CN101040162A - 带有具有沸腾增强作用的多重毛细结构的蒸汽室 - Google Patents
带有具有沸腾增强作用的多重毛细结构的蒸汽室 Download PDFInfo
- Publication number
- CN101040162A CN101040162A CNA2005800347622A CN200580034762A CN101040162A CN 101040162 A CN101040162 A CN 101040162A CN A2005800347622 A CNA2005800347622 A CN A2005800347622A CN 200580034762 A CN200580034762 A CN 200580034762A CN 101040162 A CN101040162 A CN 101040162A
- Authority
- CN
- China
- Prior art keywords
- vaporium
- htu
- boiling
- heat transfer
- transfer unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009835 boiling Methods 0.000 title claims abstract description 55
- 239000012530 fluid Substances 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims description 38
- 238000001704 evaporation Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 12
- 238000010276 construction Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 238000009833 condensation Methods 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 230000005494 condensation Effects 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 239000006260 foam Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 235000019994 cava Nutrition 0.000 claims 1
- 239000012809 cooling fluid Substances 0.000 claims 1
- 239000000843 powder Substances 0.000 claims 1
- 239000007787 solid Substances 0.000 description 15
- 238000001816 cooling Methods 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011469 building brick Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000007669 thermal treatment Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GWBWGPRZOYDADH-UHFFFAOYSA-N [C].[Na] Chemical compound [C].[Na] GWBWGPRZOYDADH-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/046—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3672—Foil-like cooling fins or heat sinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/433—Auxiliary members in containers characterised by their shape, e.g. pistons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
传热装置包括蒸汽室,该蒸汽室具有可冷凝流体和与热源相耦合的蒸发区。在该蒸汽室内有沸腾增强作用的多重毛细结构。
Description
相关申请的相互引用
本申请要求发明人萧永铭于2004年12月1日提交的第60/632,704号美国专利申请的优先权并将其引入作为参考。
背景技术
冷却或热去除已成为电子工业主要的障碍之一。随着集成度的增加,高性能的需求,以及多功能的应用,热消散也不断地增加。高性能传热装置的开发已经成为该工业的主要发展方向之一。
散热器经常用于将热从装置或者从系统排除至周围环境。散热器的性能是以热阻来表征,具有较低的热阻值代表具有较高的性能水平。散热器的热阻一般是由散热器内部的扩散热阻以及散热器表面和周围环境之间的对流热阻所组成。为将扩散热阻最小化,通常使用诸如铜和铝等高导热材料来制造散热器。不过,这种固体扩散机理已经不能满足新一代电子器件的更高的冷却要求。因此,已开发并评估了更高效的机制,其中蒸汽室是经常被考虑的机制之一。
蒸汽室是利用热管原理,让热由蒸发的工作流体携带,并由蒸汽流动来散布。最后蒸汽在低温的表面上冷凝,因而将热由蒸发表面(和热源间的界面)分布至冷凝表面(冷却的表面)。如果冷却表面的面积比蒸发表面的面积大很多,则由于相变(液体-蒸汽-液体)机理是在近等温条件下发生,可有效地实现热的散布。
发明概述
本发明的目的是提供了用于热去除/冷却应用的高性能蒸汽装置。该蒸汽装置的总体性能取决于参与蒸汽-液体循环(热散布机理(heatspreading mechanism))的每个组件的性能以及冷却端所涉及的装置的性能(对流机理)。为了具有高性能,必须实现两种机理。
蒸汽-冷凝循环包括冷凝液流动、沸腾、蒸汽流动以及冷凝的过程。在另一待审的专利申请中,我已经公开使用多重毛细(Multi-Wick,MW)结构,以改进蒸汽室内的冷凝液流动(美国专利申请号10/390773,将其引入作为参考)。具体而言,蒸汽室的尺寸与高热通量需求的结合产生一假象,即需要具有高毛细作用力(wicking-power)但同时又能提供足够升力(lift)的毛细结构(wicking structrue),以符合该装置的尺寸。通常能维持高流速并提供大的升力的毛细结构需要昂贵的加工工艺。实际上,只有加热(沸腾)区有高的毛细作用力需求,且该毛细作用力的需求随着离加热区的距离增加而降低。这是因为在热通量显著降低时发生冷凝,而且只有在冷凝液汇聚的蒸发区上必须维持高的冷凝液流速。因此,该毛细结构(称为多重毛细结构)可根据空间流速的需求而不同,以便更好地平衡作用于液体的力(毛细力、粘滞力和重力)。
由于当冷凝液接近沸腾区时将发生沸腾,因而本发明的目的是公开适于减少沸腾过热(沸腾表面和蒸汽间的温度差)的多重毛细结构。突出(protruded)的沸腾结构通常用于池型沸腾(pool boiling)中以减少沸腾过热。但是,由于液体池的长度通常比突出结构的长度大,因此该突出结构一般都全部浸没在液体池(液体池型沸腾)内。此外,当接近加热区的液体沸腾时,相邻的液体经由重力机制取代该液体。以蒸汽室来说,这不但阻止其以反重力方向运作,而且需要该室的一部分完全充满液体,这可能干扰蒸汽和/或冷凝液的流动过程。
在本发明中,通过具有沸腾增强作用(Boiling-Enhanced)的多重毛细结构(BEMW),使蒸汽室具有沸腾增强特征。借助该BEMW结构,使用具有空间变化的毛细作用力的毛细结构由冷凝区收集冷凝液,其中加热区(沸腾区)内的多种沸腾增强结构适于同时提供毛细作用力和沸腾增强。以此方式,该沸腾增强结构不会被完全浸没在液体池中,因此可在反重力方向运作。另外,该沸腾增强结构也可作为3-D桥连毛细物(wick),该结构可能提供或不提供结构支撑功能。在这种概念下,具有沸腾增强作用的多重毛细结构的某些方面可被认为是早期公开的多重毛细结构的亚类。
沸腾增强(BE)结构是突出的毛细物,该毛细物的毛细作用力比在冷凝位置更大。该突出的毛细物可以是鳍片(fin)形式,以便将液体在鳍片间由毛细作用运送向该鳍片顶端。除鳍片以外,该突出的毛细物也可以是针栅阵列(pin array)。鳍片之间或针栅之间的互连结构还可用来增加沸腾表面积。泡沫/多孔结构也能用在突出的毛细物中,以提供更大的沸腾表面积。在所有这些结构中,目的是提供从热源到较大沸腾表面的热传导途径,并用由复杂的毛细系统连续提供的冷凝液浸透该沸腾表面(没有完全浸没)。
为了能具有更多的灵活性并控制毛细作用力,可由多层(ML)结构来产生BEMW结构的部分结构,该多层结构是由相互叠置的多层材料组成。每一层不一定必须相同,且该毛细结构可以是联合起作用的多层结构的结果。例如,穿孔的多层铜片可配置于未开槽的铜表面上以形成带沟槽的毛细结构(groove wicking structure)。类似地,铜板可配置于开槽的铜表面上可形成毛细芯(capillary wick)。因此,该多层毛细结构可通常由穿孔的板、开槽的板、网状层(mesh layer)、烧结层、实心板或上述材料的任意组合所组成。此外,每一层的图案可以具有空间变化特性,包含变化的穿孔图案,变化的狭缝间隔和/或方向,变化的孔隙率,变化的孔径,变化的网目尺寸以及上述特性的任何组合。
所述蒸汽室可根据不同应用以不同的形式实施。最简单的实施形式是平板状热散布器(flat heat-spreader),在该热散布器中,将来自热源的热量散布到其它端,该其它端可以与鳍片或其它冷却系统存在接触。另一形式是散热器(heat sink),在该散热器中,所述蒸汽室的一部分可以与实心鳍片存在热接触,或者该蒸汽室可以由功能性连接的基底室和鳍片室组成。在后一形式中,另外的实心鳍片可与部分鳍片室存在接触,以将对流表面最大化。对于有空间约束的应用来说,所述蒸汽室可以是夹在印刷电路板(特别对于子板)上的夹子(蒸汽夹(Vaporclip))形式。所述蒸汽室也可以箱(casing)(蒸汽箱(Vaporcase))的形式实施,电子器件可功能性配置于该箱内。另外,所述蒸汽室可以柜(cabinet)的形式实施,蒸汽箱可功能性配置于该柜内。
由于高度改进了内热阻,还必须改进对流热阻;否则总体性能仍然会被对流热阻所限制。鳍片结构可以从平板状鳍片、针状鳍片、穿孔的鳍片和多孔鳍片等形式变化。鳍片和蒸汽室间的界面呈功能性接触。将所述鳍片结构与所述蒸汽室连接的方法可以是使用或不使用粘接材料的任何方法。没有涉及粘接材料的方法可以是扩散结合(diffusive bonding)、焊接(welding),或者本领域中公知的任何结合方法。使用粘接材料的结合方法可以是粘合剂结合(adhesive bonding)、软焊(soldering)、硬焊(brazing)、焊接,或者本领域中公知的任何结合方法。另外,所述方法也可以是上述方法的组合。为了更好的功能接触,可在鳍片的结合位置使用“J”腿,以产生更好的结合质量和接触面积。
此外,根据应用的不同,冷却介质可以是空气、水或制冷剂。对于液体冷却,与蒸汽室进行热交换的部分可以是开口壳型(open shelltype)、串联流动型(serial flow type)、并联流动型(parallel flow type)或上述形式的任意组合。
根据不同的应用需求与约束,所述蒸汽室可以用金属、塑料和/或复合材料制成。所述蒸汽室表面也可以与不同的材料存在功能性接触,该不同的材料例如塑料、金属涂层(metal coating)、石墨层、金刚石、碳-纳米管(carbon-nanotube)和/或本领域公知的任何高导热材料。
附图说明
图1A为平板状蒸汽室实施例的侧面剖视图。
图1B为平板状蒸汽室实施例的剖视图。
图1C为与基本毛细物集成的沸腾增强结构的示意图。
图1D为与蒸汽室底板集成的沸腾增强结构的示意图。
图2A为平板鳍片型沸腾增强结构的等轴视图。
图2B为针状鳍片型沸腾增强结构的等轴视图。
图2C为具有突出物的平板鳍片型沸腾增强结构的等轴视图。
图2D为多孔型沸腾增强结构的等轴视图。
图3A为具有延伸的沸腾增强结构的平板状蒸汽室的侧面剖视图。
图3B为具有部分延伸的沸腾增强结构的平板状蒸汽室的侧面剖视图。
图4A为具有沸腾增强作用的多重毛细结构的多层结构实施例的等轴视图。
图4B为由多层结构形成的毛细通道(capillary channel)的剖视图。
图5A为由多层结构形成的深沟槽结构的剖视图。
