoBall Mill)、磨碎机、行星球磨机、球磨机、及胶体研磨机等。其中优选胶体研磨机。
图3A及图3B是示意地表示胶体研磨机91的主要部分的构成的图。图3A是胶体研磨机91的透视图。图3B是胶体研磨机91的用包含旋转轴的面切断的截面图。胶体研磨机91包括:设置为可绕预先确定的旋转轴线旋转的转子部件93;和在圆周方向上外部包围转子部件93的定子部件92。定子部件92被设置为,其中心轴线设置为与转子部件93的旋转轴线同轴,且向铅垂方向延伸。定子部件92例如为圆筒状。在定子部件92的内周面92a上形成作为挫纹的凹凸。转子部件93如下设置在定子部件92的内部:其外周面93a相对于定子部件92的内周面92a具有间隙而分离,其可由驱动机构(未图示)驱动而绕轴线、即箭头94的方向旋转。转子部件93例如为圆筒状。在转子部件93的外周面93a上,与定子部件92的内周面92a同样地,形成作为挫纹的凹凸。此外,转子部件93的铅垂方向的一端部93x,与铅垂方向垂直的方向的截面直径随着靠近铅垂方向下方而逐渐增大,与另一端部93y连接。另一端部93y的与铅垂方向垂直的方向的截面直径在任意部分均相同。转子部件93通过具有这种形状,定子部件92和转子部件93之间的间隙随着靠近铅垂方向下方而逐渐变窄,至中途变得恒定。在此,定子部件92和转子部件93的另一端部93y的间隙设为间隙d1。
在胶体研磨机91中,在转子93旋转的情况下,使混合物中的熔融混炼物朝向铅垂方向下方通过定子部件92和转子部件93之间的间隙d1,从而粉碎熔融混炼物,生成熔融混炼物的预备粉碎物。此时,间隙d1优选调整为50μm以下,进一步优选调整为40μm~50μm。通过将间隙d1调整为该范围,而获得包含变动系数优选为25~45、进一步优选为25~40的合成树脂的熔融混炼物的预备粉碎物。此时,熔融混炼物的预备粉碎物的体积平均粒径为20~100μm左右,优选为20~70μm左右。此外,在作为之后的工序的步骤S3的微粒化工序中,为了防止产生耐压喷嘴内的堵塞等,以顺利地实施微粉碎,优选含有粒径500μm以下的熔融混炼物的预备粉碎物。作为一个目标,如果反复进行通过间隙d1的粉碎直至熔融混炼物的预备粉碎物的体积平均粒径低于100μm,则获得包含熔融混炼物的预备粉碎物的水性浆液,该熔融混炼物的预备粉碎物中粒径超过500μm的熔融混炼物的预备粉碎物的含量在下一工序中不会带来障碍。此外,包含熔融混炼物的预备粉碎物的水性浆液的流速没有特别限制,但优选为30kg/h~70kg/h,进一步优选为45kg/h~55kg/h。此外,包含熔融混炼物的预备粉碎物的水性浆液流过间隙时,通常在常温常压下进行,但也可以根据需要在加压下或减压下及加热下或冷却下进行。这样调整熔融混炼物的预备粉碎物的粒度分布、且进行粉碎以使熔融混炼物的预备粉碎物的粒径为500μm以下,从而在作为之后的工序的步骤S3的微粒化工序中,可以防止产生耐压喷嘴内的堵塞等,可以顺利地实施微粒化。作为胶体研磨机可以使用市场上销售的物品,例如包括:PUCコノイドミル60型(商品名,日本ボ一ルバルブ(株)制造)、デイスパミルD(商品名、ホソカワミクロン(株)制造)等。在这些市场上销售的物品中,定子部件和转子部件的另一端部的间隙例如可以在40μm~200μm的范围内调整,其中优选使用PUCコノイドミル60型(商品名,日本ボ一ルバルブ(株)制造)。
在预备粉碎工序Sa中,可以向在混合物调制工序S1中得到的包含合成树脂的混炼物、和包含表面活性剂的水性介质的混合物中添加增粘剂。
通过在预备粉碎工序中添加增粘剂,从而对于包含合成树脂的熔融混炼物的进一步微粒化有效,可以提高在粗粉碎工序S2及微粒化工序S3中的处理效率。此外,通过在预备粉碎工序中添加增粘剂,可以使难以分散到水性溶剂中的增粘剂、例如合成生物聚合胶,均匀分散到包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物中。但是,耗费过多时间进行预备粉碎时,合成生物聚合胶的分子链被切断,会有损增粘效果,因此在最佳的时间、例如10分钟左右结束预备粉碎工序非常重要。作为增粘剂包括上述混合物调制工序S1中记载的增粘剂。
(脱泡工序)
在步骤Sb的脱泡工序中,对在步骤Sa的预备粉碎工序中得到的包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物进行脱泡,以使混合物的溶存氧气量为7.5mg/L。在脱泡工序Sb中,去除包含熔融混炼物的预备粉碎物的水性浆液中的气泡及溶存气体,从而在之后的粗粉碎工序S2及微粒化工序S3中,可以对熔融混炼物的预备粉碎物更有效地施加外力。水性介质中包含气泡及溶存气体时,气泡及溶存气体成为被称为空洞化现象的气穴现象的起点,由于挤压产生的气泡而消耗了外力的能量,无法有效地对熔融混炼物的预备粉碎物施加外力。此外,在进行粉碎的处理物的表面带有气泡时,无法用分散稳定剂充分地浸润,因此不能充分进行粗粉碎化及微粒化。包含熔融混炼物的预备粉碎物的水性浆液的溶存氧气量在7.5mg/L以下时,气泡及溶存气体充分地被去除,因此可以有效地粉碎化及微粒化,可以大幅缩短粉碎及微粒化所花的处理时间来制造树脂粒子。此外,水性介质中的气泡少,因此可以抑制因分散稳定剂与气泡亲和引起的分散稳定剂的无端消耗,实现分散稳定剂量的减少。
作为脱泡装置可以使用公知的物品,可以优选使用连续脱泡装置,例如包括:PUC EVA(商品名,日本ボ一ルバルブ(株)制造)、T.K.ハイ ビスダツパ一(注册商标)3型(商品名、プライミクス株式会社制造)等。
将在步骤Sb的脱泡工序中得到的包含熔融混炼物的预备粉碎物的水性浆液供于步骤S2的粗粉碎工序之前,可以向上述水性浆液添加分散稳定剂。在脱泡工序Sb中已被脱泡的状态下向上述水性浆液添加分散稳定剂时,不会出现以下情况:由于在包含熔融混炼物的预备粉碎物的水性浆液中的预备粉碎物的表面附着的气泡,对之后的粗粉碎工序S2及微粒化工序S3中的粉碎处理带来不良影响。分散稳定剂的添加量没有特别限制,但优选为水性介质和分散稳定剂的总量的0.05重量%~10重量%,进一步优选0.1重量%~3重量%。通过在该范围内添加分散稳定剂,步骤S2的粗粉碎工序及步骤S3的微粒化工序中的熔融混炼物的粗粉碎及微粒化会顺利地进行。包含熔融混炼物的预备粉碎物的水性浆液和粉碎稳定剂的混合,利用一般的混合机来进行,从而获得包含熔融混炼物的预备粉碎物的水性浆液,该熔融混炼物的预备粉碎物包含分散稳定剂。包含熔融混炼物的预备粉碎物的水性浆液和分散稳定剂的混合,可以在加热下、冷却下或室温下的任意一个下实施。
(粗粉碎工序)
在步骤S2的粗粉碎工序中,将包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物加压至15MPa~120MPa,获得包含熔融混炼物的粗粉的水性浆液(以下称为“粗粉碎分散液”)。在本实施方式中,粗粉碎工序如下进行:使包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物,在15MPa~120MPa的加压下及10℃以上并低于合成树脂的玻璃转化温度(Tg)的温度下通过耐压喷嘴。在这种粗粉碎工序中例如使用高压均化器。
高压均化器是指在加压下粉碎粒子的装置。作为高压均化器公知市场上销售的装置、专利文献中记载的装置等。作为高压均化器的市场上销售的装置,例如包括:マイクロフルイダイザ一(商品名,マイクロフルデイスク(Microfluidics)公司制造)、ナノマイザ一(商品名,ナノマイザ一公司制造)、アルテイマイザ一(商品名,株式会社スギノマシン公司制造)等的腔室式高压均化器,高压ホモジナイザ(商品名,ラニ一(Rannie)公司制造)、高压ホモヅナイザ(商品名,三丸機械工業株式会社制造)、高压ホモゲナイザ(商品名,株式会社イズミフ一ドマシナリ制造)等。并且,作为专利文献记载的高压均化器,例如包括国际公开第03/059497号公报中所述的装置。其中,优选使用国际公开第03/059497号公报中所述的高压均化器。
图4是简化表示粉碎用高压均化器1的构成的系统图。在本实施方式中,该粉碎用高压均化器1不仅用于步骤S2的粗粉碎工序,也用于步骤S3的微粒化工序。
粉碎用高压均化器1包括箱体2、传送泵3、加压单元4、加热器5、粉碎用喷嘴6、减压模块7、冷却机8、配管9、和取出口10。在粉碎用高压均化器1中,通过配管9依次连接:箱体2、传送泵3、加压单元4、加热器5、粉碎用喷嘴6、减压模块7、及冷却机8。在通过配管9连接的系统内,可以从取出口10将由冷却机8根据需要冷却后的粗粉碎分散液取出到系统外,或使由冷却机8冷却后的粗粉碎分散液再次返回到箱体2,并沿着箭头11的方向反复循环。
箱体2为具有内部空间的容器状部件,储存包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物(在微粒化工序中为粗粉碎分散液)。传送泵3将箱体2内储存的混合物传送到加压单元4。加压单元4将从传送泵3提供的混合物加压并传送到加热器5。加压单元4例如可以使用柱塞泵,该柱塞泵具有柱塞、和通过柱塞吸入喷出地驱动的泵部。加热器5可以不在粗粉碎工序S2中使用,而在微粒化工序S3中对从加压单元4供给的处于加压状态的混合物进行加热。加热器5例如可以使用包含线圈状(以下也称为“螺旋状”)配管、和加热部的装置。作为这种线圈状配管例如包括图5所示的线圈状配管50。
