CN101029140B - 聚合物膜及其制备方法以及采用它的燃料电池 - Google Patents

聚合物膜及其制备方法以及采用它的燃料电池 Download PDF

Info

Publication number
CN101029140B
CN101029140B CN2007100058341A CN200710005834A CN101029140B CN 101029140 B CN101029140 B CN 101029140B CN 2007100058341 A CN2007100058341 A CN 2007100058341A CN 200710005834 A CN200710005834 A CN 200710005834A CN 101029140 B CN101029140 B CN 101029140B
Authority
CN
China
Prior art keywords
sulfonation
polymeric film
apertured polymeric
film
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007100058341A
Other languages
English (en)
Other versions
CN101029140A (zh
Inventor
马相国
柳永均
金度鈗
李珍珪
郑明燮
李在俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN101029140A publication Critical patent/CN101029140A/zh
Application granted granted Critical
Publication of CN101029140B publication Critical patent/CN101029140B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0293Matrices for immobilising electrolyte solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1034Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having phosphorus, e.g. sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/086Phosphoric acid fuel cells [PAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Conductive Materials (AREA)

Abstract

本发明提供一种聚合物膜及其制备方法,以及采用它的燃料电池。该聚合物膜包括具有磺化孔的多孔聚合物膜。该聚合物膜可以方便和经济地制备,具有优异的离子导电性,并且可以有效地降低燃料电池中的渗透。

