CN1007565B - 半导体器件的制造方法和系统 - Google Patents

半导体器件的制造方法和系统

Info

Publication number
CN1007565B
CN1007565B CN87104657A CN87104657A CN1007565B CN 1007565 B CN1007565 B CN 1007565B CN 87104657 A CN87104657 A CN 87104657A CN 87104657 A CN87104657 A CN 87104657A CN 1007565 B CN1007565 B CN 1007565B
Authority
CN
China
Prior art keywords
gas
magnetic field
vacuum chamber
semiconductor
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN87104657A
Other languages
English (en)
Other versions
CN87104657A (zh
Inventor
山崎舜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP60253299A external-priority patent/JP2654433B2/ja
Priority claimed from JP60259194A external-priority patent/JPH0766911B2/ja
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN87104657A publication Critical patent/CN87104657A/zh
Publication of CN1007565B publication Critical patent/CN1007565B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/203Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using physical deposition, e.g. vacuum deposition, sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32321Discharge generated by other radiation
    • H01J37/32339Discharge generated by other radiation using electromagnetic radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32678Electron cyclotron resonance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02535Group 14 semiconducting materials including tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/931Silicon carbide semiconductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/935Gas flow control

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本文示出了一种改进的半导体器件的制作系统和方法。在此系统中,借助ECR系统和CVD系统的联合可以避免有害的溅射效应。在用联合系统淀积之前,在反应室内可以在基片上预形成一个子层,在不接触大气的情况再传递到用联合系统进行淀积的另一个反应室,以使得这样形成的结有良好的特性。