图5是表示加热器5的构成的透视图。线圈状配管50为圆筒形状,将一根管状部件卷绕成单层的线圈状而构成。更详细地说,线圈状配管50包括:在圆周方向上卷绕管状部件的卷绕部分155;和从卷绕部分155向轴线方向A的两侧A1、A2延伸的两个连接部分156a、156b。两个连接部分156a、156b中,在向轴线方向一侧A1延伸的第一连接部分156a的流路上形成有入口150a,在向轴线方向另一侧A2延伸的第二连接部分156b的流路上形成有出口150b。线圈状配管50的流路的入口150a及出口150b分别与配管9连接。线圈状配管50在轴线方向A上的尺寸称为“自由高度151”,线圈状配管50的外径尺寸的一半的尺寸称为“线圈半径(以下也称为线圈曲率半径)154”,管状部件旋转一圈时前进的距离、即相邻的管状部件的两个部分间的间隔称为“线圈节距152”。
加热部包括:沿着线圈状配管的外周面设置、可流过热介质例如水蒸气的配管;和向该配管提供热介质的加热介质供给部。加热介质供给部例如为锅炉。
图6A是将图5所示的加热器5的线圈状配管50投影到与轴线153平行的假想平面上的平面投影图。图6B是将图5所示的加热器5的线圈状配管50投影到与轴线153垂直的假想平面上的平面投影图。在图6A中,线圈节距152的一半的长度称为“二分之一线圈节距160”,线圈状配管的外径尺寸的长度称为“垂直方向的高度161”,管状部件旋转半圈所需要的长度称为“实际的线圈高度162”。在图6B中,管状部件的内径称为“线圈内径164”。
粉碎用喷嘴6,通过使从加热器5的配管提供的混合物流过在其内部形成的流路,从而将熔融混炼物粉碎为例如体积平均粒径为5μm~300μm的粗粉。粉碎用喷嘴6可以使用液体可流过的一般的耐压喷嘴,但优选使用例如具有多个流路的多重喷嘴。多重喷嘴的流路,可形成为以多重喷嘴的轴心为中心的同心圆状,或者多个流路在多重喷嘴的长度方向上基本平行地形成。作为多重喷嘴的具体例包括:入口直径及出口直径为0.05~0.35mm左右、以及长度为0.5~5cm的流路,形成有1个或多个、优选形成1~2个左右的装置。此外可以使用在喷嘴内部不将流路形成为直线状的耐压喷嘴。作为这种耐压喷嘴,例如包括图7所示的喷嘴。
图7是示意地表示耐压喷嘴21的结构的剖视图。耐压喷嘴21在其内部具有流路22。在本实施方式中,流路22的、与作为混合物流过方向的箭头23方向垂直的方向的流路截面,在入口24侧和出口25侧较小,在入口24和出口25之间的中间部较大。流路22的入口24的直径和出口25的直径形成得相等。流路截面小的部分中的流路22的长度,在入口24侧比在出口25侧长。此外流路22的与作为混合物流过方向的箭头23垂直的截面的中心,位于与混合物流过方向平行的同一轴线上。
图8是示意地表示其他方式的耐压喷嘴31的构成的剖视图。耐压喷嘴31在其内部具有流路32。该流路32钩状弯曲,至少具有一个与从箭头33的方向进入到流路32内的混合物冲撞的冲撞壁34。混合物相对于冲撞壁34大致直角地冲撞,从而将包含合成树脂的熔融混炼物粗粉碎,成为小径化至体积平均粒径5μm~300μm的熔融混炼物的粗粉,并从耐压喷嘴31的出口排出。在耐压喷嘴31中,入口直径和出口直径形成为相同尺寸,但不限于此,也可使出口直径小于入口直径。另外,出口及入口通常形成为正圆形,但不限于此,也可形成为正多边形等。耐压喷嘴可设置一个,也可设置多个。通过流过以上耐压喷嘴21或耐压喷嘴31,而将熔融混炼物粗粉碎,获得包含熔融混炼物的粗粉的粗粉碎分散液。
减压模块7优选使用国际公开第03/059497号公报记载的多级减压装置。该多级减压装置包括入口通路、出口通路和多级减压通路。入口通路,一端与配管9连接且另一端与多级减压通路连接,将包含熔融混炼物的粗粉的处于加压状态的粗粉碎分散液导入到多级减压通路。多级减压通路,一端与入口通路连接且另一端与出口通路连接,其对经由入口通路导入到其内部的处于加热加压状态的粗粉碎分散液进行减压,使之不会因漰沸而产生气泡(bubbling)。多级减压通路例如包括多个减压部件和多个连接部件。减压部件例如使用管状部件。连接部件例如使用环状密封部件。通过环状密封部件连接内径不同的多个管状部件,从而构成多级减压通路。例如包括如下形成的多级减压通路:从入口通路到出口通路,通过环状密封部件连接2~4个具有相同内径的管状部件A,接着通过环状密封部件连接一个与管状部件A相比为其二倍左右内径的大的管状部件B,进一步通过环状密封部件连接1~3个左右与管状部件B相比内径为其5~20%左右的较小的管状部件C。使处于加压状态的粗粉碎分散液流过这种多级减压通路内时,可以不产生冒泡地将该粗粉浆液减压至大气压或与之接近的加压状态。也可在多级减压通路的周围设置使致冷剂或致热剂循环的热交换部,根据施加到粗粉碎分散液上的压力值,进行减压的同时,进行冷却或加热。出口通路,一端与多级减压通路连接,另一端与配管9连接,将通过多级减压通路减压的粗粉碎分散液传送到配管9。在该多级减压装置中,可以构成为入口直径和出口直径的大小相同,也可以使出口直径大于入口直径。
在本实施方式中,作为减压模块7,不限于具有上述构成的多级减压装置,例如也可以使用减压喷嘴。
图9是示意地表示减压喷嘴36的构成的长度方向剖视图。在减压喷嘴36中,形成有在长度方向上贯通其内部的流路37。流路37的入口36a及出口36b分别与配管9连接。流路37形成为入口36a的直径大于出口36b的直径。进而在本实施方式中,流路37,在与作为粗粉碎分散液流过方向的箭头38的方向垂直的方向上的截面,随着从入口36a靠近出口36b而逐渐变小,且该截面的中心(轴线)位于与箭头38的方向平行的同一轴线(减压喷嘴36的轴线)上。根据减压喷嘴36,从入口36a将处于加热加压状态的粗粉碎分散液导入到流路37内,受到减压后,从出口36b排出到配管9。通过在加热器5中加热而凝聚了的粗粉碎分散液中包含的熔融混炼物的粗粉的凝聚体与流路37的内壁面37c接触,多余的熔融混炼物的粗粉从凝聚体分离,从出口36b排出。在减压喷嘴36中,流路37的入口直径大于出口直径,因此与后述凝聚工序S4中的减压喷嘴51那样入口直径小于出口直径的减压喷嘴相比,可以施加更强的剪断力。可以设置一个或多个上述多级减压装置或减压喷嘴。设置多个时,可以串联设置,也可以并联设置。
冷却机8可以使用具有耐压结构的一般的液体冷却机,例如可使用如下冷却机:在粗粉碎分散液流过的配管的周围设置使冷却水循环的配管,并通过使冷却水循环来冷却粗粉碎分散液。粗粉碎分散液的温度低于合成树脂的玻璃转化温度(Tg)时,粗粉碎分散液可以不必冷却。其中优选使用蛇管式冷却机之类的冷却面积大的冷却机。并且优选如下结构:从冷却机入口到冷却机出口,冷却梯度变小(或者冷却能力逐渐下降)。急剧冷却粗粉碎分散液时,由加热器5加热并粗粉碎的熔融混炼物的粗粉可能发生凝聚。因此,为了防止产生粗粉碎后的熔融混炼物的粗粉的凝聚,缓缓且均匀地冷却粗粉碎分散液,需要从入口到出口冷却梯度变小。可以进一步防止粗粉碎后的熔融混炼物的粗粉及后述的微粒化工序中得到的树脂粒子的再凝聚,因此可以更有效地实现树脂粒子的小径化,提高树脂粒子的成品率。冷却机8可以设置一个或多个。设置多个时,可以串联设置或并联设置。串联设置时,优选以在粗粉碎分散液的流过方向上冷却能力逐渐降低的方式设置冷却机。从减压模块7排出的、包含树脂粒子且处于加热状态的粗粉碎分散液,例如从冷却机8的与配管9连接的入口8a导入到冷却机8内,在具有冷却梯度的冷却机8的内部受到冷却,并从冷却机8的出口8b排出到配管9。
粉碎用高压均化器1是在市场上销售的装置。作为其具体例,例如包括NANO3000(商品名,株式会社美粒制造)等。根据粉碎用高压均化器1,将箱体2内储存的混合物或包含熔融混炼物的预备粉碎物的水性浆液在加热加压状态下导入到粉碎用喷嘴6内,粉碎熔融混炼物的粗粉并从粉碎用喷嘴6排出,将处于加压状态的混合物导入到减压模块7内,以不引起冒泡的方式进行减压,将从减压模块7排出的混合物导入到冷却机8中进行冷却,获得粗粉碎分散液。粗粉碎分散液从取出口10排出,或再次循环到箱体2内,进行同样的粉碎处理。
在粗粉碎工序中,包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物,由加压单元4加压至50MPa~120MPa。在这种范围的压力下使混合物通过粉碎用喷嘴6时,可以对在包含合成树脂的熔融混炼物的表面附着的气泡施加大的冲撞力,可以有效去除在包含合成树脂的熔融混炼物表面附着的气泡。压力低于50MPa时,对熔融混炼物表面上附着的气泡施加的冲撞力较小,无法从熔融混炼物表面除去气泡。此外压力超过120MPa时,无法获取喷嘴尺寸和熔融混炼物的流量的匹配性,无法进行处理。此外粗粉碎分散液的温度为10℃以上、并低于包含合成树脂的熔融混炼物的玻璃转换温度(Tg)的温度。粗粉碎分散液的温度处于这个范围,从而可以进一步切实地除去气泡。此外粗粉碎分散液的温度达到包含合成树脂的熔融混炼物的玻璃转化温度(Tg)以上时,熔融混炼物凝聚,无法进行处理。