Description

聚合物膜及其制备方法以及采用它的燃料电池
                         技术领域
本发明涉及聚合物膜及其制备方法,以及采用它的燃料电池。更具体地,本发明涉及可以容易地和经济地制备的聚合物膜及其制备方法,以及采用它的燃料电池,该聚合物膜具有优异的离子导电性,并有效地降低燃料电池中的渗透(crossover)。
                         背景技术
燃料电池是通过燃料与氧之间的电化学反应产生电能的装置。除了工业、家庭和运输应用之外,这种燃料电池还可以用作小型电气/电子设备,特别是便携式设备的电源。
依据所使用的电解质类型,燃料电池可分为聚合物电解质膜燃料电池(PEMFC),磷酸燃料电池(PAFC),熔融碳酸盐燃料电池(MCFC),固体氧化物燃料电池(SOFC),及其它类型的燃料电池。燃料电池的工作温度和构成材料依所使用的电解质的类型而变化。
燃料电池还可以分成外部重整器类型的燃料电池,其中燃料通过外部重整器转换成富氢气体之后提供给阳极,以及内部重整器类型的燃料电池或者直接燃料供给型的燃料电池,其中燃料以气体或液体状态直接提供给阳极。
直接液体燃料电池的代表性实例是直接甲醇燃料电池(DMFC)。DMFC使用甲醇水溶液作为燃料,使用具有离子导电性的质子交换聚合物膜作为电解质。因此,DMFC是一种PEMFC。
PEMFC体积小重量轻,却可以实现高能量密度。另外,利用PEMFC可以制造结构简单的产能系统。
基本的PEMFC可以包括阳极(燃料电极),阴极(氧化剂电极),及介于阳极和阴极之间的聚合物电解质膜。阳极可以包括促进燃料氧化的催化剂层。阴极可以包括促进氧化剂还原的催化剂层。
提供给阳极的燃料一般可以为氢,含氢气体,甲醇蒸汽与水蒸汽的混合物,甲醇水溶液等。提供给阴极的氧化剂一般可以为氧,含氧气体或者空气。
在PEMFC的阳极,燃料氧化产生质子和电子。质子经过电解质膜迁移至阴极,电子经过导线(或集电体)迁移至外电路(负载)。电子经过另一导线(或集电体)由外电路提供给阴极。在PEMFC的阴极,质子与电子和氧反应生成水。电子经过外电路由阳极到阴极的迁移产生电。
在PEMFC中,聚合物电解质膜充当质子从阳极迁移至阴极的离子导体,并且充当阻止阳极与阴极接触的隔板。因此,聚合物电解质膜在其工作温度下需要具有足够的离子导电性,电化学稳定性,高机械强度,及热稳定性,并且应当易于形成聚合物电解质膜的薄层。
一般地,用于形成聚合物电解质膜的材料包括磺化的全氟化聚合物,其主链具有氟化的亚烷基,侧链具有氟化的乙烯基醚,例如DUPONT制造的NAFION。聚合物电解质膜吸收适量的水并提供优异的离子导电性。
聚合物电解质膜具有优异的离子导电性,但是由于与离聚物簇相连的通道的直径大,所以燃料渗透较高。此外,聚合物电解质膜的机械性能差,因而采用该聚合物电解质膜的燃料电池容易弯曲。因此,难以利用该聚合物电解质膜制备燃料电池。而且,该聚合物电解质膜昂贵。
因此,已经开始研究,以寻求能够替代高价的磺化全氟化聚合物的聚合物膜。例如,日本专利待审公开第1995-050170号公开一种用于燃料电池的离子交换膜,其是由包含磺酸基的聚烯烃膜形成的。
然而,该离子交换膜需要包括辐射(如电子束辐射)的复杂制备方法,具有磺酸基的乙烯基化合物反应等。此外,难以容易和经济地制备具有优异离子导电性和低渗透性的聚合物电解质膜。
                         发明内容
本发明提供一种聚合物膜,其可以容易和经济地制备,具有优异的离子导电性,并且可以有效地降低燃料电池中的渗透;该聚合物膜的制备方法;及采用该聚合物膜的燃料电池。
根据本发明的一个方面,提供一种聚合物膜,其包含具有磺化孔(sulfonated pore)的多孔聚合物膜。
根据本发明的另一方面,提供一种制备聚合物膜的方法,该方法包括:制备多孔聚合物膜;将该多孔聚合物膜用磺化溶液浸渍,以得到具有磺化孔的多孔聚合物膜;及清洗和干燥所得到的多孔聚合物膜。
根据本发明又一方面,提供一种燃料电池,包括:阴极;阳极;及介于阴极和阳极之间的上述聚合物膜。
                         附图说明
通过参照附图详述其示例性实施方案,本发明的上述及其它特征和优点将会变得更加明了,附图中:
图1是根据本发明实施方案通过磺化多孔聚合物膜的孔来制备具有磺化孔的多孔聚合物膜的方法的示意图;
图2A和2B是根据本发明另一实施方案的制备聚合物膜的方法的示意图;
图3是根据本发明实施方案的燃料电池的示意图;
图4是根据实施例2和对比例1制备的多孔聚合物膜的红外(IR)光谱;及
图5A至图5C分别是硫酸溶液处理之前的多孔聚合物膜,于实施例2中制备的多孔聚合物膜,及于实施例4中制备的多孔聚合物膜的扫描电子显微镜照片。
                       具体实施方式
现将参照其中示出了其示例性实施方案的附图更具体地说明本发明。然而,本发明可以不同的形式具体化,而不应理解成仅限于本文中所阐述的实施方案;相反,提供这些实施方案的目的是为了使本公开内容详尽和完整,并全面地向本领域的技术人员传达本发明的构思。