Description

本发明涉及半导体器件的一种制造方法和系统,特别是涉及半导体器件的一种多反应室系统的制造工艺。
用单一的辉光放电激发反应气体的等离子CVD(化学汽相淀积)系统已是公知的。该工艺比常规的热CVD系统有显著的优越性,在常规热CVD系统中在比较低的温度下即可实现淀积工艺。而且,这样形成的淀积层包括作为复合中和剂的氢和卤素,可使淀积层得到改进了的PN、NI或PI结。
然而,这种辉光放电CVD系统的淀积速度是很低的,按商业实用价值观,还要把速度提高10~500倍。
另一方面,一种由ECR(电子迴旋共振)增强的CVD系统也是公知的,在此系统中淀积工艺是在低于1×10-2乇,例如1×10-2~1×10-5乇的气压下进行的。根据此系统,可以10~100埃/秒的速率来淀积5000埃~10微米厚的淀积层。然而,要淀积多层时,则要花费相当长的时间。
所以,本发明的目的在于提供一种制造半导体的方法和系统,制作出具有优质结的半导体器件。
本发明的另一个目的在于提供一种能进行大量生产的制作半导体的方法和系统
本发明的再一个目的是提供一种工艺时间短的制作半导体的方法和系统。
图1是一个ECR增强CVD系统的剖视图。
图2是本发明的一个实施例的剖视图。
根据本发明,非生产用的气体,如氩气被电子迴旋共振赋能。被激发的非生产用的气体可把它的一部分能转交给生产用的气体,并在一个辉光放电CVD系统内分解,这样可以将本征层无溅射效应地淀积在已形成在基片上的一个子层(杂质半导体层)之上。就是说,大大缓和了辉光放电由溅射效应引起的对基片的损伤的趋势。
淀积可以在多室系统内进行,用该系统可使基片不接触大气,依次地进行多层淀积。其结果可以防止对结的污染,避免结遭受低氧化和低氮化。
还有,把ECR系统与辉光放电CVD系统联合使用,可以实现高工作速度的淀积,并获得优质产品。
淀积是在低气压10-5~10-2乇下,最好是在10-4~10-3乇下进行,这种气压比已有技术所用的气压0.1~0.5乇低得多。低气压可以减少对下一步淀积工艺在反应室内残留下的剩余气体,这就可以简化包括多次淀积工序的制作工艺,避免在下一步淀积之前充分抽空反应室然后打开一个将反应室隔开的阀门的常规步骤。
作为生产用的气体可采用硅化物气体,诸如,SinH2n+1(n≥1),SiFn(n≥2),SiHnF4-n(1<n<4)或Si(CH3nH4-n(n=1,2,3),锗的化合物,诸如,GeH4,GeF4或GeHnF4-n(n=1,2,3)或锡的化合物,诸如,SnCL4,SnF2或SnF4
此外,可加入掺杂气体,诸如,B2H6,BF3或PH3作添加物,来制作杂质半导体层。
现在参照图1,表明了采用依本发明的一个系统的等离子增强CVD系统。反应室1在其垂直于附图纸面的两侧兼备一个进料室和一个卸料室(图中未示出)。反应室与进料室及卸料室通过闸门阀相互连通。在进料室和卸料室之间,反应空间环绕以不锈钢和/或绝缘体制成的衬套31和31′,以使被激发的反应气体不扩展到结构的内壁,也不聚集使这样的淀积层脱皮的产物。衬套31是用五个基片夹持器10′形成的,并可拿开和安排在如图所示的反应室1之内。基片10被固定在每个夹持器10′的两侧。对于中间的反应室来说,卤素灯丝7用来照射衬套31,而夹持器10′上的基片是用红外灯照射的。衬套31′与衬套30一起形成及装配,构成密封,使三个衬套彼此嵌平。而且,在反应空间1的上下两侧配备了一对网状栅20和20′。用电源6对栅极20和20′施加一个13.56兆赫的交流电场,或在网状电极20和20′之间加一个直流电场,就能产生辉光放电。
在该反应室之上形成一个共振空间,大小与共振室2的内部空间一致。通过管道18将一种非生产用气体通入反应空间。用无激磁铁芯的线圈S和S′,一个围绕本实施例的共振空间的亥姆霍兹(探向)线圈5和5′,该共振空间被施加一个磁场。在共振室2的周围配置一个冷却系统12。而且,用微波振荡器3产生的微波通过隔离器4经过一个人造石英制作的窗口辐照到共振空间。氩气作为非生产用的气体被通入该空间并被激发。在此情况下,磁场的大小选取在875高斯。磁场的大小和微波的频率一般根据待激发的非生产用的气体分子的重量来确定。