图5B为由多层结构形成的不规则沟槽结构的剖视图。
图6A为具有空间变化狭缝和穿孔图案的多层毛细结构的等轴视图。
图6B为具有适于液体流动的毛细平面的多层毛细结构的剖面侧视图。
图6C为具有钉状特征的平板的等轴视图。
图7A为应用网状结构的多层毛细结构的剖视图。
图7B为应用烧结层的多层毛细结构的剖视图。
图8为以散热器形式实施的蒸汽室的剖视图。
图9为具有实心鳍片和鳍片室的蒸汽散热器的等轴视图。
图10为具有水平方向的实心鳍片的蒸汽散热器的等轴视图。
图11为仅具有实心鳍片的蒸汽散热器的侧视图。
图12为具有交错的鳍片结构的蒸汽散热器的等轴视图。
图13为具有可变间隔的鳍片结构的蒸汽散热器的等轴视图。
图14为具有穿孔的鳍片的蒸汽散热器的侧视图。
图15A为具有带流体-偏转结构的鳍片的蒸汽散热器的侧视图。
图15B为具有流动-偏转板的鳍片的等轴视图。
图16为显示具有J腿的鳍片的图示。
图17为具有针状鳍片的蒸汽散热器的等轴视图。
图18为具有多孔块状(porous block)结构的蒸汽散热器的等轴视图。
图19A为箱型的蒸汽室实施例的剖面侧视图。
图19B为热管组合件的图示。
图20A为具有鳍片室的蒸汽箱的等轴视图。
图20B为具有实心鳍片的蒸汽箱的等轴视图。
图21为柜型的蒸汽室实施例的剖面侧视图。
图22为夹子形式的蒸汽室实施例的侧视图。
图23A为外壳型液体冷却构形的等轴视图。
图23B为串联流动的液体冷却构形的等轴视图。
图23C为并联流动的液体冷却构形的等轴视图。
图23D为具有液体冷却管的蒸汽室的等轴视图,该液体冷却管穿入该室内。
图23E为显示在蒸汽室内部的液体冷却管的等轴视图。
图24为用聚合物/复合材料制成的蒸汽室的等轴视图。
详细说明
图1说明平板状蒸汽室100的实施例,该蒸汽室由底板111、顶板112、四片侧壁113、基本毛细结构121,以及沸腾增强结构130组成。当热量由热源(电子设备)101注入时,由沸腾增强结构130产生蒸汽。由于沸腾(BE)结构130以垂直于蒸汽室底板111的方向将液体向上拉(由基本毛细结构121朝向BE结构130的顶部),沸腾表面的面积增加,从而蒸发量增加且沸腾热通量降低。因此,可以减少沸腾过热。此BE结构130可以是基本毛细结构121的集成部分(如图1C所示),或是底板111的集成部分(如图1D所示)。另一方面,BE结构130也能作为附加组件来附着安装。BE结构130的尺寸可以小于,大于,或者与热源101的尺寸相同。BE结构130可以是平板状鳍片131(图2A),针状鳍片132(图2B),具有突出物133的平板状鳍片131(如图2C),或是导热的多孔/泡沫结构134(图2D)。BE结构130可以全部与顶板112存在功能性接触131(图3A),以便提供3-D桥连毛细功能并使冷凝液从顶板112直接流动。或者,如图3B所示,仅BE结构131的一部分130可以与顶板112存在功能性接触135。
为了具有更多的灵活性并控制毛细作用力,部分BEMW结构可以通过多层(ML)结构来制造。图4显示一多层结构,其中实心板270配置于沟槽底板280上,以产生毛细通道281(图4B)。此实心板270具有开口,以容纳BE结构130(图4A)。通过堆栈多层的板,可形成不同的毛细通道或沟槽。图5A显示具有大的深度与宽度比例的沟槽201,可通过在板220上方堆栈三片具有狭缝221的板220而形成沟槽201。类似地,可以通过在两片相同的具有较宽狭缝221的板220上方堆栈一片具有较窄狭缝231的板230而形成具有不规则截面的不规则沟槽201。参照图6,具有空间变化图案的狭缝241和穿孔242的板240可以用来制造多重毛细结构的部分结构,通过产生通道241,能使汇聚的液体流动并允许蒸汽由242逸出。钉状特征211(图6C)也可以与堆垛的板240一起使用,形成薄的毛细平面(thin capillary plane)202,以进一步提供对毛细作用力的控制。除了板以外,多层结构也可以使用网状结构250(图7A)或者烧结层260(图7B)。
蒸汽室可以用不同的形式实施,以满足不同应用的需求。除了图1A的平面热散布器形式以外,也可以采取散热器400(图8)的形式,在图8中,基底室410与鳍片室440存在功能性接触。与图1A类似,BE结构430可配置于底板411上,以及基本毛细结构421可配置于剩下的表面上,一起形成具有沸腾增强作用的多重毛细结构。因为在鳍片室440内的蒸汽腔441不能太狭窄(蒸汽阻力),因此(对于特定的几何约束来说)限制了可允许的鳍片室数目。为进一步增加总的对流表面积,实心鳍片450可以和鳍片室440一起使用,如图9所示。这些实心鳍片可以用于不同的方向(图10),以便将传热系数最大化。实心鳍片可以是简单的平板型鳍片450(图11)、交错的平板型鳍片455(图12)、具有可变间距454的交错的平板型鳍片455(图13)、穿孔451的鳍片(图14)、具有流动偏转结构452的鳍片(图15)以促进冲撞/湍流效应、具有J腿453的鳍片以增加结合效率(图16)、针状鳍片460(图17)和/或为多孔块状470(图18)。
除了散热器形式400(图8)以外,蒸汽室可以箱500(图19和20)、柜600(图21)或者夹子700(图22)的形式实施。对于箱型500(图19A),可以有需要被冷却并可安装在印刷电路板504上的多个电子组件501、502、503。印刷电路板可功能性地配置在箱500的底部505上。需要被冷却的组件可以如电子组件501与蒸汽室510的基板511直接接触,或者通过其它传导介质581与蒸汽室510的基板511存在功能性接触,或者也可通过其它热管组合件580与蒸汽室510的基板511存在功能性接触,热管组合件580可由热管584以及和热管584功能性耦合的传导介质582和583组成(图19B)。所有的耦合面(内部组件耦合或外部耦合)可涉及热界面物质(thermal interfacial material)以确保良好的功能性接触。另外,用于箱型的鳍片可以是鳍片室540(图20A)或是实心元件550(图20B)。将在所述组件和箱之间的相同应用实施到另一个系统(箱和柜),可以采用柜型。如图21所示,蒸汽箱500可功能性地配置于蒸汽柜600的架子621上。通过另一蒸汽室690,可实现与箱的蒸汽室610的功能性耦合。实心-块-热管组合件680也可以用于这样的功能性耦合,组合件680可由实心块682、683和热管684组成。最后,蒸汽室可采取夹子700的形式实施(图22),在夹子中,蒸汽室(夹子形式)710与电子组件701和/或印刷电路板704存在功能性接触。鳍片750可以和蒸汽室710存在功能性接触,以增加总的对流表面积。
除空气以外,冷却介质还可以是液体(例如水或制冷剂),其以具有入口711和出口712的外壳710形式,将来自蒸汽室400的热量去除,或者以液体冷却管的形式将来自蒸汽室400的热量去除,该液体冷却管以串联(图23B)或并联(图23C)方式与鳍片结构存在功能性接触。或者如图23D中,液体冷却管713可穿入蒸汽室400,直接将来自蒸汽室400内的热量去除。管713(图23E)的表面可以具有毛细物,例如沟槽,以便使冷凝的液体更顺畅地流回蒸发区。
蒸汽室800(图24)可以用金属材料,聚合物和/或复合材料制成。如果来自热源的热通量很高,可引入高导热材料890作为基底室810的分离部件。如果使用聚合物,金属涂层或者本领域中的任何其它材料可配置于内表面,以避免蒸汽和/或空气渗漏。为更进一步改进蒸汽室的传热性能,外部的高导热材料涂层可应用于基底室和/或鳍片室(未显示)。该涂层可以是石墨、金属、金刚石、碳-钠米管或者本领域中公知的任何材料。
已描述了多个实施方案。然而,可以理解在不偏离本发明的精神和范围的情况下可进行多种修改。因此,其它示例性实施方案在所附的权利要求范围内。
Claims (21)
1.传热装置,包括:
至少一个含有可冷凝流体的蒸汽室,所述至少一个蒸汽室包括蒸发区,所述蒸发区配置为与热源耦合以便蒸发所述可冷凝流体,将已蒸发的所述可冷凝流体以冷凝液的形式收集在所述至少一个蒸汽室内的表面上;以及
具有沸腾增强作用的多重毛细结构,包含配置于所述至少一个蒸汽室内的多个互相连接的毛细结构,其使所述冷凝液容易流向所述蒸发区并减少相关的沸腾过热。
2.如权利要求1所述的传热装置,其中具有沸腾增强作用的突出的毛细物应用于所述蒸发区,所述突出的毛细物具有比在所述冷凝位置更大的毛细作用力因子。
3.如权利要求2所述的传热装置,其中所述具有沸腾增强作用的突出的毛细物包括如下的至少一种:鳍片、针栅、鳍片或针栅之间的互连结构、泡沫和多孔结构。
4.如权利要求1所述的传热装置,其中所述具有沸腾增强作用的多重毛细结构的至少部分是通过多层结构形成的,所述多层结构包含任意如下结构的组合:板、网、所述至少一个蒸汽室的表面内的沟槽、烧结层以及多孔层。
5.如权利要求1所述的传热装置,其中所述具有沸腾增强作用的多重毛细结构具有空间变化的毛细结构,其根据所述冷凝液流向所述蒸发区过程中所述冷凝液的空间流动需求而变化。
6.如权利要求5所述的传热装置,其中所述具有沸腾增强作用的多重毛细结构包括如下的至少一种:至少一个鳍片、至少一个针栅、板、网、所述至少一个蒸汽室的表面内的沟槽、粉末毛细物以及泡沫毛细物。
7.如权利要求5所述的传热装置,其中所述空间变化的毛细结构包括数量随空间变化的毛细结构。
8.如权利要求1所述的传热装置,其中所述具有沸腾增强作用的多重毛细结构包括至少一个毛细结构桥,所述毛细结构桥使所述具有沸腾增强作用的多重毛细结构的多个部分互相连接,以便使所述冷凝液容易在所述具有沸腾增强作用的多重毛细结构的所述多个部分之间流动。
9.如权利要求8所述的传热装置,其中所述毛细结构桥包含用于所述至少一个蒸汽室的内部支撑结构。
10.如权利要求1所述的传热装置,其中所述具有沸腾增强作用的多重毛细结构包括具有可变孔隙率的毛细结构。
11.如权利要求1所述的传热装置,其中所述至少一个蒸汽室的某些部分与至少一个鳍片存在功能性接触。
12.如权利要求11所述的传热装置,其中所述至少一个蒸汽室包括基底室与鳍片室。
13.如权利要求12所述的传热装置,其中所述至少一个鳍片与所述鳍片室存在功能性接触。
14.如权利要求11所述的传热装置,其中所述至少一个鳍片包括至少一个开口,且空气能通过所述开口流动。
15.如权利要求1所述的传热装置,其中所述至少一个蒸汽室具有基本上呈夹子形的构形。
16.如权利要求1所述的传热装置,其中所述至少一个蒸汽室形成箱型罩的一部分。
17.如权利要求1所述的传热装置,其中所述至少一个蒸汽室形成柜型罩的一部分。
18.如权利要求1所述的传热装置,其中所述至少一个蒸汽室与冷却液存在功能性接触。
19.如权利要求1所述的传热装置,其中所述至少一个蒸汽室的部分结构是由如下材料中至少一种制成:金属、塑料、金属包被的塑料、石墨、金刚石以及碳-纳米管。
20.如权利要求1所述的传热装置,其中所述至少一个蒸汽室包括内部支撑结构,以避免所述至少一个蒸汽室坍塌。
21.传递来自热源的热量的方法,包括:
在热装置内接受来自热源的热量,所述热装置包含:
至少一个含有可冷凝流体的蒸汽室,所述至少一个蒸汽室包括蒸发区,所述蒸发区配置为与所述热源耦合;以及
具有沸腾增强作用的多重毛细结构,包含配置于所述至少一个蒸汽室内的多个互相连接的毛细结构,其用于使所述冷凝液容易流向所述蒸发区,并且降低相关的沸腾过热;以及
蒸发在所述至少一个蒸汽室中的所述可冷凝流体,将已蒸发的所述可冷凝流体以冷凝液的形式收集在所述至少一个蒸汽室内的表面上。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63270404P | 2004-12-01 | 2004-12-01 | |
US60/632,704 | 2004-12-01 | ||
PCT/CN2005/002057 WO2006058494A1 (en) | 2004-12-01 | 2005-11-30 | Vapor chamber with boiling-enhanced multi-wick structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101040162A true CN101040162A (zh) | 2007-09-19 |
CN101040162B CN101040162B (zh) | 2010-06-16 |
Family
ID=36564760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005800347622A Expired - Fee Related CN101040162B (zh) | 2004-12-01 | 2005-11-30 | 带有具有沸腾增强作用的多重毛细结构的蒸汽室 |
Country Status (8)
Country | Link |
---|---|
US (2) | US20060196640A1 (zh) |
EP (1) | EP1842021A1 (zh) |
JP (1) | JP2008522129A (zh) |
KR (1) | KR20070088618A (zh) |
CN (1) | CN101040162B (zh) |
HK (1) | HK1106576A1 (zh) |
TW (1) | TWI281017B (zh) |
WO (1) | WO2006058494A1 (zh) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102047415A (zh) * | 2008-05-28 | 2011-05-04 | 阿尔卡特朗讯美国公司 | 蒸气室-热电模块组件 |
CN104792205A (zh) * | 2014-01-18 | 2015-07-22 | 江苏格业新材料科技有限公司 | 可组合设计的分级构造泡沫铜均热板的制造方法 |
CN104896983A (zh) * | 2014-03-07 | 2015-09-09 | 江苏格业新材料科技有限公司 | 一种超薄泡沫银为吸液芯的均热板制造方法 |
CN105307452A (zh) * | 2014-07-01 | 2016-02-03 | 江苏格业新材料科技有限公司 | 一种热沉材料为底板超薄均热板的制造方法 |
CN106802100A (zh) * | 2017-01-16 | 2017-06-06 | 刘康 | 一种均热板及其制造、使用方法 |
CN106839845A (zh) * | 2012-01-18 | 2017-06-13 | 张跃 | 热翅 |
CN107289557A (zh) * | 2017-06-07 | 2017-10-24 | 珠海格力电器股份有限公司 | 辐射换热结构及应用其的辐射器 |
TWI632842B (zh) * | 2015-06-23 | 2018-08-11 | 谷歌有限責任公司 | 在一資料中心中冷卻電子裝置 |
CN110088556A (zh) * | 2017-04-28 | 2019-08-02 | 株式会社村田制作所 | 均热板 |
CN110282596A (zh) * | 2019-05-23 | 2019-09-27 | 华北电力大学 | 基于汽液多相流体交错分割的微通道沸腾传热系统及方法 |
CN111912274A (zh) * | 2019-05-10 | 2020-11-10 | 讯凯国际股份有限公司 | 均温板及其制造方法 |
CN113498307A (zh) * | 2021-08-23 | 2021-10-12 | 惠州市鑫全盛精密科技有限公司 | 高效式散热铜管 |
US11222830B2 (en) * | 2018-01-03 | 2022-01-11 | Lenovo (Beijing) Co., Ltd. | Heat dissipation structure and electronic device |
CN114270129A (zh) * | 2019-05-14 | 2022-04-01 | 霍洛公司 | 用于热管理的装置、系统和方法 |
Families Citing this family (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI263472B (en) * | 2004-04-07 | 2006-10-01 | Delta Electronics Inc | Heat dissipation module |
US20060231237A1 (en) * | 2005-03-21 | 2006-10-19 | Carlos Dangelo | Apparatus and method for cooling ICs using nano-rod based chip-level heat sinks |
US20060260786A1 (en) * | 2005-05-23 | 2006-11-23 | Faffe Limited | Composite wick structure of heat pipe |
CN101001515B (zh) * | 2006-01-10 | 2011-05-04 | 鸿富锦精密工业(深圳)有限公司 | 板式散热管及其制造方法 |
US7369410B2 (en) * | 2006-05-03 | 2008-05-06 | International Business Machines Corporation | Apparatuses for dissipating heat from semiconductor devices |
US7974096B2 (en) * | 2006-08-17 | 2011-07-05 | Ati Technologies Ulc | Three-dimensional thermal spreading in an air-cooled thermal device |
US7420810B2 (en) * | 2006-09-12 | 2008-09-02 | Graftech International Holdings, Inc. | Base heat spreader with fins |
US20080068802A1 (en) * | 2006-09-19 | 2008-03-20 | Inventec Corporation | Heatsink device with vapor chamber |
US8482921B2 (en) | 2006-10-23 | 2013-07-09 | Teledyne Scientific & Imaging, Llc. | Heat spreader with high heat flux and high thermal conductivity |
US20080225489A1 (en) * | 2006-10-23 | 2008-09-18 | Teledyne Licensing, Llc | Heat spreader with high heat flux and high thermal conductivity |
WO2008109804A1 (en) * | 2007-03-08 | 2008-09-12 | Convergence Technologies Limited | Vapor-augmented heat spreader device |
WO2008133594A2 (en) * | 2007-04-27 | 2008-11-06 | National University Of Singapore | Cooling device for electronic components |
TWI318679B (en) * | 2007-05-16 | 2009-12-21 | Ind Tech Res Inst | Heat dissipation system with an plate evaporator |
DE102007042998A1 (de) * | 2007-09-10 | 2009-03-26 | Continental Automotive Gmbh | Elektronische Schaltungsanordnung mit einer von der verbauten Lage funktional unabhängigen Wärmesenke, sowie Wärmesenke dafür |
JPWO2009063703A1 (ja) * | 2007-11-15 | 2011-03-31 | 日本電気株式会社 | 沸騰冷却装置 |
US8356657B2 (en) | 2007-12-19 | 2013-01-22 | Teledyne Scientific & Imaging, Llc | Heat pipe system |
CN101960938A (zh) * | 2008-02-27 | 2011-01-26 | 惠普开发有限公司 | 热沉装置 |
TW200836616A (en) * | 2008-04-29 | 2008-09-01 | chong-xian Huang | Heat sink composed of heat plates |
US8549741B2 (en) * | 2008-06-11 | 2013-10-08 | Adc Telecommunications, Inc. | Suspension method for compliant thermal contact of electronics modules |
US8254850B2 (en) * | 2008-06-11 | 2012-08-28 | Adc Telecommunications, Inc. | Communication module component assemblies |
US8031470B2 (en) * | 2008-06-11 | 2011-10-04 | Adc Telecommunications, Inc. | Systems and methods for thermal management |
US20100002392A1 (en) * | 2008-07-07 | 2010-01-07 | I-Ming Liu | Assembled Heat Sink Structure |
US20100014251A1 (en) * | 2008-07-15 | 2010-01-21 | Advanced Micro Devices, Inc. | Multidimensional Thermal Management Device for an Integrated Circuit Chip |
US20100071880A1 (en) * | 2008-09-22 | 2010-03-25 | Chul-Ju Kim | Evaporator for looped heat pipe system |
US20100089554A1 (en) * | 2008-10-09 | 2010-04-15 | Steve Hon-Keung Lee | Drum-based vapor chamber with an insertable wick system |
TW201019431A (en) * | 2008-11-03 | 2010-05-16 | Wen-Qiang Zhou | Insulating and heat-dissipating structure of an electronic component |
US8678075B2 (en) * | 2009-01-06 | 2014-03-25 | Massachusetts Institute Of Technology | Heat exchangers and related methods |
US9163883B2 (en) | 2009-03-06 | 2015-10-20 | Kevlin Thermal Technologies, Inc. | Flexible thermal ground plane and manufacturing the same |
US8018720B2 (en) * | 2009-06-25 | 2011-09-13 | International Business Machines Corporation | Condenser structures with fin cavities facilitating vapor condensation cooling of coolant |
US8059405B2 (en) * | 2009-06-25 | 2011-11-15 | International Business Machines Corporation | Condenser block structures with cavities facilitating vapor condensation cooling of coolant |
US8014150B2 (en) * | 2009-06-25 | 2011-09-06 | International Business Machines Corporation | Cooled electronic module with pump-enhanced, dielectric fluid immersion-cooling |