根据本发明实施方案的聚合物膜包括具有磺化孔的多孔聚合物膜。
一般地,使用具有优异化学稳定性和导电性的磺化全氟化聚合物(例如DuPont制造的Nafion)等形成燃料电池中的聚合物电解质膜。然而,磺化的全氟化聚合物特别昂贵,并且与离聚物簇相连的孔具有较大的直径,允许高燃料渗透。此外,当该磺化的全氟化聚合物用于燃料电池时,该磺化的全氟化聚合物容易弯曲。
本实施方案的聚合物膜通过磺化低价的多孔聚合物膜,增加离子导电性并降低渗透,从而解决上述问题。
所述多孔聚合物膜可以为多孔的聚烯烃膜,更具体地,可以为多孔的聚乙烯膜,多孔的聚丙烯膜,或者它们的混合膜,但并不限于这些。
该多孔聚合物膜的孔的平均直径可以为10nm至10μm。该多孔聚合物膜的孔的总体积可以为多孔聚合物膜的总体积的10~90%。当多孔聚合物膜的孔的平均直径小于10μm或者当多孔聚合物膜的孔的总体积大于多孔聚合物膜的总体积的90%时,多孔聚合物膜的机械性能恶化,因而难于使用该多孔聚合物膜作为电解质膜。
聚合物膜的厚度可以为0.5~2000μm。当厚度小于0.5μm时,难以制得多孔聚合物膜。当厚度大于2000μm时,膜阻力太高。
一般地,随着用作燃料电池聚合物膜的常规材料的离子导电性的增加,其渗透性也增加。本发明的聚合物膜具有比广泛使用的常规聚合物膜如Nafion更好的离子导电性,同时又具有较低的渗透性。因此,本发明的聚合物膜的离子导电性与渗透性的比例,即离子导电性/渗透性,大于或等于常规聚合物膜如Nafion等的离子导电性与渗透性的比例。
本发明的聚合物膜具有其中磺酸基直接与碳链相连的结构。因此,当聚合物膜的碳原子与磺酸基相连时,不需要媒介化合物或基团。所以,本发明的聚合物膜的孔可以利用简单的方法进行磺化。
磺化孔可以包括下面的式1的烷烃磺酸基,式2的β-砜基,式3或4的烯烃磺酸基,式5的γ-砜基,或者式6的δ-砜基:
Figure A20071000583400081
Figure A20071000583400091
本发明的聚合物膜还可以包含涂布在多孔聚合物膜一侧或两侧的离子导电材料,以提高离子导电性或机械性能。该离子导电材料可以选自:磺化的全氟化聚合物,磺化的聚砜,磺化的聚苯乙烯,磺化的聚醚醚酮,磺化的聚苯并咪唑,磺化的聚酰亚胺,及磺化的聚磷腈,但并不限于这些。
根据本发明实施方案的制备聚合物膜的方法包括:制备多孔聚合物膜;将该多孔聚合物膜用磺化溶液浸渍;及清洗和干燥所得到的多孔聚合物膜。
图1是根据本发明实施方案通过磺化多孔聚合物膜的孔而制备具有磺化孔的多孔聚合物膜的方法的示意图。
参照图1,首先制备多孔聚合物膜。该多孔聚合物膜,如上所述,可以为多孔的聚烯烃膜,更具体地,可以为多孔的聚乙烯膜,多孔的聚丙烯膜,或者它们的混合膜,但并不限于这些。多孔聚合物膜的孔的平均直径可以为10nm至10μm。多孔聚合物膜的孔的总体积可以为多孔聚合物膜的总体积的10~90%。
磺化溶液是能够磺化多孔聚合物膜的溶剂或溶液。磺化溶液的实例包括浓度为90%重量或更大的硫酸,发烟硫酸,及氯磺酸,但并不限于这些。为了磺化溶液容易渗透到孔中,磺化溶液还可以包含选自下列的支撑性溶剂:二氯甲烷,二氯乙烷,氯仿,或者它们的混合物。
磺化溶液的量按100重量份的支撑性溶剂计可以为10~500重量份。
多孔聚合物膜的磺化溶液浸渍可以在室温至70℃的温度下进行0.1~24小时。当浸渍温度低于室温时,磺化用时过长。如果温度大于70℃,磺化时间过短,难以实现再现性。
如图1中所示,具有磺化孔的多孔聚合物膜是通过浸渍多孔聚合物膜制备的。然后,将该具有磺化孔的多孔聚合物膜清洗和干燥,得到聚合物膜。清洗可以利用去离子水等进行。
图2A和2B是根据本发明另一实施方案的制备聚合物膜的方法的示意图。在图2A中,将上述具有磺化孔的多孔聚合物膜用硫酸水溶液浸渍,制得具有稠密磺化孔的多孔聚合物膜。在图2B中,将离子导电材料涂布在上述具有磺化孔的多孔聚合物膜的表面或者上述具有稠密磺化孔的多孔聚合物膜的表面,制得离子导电性优异的具有磺化孔的多孔聚合物膜。
硫酸水溶液可具有30~50%重量的浓度,采用硫酸水溶液的浸渍可以在室温下进行。
根据本发明实施方案的燃料电池包括:阴极;阳极;置于阴极和阳极之间的上述聚合物膜。
阴极和阳极各自包括气体扩散层和催化剂层。催化剂层包含催化相关反应(氢的氧化和氧的还原)的金属催化剂。催化剂层可以包括至少一种选自下列的催化剂:铂,钌,锇,铂-锇合金,铂-钯合金,及铂-M合金,其中M包括至少一种选自Ga、Ti、V、Cr、Mn、Fe、Co、Ni、Cu和Zn的过渡金属。优选地,催化剂层包含铂,钌,锇,铂-钌合金,铂-锇合金,铂-钯合金,铂-钴合金,或者铂-镍合金。
此外,在催化剂层中可以使用担体担载的金属催化剂。所述担体可以是碳如乙炔黑或石墨,或者无机颗粒如氧化铝、氧化硅等。包含于担体中的贵金属,可以用作催化剂。这种情况下,其可从相关市场中购买,也可以通过用担体担载贵金属来制备。