按此方式,如此被激发的氩气被磁场收缩并在背景磁场下与微波共振。被激发的氩气通过抽取栅2′转到反应空间1。在栅极2和共 振空间之间有一个缓冲空间30和多孔喷嘴23,通过该喷嘴将生产用的气体通入整个反应空间。生产用的气体是用被激发的非生产用的气体混合的,并从非生产气体接收能量而被激发。网状栅20的作用也是一个均化器,以防止被激发的气体倒流。当衬套是用绝缘体制作的情况下,用一对绝缘栅作均化器,并配备多个电极,以产生电子放电。
因此,电子和被激发的气体21下降到整个反应室。即使共振空间和基片表面之间有相当大的距离,来自共振气体的被激发态的气体仍然处于基片附近。当单独使用已有技术的迴旋共振时,上述的距离选取在大约5~15厘米。当共振空间与基片之间的一个短距离减少了被激发气体的能量损耗时,它就会使淀积层不平坦。
另外,为了使反应气体扩展到整个反应室1,并建立一个迴旋共振,共振空间和反应室间的压力例如选取在1×10-3~1×10-4乇,3×104乇。通过控制阀门12与涡轮泵14的配合来控制真空泵9的抽气速率,以实现对压力的调节。
实验例1
本实验例是为用上述系统制备一种非晶硅层而进行的
就是说,本实验例是在高40厘米,长和宽均为50厘米的反应室内进行的,在其内可形成一个高为30厘米,长和宽均为35厘米的反应空间。基片10安装在夹持器31上。当压力为3×10-4乇时,将氩气作为一种非生产用气体通过管道18,以200厘米3/分的速率通入到反应空间1。再通过管道16,以80厘米3/分的速率引入甲硅烷气体。除此之外,同时把用SiH4稀释的B2H6气体漏泄到百万分之0.1~百万分之10,如果需要,以制作一个 大体上为本征的半导体。从电源6提供一个初始的40瓦的高频电能。再加一个频率为2.45千兆赫的,200~800瓦,最好是400瓦的微波。磁场大小选取875±100高斯。
基片10具有一个透明的导电层。用抽气系统11抽掉无用气体的期间,在基片10上淀积一层非单晶半导体层,例如,非晶硅半导体层,其基片温度为250℃。淀积速度为45埃/秒。该淀积速度比单用等离子CVD的淀积速度1.5埃/秒大30倍。
所得的没有掺杂的非晶硅层的电学特性如下,暗电导率:4×10-10西(门子)/厘米;光电导率:6×10-5西(门子)/厘米(AM:100毫瓦/厘米2)。该电导率与用等离子CVD淀积系统得到的参数相当。当用PIN结制作太阳电池时,I层是依此实验例的方法制备的,可以预期,其转换效率也是高的。
实验例2
本实验例是为说明淀积一个P型非单晶半导体SiXC1-X(0<X<1)而进行的。本实验例的制备条件与前一个实验例大致相同,下面仅对不同之处加以阐明。
把作为生产用的气体,一种由H2Si(CH32∶SiH4=1∶7的混合反应气体和B2H6∶SiH4=5∶1000的混合气体通入到反应空间1。微波振荡器3的输出功率为300瓦。在压力为3×10-4托下,将基片温度保持在180℃。结果,得到的光学能带宽度为2.4电子伏特,暗电导率为3×106西(门子)/厘米。
实验例3
本实验例是为制备N型微晶半导体而做的。在本实验例中,只给出与实验例1不同之处的说明。
也就是说,通入的生产用气体为SiH4∶H2=1∶5~1∶40,最好为1∶30,压力为3×10-4乇。微波振荡器的输出功率为400瓦。基片温度为250℃。结果,得到的光学能带宽度为1.65电子伏特,电导率为50西(门子)/厘米
因为既使微波功率高,ECR系统也没有溅射效应,所以平均晶粒尺寸趋于增大,使淀积层变得更加多晶化,使得当速度仅为辉光放电等离子CVD系统的50%时,晶化速率就增加到70%。另外,既使反应气体SiH4∶H2=1∶5~1∶40,根据本实验例所形成的半导体层具有精细制备的微晶结构。
实验例4
在本实施例中,淀积一层SiO2-X(0≤X<2)或Si3N4-X(0≤X<4)层。与实验例1相同的说明不加赘述。
氧气和氮气与氩气一起被通入共振空间。把SiH4通过管道16也通入到反应室1。通入的氧气与通入的SiH4之比,或氮气与SiH4之比决定了X之值。当希望X=0,对应于SiO2或Si3N4时,通入与SiH4等量的氧气或氮气。
现在参照图2,给出了本发明的实施例。本实施例的一个目的在于用一个多反应室系统制作具有PIN结或NIP结的半导体层。
多室系统由五个部分构成。第一部分Ⅰ是送料室1′-1。第二部分Ⅱ是第二室1′-2,如专用于淀积P型层。第三部分Ⅲ是第三室1′-3,如专用于淀积Ⅰ型层。第四部分Ⅳ是第四室1′-4, 例如专用于淀积N型层。第五部分Ⅴ是一个卸料室1′-5。欲制作NIP结,将第二部分同第四部分对换。