US8490679B2 (en) | 2009-06-25 | 2013-07-23 | International Business Machines Corporation | Condenser fin structures facilitating vapor condensation cooling of coolant |
US8159821B2 (en) * | 2009-07-28 | 2012-04-17 | Dsem Holdings Sdn. Bhd. | Diffusion bonding circuit submount directly to vapor chamber |
US20110027738A1 (en) * | 2009-07-30 | 2011-02-03 | Meyer Iv George Anthony | Supporting structure with height difference and vapor chamber having the supporting structure |
US20130088837A1 (en) * | 2010-06-09 | 2013-04-11 | Kyocera Corporation | Flow channel member, and heat exchanger using the same, and electronic component device |
SG177233A1 (en) * | 2010-06-18 | 2012-02-28 | Gatekeeper Lab Pte Ltd | Thermosyphon for cooling electronic components |
CN102315292A (zh) * | 2010-06-30 | 2012-01-11 | 富准精密工业(深圳)有限公司 | 太阳能电池装置 |
US11073340B2 (en) | 2010-10-25 | 2021-07-27 | Rochester Institute Of Technology | Passive two phase heat transfer systems |
US20120313547A1 (en) * | 2011-06-10 | 2012-12-13 | Honeywell International Inc. | Aircraft led landing or taxi lights with thermal management |
US10006720B2 (en) * | 2011-08-01 | 2018-06-26 | Teledyne Scientific & Imaging, Llc | System for using active and passive cooling for high power thermal management |
WO2013069226A1 (ja) * | 2011-11-08 | 2013-05-16 | パナソニック株式会社 | ラック型サーバーを冷却する冷却装置とこれを備えたデータセンター |
WO2013094038A1 (ja) * | 2011-12-21 | 2013-06-27 | トヨタ自動車株式会社 | 冷却器及びその製造方法 |
TW201339513A (zh) * | 2012-03-16 | 2013-10-01 | Hon Hai Prec Ind Co Ltd | 貨櫃冷卻系統 |
TWI497656B (zh) * | 2012-06-08 | 2015-08-21 | Foxconn Tech Co Ltd | 電子裝置 |
US9500413B1 (en) | 2012-06-14 | 2016-11-22 | Google Inc. | Thermosiphon systems with nested tubes |
US9869519B2 (en) | 2012-07-12 | 2018-01-16 | Google Inc. | Thermosiphon systems for electronic devices |
WO2014045714A1 (ja) * | 2012-09-19 | 2014-03-27 | 日本電気株式会社 | 冷却装置、それに使用される受熱部、沸騰部、その製造方法 |
US9095942B2 (en) | 2012-09-26 | 2015-08-04 | International Business Machines Corporation | Wicking and coupling element(s) facilitating evaporative cooling of component(s) |
US9835383B1 (en) | 2013-03-15 | 2017-12-05 | Hrl Laboratories, Llc | Planar heat pipe with architected core and vapor tolerant arterial wick |
US11026343B1 (en) | 2013-06-20 | 2021-06-01 | Flextronics Ap, Llc | Thermodynamic heat exchanger |
TWI462693B (zh) * | 2013-11-27 | 2014-11-21 | Subtron Technology Co Ltd | 散熱基板 |
CN104764350B (zh) * | 2014-01-08 | 2017-04-26 | 江苏格业新材料科技有限公司 | 一种泡沫铜为吸液芯的均热板制造方法 |
JP5789684B2 (ja) * | 2014-01-10 | 2015-10-07 | 株式会社フジクラ | ベーパーチャンバー |
CN104362136A (zh) * | 2014-07-25 | 2015-02-18 | 辜旭 | 快速被动式散热装置 |
US9921004B2 (en) | 2014-09-15 | 2018-03-20 | Kelvin Thermal Technologies, Inc. | Polymer-based microfabricated thermal ground plane |
US11598594B2 (en) | 2014-09-17 | 2023-03-07 | The Regents Of The University Of Colorado | Micropillar-enabled thermal ground plane |
US11988453B2 (en) | 2014-09-17 | 2024-05-21 | Kelvin Thermal Technologies, Inc. | Thermal management planes |
WO2016044638A1 (en) | 2014-09-17 | 2016-03-24 | The Regents Of The University Of Colorado, A Body Corporate | Micropillar-enabled thermal ground plane |
TWI542277B (zh) * | 2014-09-30 | 2016-07-11 | 旭德科技股份有限公司 | 散熱模組 |
CN105636405A (zh) * | 2014-11-05 | 2016-06-01 | 福特全球技术公司 | 高度集成的电力电子模块总成 |
KR101491833B1 (ko) * | 2014-11-16 | 2015-02-11 | 가온미디어 주식회사 | 포집 분산형 히트싱크 |
DE112015006353T5 (de) * | 2015-03-25 | 2017-12-14 | Mitsubishi Electric Corporation | Kühlvorrichtung, leistungswandlervorrichtung und kühlsystem |
US10448543B2 (en) | 2015-05-04 | 2019-10-15 | Google Llc | Cooling electronic devices in a data center |
US11022383B2 (en) | 2016-06-16 | 2021-06-01 | Teledyne Scientific & Imaging, Llc | Interface-free thermal management system for high power devices co-fabricated with electronic circuit |
CN106066130A (zh) * | 2016-08-10 | 2016-11-02 | 广东工业大学 | 一种斜坡沟槽式平板热管及其制备方法 |
US12104856B2 (en) | 2016-10-19 | 2024-10-01 | Kelvin Thermal Technologies, Inc. | Method and device for optimization of vapor transport in a thermal ground plane using void space in mobile systems |
CN116936500A (zh) | 2016-11-08 | 2023-10-24 | 开尔文热技术股份有限公司 | 用于在热接地平面中散布高热通量的方法和设备 |
KR102660510B1 (ko) * | 2016-11-23 | 2024-04-24 | 삼성전자주식회사 | 열을 흡수하는 증기(상변화) 챔버를 포함하는 전자 장치 |
US10451356B2 (en) * | 2016-12-08 | 2019-10-22 | Microsoft Technology Licensing, Llc | Lost wax cast vapor chamber device |
US20180192545A1 (en) * | 2017-01-03 | 2018-07-05 | Quanta Computer Inc. | Heat dissipation apparatus |
CN114760824A (zh) * | 2017-01-18 | 2022-07-15 | 台达电子工业股份有限公司 | 均热板 |
US10045464B1 (en) * | 2017-03-31 | 2018-08-07 | International Business Machines Corporation | Heat pipe and vapor chamber heat dissipation |
JP7022402B2 (ja) * | 2017-06-06 | 2022-02-18 | 公立大学法人山陽小野田市立山口東京理科大学 | 沸騰冷却装置 |
JP7097308B2 (ja) * | 2017-07-28 | 2022-07-07 | 古河電気工業株式会社 | ウィック構造体及びウィック構造体を収容したヒートパイプ |
JP6395914B1 (ja) * | 2017-08-31 | 2018-09-26 | 古河電気工業株式会社 | ヒートシンク |
WO2019194089A1 (ja) * | 2018-04-02 | 2019-10-10 | 日本電気株式会社 | 電子機器 |
KR102512814B1 (ko) * | 2018-05-16 | 2023-03-23 | 한온시스템 주식회사 | 냉각 장치 |
US11076510B2 (en) * | 2018-08-13 | 2021-07-27 | Facebook Technologies, Llc | Heat management device and method of manufacture |
JP6801698B2 (ja) * | 2018-09-04 | 2020-12-16 | セイコーエプソン株式会社 | 冷却装置及びプロジェクター |
US10739832B2 (en) * | 2018-10-12 | 2020-08-11 | International Business Machines Corporation | Airflow projection for heat transfer device |
CN113365769A (zh) * | 2018-12-12 | 2021-09-07 | 麦格纳国际公司 | 增材制造的散热装置 |