气体扩散层可以为炭纸或炭布,但并不限于这些。在阳极和阴极中,气体扩散层提供支撑并将反应气体扩散至催化剂层,使得反应气体能够容易地到达催化剂层。此外,炭纸或炭布可涂有氟基树脂如聚四氟乙烯以呈疏水性。这种气体扩散层防止电池工作时产生的水所导致的气体扩散的恶化。
阳极和阴极可各自进一步包括微孔层以提高气体扩散层与催化剂层之间的气体扩散。微孔层由含有诸如碳粉、碳黑、乙炔黑等导电材料的化合物,诸如聚四氟乙烯等粘结剂,以及需要时的离聚物形成。
本实施方案的燃料电池可以是直接甲醇燃料电池(DMFC)。
下文中,将参照图3,说明根据本发明实施方案的DMFC。
参见图3,DMFC包括提供燃料的阳极32,提供氧化剂的阴极30,及介于阳极32与阴极30之间的聚合物电解质膜41。阳极32可包括阳极扩散层22和阳极催化剂层33,阴极30可包括阴极扩散层23和阴极催化剂层31。
经过阳极扩散层22传递至阳极催化剂层33的甲醇水溶液分解成电子、氢离子、二氧化碳等。氢离子经过聚合物电解质膜41传递至阴极催化剂层31,电子传递给外电路,及二氧化碳排放至外部。在阴极催化剂层31中,由聚合物电解质膜41传递而来的氢离子,由外电路提供的电子,及由阴极扩散层23传递而来的氧发生反应,形成水。
现将参照下面的实施例更详细地说明本发明。下面的实施例仅用于说明,而不是对本发明的范围的限制。
实施例1
将厚度为20μm、孔的平均直径为0.5μm的聚乙烯膜(Teklon制造)制成多孔聚合物膜,其中孔的总体积为聚乙烯膜的总体积的约70%。下一步,在60℃下用磺化溶液浸渍该聚乙烯膜3分钟,其中所述磺化溶液是由发烟硫酸(SO3,15%)和二氯甲烷按1∶1.5的体积比形成的。然后,在室温下将所得产物用50%的硫酸水溶液浸渍1分钟。将所得到的产物用去离子水清洗,然后在室温下干燥12小时,制得聚合物膜。
实施例2
按与实施例1相同的方式制备聚合物膜,所不同的是,聚乙烯膜在60℃下的浸渍进行6分钟。
实施例3
按与实施例1相同的方式制备聚合物膜,所不同的是,聚乙烯膜在60℃下的浸渍进行9分钟。
实施例4
按与实施例1相同的方式制备聚合物膜,所不同的是,聚乙烯膜在60℃下的浸渍进行12分钟。
实施例5
按与实施例2相同的方式制备聚合物膜,所不同的是,利用恒温箱,将浸渍聚乙烯膜于磺化溶液中的产物在80℃下干燥12小时。
实施例6
按与实施例2相同的方式制备聚合物膜,所不同的是,在聚乙烯膜用磺化溶液于60℃下浸渍6分钟之后,将所得产物用NafionTM溶液(重量比17%)浸渍1分钟。然后,将所得产物用去离子水清洗,制得多孔聚合物膜两侧涂有离子导电材料的聚合物膜。
对比例1
按与实施例1相同的方式制备聚合物膜,所不同的是,聚乙烯膜在室温下用磺化溶液浸渍19小时。
对比例2
得到商用电解质膜,Nafion 117(DuPontTM制造)。
图4是于实施例2和对比例1中制备的多孔聚合物膜的红外(IR)光谱。参见图4,虽然在对比例1中进行19个小时的磺化,这时间远比实施例2的6分钟长,但是IR光谱表明,对比例1的磺化度远比不上实施例2的磺化度。
此外,比较下面表1中所示的实施例2和5的结果,当干燥温度增加时,离子导电性略微降低,同时渗透性却显著地降低。因此,当干燥温度较高时,作为电解质膜的聚合物膜的性质较优。
图5A至图5C分别是硫酸溶液处理之前的多孔聚合物膜,于实施例2中制备的多孔聚合物膜,及于实施例4中制备的多孔聚合物膜的扫描电子显微镜照片。参照图5A至图5C,随着磺化时间的增加,多孔聚合物膜的孔的尺寸降低。
实施例1~6以及对比例2的离子导电性,渗透性,及离子导电性与渗透性的比例示于下面的表1中。
                              表1
聚合物膜   离子导电性(S/cm)   渗透性(cm2/sec)   离子导电性/渗透性
  实施例1   1.46×10-3   5.22×10-7   2.81×103
  实施例2   1.61×10-3   3.71×10-7   4.33×103
  实施例3   1.99×10-3   4.84×10-7   4.12×103
  实施例4   3.14×10-3   5.64×10-7   5.57×103
  实施例5   1.13×10-3   1.40×10-7   8.05×103
  实施例6   5.70×10-2   7.70×10-7   7.40×103
  对比例2   2.00×10-2   3.70×10-7   5.40×103
如表1中所示,根据本发明实施方案的聚合物膜,如Nafion等常规聚合物膜一样,具有良好的离子导电性,但是却具有较低的渗透性。
本发明的聚合物膜可以容易和经济地制备,具有优异的离子导电性,并且可以有效地降低燃料电池中的渗透。
尽管已经参照其示例性实施方案具体地给出和说明了本发明,但是本领域的技术人员应当理解,在不脱离权利要求书中所定义的本发明的构思和范围的情况下,可以在形式和内容上对本发明作出各种改变。