每一个反应室都配备一个掺杂系统13-1,13-2,…………或13-5和一个备有涡轮分子泵14-1,14-2,…………或14-5的抽气系统11和真空泵9-1,9-2,…………或9-5。中间的三个反应室各自由反应空间1-2,1-3或1-4形成。第二部分Ⅱ是一个光CVD系统,它备有一个水银灯40和卤素灯,安装在与附图纸面垂直的、反应室中间的两侧。第三部分和第四部分是ECR增强CVD系统,每个系统结构均与图1相同,并备有一个亥姆霍兹(探向)线圈5-3或5-4和一个微波振荡器(图中未示出)。虽然氩气被用作共振气体,但也可用氢气。对于使用氢气的情况,磁场大小必须按与分子重量成反比地增大。
每相毗邻的反应室之间安装一个闸门阀25-2,25-3…………或25-5。通过已打开的阀门,可将基片夹持器31从一个反应室传递到另一个反应室。在进行淀积时,阀门当然是保持关闭的。然而在淀积期间,送入阀门25-1和取出阀门25-6是打开的,以便把一个装在夹持器上的新基片从送入阀门供给送料室1′-1,并把已在反应室1′-2,1′-3和1′-4淀积后的基片取出。
反应空间1-3和1-4的淀积工艺,按实验例1、实验例2或实验例3进行。在反应空间1-2、1-3和1-4完成淀积之后,暂停供应生产用气体和微波辐射源,当阀门25-1和25-6关闭时,用传递装置(图中未示出),把基片夹持器31传递给毗邻的反应室。在不抽取该反应室内部气体的情况下可很快地实现。共振气体氩气可以连续,也可以不连续地通入。在完成传递之后,关闭阀门25 -2,至25-5,分别在反应室1′-2,1′-3和1′-4内进行下一步淀积工艺。只有牢记上述工艺才能容易理解到:如此淀积的半导体对P-I结和I-N结的沾污和氧化比用先有技术辉光放电等离子CVD系统形成的半导体的都小。
如此形成的太阳电池的转换效率为12.9%;开路电压为0.92伏;短路电流密度为18.4毫安/厘米2;有效面积为1.05厘米2。之所以有这样高的转换效率是因为在ECR CVD系统内没有发生反应气体的溅射。再有,高转换效率的另一个原因,可以认为淀积期间反应室内的气压是1×10-3~1×10-5乇,3×10-4乇,低于辉光放电等离子系统的气压,并且在淀积之后能用涡轮泵在只用此辉光放电CVD系统所需时间小100倍的极短时间内抽出杂质气体和反应气体。
在本实施例中,闸门阀25-3和25-4可以从系统中省掉。在这种情况下,在两个反应室之间形成一个隔离区,以改进系统的生产率。毗邻的反应室基本上被夹持器31侧壁所隔开。
按照这个改进所制作的太阳电池的转换效率为12.6%;开路电压为0.93伏;短路电流密度为18.3毫安/厘米2;填充系数为0.81;其面积为1.05厘米2。除节省成本之外,还可省去两个阀门25-3和25-4,并可在5分钟之内把夹持器传递给毗邻的反应室,增加了通过量。
再有,依本实施例,用放大倍数为100的显微镜,在暗场中只观察到1~3个φ0.1~0.01微米的针孔,它是用辉光放电法淀积的层中观察到的1/10。
将本发明用于薄膜型绝缘栅FET工艺也是很方便的。在此情况下, 第二部分Ⅱ专用于形成半导体层的反应空间。第三部分Ⅲ专用做形成氮化硅层的反应空间。第四部分Ⅳ专用做形成二氧化硅层的反应空间。各步形成工艺大致与前述工艺相同。
尽管,对几个实施例做了说明,但本发明只应受所附的权利要求所限定,而不应受实际举例所限制。下面是对本发明的改进和变化的例子。
辉光放电CVD系统可用来做为本实施例中的第一部分Ⅰ而不是光增强CVD系统。
本发明还可应用到光发射MIS,超晶格光发射器件等等。另外,将本发明用于其它半导体激光器或光集成电路器件也是很有利的。
虽然本实施例中的ECR系统备有一个辉光放电系统,但也可以把一个光增强系统与ECR系统配合使用。在此情况下,一个波长为100毫微米~400毫微米的准分子激光器、氩激光器、氮激光器等等可用做发光的光源。
可用乙硅烷或甲硅烷与SiF2的混合物做生产用的气体,以期更进一步地改进淀积速度。
基片用硅半导体、玻璃、人造树脂、不锈钢或在其上可制备电极的其它材料来做。
SiXGe1-X(0<X<1)、SiXSn1-X(0<X<1)、CXGe1-X(0<X<1)或它们本征的或掺杂的半导体皆可用做待淀积的半导体
有夹持多个基片能力的、如图1所示的基片夹持器可用于如图2所示的多反应室系统。