在本说明书中,包含合成树脂的熔融混炼物的玻璃转化温度(Tg)如下求得。使用示差扫描热量计(商品名:DSC220,セイコ一電子工業株式会社制造),根据日本工业规格(JIS)K 7121-1987,对1g试料、例如熔融混炼物的粗粉,以每分钟10℃的升温速度进行加热,测定DSC曲线。将以下两条线的交点的温度作为玻璃转化温度(Tg)求得:获得的DSC曲线的相当于玻璃转化的吸热峰值的高温一侧的基线延长到低温一侧的直线;及相对于从峰值的上升部分到顶点为止的曲线倾角最大的点所引出的切线。
通过这种粗粉碎工序,使混合物通过耐压喷嘴,可以获得将熔融混炼物粗粉碎了的粗粉,熔融混炼物的粗粉的粒径优选为300μm左右,可以进一步优选为5μm~300μm。通过将熔融混炼物粉碎到这种大小,可以更有效地进行之后的微粒化工序。此外与之同时,通过粗粉碎工序可以去除熔融混炼物上附着的气泡,在之后的微粒化工序中可以充分地确保熔融混炼物的粗粉表面的表面活性剂的作用点,可以制造稳定且有效地进行粒径控制的树脂粒子。粗粉碎工序结束后,进入微粒化工序。
(微粒化工序)
在步骤S3的微粒化工序中,通过高压均化法对包含在粗粉碎工序中得到的熔融混炼物的粗粉的水性浆液、即粗粉碎分散液进行处理,将熔融混炼物的粗粉微粒化。高压均化法是指利用上述高压均化器将熔融混炼物粒状化的方法。高压均化法的微粒化工序包括粉碎阶段、减压阶段、和冷却阶段。在粉碎阶段中,在120MPa~250MPa、且合成树脂的玻璃转化温度(Tg)以上200℃以下的条件下,使包含熔融混炼物的粗粉的粗粉碎分散液通过耐压喷嘴,将熔融混炼物的粗粉粉碎,获得包含树脂粒子的水性浆液(以下也称为“树脂粒子分散液”)。在减压阶段中,将树脂粒子分散液逐渐减压至不产生冒泡的压力。在冷却阶段中将树脂粒子分散液冷却。
在粉碎阶段中,在加热加压下将由粗粉碎工序进行了前处理而从粗粉表面除去了气泡的粗粉碎分散液粉碎,获得树脂粒子分散液。在粗粉碎分散液的加热加压中,使用粉碎用高压均化器1的加压单元4及加热器5。在粗粉的粉碎中,使用粉碎用高压均化器1的粉碎用喷嘴6。粗粉碎分散液的加压加热条件没有特别限定,但优选加压到120~250MPa、且加热到包含合成树脂的熔融混炼物的玻璃转化温度(Tg)以上、200℃以下。此外,进一步优选加压到120~250MPa、且加热到熔融混炼物的粗粉中含有的合成树脂的Tm(Tm为1/2软化温度)以上,特别优选加压到120~250MPa、且加热到熔融混炼物的粗粉中含有的合成树脂的Tm~Tm+25℃。在此,熔融混炼物的粗粉含有两种以上的合成树脂时,1/2软化温度(Tm)是具有最高1/2软化温度的合成树脂的值。
当压力小于120MPa时,剪断能量变小,无法充分进行粉碎。当超过250MPa时,在实际的生产线上危险性过大,不太现实。
在本说明书中,1/2软化温度利用流动特性评估装置(商品名,フロ一テスタ一CFT-100C、株式会社島津製作所制造)来测定。在流动特性评估装置中,以将1g试料(熔融混炼物的粗粉)从模头(喷嘴,口径Imm、长度1mm)挤出的方式,施加10kgf/cm2(9.8×105Pa)荷重,同时以每分钟6℃的升温速度加热,求出从模头流出一半试料时的温度,作为1/2软化温度。
使处于加热加压状态的粗粉碎分散液流过加热器5的线圈状配管50时,在加热加压状态下施加离心力和剪断力。离心力和剪断力同时作用,从而在流路内产生乱流。熔融混炼物的粗粉若为体积平均粒径0.03~1μm的足够小的粒子,则粒子受到乱流的影响而不规则地流过,粒子之间的冲撞次数明显增多,发生凝聚。另一方面,若粒子的粒径大于1μm、而为300μm以下左右的粗粉,则由于粒子足够大,粒子因离心力而在流路内壁面附近以稳定的状态流过,难以受到乱流的影响,因此难以发生凝聚。因此可以使粗粉碎分散液中包含的熔融混炼物的粗粉的粒径一致。
在减压阶段中,将在粉碎阶段中得到的处于加热加压状态的树脂粒子分散液,在保持不引起冒泡的状态的同时,减压到大气压或与之接近的压力。在进行减压时使用粉碎用高压均化器1的减压模块7。减压阶段结束后的树脂粒子分散液,例如包含树脂粒子,且液温优选为合成树脂的玻璃转化温度(Tg)以上、200℃以下,进一步优选为60℃以上、Tm+60℃以下(Tm同上)。
在冷却阶f段中,将在减压阶段中减压、液温为60~Tm+60℃(Tm同上)左右的树脂粒子分散液冷却,使之为20~40℃左右的树脂粒子分散液。对于冷却,使用粉碎用高压均化器1的冷却机8。
经过上述工序,树脂粒子在树脂粒子分散液中制造出。这种树脂粒子在粗粉碎工序中,包含合成树脂的熔融混炼物表面附着的气泡被除去。由此,在微粒化工序中可以充分地确保熔融混炼物表面的表面活性剂的作用点,可以制造稳定且有效地进行了粒径控制的树脂粒子。
获得的含有树脂粒子的树脂粒子分散液,可以直接、即在树脂粒子的表面存在表面活性剂的状态下在之后的凝聚工序中凝聚,也可以从该树脂粒子分散液分离树脂粒子,将该树脂粒子重新浆液化并使之凝聚。将表面活性剂及分散稳定剂用于树脂粒子的制造,使包含树脂粒子的水性浆液直接在之后的凝聚工序中凝聚时,成为在树脂粒子的表面存在表面活性剂及分散稳定剂的状态。从该树脂粒子分散液分离树脂粒子,使用过滤、离心分离等一般的分离装置。在本制造方法中,对粗粉碎分散液流过粉碎用喷嘴6时施加到粗粉碎分散液上的温度及/或压力、该粗粉碎分散液中的粗粉浓度及粉碎次数等进行适当调整,由此可以控制得到的树脂粒子的粒径。在本发明中,考虑到使树脂粒子凝聚而获得适合的体积平均粒径的凝聚粒子,调整各条件以使树脂粒子的体积平均粒径优选为2μm以下,进一步优选为0.03μm~1μm。
以下对于使通过本发明的树脂粒子的制造方法获得的树脂粒子凝聚而成的凝聚粒子的制造方法进行说明。
图10是表示凝聚粒子的制造方法的流程图。图10所示的凝聚粒子的制造方法包括步骤S4的凝聚工序和步骤S5的清洗工序。
(凝聚工序)
在步骤S4的凝聚工序中,使获得的树脂粒子在树脂粒子分散液中凝聚并加热熔融,从而制造凝聚粒子。在本实施方式中,使树脂粒子分散液在加热加压下流过线圈状配管,从而使树脂粒子凝聚,获得凝聚粒子的水性浆液(以下也称为“凝聚粒子分散液”)。
可以向树脂粒子分散液添加凝聚剂。通过添加凝聚剂,树脂粒子分散液中的树脂粒子的分散性下降。在该状态下使树脂粒子分散液流过线圈状配管,从而可以顺利地进行树脂粒子的凝聚,获得形状及粒径偏差少的凝聚粒子。作为凝聚剂例如可以使用阳离子类分散剂等。将阳离子类分散剂用作凝聚剂时,优选添加阴离子类表面活性剂。阴离子类表面活性剂例如在上述混合物调制工序S1中添加。在混合物调制工序S1中添加阴离子类表面活性剂、在凝聚工序S4中添加阳离子类分散剂时,在混合物调制工序S1中,通过阴离子类表面活性剂使熔融混炼物的粗粉在水性介质中分散稳定化,在凝聚工序S4中,通过具有与阴离子类表面活性剂不同的电荷的阳离子类分散剂使阴离子类表面活性剂不稳定,从而使树脂粒子凝聚。
这样在树脂粒子分散液中添加阴离子类表面活性剂、进而添加阳离子类分散剂,从而树脂粒子的凝聚顺利地进行,并且防止产生过凝聚,可以成品率良好地制造粒度分布宽度窄的凝聚粒子。阳离子类分散剂和阴离子类表面活性剂的使用比例没有特别限制,只要是通过使用阳离子类分散剂而使阴离子类表面活性剂的分散效果降低的使用比例就没有特别限制。但是考虑到凝聚粒子的粒径控制的容易性、凝聚的产生容易度、防止过凝聚产生、凝聚粒子的粒度分布宽度的进一步窄小化等,优选使阴离子类表面活性剂和阳离子类分散剂的重量比为10∶1~1∶10,进一步优选为10∶1~1∶3,特别优选为5∶1~1∶2。
作为阳离子类分散剂例如优选包括:烷基三甲铵型阳离子类分散剂、烷基酰胺(alkyamide amine)型阳离子类分散剂、烷基二甲基苄基铵型阳离子类分散剂、阳离子化多糖型阳离子类分散剂、烷基甜菜碱型阳离子类分散剂、烷基酰胺甜菜碱型阳离子类分散剂、硫代甜菜碱型阳离子类分散剂、氧化胺型阳离子类分散剂、金属盐等。作为金属盐例如包括:钠、钾、钙、镁等的氯化物、硫酸盐等。
其中,进一步优选烷基三甲铵型阳离子类分散剂。作为烷基三甲铵型阳离子类分散剂的具体例,如上所述包括:硬脂酰三甲基氯化铵、三(聚氧乙烯)硬脂酰氯化铵、十二烷基三甲基氯化铵等。阳离子类分散剂可以单独使用一种,也可以同时使用两种以上。阳离子类分散剂,如上所述添加到树脂粒子分散液中使用。阳离子类分散剂的添加量没有特别限制,可以从较大的范围内适当选择,但优选为树脂粒子分散液总量的0.1重量%~5重量%。添加量小于0.1重量%时,弱化树脂粒子的分散性的能力不够,树脂粒子的凝聚可能不充分。添加量超过5重量%时,出现阳离子类分散剂的分散效果,凝聚可能会不充分。