Claims (12)

1.一种制备聚合物膜的方法,该方法包括:
制备多孔聚合物膜;
将该多孔聚合物膜用磺化溶液浸渍,以得到具有磺化孔的多孔聚合物膜;及
清洗和干燥所得到的具有磺化孔的多孔聚合物膜,
将所得到的具有磺化孔的多孔聚合物膜浸渍在硫酸水溶液中。
2.根据权利要求1的方法,其中所述多孔聚合物膜为多孔的聚烯烃膜。
3.根据权利要求2的方法,其中所述多孔的聚烯烃膜为多孔的聚乙烯膜,多孔的聚丙烯膜,或者它们的混合膜。
4.根据权利要求1的方法,其中所述磺化孔的平均直径为10nm至10μm,而且所述磺化孔的总体积为多孔聚合物膜的总体积的10~90%。
5.根据权利要求1的方法,其中所述磺化溶液包含浓度为90%重量或更大的硫酸,发烟硫酸,或者氯磺酸。
6.根据权利要求5的方法,其中所述磺化溶液还包含选自下列的支撑性溶剂:二氯甲烷,二氯乙烷,氯仿,及其混合物。
7.根据权利要求6的方法,其中所述磺化溶液的量按100重量份的支撑性溶剂计为10~500重量份。
8.根据权利要求1~7中任一项的方法,还包括,在将多孔聚合物膜用磺化溶液浸渍或者将所得到的具有磺化孔的多孔聚合物膜浸渍在硫酸水溶液中之后,在该多孔聚合物膜的表面涂布离子导电材料。
9.根据权利要求1的方法,其中所述硫酸水溶液的浓度为30~50%。
10.根据权利要求1的方法,其中所述聚合物膜的厚度为0.5~2000μm。
11.根据权利要求1的方法,其中所述磺化孔包含下面式1的烷烃磺酸基,式2的β-砜基,式3或4的烯烃磺酸基,式5的γ-砜基,或者式6的δ-砜基:
Figure FSB00001002095000021
12.根据权利要求8的方法,其中所述离子导电材料包括至少一种选自下列的材料:磺化的全氟化聚合物,磺化的聚砜,磺化的聚苯乙烯,磺化的聚醚醚酮,磺化的聚苯并咪唑,磺化的聚酰亚胺,及磺化的聚磷腈。
CN2007100058341A 2006-02-23 2007-02-25 聚合物膜及其制备方法以及采用它的燃料电池 Expired - Fee Related CN101029140B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR17877/06 2006-02-23
KR1020060017877A KR101312262B1 (ko) 2006-02-23 2006-02-23 고분자막, 그 제조방법 및 이를 채용한 연료전지