Claims (7)

1、一半导体器体制造系统包括:
一个具有一共振空间和一反应空间的真空室;
用于把所述共振空间置于一磁场的磁场感应装置;
用于输入微波到所述共振空间的一微波源;
用于把包括生产气体和非生产气体的处理气体引入到所述真空室的装置;以及
用于抽空所述真空室的装置;
所述的系统其特征在于,所述的抽空装置是由一个真空泵和涡轮分子泵组成,所述真空泵用于粗抽空,所述涡轮分子泵用于高真空抽空。
2、根据权利要求1所述的系统,其特征在于所述的引入气体装置是由输入所述非生产气体到所述共振空间的第一引入系统和输入所述生产气体到所述反应空间的第二引入系统组成。
3、用化学汽相反应制造半导体器件的方法包括的步骤有;
用抽空装置抽空真空室;
将一包括生产气体和非生产气体的处理气体引入到所述真空室;
将所述处理气体加到磁场;
施加一微波到所述处理气体,以激励所述的处理气体和在磁场存在的情况下给带电粒子供能;以及
借助于赋能粒子的能量实现硅和碳的化学汽相反应;
所述方法其特征在于:所述的化学汽相反应是在一负压情况下实施的,该负压由一真空泵和一涡轮分子泵保持在小于10-2到10-5托。
4、根据权利要求3的方法,其特征在于所述生产气体是一硅烷和甲基硅烷的混合物。
5、根据权利要求4的方法,其特征在于所述的甲基硅烷是二甲基硅烷。
6、根据权利要求5的方法,其特征在于用引入作为一掺杂气体的硼化合物气体以将所述的碳化硅半导体形成为P型半导体。
7、根据权利要求6的方法,其特征在于所述的硼化合物气体是用硅烷气体稀释的乙硼烷。
CN87104657A 1985-11-12 1987-07-04 半导体器件的制造方法和系统 Expired CN1007565B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP60253299A JP2654433B2 (ja) 1985-11-12 1985-11-12 珪素半導体作製方法
JP253299/85 1985-11-12
JP60259194A JPH0766911B2 (ja) 1985-11-18 1985-11-18 被膜形成方法
JP259194/85 1985-11-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN86107683 Division 1987-07-04

Publications (2)

Publication Number Publication Date
CN87104657A CN87104657A (zh) 1987-12-16
CN1007565B true CN1007565B (zh) 1990-04-11

Family

ID=26541131

Family Applications (3)

Application Number Title Priority Date Filing Date
CN86107683A Expired - Lifetime CN1029442C (zh) 1985-11-12 1986-11-12 半导体器件的制造方法和系统
CN87104657A Expired CN1007565B (zh) 1985-11-12 1987-07-04 半导体器件的制造方法和系统
CN87104656.3A Expired CN1005881B (zh) 1985-11-12 1987-07-04 半导体器件的制造方法和系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN86107683A Expired - Lifetime CN1029442C (zh) 1985-11-12 1986-11-12 半导体器件的制造方法和系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN87104656.3A Expired CN1005881B (zh) 1985-11-12 1987-07-04 半导体器件的制造方法和系统

Country Status (5)