树脂粒子分散液,优选加热到树脂粒子的玻璃转化温度(Tg)以上、树脂粒子的熔点(℃)以下、进一步优选加热到60℃~90℃,并且优选加压到5MPa~100MPa、进一步优选加压到5MPa~20MPa。若加热温度低于树脂粒子的玻璃转化温度(Tg),则树脂粒子难以凝聚,凝聚粒子的成品量降低。若加热温度超过树脂粒子的熔点,则导致过凝聚,难以控制粒径。压力若小于5MPa,则无法使树脂粒子分散液顺利地在线圈状配管内流过。若加压压力超过100MPa,则树脂粒子非常难以凝聚。
使树脂粒子浆液流过的线圈状配管,可以使用图5所示的线圈状配管50。线圈状配管50的线圈卷绕数优选为1~200,进一步优选为5~80,特别优选为20~60。线圈卷绕数小于1时,并不生成树脂粒子,具有适度的粒径的凝聚粒子产生凝聚,而生成粗大粒子。线圈卷绕数超过200时,施加离心力的时间变长,因此难以控制粒径。其结果,具有适度粒径的凝聚粒子的成品率降低。线圈的卷绕数为20~60的范围时,特别容易控制粒径,可以高成品率地获得形状及粒径一致的凝聚粒子。此外,一个线圈的线圈半径1 54没有特别限制,但优选为25mm~200mm,特别优选为30mm~80mm。线圈半径154小于25mm时,在线圈状配管50的流路内,角速度成为支配、即圆周运动成为支配,存在树脂粒子稳定地偏在流路的内壁面及其附近的倾向。其结果,容易引起树脂粒子的过凝聚,难以控制粒径,具有适度粒径的凝聚粒子的成品率降低。线圈半径154超过200mm时,在流路内离心力增大,乱流难以产生,树脂粒子之间冲撞的机会减少,难以引起树脂粒子的凝聚。因此,难以控制粒径,具有适度粒径的凝聚粒子的成品率降低。
此外,螺距角优选为10°~30°。螺距角是图5中与线圈状配管50的自由高度151垂直的面和线圈状配管50所成的角度,表示线圈的倾斜。螺距角小于10°时,线圈间隔过短,因此在线圈状配管50中,在相邻的管之间流动的热介质量,比沿着线圈状配管50的外周面或线圈状配管50的内周面流动的热介质量少,流过线圈状配管50的树脂粒子浆液的温度产生不均。螺距角大于30°时,难以获得充足的离心力,且线圈整体的长度变得过长,不便作为加热器处理。线圈整体的长度为管状部件整体的长度。
图11A及图11B是用于说明二分之一线圈节距160及线圈整体长度的求法的图。可以根据线圈状配管50的线圈曲率半径154、卷绕数及螺距角,计算二分之一线圈节距160及线圈整体的长度。在图11A中,线圈整体的长度,可以利用线圈曲率半径154、卷绕数及倾斜率如下表示。
(线圈整体的长度)=2π×(线圈曲率半径154)×(卷绕数)×(倾斜率)
倾斜率为实际的线圈高度162相对于垂直方向的高度161的比率,用以下公式表示。
(倾斜率)=(实际的线圈高度162)/(垂直方向的高度161)
表示线圈状配管50的螺距角的螺距角θ为30°、线圈曲率半径154为40mm、卷绕数为50时的二分之一线圈节距160及线圈整体的长度,可以如下求出。
在图11B中,由垂直方向的高度161、实际的线圈高度162、以及作为连接垂直方向高度161及实际线圈高度162的线的底边165形成的直角三角形中,如虚线163所示2等分底边165时,可以形成锐角为15°的直角三角形,三边的比率从短边开始为
Figure S2007101700735D00341
实际的线圈的高度162为线圈曲率半径154的2倍、即40×2,设二分之一线圈节距160为x时,x如下求出。
3 : 0.5 = 40 × 2 : x
x=11.5(mm)
倾斜率为
Figure S2007101700735D00343
,因此,如下求出线圈整体的长度。
Figure S2007101700735D00344
树脂粒子分散液在加热加压状态下流过线圈状配管50,从而引起凝聚的理由并不十分明确,但可以如下考虑。树脂粒子分散液,在直线状配管的流路内形成层流并流过。在层流中,在流路中心,粒径大的粒子大致整齐排列而流过,在流路的内壁面附近,粒径小的粒子大致整齐排列而流过。此时,流动中并不紊乱,因此粒子之间冲撞较少,几乎不产生凝聚。与之相对,将树脂粒子分散液导入到线圈状配管50的流路内时,在流路的内壁面附近朝向流路外方的离心力增强。与之相对,在流路的中心通过施加离心力和剪断力而产生乱流。粒径大的粒子因离心力集中到流路的内壁面附近,并且因离心力较强,而不会表现出不规则的举动,大致整齐排列而流过,粒子之间冲撞也较少,难以引起凝聚。另一方面,树脂粒子等粒径(或质量)小的粒子在流路的中心部分流过时卷入到乱流中,因此粒子之间的冲撞次数增加,凝聚频繁发生。并且,凝聚粒子变成适度大小后,该凝聚粒子因离心力而移动到流路的内壁面附近,防止产生树脂粒子的过凝聚。从而,可以尽量防止过凝聚导致的粗大粒子的产生,同时可以基本选择性地仅凝聚树脂粒子。
将流过了线圈状配管50的树脂粒子分散液,以不产生漰沸引起的冒泡(bubbling)的方式减压到大气压或与之接近的压力。在减压的同时进行粒度调整。粒度调整主要是粗大粒子的小径化。因此,减压后的凝聚粒子分散液基本不含粗大粒子,包含形状及粒径大致均匀的凝聚粒子,液温为50~80℃左右。
凝聚粒子分散液的减压,例如使用减压喷嘴来进行。作为减压喷嘴,例如可以使用图12所示的减压喷嘴41。图12是示意地表示减压喷嘴41的构成的长度方向剖视图。在减压喷嘴41中,以在长度方向贯通其内部的方式形成流路42。流路42的长度方向一端为入口43,另一端为出口44。从入口43将处于加热加压状态的凝聚粒子分散液导入到减压喷嘴41内,从出口44将减压且处于加热状态的凝聚粒子分散液排出到减压喷嘴41的外部。流路42形成为,其长度方向轴线与减压喷嘴41的长度方向轴线一致,且出口直径大于入口直径。进而在本实施方式中,流路42形成为,与凝聚粒子分散液流过方向(箭头45的方向)垂直的方向上的截面直径相对较小的部分和相对较大的部分交互相连。进而,流路42的入口43附近为截面直径相对较小的部分,出口44附近为截面直径相对较大的部分。处于加热加压状态的凝聚粒子分散液从入口43导入到减压喷嘴41的流路42时,该分散液受到减压的同时在流路42内流过。并且,凝聚粒子中仅粒径过大的粒子与流路42的内壁面42a接触,多余的树脂粒子被分离,变成适度大小的凝聚粒子,并从出口44排出。在减压喷嘴41中,流路42的出口直径大于入口直径,因此通过该分散液与内壁面42a接触来施加适度的剪断力。因此,仅粒径过大的凝聚粒子(粗大粒子)受到粒径控制。
在本实施方式中,不限于减压喷嘴41,可以使用具有以出口直径大于入口直径的方式形成的流路的各种减压喷嘴。通过使出口直径大于入口直径,可以防止因在减压喷嘴内适度粉碎的凝聚粒子的再凝聚生成粗大化粒子。图13是示意地表示其他方式的减压喷嘴51的构成的长度方向剖视图。减压喷嘴51,以在长度方向上贯通其内部的方式形成流路52。流路52的一端为入口53,另一端为出口54。流路52形成为,其长度方向轴线与减压喷嘴51的长度方向轴线一致,且出口直径大于入口直径。进而,在本实施方式中,流路52形成为,与分散液流过方向(箭头55的方向)垂直的方向的截面直径从入口53向出口54连续逐渐变大。减压喷嘴51具有与减压喷嘴41相同的效果。进而在本实施方式中,不限于减压喷嘴,也可以使用粉碎用高压均化器1中的减压模块7。
线圈状配管和减压喷嘴或减压模块优选交互地并列配置多组。从而可以交互且反复进行凝聚及减压,凝聚粒子的形状及粒径更加均匀。此外,线圈状配管和减压喷嘴或减压模块交互地并列配置多组时,经由减压喷嘴或减压模块而相邻的线圈状配管,线圈的卷绕方向彼此不同。从而树脂粒子之间的冲撞频度变高,可以更有效地使树脂粒子凝聚。
接下来,将流过线圈状配管和减压喷嘴或减压模块而获得的液温50~80℃左右的凝聚粒子分散液例如冷却到室温,结束凝聚工序。凝聚工序可以反复进行多次,直至凝聚粒子的粒径称为优选的粒径。
上述树脂粒子的凝聚方法,例如可以使用国际公开第03/059497号公报所记载的高压均化器来实施。图14是简要表示用于实施凝聚粒子的制造方法中的凝聚工序的凝聚用高压均化器61的构成的系统图。凝聚用高压均化器61,与粉碎用高压均化器1类似,对于对应的部分标以相同的参照标号并省略说明。凝聚用高压均化器61与粉碎用高压均化器1的不同点在于,不包含粉碎用喷嘴6,包含与减压模块7不同的第一减压模块62、第二减压模块64、及第三减压模块65,并且包含第一线圈状配管63。凝聚用高压均化器61不是用于粉碎粒子,而是用于使粒子凝聚的高压均化器。凝聚用高压均化器61包括箱体2、传送泵3、加压单元4、加热器5、第一减压模块62、第一线圈状配管63、第二减压模块64、冷却机8、第三减压模块65、配管9、和取出口10。
在凝聚用高压均化器61中,通过配管9依次连接:箱体2、传送泵3、加压单元4、加热器5、第一减压模块62、第一线圈状配管63、第二减压模块64、冷却机8、及第三减压模块65。在通过配管9连接的系统内,可以从取出口10将由冷却机8冷却后的凝聚粒子分散液取出到系统外,或使由冷却机8冷却后的浆液再次返回到箱体2,并沿着箭头11的方向反复循环。
箱体2、传送泵3及加压单元4,使用与粉碎用高压均化器1中相同的装置。箱体2内的树脂粒子浆液,通过传送泵3及加压单元4,在加压的状态下传送到加热器5。加热器5也使用与粉碎用高压均化器1中相同的装置。即,使用图5所示的包括线圈状配管50和未图示的加热部的加热器5。线圈状配管50的两端分别与配管9连接。通过在加热器5内流过,树脂粒子分散液变成加热加压状态,并提供到第一减压模块62。
第一减压模块62例如使用减压喷嘴。减压喷嘴是以在长度方向上贯通其内部的方式形成有流路的喷嘴。流路的长度方向一端部为入口,另一端部为出口,出口直径大于入口直径。入口及出口分别与配管9连接,从入口将处于加热加压状态的凝聚粒子分散液导入到流路内,并从出口排出减压后的该分散液。作为减压喷嘴,例如包括减压喷嘴41、51等。此外,也可以使用粉碎用高压均化器1中的减压模块7来替代减压喷嘴。通过第一减压模块62粉碎在加热器5内生成的粗大粒子。
在第一线圈状配管63内进行树脂粒子的凝聚工序,获得凝聚粒子分散液。在第二减压模块64内进行减压工序。即,进行凝聚粒子分散液的减压,并且选择性地仅粉碎粗大粒子,进行凝聚粒子的粒度控制。在冷却机8中进行冷却工序,冷却凝聚粒子分散液。冷却机8使用与粉碎用高压均化器1中相同的装置。冷却后的凝聚粒子分散液在第三减压模块65内再次受到粒度控制,从而获得由通过本发明的树脂粒子的制造方法而获得的树脂粒子构成的凝聚粒子。
根据凝聚用高压均化器61,首先在箱体2内填充树脂粒子分散液,在添加了阳离子类凝聚剂后,导入到加热器5的线圈状配管内,使之成为加热加压状态。其后,通过第一减压模块62进行粗大粒子的粉碎后,通过第一线圈状配管63在加热加压下对树脂粒子施加离心力和剪断力,选择性地凝聚树脂粒子,生成凝聚粒子分散液。然后将该凝聚粒子分散液导入到第二减压模块64中,受到减压,并且使树脂粒子从具有过度粒径的凝聚粒子脱离,使凝聚粒子的粒径及形状一致。该凝聚粒子分散液被导入到冷却机8中冷却后,在第三减压模块65中再次受到粒度控制。从而凝聚工序的凝聚剂添加阶段、减压阶段、冷却阶段结束。可以反复进行这一系列的工序。此时,冷却阶段中得到的凝聚粒子分散液再循环到箱体2中,再次进行相同的处理。
图15是简要表示其他方式的凝聚用高压均化器71的构成的系统图。凝聚用高压均化器71与凝聚用高压均化器61类似,对于对应的部分标以相同的参照标号,并省略说明。凝聚用高压均化器71的特征在于,在凝聚用高压均化器61的第二减压模块64和冷却机8之间设置第二线圈状配管72及第四减压模块73。第二线圈状配管72与在凝聚工序中说明的相同。第四减压模块73与第一减压模块62相同。根据凝聚用高压均化器71,将线圈状配管和减压模块设为一组,通过设置多个该组,可以反复进行树脂粒子的凝聚和具有过度粒径的凝聚粒子的粒径控制(小径化)。因此,凝聚粒子的粒径变得更加均匀,最终获得的凝聚粒子的粒度分布宽度更窄。
在本实施方式中,使用高压均化器制造凝聚粒子,但树脂粒子的凝聚不限于此,例如也可以使用批量式乳化机、分散机等普通的混合装置来进行。
(清洗工序)
凝聚工序S4结束后,进入清洗工序S5。在步骤S5的清洗工序中,从凝聚粒子分散液分离凝聚粒子并清洗后,使之干燥,从而得到凝聚粒子。对于凝聚粒子的分离,可以采用过滤、离心分离及倾析等一般的固液分离装置。凝聚粒子的清洗,用于除去未凝聚的树脂粒子、阴离子类表面活性剂、阳离子类分散剂、难溶性无机粒子、1价的金属盐等。具体地说,例如使用导电率为20μS/cm以下的纯水进行清洗。混合凝聚粒子和纯水,直至从该混合物分离凝聚粒子后残留的清洗水的导电率为50μS/cm以下为止,反复进行利用上述纯水的清洗。清洗后使之干燥,从而获得由通过本发明的树脂粒子的制造方法而得到的树脂粒子构成的凝聚粒子。
这样得到的凝聚粒子,优选具有3~6μm左右的体积平均粒径,形状及粒径均匀,粒度分布宽度非常窄。为了得到体积平均粒径为3~6μm左右的凝聚粒子,例如,在最佳的时间结束凝聚工序非常重要。
最终获得的凝聚粒子用作色粉时,在上述混合物调制工序S1中记载的合成树脂中优选使用聚酯。聚酯的透明性优异,且可以对凝聚粒子赋予良好的粉体流动性、低温定影性及二次色彩再现性,因此适于彩色色粉用的粘合树脂。此外,也可以将聚酯和丙烯酸树脂接枝来使用。此外在这些合成树脂中,考虑到容易实施成为树脂粒子的造粒操作、合成树脂和添加剂的混炼性、使树脂粒子的形状及大小更加均匀等,优选1/2软化温度为150℃以下的合成树脂,特别优选1/2软化温度为60℃~150℃的合成树脂。进而在其中,优选重量平均分子量为5000~500000的合成树脂。合成树脂可以单独使用一种,也可以同时使用不同的两种以上。进而,即使是相同的树脂,也可以使用多种分子量、单体组成等的任意一个或全部不同的树脂。
将最终获得的凝聚粒子用作色粉时,优选在合成树脂中含有着色剂、脱模剂、电荷控制剂等。作为着色剂没有特别限制,例如可使用有机类染料、有机类颜料、无机类染料、无机类颜料等。
作为黑色的着色剂,例如包括:炭黑、氧化铜、二氧化锰、苯胺黑、活性炭、非磁性铁素体、磁性铁素体、及磁铁矿等。
作为黄色着色剂例如包括:铅黄、锌黄、镉黄、黄色氧化铁、矿物永固黄(ミネラルフアストイエロ一)、镍钛黄、脐黄(ネ一ブルイエロ一)、萘酚黄S、汉撒黄G、汉撒黄10G、联苯胺黄G、联苯胺黄GR、喹啉黄色淀、永固黄NCG、酒石黄色淀、C.I.颜料黄12、C.I.颜料黄13、C.I.颜料黄14、C.I.颜料黄15、C.I.颜料黄17、C.I.颜料黄93、C.I.颜料黄94、及C.I.颜料黄138。
作为橙色着色剂例如包括:赤黄铅、钼橙、永固橙GTR、吡唑啉酮橙、伏尔甘橙、阴丹士林亮橙RK、联苯胺橙G、阴丹士林亮橙GK、C.I.颜料橙31、C.I.颜料橙43等。
作为红色着色剂例如包括:氧化铁红、镉红、铁丹、硫化汞、镉、永固红4R、立索尔红、吡唑啉酮红、华琼红(ウオツチングレツド)、钙盐、色淀红C、色淀红D、亮洋红6B、曙红色淀、若丹明色淀B、茜素色淀、亮洋红3B、C.I.颜料红2、C.I.颜料红3、C.I.颜料红5、C.I.颜料红6、C.I.颜料红7、C.I.颜料红15、C.I.颜料红16、C.I.颜料红48:1、C.I.颜料红53:1、C.I.颜料红57:1、C.I.颜料红122、C.I.颜料红123、C.I.颜料红139、C.I.颜料红144、C.I.颜料红149、C.I.颜料红166、C.I.颜料红177、C.I.颜料红178、及C.I.颜料红222等。
作为紫色的着色剂例如包括:锰紫、坚牢紫B和甲基紫色淀等。
作为蓝色的着色剂例如包括:深蓝、钴蓝、碱性蓝色淀、维多利亚蓝色淀、酞氰蓝、非金属酞氰蓝、酞氰蓝部分氯化物、耐晒天蓝、阴丹士林蓝BC、C.I.颜料蓝15、C.I.颜料蓝15:2、C.I.颜料蓝15:3、C.I.颜料蓝16、及C.I.颜料蓝60等。
作为绿色的着色剂例如包括:铬绿、氧化铬、颜料绿B、孔雀绿色淀、终级黄绿G、及C.I.颜料绿7等。
作为白色的着色剂例如包括:锌白、氧化钛、锑白及硫化锌等化合物。
着色剂可单独使用一种,也可同时使用二种以上的不同颜色。并且同一颜色时也可使用二种以上。树脂粒子中着色剂的含量没有特别限定,但优选为树脂粒子总量的0.1重量%~20重量%,进一步优选为0.2重量%~10重量%。
作为脱模剂,没有特别限定,例如包括:石蜡及其衍生物、微晶蜡及其衍生物等石油类蜡,费托合成蜡及其衍生物、聚烯烃蜡及其衍生物、低分子量聚丙烯蜡及其衍生物、聚烯烃类聚合物蜡(低分子量聚乙烯蜡等)及其衍生物等烃类合成蜡,加洛巴蜡及其衍生物、米蜡及其衍生物、小烛树蜡及其衍生物、木蜡等植物类蜡,蜂蜡、鲸蜡等动物类蜡,脂肪酸酰胺、苯酚脂肪酸酯等油脂类合成蜡,长链羧酸及其衍生物、长链醇及其衍生物、硅酮类聚合物、高级脂肪酸等蜡。而且,在衍生物中,包括氧化物、乙烯类单体与蜡的嵌段共聚物、乙烯类单体与蜡的接枝改性物等。其中,优选具有造粒工序中的水溶性分散剂水溶液的液温以上的熔点的蜡。树脂粒子中脱模剂的含量没有特别限制,可从较大范围内适当选择,但优选为树脂粒子总量的0.2重量%~20重量%。
作为电荷控制剂,没有特别的限制,可以使用正电荷控制用和负电荷控制用的物质。作为正电荷控制用的电荷控制剂,例如可以列举碱性染料、季铵盐、季鏻盐、氨基比林、嘧啶化合物、多核聚氨基化合物、氨基硅烷、苯胺黑染料及其衍生物、三苯甲烷衍生物、胍盐、脒盐等。作为负电荷控制用的电荷控制剂,可以列举石油炭黑、铁黑(スピロンブラツク)等油溶性染料、含金属偶氮化合物、偶氮络合物染料、环烷酸金属盐、水杨酸及其衍生物的金属络合物和金属盐(金属为铬、锌、锆等)、脂肪酸皂、长链烷基羧酸盐、树脂酸皂等。电荷控制剂可以单独使用一种,也可以根据需要同时使用两种以上。树脂粒子中电荷控制剂的使用量没有特别的限制,可以在较广的范围内适当地选择,但优选为树脂粒子总量的0.5重量%~3重量%。
通过以上凝聚粒子的制造方法制造的凝聚粒子,为粒径小、粒度分布宽度窄、凝聚粒子内部气泡少的密集的凝聚粒子。因此在复印机、激光打印机及传真机等电子照相方式的图像形成装置中将这种凝聚粒子用作色粉时,各个粒子的带电性、显影性及转印性均匀,且机械强度高,在图像形成装置中施加了外力时、即为了使显影剂带电而搅拌色粉时,防止了因破碎而产生无用的微粉,因此可以形成色粉飞散少的高分辨率、高精细的图像,并且长期维持这些特性。此外,由通过本发明的树脂粒子的制造方法获得的树脂粒子构成的凝聚粒子,除了色粉以外,还可以用作涂料及涂敷剂等填充剂。
(实施例)
下面列举实施例和比较例具体地说明本发明。另外,下面的“份”和“%”若没有特别的限定,分别指“重量份”和“重量%”。
实施例中的蜡的熔点如下求得。
(蜡的熔点)
使用示差扫描热量计(商品名:DSC220,セイコ一電子工業株式会社制造),将1g的试验材料从20℃以每分钟10℃的升温速度升温到150℃,接着从150℃急冷到20℃,反复进行该操作2次,测定DSC曲线。将第二次操作测定的DSC曲线的相当于熔解的吸热峰值的顶点温度作为蜡的熔点求出。
(实施例1)
(混合物调制工序)
将87.5份聚酯树脂(玻璃转化温度(Tg)为60℃、1/2软化温度Tm为110℃)、1.5份带电控制剂(商品名,TRH,保土ケ谷化学工業株式会社制造)、3份聚酯类蜡(熔点85℃)及8份着色剂(C.I.颜料红57:1),在混合机(商品名:ヘンシエルミキサ,三井鉱山株式会社制造)中混合,用双轴压出机(商品名:PCM-30,株式会社池贝制造)以气缸温度145℃、滚筒旋转次数300rpm进行熔融混炼。将该熔融混炼的原料冷却到室温后,用切磨机(商品名:VM-16,株式会社セイシン企業制造)进行粉碎,调制出体积平均粒径50μm、最大粒径300μm的熔融混炼物。该熔融混炼物的1/2软化温度Tm为110℃。混合30g该熔融混炼物、3g十二烷基苯磺酸钠(商品名:ルノツクスS-100,阴离子类表面活性剂,東邦化学工業株式会社制造)、及567g水,调制出包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物。
(粗粉碎工序)
将在混合物调制工序中得到的混合物投入到高压均化器(商品名NANO3000,株式会社美粒制造)的箱体中,进行3次在25℃的温度及100MPa的加压下在该高压均化器内循环10分钟的粗粉化处理,获得粗粉碎分散液。
(微粒化工序)
将在粗粉碎工序中得到的粗粉碎分散液投入到高压均化器(商品名NANO3000,株式会社美粒制造)的箱体中,进行5次在120℃的温度及160MPa的加压下在该高压均化器内循环10分钟的处理,获得树脂粒子分散液。获得的树脂粒子的体积平均粒径为1μm,变动系数(CV值)为35%。
(凝聚工序)
将100ml在微粒化工序中得到的树脂粒子分散液放入到烧瓶中,加入0.1g氯化钠(商品名:特级氯化钠,キシダ化学株式会社制造)并进行2小时的搅拌处理,从而使树脂粒子凝聚,获得凝聚粒子分散液。获得的凝聚粒子的体积平均粒径为5.1μm,变动系数(CV值)为26%。
(实施例2)
(混合物调制工序)
与实施例1的混合物的调制方法同样地调制出混合物。
(粗粉碎工序)
除了使高压均化器的温度为67℃、并进行了5次粗粉化处理之外,与实施例1的粗粉碎分散液的调制方法同样地,调制出粗粉碎分散液。
(微粒化工序)
与实施例1的树脂粒子分散液的调制方法同样地调制树脂粒子分散液,获得体积平均粒径为1μm、变动系数(CV值)为34%的树脂粒子。
(凝聚工序)
与实施例1的凝聚粒子分散液的调制方法同样地调制凝聚粒子分散液,获得凝聚粒子分散液。得到的凝聚粒子的体积平均粒径为5.4μm、变动系数(CV值)为22%。
(实施例3)
(混合物调制工序)
与实施例1的混合物的调制方法同样地调制出混合物。
(粗粉碎工序)
除了将十二烷基苯磺酸钠变更为1g、将水变更为569g、并且进行了9次在25℃的温度及25MPa的加压下在该高压均化器内循环10分钟的粗粉碎化处理之外,与实施例1的粗粉碎分散液的调制方法同样地调制出粗粉碎分散液。
(微粒化工序)
与实施例1的树脂粒子分散液的调制方法同样地调制树脂粒子分散液,获得体积平均粒径为1μm、变动系数(CV值)为31%的树脂粒子。
(凝聚工序)
与实施例1的凝聚粒子分散液的调制方法同样地调制凝聚粒子分散液,获得凝聚粒子。凝聚粒子的体积平均粒径为5.1μm、变动系数(CV值)为27%。
(实施例4)
(混合物调制工序)
将82.0份聚酯树脂(粘合树脂,玻璃转化温度(Tg)为60℃、熔点为116℃)、2.0份带电控制剂(商品名:N5P,クラリアントジヤパン株式会社制造)、7.5份聚酯类蜡(脱模剂,熔点85℃,商品名:HNP-10,日本精蜡株式会社制造)及8.5份着色剂(KET.BLUE111,大日本インキ株式会社制造)按照上述比例配合而成的熔融混炼物的原料2000g,在亨舍尔混合机(混合机,商品名:FMミキサ,三井鉱山株式会社制造)中混合3分钟,用开口辊型连续混炼机(商品名:MOS320-1800,三井鉱山株式会社制造)进行熔融混炼。此时的开口辊的设定条件如下:加热辊的供给侧温度为140℃、排出侧温度为90℃,冷却辊的供给侧温度为60℃、排出侧温度为55℃。
(预备粉碎工序)
将240份在混炼物调制工序中调制出的熔融混炼物、506.6份离子交换水、0.5份琥珀酸二异辛酯磺酸钠(表面活性剂,商品名:エアロ一ルCT-1P,東邦化学工業株式会社制造)、39.9份聚丙烯酸(表面活性剂,商品名:デイスロ一ルH14-N,日本乳化剂株式会社制造)、13份合成生物聚合胶(增粘剂),在泡レスミキサ一(商品名,株式会社美粒制造)以2000rpm的旋转数进行10分钟的湿式粉碎。
(脱泡工序)
将在预备粉碎工序中得到的熔融混炼物的浆液在T.K.ハイビスダツパ一(注册商标)3型(商品名,プライミクス株式会社制造)减压至0.1MPa,从而进行脱气。该装置为连续式的脱泡装置。此时熔融混炼物的浆液中的溶存氧气量为7.5mg/L。
(粗粉碎工序)
将进行了脱泡处理的熔融混炼物的浆液投入到高压均化器(商品名:音レス高压乳化装置NANO3000,株式会社美粒制造)中,进行1次在25℃的温度及100MPa的加压下粗粉碎的处理。
(微粒化工序)
将粗粉碎分散液投入到高压均化器(商品名:音レス高压乳化装置NANO3000,株式会社美粒制造)中,进行1次在165℃的温度及168MPa的加压下粉碎的处理,从树脂粒子分散液分离树脂粒子,从而获得树脂粒子。获得的树脂粒子的体积平均粒径为1.47μm,变动系数(CV值)为48%。
(凝聚工序)
在室温下,将在微粒化工序中得到的树脂粒子分散液及氯化钠以100对3的比例混合,投入到高压均化器(商品名:音レス高压乳化装置NANO3000,株式会社美粒制造)中,进行1次在85℃的温度及15MPa的加压下凝聚的处理。
(清洗工序)
用纯水对在凝聚工序中获得的凝聚粒子进行清洗,直至清洗后的分散液的导电率为50μS/cm以下为止,之后通过喷射炉(jet oven)使之干燥,从而获得体积平均粒径为6.3μm、变动系数(CV值)为30%的凝聚粒子。
(实施例5)
(混合物调制工序)
与实施例4的熔融混炼物的调制方法同样地调制出熔融混炼物。
(预备粉碎工序)
用泡レスミキサ一以2000rpm的旋转数对熔融混炼物及离子交换水进行5分钟的湿式粉碎后,添加エアロ一ル、聚丙烯酸及合成生物聚合胶,并以2000rpm的旋转数搅拌5分钟,制作出熔融混炼物的浆液,除此以外与实施例4同样,获得熔融混炼物的预备粉碎物。
(脱泡工序)
获得的熔融混炼物的浆液的溶存氧气量为6.9mg/L。
(粗粉碎工序)
与实施例4的粗粉分散液的调制方法同样地,调制出粗粉碎分散液。
(微粒化工序)
与实施例4的树脂粒子分散液的调制方法同样地,调制出树脂粒子分散液。从而获得体积平均粒径为1.21μm、变动系数(CV值)为42%的树脂粒子。
(凝聚工序)
与实施例4的凝聚粒子分散液的调制方法同样地,获得凝聚粒子分散液。
(清洗工序)
与实施例4的凝聚粒子的清洗方法同样地获得凝聚粒子。获得的凝聚粒子的体积平均粒径为5.5μm、变动系数(CV值)为28%。
(实施例6)
(混合物调制工序)
与实施例4的熔融混炼物的调制方法同样地调制出熔融混炼物。
(预备粉碎工序)
用泡レスミキサ一以2000rpm的旋转数对熔融混炼物、离子交换水及合成生物聚合胶进行5分钟的湿式粉碎后,添加エアロ一ル及聚丙烯酸,并以2000rpm的旋转数搅拌5分钟,制作出熔融混炼物的浆液,除此以外与实施例4同样,获得熔融混炼物的预备粉碎物。
(脱泡工序)
获得的熔融混炼物的浆液的溶存氧气量为7.2mg/L。
(粗粉碎工序)
与实施例4的粗粉分散液的调制方法同样地,调制出粗粉碎分散液。
(微粒化工序)
与实施例4的树脂粒子分散液的调制方法同样地,调制出树脂粒子分散液。从而获得体积平均粒径为1.30μm、变动系数(CV值)为39%的树脂粒子。
(凝聚工序)
与实施例4的凝聚粒子分散液的调制方法同样地,获得凝聚粒子分散液。
(清洗工序)
与实施例4的凝聚粒子的清洗方法同样地获得凝聚粒子。获得的凝聚粒子的体积平均粒径为5.7μm、变动系数(CV值)为23%。
(实施例7)
(混合物调制工序)
与实施例4的熔融混炼物的调制方法同样地调制出熔融混炼物。
(预备粉碎工序)
用胶体研磨机(コロイドミル装置,商品名,日本ボ一ルバルブ株式会社制造)以3600rpm的旋转数对熔融混炼物、离子交换水及合成生物聚合胶进行5分钟的湿式粉碎后,添加エアロ一ル及聚丙烯酸,并用泡レスミキサ一以2000rpm的旋转数搅拌5分钟,制作出熔融混炼物的浆液,除此以外与实施例4同样,获得熔融混炼物的预备粉碎物。
(脱泡工序)
获得的熔融混炼物的浆液的溶存氧气量为6.8mg/L。
(粗粉碎工序)
与实施例4的粗粉分散液的调制方法同样地,调制出粗粉碎分散液。
(微粒化工序)
与实施例4的树脂粒子分散液的调制方法同样地,调制出树脂粒子分散液。从而获得体积平均粒径为1.08μm、变动系数(CV值)为35%的树脂粒子。
(凝聚工序)
与实施例4的凝聚粒子分散液的调制方法同样地,获得凝聚粒子分散液。
(清洗工序)
与实施例4的凝聚粒子的清洗方法同样地获得凝聚粒子。获得的凝聚粒子的体积平均粒径为5.3μm、变动系数(CV值)为19%。
(比较例1)
(混合物调制工序)
与实施例1的混合物调制工序同样地调制出混合物。
(粗粉碎工序)
除了进行了8次在25℃的温度及5MPa的加压下在高压均化器内循环10分钟的粗粉化处理之外,与实施例1的粗粉碎工序同样地调制出粗粉碎分散液。
(微粒化工序)
与实施例1的树脂粒子分散液的调制方法同样地调制树脂粒子分散液。从而获得体积平均粒径为50μm、变动系数(CV值)为42%的树脂粒子。
(凝聚工序)
与实施例1的凝聚工序同样地调制出凝聚粒子分散液。从而获得体积平均粒径为15.4μm、变动系数(CV值)为53%的凝聚粒子。
在表1中表示实施例及比较例中获得的树脂粒子的物性值及评估结果,在表2中表示实施例及比较例中获得的凝聚粒子的物性值及评估结果。
表1
  溶存氧气量(mg/L)   体积平均粒径(μm)   体积平均粒径评估     CV值(%)   CV值评估     综合评估
实施例1   未测定   1.00   ○     35   ○     ○
实施例2   未测定   1.00   ○     34   ○     ○
实施例3   未测定   1.00   ○     31   ○     ○
实施例4   7.5   1.47   ○     48   ○     ○
实施例5   6.9   1.21   ○     42   ○     ○
实施例6   7.2   1.30   ○     39   ○     ○
实施例7   6.8   1.08   ○     35   ○     ○
比较例1   未测定   50   ×     42   ○     ×
表2
  体积平均粒径(μm)   体积平均粒径评估     CV值(%)     CV值评估     综合评估
实施例1   5.1   ○     26     △     ○
实施例2   5.4   ○     22     ○     ◎
实施例3   5.1   ○     27     △     ○
实施例4   6.3   △     30     △     △
实施例5   5.5   ○     28     △     ○
实施例6   5.7   ○     23     ○     ◎
实施例7   5.3   ○     19     ○     ◎
比较例1   15.4   ×     53     ×     ×
表1及表2中的、树脂粒子的体积平均粒径及变动系数CV以及凝聚粒子的体积平均粒径及变动系数CV的测定方法、评估基准如下。
(体积平均粒径)
利用粒度分布测定装置(商品名:マイクロトラツク粒度分布测定装置9320HRA(X-100),日机装株式会社制造)进行测定,根据试料粒子的体积粒度分布求出体积平均粒径。
(树脂粒子)
○:体积平均粒径为1.5μm以下。
×:体积平均粒径超过1.5μm。
(凝聚粒子)
○:体积平均粒径为5.0μm以上、且小于6.0μm。
△:体积平均粒径为6.0μm以上、且小于6.5μm。
×:体积平均粒径小于5.0μm、或为6.5μm以上。
(变动系数)
利用粒度分布测定装置(商品名:マイクロトラツク粒度分布测定装置9320HRA(X-100),日机装株式会社制造)进行测定,根据试料粒子的体积粒度分布求出体积平均粒径及体积粒度分布中的标准偏差。变动系数(CV值,单位:%)根据下式(1)算出。
CV值(%)=(标准偏差/体积平均粒径)×100    …(1)
(树脂粒子)
○:CV值为50%以下。
×:CV值超过50%。
(凝聚粒子)
○:CV值小于25%。
△:CV值为25%以上、且为30%以下。
×:CV值超过30%。
(综合评估)
综合评估的评估标准如下。
◎:体积平均粒径、变动系数均为○。
○:有一个△。
△:有两个△。
×:体积平均粒径和变动系数的至少一个为×。
如表1所示,通过本发明的制造方法获得的实施例的树脂粒子,小径且粒度分布宽度窄,此外使这种树脂粒子凝聚而获得的凝聚粒子的粒度分布宽度也窄。将这种凝聚粒子用作色粉时,带电性能均匀,可以均匀地附着在静电潜影上形成色粉图像,并且适度地小径化,因此可以形成高精细地再现了原稿图像的图像。因此,通过使用这种色粉,可以稳定地形成图像浓度高、画质品位及图像再现性好的高画质图像。
本发明在不脱离其主旨和主要特征的前提下可通过各种方式实施。因此,上述实施方式从各方面而言仅是单纯的示例,本发明的范围如权利要求所示,不受说明书正文的任何约束。并且,属于权利要求范围内的变形、变更均属本发明范围内。

Claims (6)

1.一种树脂粒子的制造方法,其特征在于,包括以下工序:
粗粉碎工序,将包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物加压至50MPa~120MPa,并使该混合物通过粉碎用喷嘴粉碎,而获得包含熔融混炼物的粗粉的水性浆液;和
微粒化工序,通过高压均化法对在粗粉碎工序中获得的包含熔融混炼物的粗粉的水性浆液进行处理,将熔融混炼物的粗粉微粒化。
2.根据权利要求1所述的树脂粒子的制造方法,其特征在于,
包括脱泡工序,在粗粉碎工序之前,对包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物进行脱泡,以使混合物的溶存氧气量为7.5mg/L以下。
3.根据权利要求2所述的树脂粒子的制造方法,其特征在于,
包括预备粉碎工序,在脱泡工序之前,对包含合成树脂的熔融混炼物和包含表面活性剂的水性介质的混合物进行预备粉碎以使熔融混炼物的粒径为500μm以下,获得包含熔融混炼物的预备粉碎物的水性浆液。
4.根据权利要求3所述的树脂粒子的制造方法,其特征在于,
在预备粉碎工序中,向上述混合物添加增粘剂,将上述混合物预备粉碎。
5.根据权利要求3所述的树脂粒子的制造方法,其特征在于,
在预备粉碎工序中,利用包含转子部件和定子部件的胶体研磨机,使上述混合物通过胶体研磨机中的定子部件和转子部件的间隙,从而进行预备粉碎,所述转子部件被设置为能够绕预先确定的旋转轴线旋转,所述定子部件在圆周方向外部包围转子部件。
6.根据权利要求4所述的树脂粒子的制造方法,其特征在于,
在预备粉碎工序中,利用包含转子部件和定子部件的胶体研磨机,使上述混合物通过胶体研磨机中的定子部件和转子部件的间隙,从而进行预备粉碎,所述转子部件被设置为能够绕预先确定的旋转轴线旋转,所述定子部件在圆周方向外部包围转子部件。
CN200710170073.5A 2006-11-09 2007-11-09 树脂粒子的制造方法 Expired - Fee Related CN101178552B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006304557 2006-11-09
JP2006-304557 2006-11-09
JP2006304557 2006-11-09
JP2007228357 2007-09-03
JP2007-228357 2007-09-03
JP2007228357A JP4283861B2 (ja) 2006-11-09 2007-09-03 樹脂粒子の製造方法

Publications (2)

Publication Number Publication Date
CN101178552A CN101178552A (zh) 2008-05-14
CN101178552B true CN101178552B (zh) 2010-10-13

Family

ID=39404848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710170073.5A Expired - Fee Related CN101178552B (zh) 2006-11-09 2007-11-09 树脂粒子的制造方法

Country Status (3)

Country Link
US (1) US7770828B2 (zh)
JP (1) JP4283861B2 (zh)