US20210307202A1 (en) * | 2018-12-12 | 2021-09-30 | Magna International Inc. | Additive manufactured heat sink |
DE112019006900T5 (de) * | 2019-02-22 | 2021-11-11 | Mitsubishi Electric Corporation | Kühlvorrichtung und leistungsumwandlungsvorrichtung |
US11116113B2 (en) * | 2019-04-08 | 2021-09-07 | Google Llc | Cooling electronic devices in a data center |
JP6606303B1 (ja) * | 2019-04-11 | 2019-11-13 | 古河電気工業株式会社 | 冷却装置 |
JP7546558B2 (ja) * | 2019-05-21 | 2024-09-06 | 株式会社巴川コーポレーション | 温調ユニット |
US11343945B2 (en) * | 2019-10-10 | 2022-05-24 | Cisco Technology, Inc. | Combined liquid and air cooling system for fail-safe operation of high power density ASIC devices |
EP3813098A1 (en) * | 2019-10-25 | 2021-04-28 | ABB Schweiz AG | Vapor chamber |
US11445636B2 (en) * | 2019-10-31 | 2022-09-13 | Murata Manufacturing Co., Ltd. | Vapor chamber, heatsink device, and electronic device |
WO2021258028A1 (en) | 2020-06-19 | 2021-12-23 | Kelvin Thermal Technologies, Inc. | Folding thermal ground plane |
WO2022025261A1 (ja) * | 2020-07-31 | 2022-02-03 | 日本電産株式会社 | 熱伝導部材 |
WO2022050337A1 (ja) * | 2020-09-02 | 2022-03-10 | 株式会社カネカ | ベイパーチャンバー、及び、これを搭載する半導体パッケージ |
CN112461024A (zh) * | 2020-12-01 | 2021-03-09 | 奇鋐科技股份有限公司 | 均温板结构 |
US20220214116A1 (en) | 2021-01-06 | 2022-07-07 | Asia Vital Components Co., Ltd | Vapor chamber structure |
US11632853B2 (en) * | 2021-03-15 | 2023-04-18 | Heatscape.Com, Inc. | Heatsink with perpendicular vapor chamber |
JP2022142665A (ja) * | 2021-03-16 | 2022-09-30 | 富士通株式会社 | 冷却装置 |
WO2022201918A1 (ja) * | 2021-03-23 | 2022-09-29 | 株式会社村田製作所 | 熱拡散デバイスおよび電子機器 |
CN117836583A (zh) * | 2021-08-17 | 2024-04-05 | 华为技术有限公司 | 用于电子组件的热管及包括热管的电子设备 |
CN113891620B (zh) * | 2021-09-27 | 2023-05-23 | 联想(北京)有限公司 | 一种散热装置及电子设备 |
US20230164953A1 (en) * | 2021-11-24 | 2023-05-25 | Microsoft Technology Licensing, Llc | Systems and methods for three-dimensional vapor chambers in immersion-cooled datacenters |
US12120851B2 (en) * | 2022-04-20 | 2024-10-15 | Microsoft Technology Licensing, Llc | 3-D structured two-phase cooling boilers with nano structured boiling enhancement coating |
Family Cites Families (133)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3587725A (en) * | 1968-10-16 | 1971-06-28 | Hughes Aircraft Co | Heat pipe having a substantially unidirectional thermal path |
US3613778A (en) * | 1969-03-03 | 1971-10-19 | Northrop Corp | Flat plate heat pipe with structural wicks |
US3598180A (en) * | 1970-07-06 | 1971-08-10 | Robert David Moore Jr | Heat transfer surface structure |
US3680189A (en) * | 1970-12-09 | 1972-08-01 | Noren Products Inc | Method of forming a heat pipe |
US3803688A (en) * | 1971-07-13 | 1974-04-16 | Electronic Communications | Method of making a heat pipe |
US3754594A (en) * | 1972-01-24 | 1973-08-28 | Sanders Associates Inc | Unilateral heat transfer apparatus |
CS159563B1 (zh) * | 1972-12-28 | 1975-01-31 | ||
US3892273A (en) * | 1973-07-09 | 1975-07-01 | Perkin Elmer Corp | Heat pipe lobar wicking arrangement |
US4021816A (en) * | 1973-10-18 | 1977-05-03 | E-Systems, Inc. | Heat transfer device |
US4125387A (en) * | 1974-09-19 | 1978-11-14 | Ppg Industries, Inc. | Heat pipes for fin coolers |
GB1481787A (en) * | 1974-10-10 | 1977-08-03 | Secretary Industry Brit | Two-phase thermosyphons |
US4009417A (en) * | 1975-01-27 | 1977-02-22 | General Electric Company | Electrical apparatus with heat pipe cooling |
GB1484831A (en) * | 1975-03-17 | 1977-09-08 | Hughes Aircraft Co | Heat pipe thermal mounting plate for cooling circuit card-mounted electronic components |
US4046190A (en) * | 1975-05-22 | 1977-09-06 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Flat-plate heat pipe |
US4170262A (en) * | 1975-05-27 | 1979-10-09 | Trw Inc. | Graded pore size heat pipe wick |
US4047198A (en) * | 1976-04-19 | 1977-09-06 | Hughes Aircraft Company | Transistor cooling by heat pipes having a wick of dielectric powder |
US4145708A (en) * | 1977-06-13 | 1979-03-20 | General Electric Company | Power module with isolated substrates cooled by integral heat-energy-removal means |
US4279294A (en) * | 1978-12-22 | 1981-07-21 | United Technologies Corporation | Heat pipe bag system |
US4322737A (en) * | 1979-11-20 | 1982-03-30 | Intel Corporation | Integrated circuit micropackaging |
US4351388A (en) * | 1980-06-13 | 1982-09-28 | Mcdonnell Douglas Corporation | Inverted meniscus heat pipe |
US4489777A (en) * | 1982-01-21 | 1984-12-25 | Del Bagno Anthony C | Heat pipe having multiple integral wick structures |
US4523636A (en) * | 1982-09-20 | 1985-06-18 | Stirling Thermal Motors, Inc. | Heat pipe |
US4616699A (en) * | 1984-01-05 | 1986-10-14 | Mcdonnell Douglas Corporation | Wick-fin heat pipe |
US4833567A (en) * | 1986-05-30 | 1989-05-23 | Digital Equipment Corporation | Integral heat pipe module |
US4703796A (en) * | 1987-02-27 | 1987-11-03 | Stirling Thermal Motors, Inc. | Corrosion resistant heat pipe |
US4838347A (en) * | 1987-07-02 | 1989-06-13 | American Telephone And Telegraph Company At&T Bell Laboratories | Thermal conductor assembly |
US4785875A (en) * | 1987-11-12 | 1988-11-22 | Stirling Thermal Motors, Inc. | Heat pipe working liquid distribution system |
US4944344A (en) * | 1988-10-31 | 1990-07-31 | Sundstrand Corporation | Hermetically sealed modular electronic cold plate utilizing reflux cooling |
US5198889A (en) * | 1990-06-30 | 1993-03-30 | Kabushiki Kaisha Toshiba | Cooling apparatus |
US5000256A (en) * | 1990-07-20 | 1991-03-19 | Minnesota Mining And Manufacturing Company | Heat transfer bag with thermal via |
US5076352A (en) * | 1991-02-08 | 1991-12-31 | Thermacore, Inc. | High permeability heat pipe wick structure |
US5386143A (en) * | 1991-10-25 | 1995-01-31 | Digital Equipment Corporation | High performance substrate, electronic package and integrated circuit cooling process |
US5253702A (en) * | 1992-01-14 | 1993-10-19 | Sun Microsystems, Inc. | Integral heat pipe, heat exchanger, and clamping plate |
US5216580A (en) * | 1992-01-14 | 1993-06-01 | Sun Microsystems, Inc. | Optimized integral heat pipe and electronic circuit module arrangement |
US5629840A (en) * | 1992-05-15 | 1997-05-13 | Digital Equipment Corporation | High powered die with bus bars |
US5308920A (en) * | 1992-07-31 | 1994-05-03 | Itoh Research & Development Laboratory Co., Ltd. | Heat radiating device |
JPH0731027B2 (ja) * | 1992-09-17 | 1995-04-10 | 伊藤 さとみ | ヒートパイプおよび放熱装置 |
JPH06120382A (ja) * | 1992-10-05 | 1994-04-28 | Toshiba Corp | 半導体冷却装置 |
US5309986A (en) * | 1992-11-30 | 1994-05-10 | Satomi Itoh | Heat pipe |
US5427174A (en) * | 1993-04-30 | 1995-06-27 | Heat Transfer Devices, Inc. | Method and apparatus for a self contained heat exchanger |
US5458189A (en) * | 1993-09-10 | 1995-10-17 | Aavid Laboratories | Two-phase component cooler |
US5704416A (en) * | 1993-09-10 | 1998-01-06 | Aavid Laboratories, Inc. | Two phase component cooler |
CN2185925Y (zh) * | 1994-01-31 | 1994-12-21 | 清华大学 | 分离热管式风冷散热器 |
US5780928A (en) * | 1994-03-07 | 1998-07-14 | Lsi Logic Corporation | Electronic system having fluid-filled and gas-filled thermal cooling of its semiconductor devices |
US5465782A (en) * | 1994-06-13 | 1995-11-14 | Industrial Technology Research Institute | High-efficiency isothermal heat pipe |
US5529115A (en) * | 1994-07-14 | 1996-06-25 | At&T Global Information Solutions Company | Integrated circuit cooling device having internal cooling conduit |
US6208513B1 (en) * | 1995-01-17 | 2001-03-27 | Compaq Computer Corporation | Independently mounted cooling fins for a low-stress semiconductor package |
JP3216770B2 (ja) * | 1995-03-20 | 2001-10-09 | カルソニックカンセイ株式会社 | 電子部品用冷却装置 |
JPH08264694A (ja) * | 1995-03-20 | 1996-10-11 | Calsonic Corp | 電子部品用冷却装置 |
TW307837B (zh) * | 1995-05-30 | 1997-06-11 | Fujikura Kk | |
JPH098190A (ja) * | 1995-06-22 | 1997-01-10 | Calsonic Corp | 電子部品用冷却装置 |
US5587880A (en) * | 1995-06-28 | 1996-12-24 | Aavid Laboratories, Inc. | Computer cooling system operable under the force of gravity in first orientation and against the force of gravity in second orientation |
JP3164518B2 (ja) * | 1995-12-21 | 2001-05-08 | 古河電気工業株式会社 | 平面型ヒートパイプ |
US6056044A (en) * | 1996-01-29 | 2000-05-02 | Sandia Corporation | Heat pipe with improved wick structures |
US5769154A (en) * | 1996-01-29 | 1998-06-23 | Sandia Corporation | Heat pipe with embedded wick structure |
US5642776A (en) * | 1996-02-27 | 1997-07-01 | Thermacore, Inc. | Electrically insulated envelope heat pipe |
JPH10154781A (ja) * | 1996-07-19 | 1998-06-09 | Denso Corp | 沸騰冷却装置 |
US6167948B1 (en) * | 1996-11-18 | 2001-01-02 | Novel Concepts, Inc. | Thin, planar heat spreader |
JPH10185648A (ja) * | 1996-12-19 | 1998-07-14 | Marcom:Kk | 液体定量供給装置 |
JPH10185468A (ja) * | 1996-12-20 | 1998-07-14 | Akutoronikusu Kk | 極大面積比の面間熱拡散接続用プレートヒートパイプ |
US6269866B1 (en) * | 1997-02-13 | 2001-08-07 | The Furukawa Electric Co., Ltd. | Cooling device with heat pipe |
DE19805930A1 (de) * | 1997-02-13 | 1998-08-20 | Furukawa Electric Co Ltd | Kühlvorrichtung |
US5880524A (en) * | 1997-05-05 | 1999-03-09 | Intel Corporation | Heat pipe lid for electronic packages |
US6424528B1 (en) * | 1997-06-20 | 2002-07-23 | Sun Microsystems, Inc. | Heatsink with embedded heat pipe for thermal management of CPU |
EP0889524A3 (en) * | 1997-06-30 | 1999-03-03 | Sun Microsystems, Inc. | Scalable and modular heat sink-heat pipe cooling system |
US6062302A (en) * | 1997-09-30 | 2000-05-16 | Lucent Technologies Inc. | Composite heat sink |
WO1999053255A1 (en) * | 1998-04-13 | 1999-10-21 | Furukawa Electric Co., Ltd. | Plate type heat pipe and cooling structure using it |
US6163073A (en) * | 1998-04-17 | 2000-12-19 | International Business Machines Corporation | Integrated heatsink and heatpipe |
US6227287B1 (en) * | 1998-05-25 | 2001-05-08 | Denso Corporation | Cooling apparatus by boiling and cooling refrigerant |
JP2000124374A (ja) * | 1998-10-21 | 2000-04-28 | Furukawa Electric Co Ltd:The | 板型ヒートパイプとそれを用いた冷却構造 |
US6121680A (en) * | 1999-02-16 | 2000-09-19 | Intel Corporation | Mesh structure to avoid thermal grease pump-out in integrated circuit heat sink attachments |
US6085831A (en) * | 1999-03-03 | 2000-07-11 | International Business Machines Corporation | Direct chip-cooling through liquid vaporization heat exchange |
US6189601B1 (en) * | 1999-05-05 | 2001-02-20 | Intel Corporation | Heat sink with a heat pipe for spreading of heat |
US6237223B1 (en) * | 1999-05-06 | 2001-05-29 | Chip Coolers, Inc. | Method of forming a phase change heat sink |
US6302192B1 (en) * | 1999-05-12 | 2001-10-16 | Thermal Corp. | Integrated circuit heat pipe heat spreader with through mounting holes |
US6490160B2 (en) * | 1999-07-15 | 2002-12-03 | Incep Technologies, Inc. | Vapor chamber with integrated pin array |
US6293333B1 (en) * | 1999-09-02 | 2001-09-25 | The United States Of America As Represented By The Secretary Of The Air Force | Micro channel heat pipe having wire cloth wick and method of fabrication |
JP2001074381A (ja) * | 1999-09-07 | 2001-03-23 | Furukawa Electric Co Ltd:The | 薄型平面型ヒートパイプおよびコンテナ |
US6244331B1 (en) * | 1999-10-22 | 2001-06-12 | Intel Corporation | Heatsink with integrated blower for improved heat transfer |
US6410982B1 (en) * | 1999-11-12 | 2002-06-25 | Intel Corporation | Heatpipesink having integrated heat pipe and heat sink |
JP2001183080A (ja) * | 1999-12-24 | 2001-07-06 | Furukawa Electric Co Ltd:The | 圧縮メッシュウイックの製造方法、および、圧縮メッシュウイックを備えた平面型ヒートパイプ |
US6808015B2 (en) * | 2000-03-24 | 2004-10-26 | Denso Corporation | Boiling cooler for cooling heating element by heat transfer with boiling |
US6550531B1 (en) * | 2000-05-16 | 2003-04-22 | Intel Corporation | Vapor chamber active heat sink |
US6317322B1 (en) * | 2000-08-15 | 2001-11-13 | The Furukawa Electric Co., Ltd. | Plate type heat pipe and a cooling system using same |
US6474074B2 (en) * | 2000-11-30 | 2002-11-05 | International Business Machines Corporation | Apparatus for dense chip packaging using heat pipes and thermoelectric coolers |
JP2002190557A (ja) * | 2000-12-21 | 2002-07-05 | Fujikura Ltd | ワイヤーヒートシンク |
US7027304B2 (en) * | 2001-02-15 | 2006-04-11 | Integral Technologies, Inc. | Low cost thermal management device or heat sink manufactured from conductive loaded resin-based materials |
US6418019B1 (en) * | 2001-03-19 | 2002-07-09 | Harris Corporation | Electronic module including a cooling substrate with fluid dissociation electrodes and related methods |
CN1126169C (zh) * | 2001-03-26 | 2003-10-29 | 张吉美 | 一种冷却器 |
US7556086B2 (en) * | 2001-04-06 | 2009-07-07 | University Of Maryland, College Park | Orientation-independent thermosyphon heat spreader |
US20020195231A1 (en) * | 2001-04-09 | 2002-12-26 | Siu Wing Ming | Laminated heat transfer device and method of producing thereof |
US20020144809A1 (en) * | 2001-04-09 | 2002-10-10 | Siu Wing Ming | Laminated heat transfer device and method of producing thereof |
CA2446728C (en) * | 2001-04-30 | 2007-12-18 | Thermo Composite, Llc | Thermal management material, devices and methods therefor |
KR100429840B1 (ko) * | 2001-07-19 | 2004-05-04 | 삼성전자주식회사 | 마이크로 냉각 장치 |
US7080680B2 (en) * | 2001-09-05 | 2006-07-25 | Showa Denko K.K. | Heat sink, control device having the heat sink and machine tool provided with the device |
US6723500B2 (en) * | 2001-12-05 | 2004-04-20 | Lifescan, Inc. | Test strips having reaction zones and channels defined by a thermally transferred hydrophobic barrier |
JP2003179189A (ja) * | 2001-12-12 | 2003-06-27 | Furukawa Electric Co Ltd:The | 薄型ヒートシンクおよびその実装構造 |
US6477045B1 (en) * | 2001-12-28 | 2002-11-05 | Tien-Lai Wang | Heat dissipater for a central processing unit |
US6679318B2 (en) * | 2002-01-19 | 2004-01-20 | Allan P Bakke | Light weight rigid flat heat pipe utilizing copper foil container laminated to heat treated aluminum plates for structural stability |
US20030136550A1 (en) * | 2002-01-24 | 2003-07-24 | Global Win Technology | Heat sink adapted for dissipating heat from a semiconductor device |
US20040011509A1 (en) * | 2002-05-15 | 2004-01-22 | Wing Ming Siu | Vapor augmented heatsink with multi-wick structure |
US6588498B1 (en) * | 2002-07-18 | 2003-07-08 | Delphi Technologies, Inc. | Thermosiphon for electronics cooling with high performance boiling and condensing surfaces |
TW551612U (en) * | 2002-07-26 | 2003-09-01 | Tai Sol Electronics Co Ltd | Piercing type IC heat dissipating device |
US6880626B2 (en) * | 2002-08-28 | 2005-04-19 | Thermal Corp. | Vapor chamber with sintered grooved wick |
TW540989U (en) * | 2002-10-04 | 2003-07-01 | Via Tech Inc | Thin planar heat distributor |
JP2004245550A (ja) * | 2003-02-17 | 2004-09-02 | Fujikura Ltd | 還流特性に優れたヒートパイプ |
US6840311B2 (en) * | 2003-02-25 | 2005-01-11 | Delphi Technologies, Inc. | Compact thermosiphon for dissipating heat generated by electronic components |
US6945317B2 (en) * | 2003-04-24 | 2005-09-20 | Thermal Corp. | Sintered grooved wick with particle web |
US6782942B1 (en) * | 2003-05-01 | 2004-08-31 | Chin-Wen Wang | Tabular heat pipe structure having support bodies |
US7146655B2 (en) * | 2003-06-05 | 2006-12-12 | Db Industries Llc | Bariatric toilet seat support apparatus |
US6994152B2 (en) * | 2003-06-26 | 2006-02-07 | Thermal Corp. | Brazed wick for a heat transfer device |
US6938680B2 (en) * | 2003-07-14 | 2005-09-06 | Thermal Corp. | Tower heat sink with sintered grooved wick |
US6918431B2 (en) * | 2003-08-22 | 2005-07-19 | Delphi Technologies, Inc. | Cooling assembly |
TWM245479U (en) * | 2003-10-01 | 2004-10-01 | Chin-Wen Wang | Improved supporting structure of tablet type heat pipe |
JP4354270B2 (ja) * | 2003-12-22 | 2009-10-28 | 株式会社フジクラ | ベーパーチャンバー |
US6901994B1 (en) * | 2004-01-05 | 2005-06-07 | Industrial Technology Research Institute | Flat heat pipe provided with means to enhance heat transfer thereof |
US7353860B2 (en) * | 2004-06-16 | 2008-04-08 | Intel Corporation | Heat dissipating device with enhanced boiling/condensation structure |
US7032652B2 (en) * | 2004-07-06 | 2006-04-25 | Augux Co., Ltd. | Structure of heat conductive plate |
US6957692B1 (en) * | 2004-08-31 | 2005-10-25 | Inventec Corporation | Heat-dissipating device |
US7246655B2 (en) * | 2004-12-17 | 2007-07-24 | Fujikura Ltd. | Heat transfer device |
US7077189B1 (en) * | 2005-01-21 | 2006-07-18 | Delphi Technologies, Inc. | Liquid cooled thermosiphon with flexible coolant tubes |
US7506682B2 (en) * | 2005-01-21 | 2009-03-24 | Delphi Technologies, Inc. | Liquid cooled thermosiphon for electronic components |
CN100491888C (zh) * | 2005-06-17 | 2009-05-27 | 富准精密工业(深圳)有限公司 | 环路式热交换装置 |