Country Link
US (2) US4808554A (zh)
EP (2) EP0224360B1 (zh)
KR (3) KR910003169B1 (zh)
CN (3) CN1029442C (zh)
DE (1) DE3684759D1 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784033B1 (en) 1984-02-15 2004-08-31 Semiconductor Energy Laboratory Co., Ltd. Method for the manufacture of an insulated gate field effect semiconductor device
US5780313A (en) * 1985-02-14 1998-07-14 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US5753542A (en) * 1985-08-02 1998-05-19 Semiconductor Energy Laboratory Co., Ltd. Method for crystallizing semiconductor material without exposing it to air
US6230650B1 (en) 1985-10-14 2001-05-15 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD system under magnetic field
US6673722B1 (en) 1985-10-14 2004-01-06 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD system under magnetic field
KR910003742B1 (ko) * 1986-09-09 1991-06-10 세미콘덕터 에너지 라보라터리 캄파니 리미티드 Cvd장치
US5258364A (en) * 1987-10-07 1993-11-02 Semiconductor Energy Laboratory Co., Ltd. Method of shaping superconducting oxide material
US5179073A (en) * 1987-10-07 1993-01-12 Semiconductor Energy Laboratory Co., Ltd. Method of shaping superconducting oxide material
JPH067594B2 (ja) * 1987-11-20 1994-01-26 富士通株式会社 半導体基板の製造方法
GB2213835B (en) * 1987-12-18 1992-07-08 Gen Electric Co Plc Deposition apparatus
US4971667A (en) * 1988-02-05 1990-11-20 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method and apparatus
JPH01239919A (ja) * 1988-03-22 1989-09-25 Semiconductor Energy Lab Co Ltd プラズマ処理方法およびプラズマ処理装置
DE58904540D1 (de) * 1988-03-24 1993-07-08 Siemens Ag Verfahren und vorrichtung zum herstellen von aus amorphen silizium-germanium-legierungen bestehenden halbleiterschichten nach der glimmentladungstechnik, insbesondere fuer solarzellen.
US5407867A (en) * 1988-05-12 1995-04-18 Mitsubishki Denki Kabushiki Kaisha Method of forming a thin film on surface of semiconductor substrate
US5174881A (en) * 1988-05-12 1992-12-29 Mitsubishi Denki Kabushiki Kaisha Apparatus for forming a thin film on surface of semiconductor substrate
US5232868A (en) * 1988-10-04 1993-08-03 Agency Of Industrial Science And Technology Method for forming a thin semiconductor film
US4962063A (en) * 1988-11-10 1990-10-09 Applied Materials, Inc. Multistep planarized chemical vapor deposition process with the use of low melting inorganic material for flowing while depositing
US5112776A (en) * 1988-11-10 1992-05-12 Applied Materials, Inc. Method for planarizing an integrated circuit structure using low melting inorganic material and flowing while depositing
US5152866A (en) * 1989-01-13 1992-10-06 Hughes Aircraft Company Plasma/radiation assisted molecular beam epitaxy method
NL8900469A (nl) * 1989-02-24 1990-09-17 Imec Inter Uni Micro Electr Werkwijze en toestel voor het aanbrengen van epitaxiaal silicium en silicides.
EP0416774B1 (en) * 1989-08-28 2000-11-15 Hitachi, Ltd. A method of treating a sample of aluminium-containing material
JP2948842B2 (ja) * 1989-11-24 1999-09-13 日本真空技術株式会社 インライン型cvd装置
EP0478233B1 (en) * 1990-09-27 1996-01-03 AT&T Corp. Process for fabricating integrated circuits
US5707692A (en) * 1990-10-23 1998-01-13 Canon Kabushiki Kaisha Apparatus and method for processing a base substance using plasma and a magnetic field
TW237562B (zh) 1990-11-09 1995-01-01 Semiconductor Energy Res Co Ltd
JPH04253328A (ja) * 1991-01-29 1992-09-09 Hitachi Ltd 表面処理装置
US5578520A (en) 1991-05-28 1996-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
US5766344A (en) 1991-09-21 1998-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor
US6979840B1 (en) 1991-09-25 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors having anodized metal film between the gate wiring and drain wiring
US7097712B1 (en) * 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor
US6897100B2 (en) * 1993-11-05 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device apparatus for processing a semiconductor and apparatus for processing semiconductor device
CN100367461C (zh) * 1993-11-05 2008-02-06 株式会社半导体能源研究所 一种制造薄膜晶体管和电子器件的方法
DE19581590T1 (de) * 1994-03-25 1997-04-17 Amoco Enron Solar Erhöhung eines Stabilitätsverhaltens von Vorrichtungen auf der Grundlage von amorphem Silizium, die durch Plasmaablagerung unter hochgradiger Wasserstoffverdünnung bei niedrigerer Temperatur hergestellt werden
JP3317209B2 (ja) * 1997-08-12 2002-08-26 東京エレクトロンエイ・ティー株式会社 プラズマ処理装置及びプラズマ処理方法
EP1190277B1 (en) 1999-06-10 2009-10-07 AlliedSignal Inc. Semiconductor having spin-on-glass anti-reflective coatings for photolithography
JP4439665B2 (ja) * 2000-03-29 2010-03-24 株式会社半導体エネルギー研究所 プラズマcvd装置
GB0214273D0 (en) * 2002-06-20 2002-07-31 Boc Group Plc Apparatus for controlling the pressure in a process chamber and method of operating same
DE102005004311A1 (de) * 2005-01-31 2006-08-03 Aixtron Ag Verfahren und Vorrichtung zum Abscheiden von aus mehreren Komponentenhalbleitern bestehende Schichtenfolgen
US20090078199A1 (en) * 2007-09-21 2009-03-26 Innovation Vacuum Technology Co., Ltd. Plasma enhanced chemical vapor deposition apparatus
US20110297088A1 (en) 2010-06-04 2011-12-08 Texas Instruments Incorporated Thin edge carrier ring
KR101782874B1 (ko) * 2012-10-09 2017-09-28 어플라이드 머티어리얼스, 인코포레이티드 인덱싱된 인라인 기판 처리 툴
US20150040970A1 (en) * 2013-08-06 2015-02-12 First Solar, Inc. Vacuum Deposition System For Solar Cell Production And Method Of Manufacturing
CN103556126A (zh) * 2013-10-14 2014-02-05 中国科学院半导体研究所 优化配置的多腔室mocvd反应系统
EP3194502A4 (en) 2015-04-13 2018-05-16 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications
KR20170005240A (ko) * 2015-07-01 2017-01-12 주식회사 아바코 도전 산화물층의 증착 장비 및 방법
CN109750274B (zh) * 2017-11-01 2021-10-22 长鑫存储技术有限公司 半导体生产设备及半导体工艺方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3594227A (en) * 1968-07-12 1971-07-20 Bell Telephone Labor Inc Method for treating semiconductor slices with gases
CA1159012A (en) * 1980-05-02 1983-12-20 Seitaro Matsuo Plasma deposition apparatus
JPS5766625A (en) * 1980-10-11 1982-04-22 Semiconductor Energy Lab Co Ltd Manufacture of film
JPS58169980A (ja) * 1982-03-19 1983-10-06 Matsushita Electric Ind Co Ltd 光起電力素子の製造方法
US4435445A (en) * 1982-05-13 1984-03-06 Energy Conversion Devices, Inc. Photo-assisted CVD
US4504518A (en) * 1982-09-24 1985-03-12 Energy Conversion Devices, Inc. Method of making amorphous semiconductor alloys and devices using microwave energy
EP0106637B1 (en) * 1982-10-12 1988-02-17 National Research Development Corporation Infra red transparent optical components
US4515107A (en) * 1982-11-12 1985-05-07 Sovonics Solar Systems Apparatus for the manufacture of photovoltaic devices
JPS59159167A (ja) * 1983-03-01 1984-09-08 Zenko Hirose アモルフアスシリコン膜の形成方法
JPS59200248A (ja) * 1983-04-28 1984-11-13 Canon Inc 像形成部材の製造法