CN (1) CN101178552B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8024249B2 (en) 2001-09-03 2011-09-20 Michihiro Sato Issuing machine and issuing system
JP5473113B2 (ja) * 2008-07-14 2014-04-16 株式会社東芝 現像剤の製造方法
US8227167B2 (en) * 2008-07-14 2012-07-24 Kabushiki Kaisha Toshiba Developing agent and method for producing developing agent
JP2011053556A (ja) * 2009-09-03 2011-03-17 Toshiba Corp 現像剤の製造方法
JP5429491B2 (ja) * 2010-06-17 2014-02-26 住友金属鉱山株式会社 無機材料スラリを用いた導電性ペーストおよび該ペーストの製造方法
JP2013148821A (ja) * 2012-01-23 2013-08-01 Fuji Xerox Co Ltd 液体現像剤の製造装置
WO2013130850A1 (en) * 2012-02-28 2013-09-06 Microvention, Inc. Coating methods
US9057970B2 (en) * 2012-03-09 2015-06-16 Canon Kabushiki Kaisha Method for producing core-shell structured resin microparticles and core-shell structured toner containing core-shell structured resin microparticles
CN103073666A (zh) * 2012-12-27 2013-05-01 湖北远东卓越科技股份有限公司 一种利用氧化还原体系去除苯乙烯-丙烯酸酯共聚碳粉树脂残余单体的方法
JP2015175950A (ja) * 2014-03-14 2015-10-05 株式会社リコー 貯留設備及びトナー製造装置
US9290637B2 (en) * 2014-04-19 2016-03-22 Xerox Corporation Pigmented wax dispersion and method for preparing same
JP6346305B2 (ja) * 2014-12-05 2018-06-20 大日精化工業株式会社 顆粒状樹脂用添加剤の製造方法、その製造方法により得られる顆粒状樹脂用添加剤、熱可塑性樹脂組成物、及び成形品
US10543299B2 (en) 2016-10-03 2020-01-28 Microvention, Inc. Surface coatings
JP7080596B2 (ja) * 2017-07-14 2022-06-06 株式会社東芝 光輝性トナー、光輝性トナーの製造方法、及び画像形成装置
CN107599228A (zh) * 2017-08-14 2018-01-19 浙江祥邦科技股份有限公司 一种太阳能电池封装胶膜用树脂颗粒的加工方法
JP6746656B2 (ja) * 2018-01-30 2020-08-26 キヤノン株式会社 トナーの製造方法
CN113059716A (zh) * 2021-03-30 2021-07-02 惠州市优品新材料有限公司 Pvc膜粒子生产工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935751A (en) * 1996-06-27 1999-08-10 Fuji Xerox Co., Ltd. Toner for developing electrostatic latent image, process for manufacturing the same, developer for electrostatic latent image, and image-forming method
CN1615175A (zh) * 2002-01-09 2005-05-11 中野满 使用多级减压模块的乳化·分散系统以及乳化·分散液的制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566888A (en) * 1993-05-21 1996-10-22 Fuji Jukogyo Kabushiki Kaisha Method and an apparatus for recycling a resin component
JP4228803B2 (ja) 2003-07-01 2009-02-25 セイコーエプソン株式会社 トナーの製造装置およびトナー
JP2005173263A (ja) 2003-12-11 2005-06-30 Seiko Epson Corp トナーの製造方法、トナーおよびトナー製造装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935751A (en) * 1996-06-27 1999-08-10 Fuji Xerox Co., Ltd. Toner for developing electrostatic latent image, process for manufacturing the same, developer for electrostatic latent image, and image-forming method
CN1615175A (zh) * 2002-01-09 2005-05-11 中野满 使用多级减压模块的乳化·分散系统以及乳化·分散液的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2005-258334A 2005.09.22

Also Published As

Publication number Publication date
CN101178552A (zh) 2008-05-14
JP4283861B2 (ja) 2009-06-24
US7770828B2 (en) 2010-08-10
JP2008138170A (ja) 2008-06-19
US20090020899A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
CN101178552B (zh) 树脂粒子的制造方法
CN101144991B (zh) 功能性粒子及其制造方法
CN100595682C (zh) 凝聚粒子的制造方法
CN101178553B (zh) 电子照相用色粉的制造方法及电子照相用色粉
EP0797122B1 (en) Manufacturing method for toner used in electrophotography
CN101000474B (zh) 色粉及其制造方法
JP4220538B2 (ja) トナーおよびその製造方法
CN101025584B (zh) 色粉及其制造方法
JP2009244494A (ja) 負帯電トナーの製造方法
JP2007219451A (ja) トナーの製造方法およびトナー
CN1273520C (zh) 微粒状着色树脂的制造方法、微粒状着色树脂及物品的着色方法
CN101339373B (zh) 调色剂及其制造方法、双组分显影剂、显影装置及图像形成装置
CN103777483A (zh) 静电图像显影用调色剂的制造方法
JP2011052058A (ja) 樹脂微粒子分散液の製造方法
JP2002275272A (ja) 微粒子状着色樹脂の製造方法、微粒子状着色樹脂および物品の着色方法
JP2006106288A (ja) 静電荷像現像用トナーおよびその製造方法
JP4713821B2 (ja) 微粒子状光硬化性樹脂の製造方法、微粒子状光硬化性樹脂および物品の表面処理方法
JP2012252310A (ja) 静電荷現像用トナーの製法および静電荷現像用トナー。
JP2007279713A (ja) 静電荷現像用トナーの製造方法
JP2006145858A (ja) 着色剤混練物の製造方法及び静電荷像現像用カラートナーの製造方法
JP2008116503A (ja) 凝集粒子の製造方法およびトナー
JP2010044380A (ja) 現像剤の製造方法
JP2011053556A (ja) 現像剤の製造方法
JP2010181753A (ja) トナーの製造方法およびトナー

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101013

Termination date: 20201109