Publications (2)

Publication Number Publication Date
CN101029140A CN101029140A (zh) 2007-09-05
CN101029140B true CN101029140B (zh) 2013-04-24

Family

ID=38428611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100058341A Expired - Fee Related CN101029140B (zh) 2006-02-23 2007-02-25 聚合物膜及其制备方法以及采用它的燃料电池

Country Status (4)

Country Link
US (1) US20070196714A1 (zh)
JP (1) JP2007224300A (zh)
KR (1) KR101312262B1 (zh)
CN (1) CN101029140B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101394624B1 (ko) 2010-08-13 2014-05-14 에스케이이노베이션 주식회사 폴리올레핀계 미세다공막 기재의 공극이 보호된 다층 복합 다공막 및 그 제조방법
KR101582024B1 (ko) * 2014-01-15 2015-12-31 주식회사 효성 곁가지에 술폰화기를 지닌 폴리올레핀케톤, 이를 이용한 수처리 분리막 및 연료전지용 고분자 전해질막
CN104530451B (zh) * 2014-10-11 2017-05-03 江苏大学 一种织构化聚醚醚酮/聚酰亚胺复合薄膜的仿生制备方法
KR101639536B1 (ko) 2015-12-21 2016-07-13 한국에너지기술연구원 강화복합막 및 이의 제조방법
EP3761422A4 (en) * 2018-02-28 2022-01-26 Kolon Industries, Inc. ION EXCHANGE MEMBRANE AND ENERGY STORAGE DEVICE COMPRISING THE SAME

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416186A (zh) * 2001-10-29 2003-05-07 中国科学院大连化学物理研究所 燃料电池用质子交换膜复合膜制备方法
CN1694290A (zh) * 2005-05-20 2005-11-09 武汉理工大学 高温质子交换膜燃料电池用复合质子交换膜及制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657836A (en) * 1979-10-16 1981-05-20 Asahi Chem Ind Co Ltd Porous hydrophilic polyolefin resin membrane and its preparation
JPS5938242A (ja) * 1982-08-27 1984-03-02 Asahi Chem Ind Co Ltd アニオン荷電ポリオレフィン樹脂多孔膜
JPS644626A (en) * 1987-06-26 1989-01-09 Toray Industries Preparation of porous polyethylene cation-exchange membrane
JPH022863A (ja) * 1988-12-14 1990-01-08 Asahi Chem Ind Co Ltd アニオン荷電ポリオレフイン樹脂多孔膜の製造方法
FR2694571B1 (fr) * 1992-08-10 1994-11-04 Rhone Poulenc Chimie Polypeptides possédant une activité nitrilase, séquence d'ADN codant pour lesdits polypeptides, cassettes d'expression et micro-organismes hôtes permettant leur obtention.
JPH10330521A (ja) * 1997-06-02 1998-12-15 Mitsui Chem Inc ポリオレフィン多孔フィルムおよびその用途
US6248469B1 (en) * 1997-08-29 2001-06-19 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
US6351370B1 (en) * 1998-03-19 2002-02-26 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US7550216B2 (en) * 1999-03-03 2009-06-23 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
JP2000297164A (ja) * 1999-04-13 2000-10-24 Asahi Chem Ind Co Ltd イオン交換膜およびその製造方法
JP2001294705A (ja) * 2000-04-12 2001-10-23 Nitto Denko Corp プロトン伝導性多孔性膜とそれより得られるプロトン伝導性フィルム
DE10201886B4 (de) * 2001-01-19 2014-01-23 Honda Giken Kogyo K.K. Polymerelektrolytmembran sowie Verfahren zur Herstellung dieser und Festpolymerelektrolytbrennstoffzelle, welche diese verwendet
JP2003031198A (ja) * 2001-07-12 2003-01-31 Nitto Denko Corp 電池用セパレータ
US20040009305A1 (en) * 2002-07-12 2004-01-15 Ballard Power Systems Inc. Process for preparing graft copolymer membranes
JP4529494B2 (ja) * 2003-04-17 2010-08-25 ソニー株式会社 酸素還元触媒の製造方法
US8574664B2 (en) * 2008-09-02 2013-11-05 General Electric Company Electrolyte membrane, methods of manufacture thereof and articles comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416186A (zh) * 2001-10-29 2003-05-07 中国科学院大连化学物理研究所 燃料电池用质子交换膜复合膜制备方法
CN1694290A (zh) * 2005-05-20 2005-11-09 武汉理工大学 高温质子交换膜燃料电池用复合质子交换膜及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP昭59-38242A 1984.03.02