Also Published As

Publication number Publication date
KR910003171B1 (ko) 1991-05-20
CN87104656A (zh) 1987-12-16
EP0224360A2 (en) 1987-06-03
KR870005438A (ko) 1987-06-08
CN1029442C (zh) 1995-08-02
US4808554A (en) 1989-02-28
EP0224360B1 (en) 1992-04-08
CN86107683A (zh) 1987-05-20
CN1005881B (zh) 1989-11-22
KR920003832A (ko) 1992-02-29
CN87104657A (zh) 1987-12-16
EP0457415A1 (en) 1991-11-21
US4808553A (en) 1989-02-28
KR910003170B1 (ko) 1991-05-20
KR920003833A (ko) 1992-02-29
KR910003169B1 (ko) 1991-05-20
EP0224360A3 (en) 1987-08-19
DE3684759D1 (de) 1992-05-14

Similar Documents

Publication Publication Date Title
CN1029442C (zh) 半导体器件的制造方法和系统
US6113701A (en) Semiconductor device, manufacturing method, and system
US6230650B1 (en) Microwave enhanced CVD system under magnetic field
JPS62271418A (ja) 非晶質シリコン半導体素子の製造方法
US4760008A (en) Electrophotographic photosensitive members and methods for manufacturing the same using microwave radiation in magnetic field
US4988642A (en) Semiconductor device, manufacturing method, and system
JP3630831B2 (ja) 堆積膜の形成方法
JP2654433B2 (ja) 珪素半導体作製方法
JPS6348817A (ja) エピタキシヤル成長方法
JP3416546B2 (ja) 堆積膜形成方法および堆積膜形成装置
JP2564754B2 (ja) 絶縁ゲイト型電界効果半導体装置の作製方法
JPH06184755A (ja) 堆積膜形成方法および堆積膜形成装置
JPH038102B2 (zh)
JPH0536613A (ja) 半導体表面処理方法及び装置
JP2680702B2 (ja) 非晶質合金半導体薄膜の作製方法
JPH03146673A (ja) 薄膜堆積法及び薄膜堆積装置
JPH0536620A (ja) 半導体表面処理方法及び装置
JPH0536619A (ja) 半導体表面処理方法及び装置
JPH0714074B2 (ja) 光電変換素子の製造方法
JPH0536621A (ja) 半導体表面処理方法及び装置
JPH05343713A (ja) 非晶質太陽電池の製造方法
JPS62171168A (ja) 光電変換素子
JPH065764B2 (ja) 非晶質シリコン太陽電池の製造方法
JPS63220580A (ja) 光電変換素子の製造の方法
JPH04225516A (ja) 光気相成長方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned