CN101176001A - 用于分析被检体中目标物质的检查芯片和微型综合分析系统 - Google Patents

用于分析被检体中目标物质的检查芯片和微型综合分析系统 Download PDF

Info

Publication number
CN101176001A
CN101176001A CNA2006800169776A CN200680016977A CN101176001A CN 101176001 A CN101176001 A CN 101176001A CN A2006800169776 A CNA2006800169776 A CN A2006800169776A CN 200680016977 A CN200680016977 A CN 200680016977A CN 101176001 A CN101176001 A CN 101176001A
Authority
CN
China
Prior art keywords
chip
opening
micropump
fine channel
upstream side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800169776A
Other languages
English (en)
Inventor
山东康博
中岛彰久
东野楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Publication of CN101176001A publication Critical patent/CN101176001A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/56Labware specially adapted for transferring fluids
    • B01L3/565Seals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/028Modular arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/044Connecting closures to device or container pierceable, e.g. films, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0672Integrated piercing tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0439Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • Y10T137/87877Single inlet with multiple distinctly valved outlets

Abstract

一种检查芯片,包含有:(1)第一芯片,其具有收容试剂的微细流路、设置在所述微细流路上游侧的上游侧开口、设置在所述微细流路下游侧的下游侧开口、至少贴合在单面上且在使用前分别把所述上游侧开口和下游侧开口封住的一片或两片以上厚度薄的密封部件;(2)第二芯片,其具有把试剂与被检体汇合使反应并检测该反应的微细流路、设置在所述微细流路上游侧的开口,其中,在使用时把第一芯片与第二芯片重叠而使第一芯片的所述下游侧开口与第二芯片的所述开口对准位置。