Also Published As

Publication number Publication date
CN101029140A (zh) 2007-09-05
US20070196714A1 (en) 2007-08-23
JP2007224300A (ja) 2007-09-06
KR101312262B1 (ko) 2013-09-25
KR20070087454A (ko) 2007-08-28

Similar Documents

Publication Publication Date Title
US9537156B2 (en) Method for making membrane-electrode assembly for fuel cell and method for making fuel cell system comprising the same
US8512915B2 (en) Catalyst composite material fuel cell, method for preparing the same, membrane-electrode assembly comprising the same, and fuel cell system comprising the same
KR101233343B1 (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법 및 이를포함하는 연료 전지 시스템
US8808943B2 (en) Membrane electrode assembly including porous catalyst layer and method of manufacturing the same
US8257825B2 (en) Polymer electrode membrane for fuel, and membrane-electrode assembly and fuel cell system comprising the same
TWI423511B (zh) 有機無機混成之質子交換膜
US20110097651A1 (en) Membrane Electrode Assembly (MEA) Fabrication Procedure on Polymer Electrolyte Membrane Fuel Cell
CN105142778A (zh) 催化剂以及使用该催化剂的电极催化剂层、膜电极接合体及燃料电池
KR20080102938A (ko) 다공성 전극 촉매층을 갖는 막 전극 접합체, 그 제조 방법및 이를 채용한 연료전지
WO2002023646A2 (en) Improved membrane electrode assemblies using ionic composite membranes
CN101029140B (zh) 聚合物膜及其制备方法以及采用它的燃料电池
US20060003211A1 (en) Non-humidified polymer electrolyte
US20080145732A1 (en) Proton Exchange Fuel Cell
KR20070098136A (ko) 연료 전지용 막-전극 어셈블리 및 이를 포함하는 연료 전지시스템
KR100658739B1 (ko) 연료전지용 고분자 전해질막 및 그 제조방법
KR100696680B1 (ko) 연료전지용 고분자 전해질막 및 그 제조방법
KR20070023706A (ko) 액상 조성물, 그 제조 방법 및 고체 고분자형 연료 전지용막 전극 접합체의 제조 방법
KR20110007350A (ko) 연료전지용 고분자 전해질 막 및 이를 포함하는 저가습 막전극 집합체
JP2009070584A (ja) 膜電極接合体および燃料電池
EP1576683B1 (en) Fuel cell and membrane-electrode assembly thereof
KR20080047765A (ko) 연료전지용 막-전극 어셈블리, 이의 제조방법, 및 이를포함하는 연료전지 시스템
KR20090039423A (ko) 연료전지용 막-전극 어셈블리 및 이를 포함하는 연료전지시스템
KR100823503B1 (ko) 연료전지용 고분자 전해질 막, 이의 제조방법, 이를포함하는 연료전지용 막-전극 어셈블리 및 연료전지 시스템
KR20230080960A (ko) 이온전도체 분산액, 이로부터 제조된 고분자 전해질 막, 막-전극 어셈블리 및 연료전지
CN115039262A (zh) 聚合物电解质膜和包括该聚合物电解质膜的膜-电极组件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130424

Termination date: 20180225

CF01 Termination of patent right due to non-payment of annual fee