US20070012429A1 (en) * | 2005-06-24 | 2007-01-18 | Convergence Technologies, Inc. | Heat Transfer Device |
US7584622B2 (en) * | 2005-08-31 | 2009-09-08 | Ati Technologies | Localized refrigerator apparatus for a thermal management device |
TWI285251B (en) * | 2005-09-15 | 2007-08-11 | Univ Tsinghua | Flat-plate heat pipe containing channels |
US7447029B2 (en) * | 2006-03-14 | 2008-11-04 | Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. | Vapor chamber for dissipation heat generated by electronic component |
US7556089B2 (en) * | 2006-03-31 | 2009-07-07 | Coolit Systems, Inc. | Liquid cooled thermosiphon with condenser coil running in and out of liquid refrigerant |
US7644753B2 (en) * | 2006-05-23 | 2010-01-12 | Delphi Technologies, Inc. | Domed heat exchanger (porcupine) |
US7561425B2 (en) * | 2006-06-07 | 2009-07-14 | The Boeing Company | Encapsulated multi-phase electronics heat-sink |
US7475718B2 (en) * | 2006-11-15 | 2009-01-13 | Delphi Technologies, Inc. | Orientation insensitive multi chamber thermosiphon |
CN101232794B (zh) * | 2007-01-24 | 2011-11-30 | 富准精密工业(深圳)有限公司 | 均热板及散热装置 |
US7796389B2 (en) * | 2008-11-26 | 2010-09-14 | General Electric Company | Method and apparatus for cooling electronics |
-
2005
- 2005-11-22 US US11/164,429 patent/US20060196640A1/en not_active Abandoned
- 2005-11-29 TW TW094141881A patent/TWI281017B/zh not_active IP Right Cessation
- 2005-11-30 EP EP05818804A patent/EP1842021A1/en not_active Withdrawn
- 2005-11-30 KR KR1020077008300A patent/KR20070088618A/ko not_active Application Discontinuation
- 2005-11-30 JP JP2007543682A patent/JP2008522129A/ja active Pending
- 2005-11-30 WO PCT/CN2005/002057 patent/WO2006058494A1/en active Application Filing
- 2005-11-30 CN CN2005800347622A patent/CN101040162B/zh not_active Expired - Fee Related
-
2007
- 2007-11-02 HK HK07111888.5A patent/HK1106576A1/xx not_active IP Right Cessation
-
2009
- 2009-09-29 US US12/569,406 patent/US20100018678A1/en not_active Abandoned
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102047415A (zh) * | 2008-05-28 | 2011-05-04 | 阿尔卡特朗讯美国公司 | 蒸气室-热电模块组件 |
CN106839845A (zh) * | 2012-01-18 | 2017-06-13 | 张跃 | 热翅 |
CN104792205A (zh) * | 2014-01-18 | 2015-07-22 | 江苏格业新材料科技有限公司 | 可组合设计的分级构造泡沫铜均热板的制造方法 |
CN104792205B (zh) * | 2014-01-18 | 2017-02-22 | 江苏格业新材料科技有限公司 | 可组合设计的分级构造泡沫铜均热板的制造方法 |
CN104896983A (zh) * | 2014-03-07 | 2015-09-09 | 江苏格业新材料科技有限公司 | 一种超薄泡沫银为吸液芯的均热板制造方法 |
CN105307452A (zh) * | 2014-07-01 | 2016-02-03 | 江苏格业新材料科技有限公司 | 一种热沉材料为底板超薄均热板的制造方法 |
US10462935B2 (en) | 2015-06-23 | 2019-10-29 | Google Llc | Cooling electronic devices in a data center |
US11622474B2 (en) | 2015-06-23 | 2023-04-04 | Google Llc | Cooling electronic devices in a data center |
TWI632842B (zh) * | 2015-06-23 | 2018-08-11 | 谷歌有限責任公司 | 在一資料中心中冷卻電子裝置 |
US11419246B2 (en) | 2015-06-23 | 2022-08-16 | Google Llc | Cooling electronic devices in a data center |
TWI713434B (zh) * | 2015-06-23 | 2020-12-11 | 美商谷歌有限責任公司 | 在一資料中心中冷卻電子裝置 |
CN106802100A (zh) * | 2017-01-16 | 2017-06-06 | 刘康 | 一种均热板及其制造、使用方法 |
CN110088556A (zh) * | 2017-04-28 | 2019-08-02 | 株式会社村田制作所 | 均热板 |
CN110088556B (zh) * | 2017-04-28 | 2021-06-25 | 株式会社村田制作所 | 均热板 |
CN107289557B (zh) * | 2017-06-07 | 2019-01-15 | 珠海格力电器股份有限公司 | 辐射换热结构及应用其的辐射器 |
CN107289557A (zh) * | 2017-06-07 | 2017-10-24 | 珠海格力电器股份有限公司 | 辐射换热结构及应用其的辐射器 |
US11222830B2 (en) * | 2018-01-03 | 2022-01-11 | Lenovo (Beijing) Co., Ltd. | Heat dissipation structure and electronic device |
CN111912274A (zh) * | 2019-05-10 | 2020-11-10 | 讯凯国际股份有限公司 | 均温板及其制造方法 |
CN114270129A (zh) * | 2019-05-14 | 2022-04-01 | 霍洛公司 | 用于热管理的装置、系统和方法 |
CN110282596A (zh) * | 2019-05-23 | 2019-09-27 | 华北电力大学 | 基于汽液多相流体交错分割的微通道沸腾传热系统及方法 |
CN113498307A (zh) * | 2021-08-23 | 2021-10-12 | 惠州市鑫全盛精密科技有限公司 | 高效式散热铜管 |
Also Published As
Publication number | Publication date |
---|---|
HK1106576A1 (en) | 2008-03-14 |
US20060196640A1 (en) | 2006-09-07 |
TWI281017B (en) | 2007-05-11 |
TW200619583A (en) | 2006-06-16 |
US20100018678A1 (en) | 2010-01-28 |
WO2006058494A1 (en) | 2006-06-08 |
EP1842021A1 (en) | 2007-10-10 |
JP2008522129A (ja) | 2008-06-26 |
CN101040162B (zh) | 2010-06-16 |
KR20070088618A (ko) | 2007-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101040162B (zh) | 带有具有沸腾增强作用的多重毛细结构的蒸汽室 | |
CN102130080B (zh) | 一种散热装置 | |
JP3779964B2 (ja) | 高性能沸騰表面および凝縮表面を備えたエレクトロニクス冷却用熱サイホン | |
CN101193531B (zh) | 散热装置 | |
CN108444324A (zh) | 一种均热板 | |
CN1257548C (zh) | 蒸发和冷凝制冷剂的冷却装置 | |
CN1668886A (zh) | 具有多芯结构的蒸汽增强散热器 | |
CN2834120Y (zh) | 自然空冷式被动循环微槽群相变散热系统 | |
CN1873360A (zh) | 环路式热交换装置 | |
CN1849049A (zh) | 扁形柱状热管 | |
CN1929727A (zh) | 一种远程被动式循环相变散热方法和散热系统 | |
CN212211744U (zh) | 散热器和通讯设备 | |
US11920868B2 (en) | Micro-channel pulsating heat pipe | |
CN2869741Y (zh) | 扁平热管散热器 | |
CN212458057U (zh) | 热超导散热板、散热器及5g基站设备 | |
CN1851911A (zh) | 微槽群集成热管散热器 | |
CN1697171A (zh) | 内含平行微流道的平板式热管 | |
CN2785322Y (zh) | 散热器 | |
CN113701532B (zh) | 三维相变散热装置 | |
CN211352907U (zh) | 一种热虹吸翅片板 | |
CN2566460Y (zh) | 具有多级散热结构的热管散热器 | |
CN111366018A (zh) | 半导体制冷用散热组件及半导体制冷设备 | |
RU105559U1 (ru) | Теплорассеивающее устройство (варианты) | |
CN1670950A (zh) | 外侧导流集成热管散热器 | |
CN218410825U (zh) | 多层分流增进吸热的导流板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1106576 Country of ref document: HK |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1106576 Country of ref document: HK |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100616 Termination date: 20151130 |
|
EXPY | Termination of patent right or utility model |