Description

用于分析被检体中目标物质的检查芯片和微型综合分析系统
技术领域
本发明涉及使被检体与试剂混合并反应,并设置有检测该反应的一连串微细流路的检查芯片、和使用该检查芯片分析被检体中目标物质的微型综合分析系统。
背景技术
近年来,通过自如地运用微型机械技术和超精密加工技术而把现有的、用于进行试剂调制、化学分析和化学合成的装置、机构(例如泵、阀、流路、传感器等)微细化,并集成化在一个芯片上的系统被开发(专利文献1)。它们也被叫做μ-TAS(Micro total Analysis System:微型全分析系统)、生物反应器、芯片实验室(Lab-on-chips)、生物芯片,在医疗检查和诊断领域、环境测定领域、农业制造领域期待着它的应用。而现实中,如在基因检查看到的那样,在需要繁杂的工序、熟练的技术和机器类的操作的情况下,自动化、高速化且简便化的微型化分析系统不仅在成本、必要的样品量、需要的时间方面具有优势,而且由于不必选择时间和场地就能进行分析,可以说这样的优势非常大。
在各种分析、检查中这些分析用芯片的分析定量性、解析精度和经济性等被重视。因此,以简单的结构来确立高可靠性的送液系统就成为课题。要求有精度高、可靠性优良的微型流体控制元件。发明人已经提案了适合它们的微型泵系统及其制造方法(专利文献2~4)。
专利文献1:(日本)特开2004-28589号公报
专利文献2:(日本)特开2001-322099号公报
专利文献3:(日本)特开2004-108285号公报
专利文献4:(日本)特开2004-270537号公报
在使用上述微型化分析系统的分析中,为了在需要时迅速进行分析和检查,最好在分析用检查芯片上形成的微细流路内预先封入有规定量的试剂。
预先把试剂封入在检查芯片中时,就要求:在使用前的保管时防止试剂蒸发等、在使用前的保管时防止试剂从收容试剂的流路部位向与之连通的外部流路漏出、在使用时能使试剂简便地从收容试剂的流路部位向后续流路流出。
发明内容
本发明的目的在于提供一种用于分析被检体中目标物质的检查芯片和使用它的微型综合分析系统,使预先封入在流路内规定位置的试剂在保管时不会向外部流路漏出,且在使用时能使试剂简便地从封入试剂的流路向后续流路流出。
一种检查芯片,其特征在于,包含有:
(1)第一芯片,其具有收容试剂的微细流路、
设置在所述微细流路上游侧的上游侧开口、
设置在所述微细流路下游侧的下游侧开口、
至少贴合在单面上且在使用前分别把所述上游侧开口和下游侧开口封住的一片或两片以上厚度薄的密封部件;
(2)第二芯片,其具有使试剂与被检体汇合并反应,并检测该反应的微细流路、
设置在所述微细流路上游侧的开口,
在使用时通过把第一芯片与第二芯片重叠而使第一芯片的所述下游侧开口与第二芯片的所述开口对准位置。
本发明的检查芯片使预先封入在流路内规定位置的试剂在保管时不会向外部流路漏出,且在使用时能使试剂简便地从封入试剂的流路向后续流路流出。
附图说明
图1是表示本发明检查芯片的一个实施例中第一芯片的平面图;
图2是表示本发明检查芯片的一个实施例中第二芯片的平面图;
图3是表示把图1的第一芯片与图2的第二芯片重叠状态的平面图;
图4是表示把图1的第一芯片的上游侧开口和下游侧开口用密封部件封住状态的平面图;
图5是表示在本发明检查芯片的一个实施例中,把第一芯片与第二芯片重叠而使它们的微细流路连通的次序的剖面图;
图6是表示在本发明检查芯片的其他实施例中,把第一芯片与第二芯片重叠而使它们的微细流路连通的次序的剖面图;
图7是表示在本发明检查芯片的一个实施例中,把第一芯片与微型泵单元重叠而使第一芯片的微细流路与微型泵连通的次序的剖面图;
图8是表示在本发明检查芯片的其他实施例中,把第一芯片与微型泵单元重叠而使第一芯片的微细流路与微型泵连通的次序的剖面图;
图9是表示本发明检查芯片的其他实施例中第一芯片的平面图;
图10是表示本发明检查芯片的其他实施例中第二芯片的平面图;
图11是表示把图9的第一芯片与图10的第二芯片重叠状态的平面图;
图12是表示把图9的第一芯片的上游侧开口和下游侧开口用密封部件封住状态的平面图;
图13是送液控制部(憎水阀)的剖面图;
图14是表示本发明微型综合分析系统的一个实施例中微型泵单元的立体图;
图15是图14的微型泵单元的剖面图;
图16是表示微型综合分析系统一例的立体图;
图17是表示图16的微型综合分析系统中系统本体内部结构的图。
附图标记说明
1检查芯片           2第一芯片      3第二芯片    4流路(试剂收容部)
5、5′开口          6开            7密封部件    11开口      12流路
13汇合部            14a、14b汇合部跟前位置      15试剂混合部
16a、16b开          17被检体收容部  18汇合部    19反应部
20检测部            21开口          22泵侧开口  25针部
31微型泵单元        32微型泵        33流路      34开口      35开口
36a通孔             36b通孔         37基板      37a加压室   37b第一流路
37c第二流路         38基板          39基板      40压电元件
41微型综合分析系统  42系统本体      43驱动液罐
44容纳体            45芯片插入口    46显示部    47运送托盘
48珀尔帖元件            49加热器          50光源    51检测器
61送液控制部(憎水阀)    62送液控制通路    63a、63b流路
64液
具体实施方式
本发明包括以下项目
(项目1)
一种检查芯片,具备:设置有收容试剂的微细流路的第一芯片、
设置有使试剂与被检体汇合而反应,并检测该反应的一连串微细流路的第二芯片,其中,
至少在第一芯片的单面上贴合一片或两片以上厚度薄的密封部件,设置在第一芯片微细流路上游侧的上游侧开口和设置在该微细流路下游侧的下游侧开口分别被所述密封部件封住,
在第二芯片的微细流路上设置开口,当使用时通过把第一芯片与第二芯片重叠而与第一芯片的下游侧开口对准位置。
(项目2)
在上述项目1记载的检查芯片中,封住第一芯片下游侧开口的密封部件能被剥离,在使用时把密封部件剥离,然后通过把第一芯片与第二芯片重叠而使第一芯片的微细流路与第二芯片的微细流路连通。
(项目3)
在项目1记载的检查芯片中,第二芯片在所述开口设置有细管状的针部,使用时通过把第一芯片与第二芯片重叠而由该针部把位于第一芯片下游侧开口的密封部件贯通,这样来使第一芯片的微细流路与第二芯片的微细流路连通。
(项目4)
在项目1~3任一项记载的检查芯片中,第一芯片的上游侧开口与设置有微型泵的芯片状微型泵单元的开口对准位置,所述芯片状微型泵单元的开口与该微型泵的下游侧连通。
(项目5)
在上述项目4记载的检查芯片中,封住第一芯片上游侧开口的密封部件能被剥离,在使用时把密封部件剥离,然后通过把第一芯片与第二芯片重叠的检查芯片相对于所述微型泵单元、使第一芯片的上游侧开口与所述微型泵单元的开口对准位置地重叠,使第一芯片的微细流路与微型泵连通。
(项目6)
在项目4记载的检查芯片中,使用时通过把第一芯片与第二芯片重叠的检查芯片、与在所述开口处设置有细管状针部的所述微型泵单元重叠,而由该针部把位于第一芯片上游侧开口的密封部件贯通,这样来使第一芯片的微细流路与微型泵连通。
(项目7)
在项目1~3任一项记载的检查芯片中,在第二芯片的微细流路上设置开口A,该开口A在使用时通过把第一芯片与第二芯片重叠而与第一芯片的上游侧开口对准位置,而且在该开口A的上游侧设置泵侧开口B,该泵侧开口B与设置有微型泵的芯片状微型泵单元的开口对准位置,所述芯片状微型泵单元的开口与该微型泵的下游侧连通。
(项目8)
在上述项目7记载的检查芯片中,封住第一芯片的上游侧开口的密封部件能被剥离,在使用时把密封部件剥离,然后通过把第一芯片与第二芯片重叠而使第一芯片的微细流路与第二芯片中与泵侧开口连通的微细流路连通。
(项目9)
在项目7记载的检查芯片中,在第二芯片的所述开口A设置有细管状的针部,使用时通过把第一芯片与第二芯片重叠、而由该针部把位于第一芯片上游侧开口的密封部件贯通,这样来使第一芯片的微细流路与第二芯片中与泵侧开口B连通的微细流路连通。
(项目10)
一种微型综合分析系统,由项目1~9任一项记载的检查芯片和系统本体构成,
该系统本体在容纳体内部具备:
芯片状的微型泵单元,其包括多个微型泵和与微型泵连通并与检查芯片的上游侧开口对准位置的开口;
驱动液罐,其收容把试剂从上游侧挤出并向检查芯片微细流路的下游方向进行送液的驱动液,且与微型泵的上游侧连通;
检测处理装置,其检测检查芯片中的反应;
控制装置,其控制微型泵单元和检测处理装置,
在把检查芯片安装在系统本体中的状态下进行被检体中目标物质的分析。
以下一边参照附图一边说明本发明的实施例。
<检查芯片>
本发明的检查芯片由第一芯片和第二芯片构成。图1是表示本发明检查芯片的一个实施例中第一芯片的平面图,图2是表示第二芯片的平面图。
如图1所示,第一芯片2的内部设置有封入了试剂的流路4(为了方便而表示了流路4,但实际上游路4被设置在芯片内部。对于图2和图3也一样)。在流路4的两端部设置有从芯片的单面向外部敞开的开口5和开口6。上游侧的开口5与微型泵连通,下游侧的开口6与设置在图2的第二芯片3上的微细流路连通。如图4所示,这些开口5、6被贴合在第一芯片的芯片面上的密封部件7所封住。
图2所示的第二芯片3设置有一连串的流路,用于把第一芯片2所收容的各试剂进行混合,使混合试剂与被检体混合而反应并检测反应。
由图1和图2所示的第一芯片和第二芯片构成的本发明的检查芯片,作为微型反应器为了能在化学分析、各种检查、样品的处理和分离、化学合成等中被利用,各流路元件或结构部通过精密加工技术被功能性地配置在适当的位置。第一芯片设置有用于收容各试剂的多个试剂收容部,该试剂收容部收容在规定反应中使用的试剂类,根据情况也收容其它洗净液、变性处理液等。这样预先把试剂收容在芯片内,以能不限场所和时间而迅速进行检查。
第一芯片和第二芯片例如能使用形成槽基板和与该形成槽基板贴紧的覆盖基板来制作,形成槽基板预先在基板面上形成有用于构成流路等的槽。形成槽基板上形成有各结构部和把这些结构部连通的流路。作为这种结构部的具体例能举出:各收容部(试剂收容部、被检体收容部等)和废液贮存部等存液部、阀基部、送液控制部(后述图13所示的憎水阀)、防止逆流部(止回阀、有源阀等)、试剂定量部、混合部等用于控制送液的部位、反应部和检测部。
覆盖基板上也可以形成这样的结构部和流路。通过把覆盖基板与形成槽基板贴紧并把这些结构部和流路覆盖而构成第一芯片和第二芯片。在进行光学检测第二芯片内的反应时,则需要上述结构部中至少检测部被光透射性的覆盖基板所贴紧覆盖。也有根据情况把三片以上的基板进行层合而形成第一芯片或第二芯片的情况。
第一芯片和第二芯片通常是把一个以上的成型材料适当组合来制作。作为这种成型材料例如能举出:塑料树脂、各种无机玻璃、硅、陶瓷、金属等。
其中,对于多数以测定被检体,特别是具有污染和感染危险的临床被检体作为对象的芯片,希望是可废弃型的,并且出于希望具有多用途应对性和大量生产性等的观点,最好作为芯片的成型材料使用塑料树脂。
对于形成槽基板等加工形成有流路的基板,从难于由吸水而引起流路变形等、使微量的被检体液在中途无损耗地进行送液的观点来看,有疏水性和憎水性的塑料为理想。这种材质能例示:聚苯乙烯、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚奈二酸乙二醇酯、聚乙烯-乙烯醇、聚碳酸酯、聚甲基戊烯、氟代烃、饱和环状聚烯烃等树脂。特别是聚苯乙烯,透明性、机械特性和成型性优良且容易进行微细加工,作为形成槽基板的形成材料为理想。
在为了分析方便而需要加热到接近100℃时,则把耐热性优良的树脂,例如聚碳酸酯、聚酰亚胺、聚醚酰亚胺、聚苯并咪唑、聚醚醚酮等作为基板的材料使用。
为了进行分析体检测的反应,多把微型反应器流路的规定部位或反应部位加热到希望的温度。加热区域局部的加热温度通常到达100℃左右。另外也有迫于需要把高温下不稳定的被检体和试剂类进行冷却的情况。考虑把芯片内的该局部温度的升降,最好选择合适导热率的材料。作为这种材料能举出:树脂材料、玻璃材料等,通过用导热率小的材质来形成这些区域而能抑制向面方向的热传导,能有选择地仅把加热区域加热。
为了光学检测荧光物质或显色反应的生成物,需要至少在第二芯片表面中覆盖微细流路反应部位的部分配置光透射性部件。因此,作为覆盖检测部位的覆盖基板的材料使用透明材料,例如碱性玻璃、石英玻璃、透明塑料类等。这种光透射性覆盖基板也可以是把检查芯片的上面整体覆盖的形态。
作为微型反应器的检查芯片的流路,是根据目的按照预先设计的流路配置而形成在基板上。液体流动的流路例如是形成为宽度数十~数百μm,最好是50~200μm,深度是25~300μm,最好是50~100μm的微米级宽度的微细流路。若流路宽度窄,则流路阻力增大而有时在液送出等时产生不良情况。若流路宽度太宽,则微型级空间的好处变少。检查芯片整体的纵横尺寸典型的是数十mm,其高度是数mm程度。从芯片的单面向外部敞开的开口,例如图1第一芯片的开口5、6和第二芯片的开口11等也有把直径(或是纵横宽度)设定成1mm以上的情况。
基板的各结构部和流路能通过现有的微细加工技术形成。典型的通过光刻技术由感光性树脂来复制微细结构是合适的,利用该复制结构把不需要的部分除去,附加上需要的部分来进行形状的复制。例如把检查芯片的结构元件作为制模图形来通过光刻技术制作,把该图形复制成型在树脂上。形成有微型反应器微细流路的基本基板材料最好使用既能正确复制亚微结构又机械特性良好的塑料树脂。特别是聚苯乙烯、聚二甲基硅氧烷等其形状复制性优良。需要时也可以通过射出成型、挤压成型等来进行形成基板各结构部和流路的加工。
在第一芯片和第二芯片微细流路的上游侧,例如在收容试剂和被检体等各液的收容部上游侧设置用于与另外的微型泵连接的泵连接部。泵连接部设置有与上述收容部连通的流路开口(例如图1的开口5和图2的开口16a、16b等),通过微型泵从该流路开口供给驱动液而把各收容部的液体向下游侧挤出。
图3表示把图1的第一芯片与图2的第二芯片重叠并使其上所设置的微细流路连通的状态。同一图中把从第一芯片2的单面向外部敞开的开口6与从第二芯片3的单面向外部敞开的开口11对准位置,被分别封入在第一芯片2的流路4中的试剂能从开口6通过开口11到达汇合部13的跟前。
汇合部13跟前的位置14a、14b设置有图13所示的送液控制部61(憎水阀)。该送液控制部61在另外的微细流路的必要各位置还设置在例如混合试剂与被检体的汇合部18,并控制这些位置处送液的临时停止和再开始的时刻。
图13中送液控制部61具备细径的送液控制通路62。送液控制通路62的截面积(相对流路来说垂直截面的截面积)比上游侧的流路63a和下游侧的流路63b的截面积小。
在流路壁是由塑料树脂等疏水性材质形成时,与送液控制通路62接触的液体64则由于流路壁的表面张力的差、被限制向下游侧流路63b的通过。
当想使液体64向下游侧流路63b流出时,则通过微型泵加规定压力以上的送液压力,这样来抵抗表面张力把液体64从送液控制通路62向下游侧的流路63b挤出。在液体64向流路63b流出后,即使不维持把液体64的前端部向下游侧流路63b挤出所需要的送液压力,液体也向下游侧流路63b流出。即在从上游侧向下游侧的正方向的送液压力达到规定压力之前,液体从送液控制通路62向前的通过被遮断,通过施加规定压力以上的送液压力来使液体64通过送液控制通路62。
在流路壁由玻璃等亲水性材质形成时,至少送液控制通路62的内面需要实施憎水性涂覆,例如氟系的涂覆。
图3中,在两种各试剂到达上述送液控制部设置的位置14a、14b的位置后,通过提高微型泵的送液压力而使试剂从送液控制部向前通过,在汇合部13使这些试剂汇合。混合的试剂被收容在试剂混合部15,该混合试剂由与第二芯片3从单面向外部敞开的开口16a连通的微型泵而被驱动液向下游侧挤出。另一方面,在被检体收容部17收容的被检体由与第二芯片3从单面向外部敞开的开口16b连通的微型泵而被驱动液向下游侧挤出。这些混合试剂和被检体在汇合部18汇合并向反应部19送出。例如通过把反应部19加热而使反应开始。
反应后的液体被向检测部20送液,例如利用光学检测方法等来检测目标物质。图1~图3为了进行说明而把基本的流路结构抽出来表示,例如在第二芯片上分别设置有与另外的微型泵连通的多个开口,从这些开口把在前面流路预先收容的各试剂(例如使混合试剂与被检体的反应停止的液、用于对于检测对象物质进行标识等必要处理的液、洗净液等)按规定的时刻向下游挤出,以能进行分析。
检查芯片1的微细流路中控制送液的多个微型泵被一体化成芯片状的微型泵单元。图14和图15表示这种微型泵单元的一例。图14是微型泵单元的立体图,图15是其剖面图。该微型泵单元31由硅制基板37、其上的玻璃制基板38、和再其上的玻璃制基板39这三个基板所构成。基板37与基板38被阳极接合,基板38与基板39由密封玻璃、热熔封或氟酸接合而被接合。
利用硅制基板37与在其上通过阳极接合而贴合的玻璃制基板38之间的内部空间构成微型泵32(压电泵)。该压电泵的结构和动作原理在上述专利文献2~4中被公开,基本结构具备图15所示的:流路阻力根据压差而变化的第一流路37b、相对于压差的变化流路阻力的变化比例比第一流路37b小的第二流路37c、设置在第一流路37b与第二流路37c之间的加压室37a、由电压驱动而使加压室37a的内部压力变化的驱动器40。例如把第一流路37b与第二流路37c的宽度和高度设定为相等,同时使第一流路37b的长度比第二流路37c的长度短,这样就能使第二流路37c相对于压差的变化流路阻力的变化比例比第一流路37b小。
基板37是由利用光刻技术把硅晶片加工成规定形状而成,上述压电泵的加压室37a、第一流路37b和第二流路37c等被形成。在该加压室37a的位置通过加工基板37而形成膜片,在其外侧表面粘贴着驱动器40即压电元件。
通过向驱动器40施加规定波形的电压使膜片振动,加压室37a的容积变化。使加压室37a的容积向增加方向的膜片位移速度与使加压室37a的容积向减少方向的膜片位移速度不同的方式来控制驱动器40的电压,则能使泵起作用而输送驱动液。
流路33被在基板39上布图。在流路33的下游侧设置有从基板39的单面向外部敞开而用于与检查芯片(第一芯片)的微细流路连通的开口34。为了恰当地进行与检查芯片的开口对准位置,只要需要则开口34也可以设定成比流路33宽度大的尺寸。
流路33的上游侧经由基板38的通孔36b并通过基板37设置的流路而与微型泵32连通。微型泵32的上游侧经由基板38的开口36a而从基板39的开口35向外部敞开。从该开口35供给被驱动液罐收容的驱动液。
该微型泵单元31说到底仅是一例,利用光刻技术等能制作微型泵、流路、形成用于使检查芯片与驱动液罐连通的连接用开口的各种微型泵单元。例如在通过腐蚀形成微型泵结构的硅基板和感光性玻璃基板等上层合玻璃基板,在其上贴合PDMS,再在其上贴合形成有由塑料、玻璃、硅、陶瓷等构成的流路槽和上述连接用开口的基板,这样则能构成微型泵单元。
微型泵单元所设置的微型泵也可以是压电泵以外的其他微型泵例如是止回阀型的微型泵。
以下说明使用本发明检查芯片时的操作。图5是表示在本发明检查芯片的一个实施例中把第一芯片与第二芯片重叠而使它们的微细流路连通的工序的剖面图。如图5(a)所示,与第一芯片2的流路4连通的开口6被能剥离的密封部件7所封住。
使用时则如图5(b)所示,把密封部件7剥离而使开口6露出。接着如图5(c)所示,把第一芯片2和第二芯片3以规定的位置关系重叠。这样,第一芯片2的开口6与第二芯片的开口11被连通,使被第一芯片2封入的试剂能向第二芯片3的开口12流入。
为了把第一芯片2和第二芯片3以规定的位置关系重叠并相互固定,例如可以使用在芯片面上设置定位导向的方法、把凹部与凸部嵌合的方法等。为了防止在开口6与开口11的周围有液体泄漏,则需要确保足够的密封性。为了达到这点,例如在分析时从检查芯片的两面侧充分加压,或把开口6或开口11的周围由聚四氟乙烯、硅树脂等具有柔软性的材质形成,或把由这种材质形成的部件配置在开口6或开口11的周围。
图6是表示在本发明检查芯片的其他实施例中把第一芯片与第二芯片重叠而使它们的微细流路连通的工序的剖面图。如图6(a)所示,与第一芯片2的流路4连通的开口6被密封部件7所封住。
另一方面如图6(b)所示,在第二芯片3的开口11处设置有细管状的针部25。把第一芯片2和第二芯片3以规定的位置关系相对向后,如图6(c)所示那样把它们重叠。这样,在第一芯片2的开口6位置处密封部件7被第二芯片3的针部25刺入,第一芯片2的开口6与第二芯片的开口11被连通。这样,利用毛细管作用使被第一芯片2封入的试剂能向第二芯片3的开口12流入。
作为贴合在第一芯片2上的密封部件7,为了能被由金属等构成的针部25容易刺入,最好使用橡胶材料、软质树脂材料等材质。
这样把第一芯片2和第二芯片3一体化的检查芯片与上述微型泵单元连接。图7是表示在本发明检查芯片的一个实施例中把第一芯片与微型泵单元重叠而使第一芯片的微细流路与微型泵连通的工序的剖面图。
如图7(a)所示,与第一芯片2的流路4连通的上游侧开口5被能剥离的密封部件7所封住。使用时则如图7(b)所示,把密封部件7剥离而使开口5露出。
接着如图7(c)所示,把第一芯片2和微型泵单元31以规定的位置关系重叠。这样,第一芯片2的开口5与微型泵单元31的开口34连通,使来自微型泵的驱动液能向第一芯片2的流路4流入。
为了把第一芯片2和微型泵单元31以规定的位置关系重叠并相互固定,例如可以使用由使检查芯片向规定方向移动的导向部件来引导检查芯片移动的方法和使用定位用部件的方法等。
为了防止在开口5与开口34的周围有液体泄漏,则需要确保足够的密封性。为了达到这点,例如在分析时把检查芯片与微型泵单元重叠的部分从两面侧充分加压,或把开口5或开口34的周围由聚四氟乙烯、硅树脂等具有柔软性的材质形成,或把由这种材质形成的部件配置在开口5或开口34的周围。
图8是表示在本发明检查芯片的其他实施例中把第一芯片与微型泵单元重叠而使第一芯片的微细流路与微型泵连通的工序的剖面图。如图8(a)所示,与第一芯片2的流路4连通的上游侧开口5被密封部件7所封住。
另一方面如图8(b)所示,在微型泵单元31的开口34处设置有细管状的针部25。把第一芯片2和微型泵单元31以规定的位置关系相对向后则如图8(c)所示那样把它们重叠。这样,在第一芯片2的开口5的位置,密封部件7被微型泵单元31的针部25刺穿,第一芯片2的开口5与微型泵单元31的开口34被连通。这样,使来自微型泵的驱动液能向第一芯片2的流路4流入。
图9是表示本发明检查芯片其他实施例中第一芯片的平面图,图10是表示第二芯片的平面图。
如图9所示,本实施例把第一芯片2中收容试剂的流路4两端部设置的开口5′和开口6配置在同一面上。另一方面如图10所示,在第二芯片3上设置与第一芯片2的开口5′对准位置的开口21和与开口21连通的泵侧开口22。
如图12所示,第一芯片2设置有开口5′和开口6的面在保管时被密封部件7粘贴,由密封部件7把开口5′和开口6封住。
在使用时如图11所示,把第一芯片2的开口6与第二芯片3的开口11对准位置,并在使第一芯片2的开口5′与第二芯片3的开口21对准位置的状态下把第一芯片2与第二芯片3重叠。
把这些芯片重叠时使开口之间连通的方法与图5或图6所示的方法相同。即如图5那样把密封部件剥离后把芯片彼此重叠,这样来使开口彼此对准位置的同时相互连通,或是在第二芯片的开口11和开口21设置图6那样的细管状针部,通过把芯片彼此重叠而由针部把密封部件刺穿,这样来使开口彼此连通。
第二芯片3的泵侧开口22与图14和图15所示的微型泵单元31的开口34对准位置,这样来使微型泵32与第一芯片2的流路4经由第二芯片3的开口21和泵侧开口22之间的流路被连通。
<微型综合分析系统>
通过把检查芯片例如安装到另外的系统本体中就能进行反应和分析。通过该系统本体和检查芯片就构成微型综合分析系统。以下说明该微型综合分析系统的一例。图16是表示微型综合分析系统一例的立体图,图17是表示该微型综合分析系统中系统本体内部结构的图。
该微型综合分析系统41的系统本体42具备收容用于分析的各装置的框体状容纳体44。该容纳体44的内部配置有上述微型泵单元31。
在容纳体44的内部设置有:用于检测检查芯片1中反应的检测处理装置(LED、光电子增倍管、CCD照相机等的光源50和通过可见分光法、荧光测光法等进行光学检测的检测器51),和控制该检测处理装置和微型泵单元31的控制装置(未图示)。通过该控制装置,除了进行微型泵的送液控制和由光学机构等来检测检查芯片1中的反应的反应处理装置的控制之外,还通过后述加热-冷却单元进行检查芯片1的温度控制、检查芯片1的反应控制和数据的收集(测定)和处理等。微型泵的控制按照预先设定有有关送液顺序、流量、定时等各种条件的程序,通过把对应它们的驱动电压向微型泵施加来进行。
该微型综合分析系统41中,把由设置在检查芯片1的微细流路上游侧(例如试剂收容部、被检体收容部等上游侧)的流路开口和其周围的芯片面构成的泵连接部、与微型泵单元31的芯片连接部液密性贴紧,并以该状态把检查芯片1安装到容纳体44内部后,在检查芯片1进行被检体中目标物质的分析。检查芯片1被放置在运送托盘47上并从芯片插入口45导入到容纳体44内部。只要在检查芯片1在相对微型泵单元31被加压的状态下能把检查芯片1固定在容纳体44的内部,则也不一定设定成使用运送托盘47的结构。
容纳体44的内部设置有用于把安装在规定位置的检查芯片1进行局部加热或冷却的加热-冷却单元(珀尔帖元件48、加热器49)。例如通过把珀尔帖元件49压接在检查芯片1中第一芯片的试剂收容部和第二芯片的试剂混合部区域而有选择地把这些部位冷却,这样,就防止试剂变质等,而且通过把加热器49压接在第二芯片中构成反应部的流路区域而把反应部有选择地进行加热,这样把反应部设定在适合反应的温度。
微型泵单元31与驱动液罐43连接,微型泵的上游侧与该驱动液罐43连通。利用微型泵把驱动液罐43收容的矿物油等油系或缓冲液等水系驱动液向检查芯片1的各液体收容部送出,利用驱动液把各收容部的液体向检查芯片1的下游侧挤出,进行送液。
在把微型泵、检测处理装置和控制装置一体化的系统本体41中以安装了检查芯片1的状态,进行测定样品即被检体的前处理、反应和检测这一连串的分析工序。最好根据样品和试剂类的送液、前处理、混合而进行的规定反应和光学测定被作为一连串的连续工序而自动实施,测定数据与必要的条件和记录事项一起被存储在文件夹内。图16是把分析结果显示在容纳体44的显示部46中。
以下表示使用了检查芯片的被检体与试剂的反应及其检测的具体例。检查芯片的一个理想形态是,
第一芯片设置:
收容有在探针结合反应、检测反应(也包括基因扩增反应或抗原抗体反应等)等中所使用试剂的试剂收容部、
收容正调节的正调节收容部、
收容负调节的负调节收容部、
收容探针(例如使与被基因扩增反应扩增的检测对象的基因杂交的探针)的探针收容部,
第二芯片设置:
注入有被检体或从被检体抽出的分析体(例如DNA、RNA、基因)的被检体收容部、
进行被检体前处理的被检体前处理部、
与上述各收容部连通的微细流路、
能与把所述各收容部和流路内的液体进行送液的、另外的微型泵连接的泵连接部。
该检查芯片经由泵连接部而与微型泵连接,把在被检体收容部中收容的被检体或从被检体抽出的活体物质(例如DNA或其以外的活体物质)和在试剂收容部收容的试剂向下游的流路送液,使在微细流路的反应部位,例如在进行基因扩增反应(在蛋白质的情况下是抗原抗体反应等)的部位混合并反应。然后,把处理该反应液的处理液和在探针收容部收容的探针向位于其下游侧流路的反应部进行送液,使在流路内混合并与探针结合(或杂交),根据该反应生成物来进行活体物质的检测。
对于被收容在正调节收容部的正调节和被收容在负调节收容部中的负调节也同样地进行上述反应和检测。
检查芯片的被检体收容部与被检体注入部连通,进行被检体的临时收容和向混合部供给被检体。从被检体收容部的上面注入被检体的被检体注入部为了防止对外部的泄漏、感染和污染而确保密封性,最好形成有由橡胶状材质等弹性体构成的栓或被聚二甲基硅氧烷(PDMS)等树脂、强化膜覆盖。例如通过刺穿该橡胶材质栓的针或穿透盖所附带细孔的针来注入注射器内的被检体。在前者的情况下最好当把针拔出就立刻把该针孔塞住。或也可以设置其他被检体注入机构。
向被检体收容部注入的被检体根据需要在与试剂混合前,在预先设置于流路的被检体前处理部,例如把被检体与处理液混合来进行前处理。这种被检体前处理部也可以包含分离过滤器、吸附用树脂和珠状体(ビ一ズ)等。作为理想的被检体前处理,包括有分析体的分离或浓缩、除蛋白等。例如使用1%SDS混合液等溶菌剂进行溶菌处理、DNA抽出处理。该过程使DNA从细胞内部放出,并吸附在珠状体或过滤器的膜面上。
检查芯片中第一芯片的流路中仅把必要的试剂类预先封入规定的量。因此在使用时当时不需要填充必要量的试剂,为能立即使用的状态。在分析被检体中活体物质的情况下,测定所需要的试剂类通常分别是公知的。例如在分析被检体中存在的抗原时,含有与其相对的抗体,最好是单克隆抗体的试剂被使用。抗体最好被生物素和FITC所标识。
基因检查用的试剂类包括有基因扩增中使用的各种试剂、检测时使用的探针类、显色试剂,而且若需要也可以包括在所述被检体前处理中使用的前处理试剂。
通过从微型泵供给驱动液而把被检体液和试剂液从各收容部挤出并使它们汇合,使基因扩增反应、分析体的捕获或抗原抗体反应分析所必要的反应开始。
作为DNA扩增方法,包括其改良点在各种文献等中被记载,能使用在多方面被广泛利用的PCR扩增法。PCR扩增法需要在三个温度之间进行升降的温度管理,但能对微型芯片进行合适温度控制的流路器件已经被本发明的发明人所提案(特开2004-108285号)。只要把该器件系统适用在本发明芯片的扩增用流路中便可。这样,能把热循环高速切换,由于把微细流路作为热容量小的微型反应单元,所以与手工操作进行的现有方式相比,DNA扩增能在相当短的时间进行。
最近被开发的ICAN(Isothermal chimera primer initiated nucleicacid amplification:等温嵌合引物起始的核酸扩增)法由于能在50~65℃的任意一定温度下把DNA扩增在短时间实施(日本特许第3433929号),所以对于本发明的系统也是合适的扩增技术。用手工操作需要一小时的本方法,在本发明的系统中10~20分钟,理想的15分钟就能完成解析。
在检查芯片微细流路的反应部位下游侧设置有用于检测分析体,例如被扩增的基因的检测部位。至少该检测部分是为了能进行光学测定的透明材质,最好是透明塑料。
被吸附在微细流路上检测部位的生物素亲和性蛋白质(亲合素、链酶亲合素)与被探针物质标识的生物素或与被在基因扩增反应中使用的引物5′末端所标识的生物素进行特异结合。这样,在生物素上被标识的探针或被扩增的基因在本检测部位被捕获。
检测被分离的分析体或被扩增的目的基因DNA的方法没有特别的限定,但作为理想形态基本上是按以下工序进行。
(1a)把被检体或从被检体抽出的DNA、或是被检体或从被检体抽出的RNA通过逆复制反应而合成cDNA,把该cDNA和在5′位置生物素修饰的引物从这些收容部向下游的微细流路送液。
在反应部位的微细流路内进行基因扩增反应后,在微细流路内把含有被扩增的基因的扩增反应液与变性液混合,把被扩增的基因通过变性处理变成直链,把它与末端被FITC(fluorescein isothiocyanate:异硫化氰酸荧光素)光标识的探针DNA杂交。
然后向吸附有生物素亲和性蛋白质的微细流路内的检测部位送液,把所述扩增基因在微细流路内的检测部位捕获(也可以在检测部位把扩增基因捕获后使之被荧光标识的探针DNA杂交)。
(1b)把含有被检体中存在的抗原、代谢物质、对于激素等分析体特异的抗体,最好是含有单克隆抗体的试剂与被检体混合。这时,抗体被生物素和FITC所标识。因此,由抗原抗体反应所得到的生成物具有生物素和FITC。把它向吸附有生物素亲和性蛋白质(最好是链酶亲合素)的微细流路内的检测部位送液,经由生物素亲和性蛋白质与生物素的结合而在该检测部位被固定化。
(2)在上述微细流路内使被与FITC特异结合的抗FITC抗体修饰了表面的金胶质液流动,这样,在被固定化的分析体-抗体反应物FITC上或是与基因杂交的FITC修饰探针上吸附有该金胶质。
(3)光学测定上述微细流路的金胶质浓度。
以上说明了本发明的实施例,但本发明并不限定于这些实施例,在不脱离其要旨的范围可以有各种变形和变更。

Claims (10)

1.一种检查芯片,其特征在于,包含有:
第一芯片,其具有收容试剂的微细流路、
设置在所述微细流路上游侧的上游侧开口、
设置在所述微细流路下游侧的下游侧开口、
至少贴合在单面上且在使用前分别把所述上游侧开口和下游侧开口封住的一片或两片以上厚度薄的密封部件;
第二芯片,其具有使试剂与被检体汇合并反应,并检测该反应的微细流路、
设置在所述微细流路上游侧的开口,
在使用时通过把第一芯片与第二芯片重叠而使第一芯片的所述下游侧开口与第二芯片的所述开口对准位置。
2.如权利要求1所述的检查芯片,其特征在于,把第一芯片下游侧开口封住的所述密封部件能被剥离,在使用时通过把密封部件剥离,然后把第一芯片与第二芯片重叠而使第一芯片的微细流路与第二芯片的微细流路连通。
3.如权利要求1所述的检查芯片,其特征在于,第二芯片在所述开口设置有细管状的针部,使用时通过把第一芯片与第二芯片重叠而由该针部把位于第一芯片下游侧开口的密封部件贯通,这样来使第一芯片的微细流路与第二芯片的微细流路连通。
4.如权利要求1~3任一项所述的检查芯片,其特征在于,第一芯片的上游侧开口与设置有微型泵的芯片状微型泵单元的开口对准位置,所述芯片状微型泵单元的开口与该微型泵的下游侧连通。
5.如权利要求4所述的检查芯片,其特征在于,封住第一芯片上游侧开口的密封部件能被剥离,在使用时把密封部件剥离,然后通过把第一芯片与第二芯片重叠的检查芯片相对于所述微型泵单元、使第一芯片的上游侧开口与所述微型泵单元的开口对准位置地重叠,使第一芯片的微细流路与微型泵连通。
6.如权利要求4所述的检查芯片,其特征在于,使用时通过把第一芯片与第二芯片重叠的检查芯片、与在所述微型泵单元的开口处设置有细管状针部的所述微型泵单元重叠,而由该针部把位于第一芯片上游侧开口的密封部件贯通,这样来使第一芯片的微细流路与微型泵连通。
7.如权利要求1~3任一项所述的检查芯片,其特征在于,在第二芯片的微细流路上设置开口A,该开口A在使用时通过把第一芯片与第二芯片重叠而与第一芯片的上游侧开口对准位置,而且在该开口A的上游侧设置泵侧开口B,该泵侧开口B与设置有微型泵的芯片状微型泵单元的开口对准位置,所述芯片状微型泵单元的开口与该微型泵的下游侧连通。
8.如权利要求7所述的检查芯片,其特征在于,封住第一芯片的上游侧开口的密封部件能被剥离,在使用时把该密封部件剥离,然后通过把第一芯片与第二芯片重叠而使第一芯片的微细流路与第二芯片中与泵侧开口连通的微细流路连通。
9.如权利要求7所述的检查芯片,其特征在于,在第二芯片的所述开口A设置有细管状的针部,使用时通过把第一芯片与第二芯片重叠、而由该针部把位于第一芯片上游侧开口的密封部件贯通,这样来使第一芯片的微细流路与第二芯片中与泵侧开口B连通的微细流路连通。
10.一种微型综合分析系统,由权利要求1~9任一项记载的检查芯片和系统本体构成,
该系统本体在容纳体内部具备:
芯片状的微型泵单元,其包括多个微型泵和与微型泵连通并与检查芯片的上游侧开口对准位置的开口;
驱动液罐,其收容把试剂从上游侧挤出并向检查芯片微细流路的下游方向进行送液的驱动液,且与微型泵的上游侧连通;
检测处理装置,其检测检查芯片中的反应;
控制装置,其控制微型泵单元和检测处理装置,
在把检查芯片安装在系统本体中的状态下进行被检体中目标物质的分析。
CNA2006800169776A 2005-05-19 2006-05-12 用于分析被检体中目标物质的检查芯片和微型综合分析系统 Pending CN101176001A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP147035/2005 2005-05-19
JP2005147035 2005-05-19

Publications (1)

Publication Number Publication Date
CN101176001A true CN101176001A (zh) 2008-05-07

Family

ID=37431154

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800169776A Pending CN101176001A (zh) 2005-05-19 2006-05-12 用于分析被检体中目标物质的检查芯片和微型综合分析系统

Country Status (5)

Country Link
US (1) US7482585B2 (zh)
EP (1) EP1882950A4 (zh)
JP (1) JPWO2006123578A1 (zh)
CN (1) CN101176001A (zh)
WO (1) WO2006123578A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103402640A (zh) * 2011-02-15 2013-11-20 罗伯特·博世有限公司 用于以密封封闭的方式储存微流体系统用的液体的装置
US9669408B2 (en) 2014-11-28 2017-06-06 Htc Corporation Slight volume collector
CN110621406A (zh) * 2017-05-11 2019-12-27 芯易诊有限公司 试剂封装装置及其用途
CN113767461A (zh) * 2019-05-10 2021-12-07 东京毅力科创株式会社 载置台和载置台的制作方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021629B2 (en) * 2005-03-24 2011-09-20 Konica Minolta Medical & Graphic, Inc. Analyzer
ATE534465T1 (de) * 2005-06-23 2011-12-15 Biocartis Sa Kartusche, system und verfahren für automatisierte medizinische diagnosen
JP5049274B2 (ja) * 2005-06-30 2012-10-17 ビオカルティ ソシエテ アノニム 自動化医療診断のためのカートリッジ
US20080245740A1 (en) * 2007-01-29 2008-10-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Fluidic methods
JP4987088B2 (ja) * 2008-01-08 2012-07-25 日本電信電話株式会社 フローセル
JP2009168650A (ja) * 2008-01-17 2009-07-30 Sekisui Chem Co Ltd カートリッジ式電気化学分析装置及び方法
US8449842B2 (en) * 2009-03-19 2013-05-28 Thermo Scientific Portable Analytical Instruments Inc. Molecular reader
EP2281631B1 (en) * 2009-08-07 2016-12-14 Atonomics A/S Modular microfluidic sample preparation system and method of mixing and delivering a sample fluid.
US9700889B2 (en) 2009-11-23 2017-07-11 Cyvek, Inc. Methods and systems for manufacture of microarray assay systems, conducting microfluidic assays, and monitoring and scanning to obtain microfluidic assay results
US9759718B2 (en) 2009-11-23 2017-09-12 Cyvek, Inc. PDMS membrane-confined nucleic acid and antibody/antigen-functionalized microlength tube capture elements, and systems employing them, and methods of their use
JP5701894B2 (ja) 2009-11-23 2015-04-15 サイヴェク・インコーポレイテッド アッセイを行う方法及び装置
US9855735B2 (en) 2009-11-23 2018-01-02 Cyvek, Inc. Portable microfluidic assay devices and methods of manufacture and use
US10065403B2 (en) 2009-11-23 2018-09-04 Cyvek, Inc. Microfluidic assay assemblies and methods of manufacture
US9500645B2 (en) 2009-11-23 2016-11-22 Cyvek, Inc. Micro-tube particles for microfluidic assays and methods of manufacture
US9651568B2 (en) 2009-11-23 2017-05-16 Cyvek, Inc. Methods and systems for epi-fluorescent monitoring and scanning for microfluidic assays
WO2012108303A1 (en) * 2011-02-07 2012-08-16 Canon Kabushiki Kaisha Light emission detection device and method of manufacturing the same
JP5555648B2 (ja) * 2011-03-03 2014-07-23 積水化学工業株式会社 マイクロポンプ
CN106552682B (zh) 2011-03-22 2020-06-19 西维克公司 微流体装置以及制造方法和用途
EP2747859A4 (en) 2011-08-22 2015-04-22 Waters Technologies Corp MICROFLUIDIC DEVICE WITH INTERFACE FOR DBS CARD
KR102114734B1 (ko) * 2012-03-08 2020-05-25 싸이벡, 아이엔씨 미세유체 분석 장치용 마이크로튜브 입자 및 제조방법
US20150086443A1 (en) * 2013-09-22 2015-03-26 Fluxergy, Llc Microfluidic chips with micro-to-macro seal and a method of manufacturing microfluidic chips with micro-to-macro seal
US10228367B2 (en) 2015-12-01 2019-03-12 ProteinSimple Segmented multi-use automated assay cartridge
US11346787B2 (en) * 2016-09-30 2022-05-31 Kyocera Corporation Detection sensor, detection sensor kit, sensor device, method for producing detection sensor, and detection method
JP7071056B2 (ja) * 2017-02-27 2022-05-18 シスメックス株式会社 液体送液方法および液体送液装置
CN108722504A (zh) * 2017-04-19 2018-11-02 光宝电子(广州)有限公司 检测装置及其注入口结构
KR102013997B1 (ko) * 2017-12-04 2019-08-29 (주) 비비비 미세 주입기를 가진 미세유체분석칩 및 그 제조 방법 및 그 사용 방법
US11717825B2 (en) 2017-12-28 2023-08-08 Stmicroelectronics S.R.L. Magnetically controllable valve and portable microfluidic device having a magnetically controllable valve, in particular cartridge for sample preparation and molecule analysis
US11278897B2 (en) 2017-12-28 2022-03-22 Stmicroelectronics S.R.L. Cartridge for sample preparation and molecule analysis, cartridge control machine, sample preparation system and method using the cartridge
US11491489B2 (en) * 2017-12-28 2022-11-08 Stmicroelectronics S.R.L. Microfluidic connector group, microfluidic device and manufacturing process thereof, in particular for a cartridge for sample preparation and molecule analysis
US11511278B2 (en) 2017-12-28 2022-11-29 Stmicroelectronics S.R.L. Solid reagent containment unit, in particular for a portable microfluidic device for sample preparation and molecule analysis
US11110457B2 (en) 2017-12-28 2021-09-07 Stmicroelectronics S.R.L. Analysis unit for a transportable microfluidic device, in particular for sample preparation and molecule analysis
KR102294916B1 (ko) * 2018-07-28 2021-08-27 한국과학기술원 모듈형 유체 칩 및 이를 포함하는 유체 유동 시스템
CA3134919C (en) * 2019-03-26 2022-11-15 Siemens Healthcare Diagnostics Inc. Methods and apparatus for performing sample measurements using visible light on samples manipulated with acoustic waves
KR102065301B1 (ko) 2019-04-16 2020-01-10 (주) 비비비 미세 주입기를 가진 미세유체분석칩 및 그 제조 방법 및 그 사용 방법
CN115212932A (zh) * 2021-04-19 2022-10-21 厦门大学 微流控芯片组件

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176962B1 (en) * 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
JP2948069B2 (ja) * 1993-09-20 1999-09-13 株式会社日立製作所 化学分析装置
JP3834357B2 (ja) * 1996-07-10 2006-10-18 オリンパス株式会社 小型分析装置及びその駆動方法
US5969353A (en) * 1998-01-22 1999-10-19 Millennium Pharmaceuticals, Inc. Microfluid chip mass spectrometer interface
US6459080B1 (en) * 1998-06-12 2002-10-01 Agilent Technologies, Inc. Miniaturized device for separating the constituents of a sample and delivering the constituents of the separated sample to a mass spectrometer
AU763497B2 (en) * 1998-10-13 2003-07-24 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
JP4085514B2 (ja) * 1999-04-30 2008-05-14 株式会社島津製作所 電気泳動チップ
US6569674B1 (en) * 1999-12-15 2003-05-27 Amersham Biosciences Ab Method and apparatus for performing biological reactions on a substrate surface
JP2001194373A (ja) * 2000-01-06 2001-07-19 Olympus Optical Co Ltd 超小型化学操作装置
US6827095B2 (en) * 2000-10-12 2004-12-07 Nanostream, Inc. Modular microfluidic systems
US6653625B2 (en) * 2001-03-19 2003-11-25 Gyros Ab Microfluidic system (MS)
DE10111457B4 (de) * 2001-03-09 2006-12-14 Siemens Ag Diagnoseeinrichtung
US7128876B2 (en) * 2001-07-17 2006-10-31 Agilent Technologies, Inc. Microdevice and method for component separation in a fluid
US6803568B2 (en) * 2001-09-19 2004-10-12 Predicant Biosciences, Inc. Multi-channel microfluidic chip for electrospray ionization
JP2004069498A (ja) * 2002-08-06 2004-03-04 Canon Inc 液体搬送装置及び液体搬送方法
US7658885B2 (en) * 2002-12-18 2010-02-09 Panasonic Corporation Micropump, micropump unit including the micropump, sample processing chip for use with the unit, and sheet connector for use with the unit
JP2004212326A (ja) * 2003-01-08 2004-07-29 Matsushita Electric Ind Co Ltd マイクロポンプと試料処理チップ、及びシートコネクタ
JP4069747B2 (ja) * 2003-01-20 2008-04-02 横河電機株式会社 分離可能型バイオチップ
JP2004309145A (ja) * 2003-04-02 2004-11-04 Hitachi High-Technologies Corp 化学分析装置及び化学分析用構造体
TW574132B (en) * 2003-04-14 2004-02-01 Univ Nat Cheng Kung Integrated microfluidic electro-spray chip system and the analysis method thereof
US7282705B2 (en) * 2003-12-19 2007-10-16 Agilent Technologies, Inc. Microdevice having an annular lining for producing an electrospray emitter
KR100540143B1 (ko) * 2003-12-22 2006-01-10 한국전자통신연구원 미소 유체 제어소자 및 미소 유체의 제어 방법
US20060060769A1 (en) * 2004-09-21 2006-03-23 Predicant Biosciences, Inc. Electrospray apparatus with an integrated electrode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103402640A (zh) * 2011-02-15 2013-11-20 罗伯特·博世有限公司 用于以密封封闭的方式储存微流体系统用的液体的装置
CN103402640B (zh) * 2011-02-15 2015-11-25 罗伯特·博世有限公司 用于以密封封闭的方式储存微流体系统用的液体的装置
US9757724B2 (en) 2011-02-15 2017-09-12 Robert Bosch Gmbh Apparatus for hermetically sealed storage of liquids for a microfluidic system
US9669408B2 (en) 2014-11-28 2017-06-06 Htc Corporation Slight volume collector
CN110621406A (zh) * 2017-05-11 2019-12-27 芯易诊有限公司 试剂封装装置及其用途
CN110621406B (zh) * 2017-05-11 2022-02-22 芯易诊有限公司 试剂封装装置及其用途
US11400453B2 (en) 2017-05-11 2022-08-02 Cytochip Inc. Reagent packaging devices and uses thereof
CN113767461A (zh) * 2019-05-10 2021-12-07 东京毅力科创株式会社 载置台和载置台的制作方法
CN113767461B (zh) * 2019-05-10 2024-01-23 东京毅力科创株式会社 载置台和载置台的制作方法

Also Published As

Publication number Publication date
EP1882950A1 (en) 2008-01-30
US7482585B2 (en) 2009-01-27
EP1882950A4 (en) 2012-08-15
JPWO2006123578A1 (ja) 2008-12-25
US20060263914A1 (en) 2006-11-23
WO2006123578A1 (ja) 2006-11-23

Similar Documents

Publication Publication Date Title
CN101176001A (zh) 用于分析被检体中目标物质的检查芯片和微型综合分析系统
JP4543986B2 (ja) マイクロ総合分析システム
EP1946830B1 (en) Microreactor
US8008091B2 (en) Micro analysis system
CN101160529A (zh) 用于分析检体的检查芯片和微分析系统
CN108139418B (zh) 受试体处理芯片、受试体处理装置及受试体处理方法
US9308530B2 (en) Reaction container plate and reaction treatment apparatus
JP2007136322A (ja) 反応物質同士の拡散および反応を効率化したマイクロリアクタ、およびそれを用いた反応方法
JP2007071555A (ja) タンパク質が固定化された基材およびこれを用いるマイクロリアクタ
JP2006292472A (ja) マイクロ総合分析システム
JP2007120399A (ja) マイクロ流体チップおよびマイクロ総合分析システム
JP2007083191A (ja) マイクロリアクタ
JP2007136379A (ja) マイクロリアクタおよびその製造方法
JP4915072B2 (ja) マイクロリアクタ
JP2007322284A (ja) マイクロチップおよびマイクロチップへの試薬の充填方法
JP2007139501A (ja) マイクロチップへの試薬の充填方法
US8021629B2 (en) Analyzer
WO2007055151A1 (ja) マイクロリアクタおよびマイクロ分析システム
JP4687413B2 (ja) マイクロチップにおける2種類以上の液体の混合方法およびマイクロ総合分析システム
JP2006266924A (ja) 検査用マイクロチップおよびそれを用いた検査装置
JPWO2006109397A1 (ja) 逆流防止構造、それを用いた検査用マイクロチップおよび検査装置
JP2006284451A (ja) 検体中の標的物質を分析するためのマイクロ総合分析システム
JP2009145256A (ja) マイクロチップ及び、マイクロチップ分析システム
JP2006275735A (ja) マイクロ総合分析システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080507