CN100593845C - 全局互连铜镂空结构的制造方法 - Google Patents

全局互连铜镂空结构的制造方法 Download PDF

Info

Publication number
CN100593845C
CN100593845C CN200710040469A CN200710040469A CN100593845C CN 100593845 C CN100593845 C CN 100593845C CN 200710040469 A CN200710040469 A CN 200710040469A CN 200710040469 A CN200710040469 A CN 200710040469A CN 100593845 C CN100593845 C CN 100593845C
Authority
CN
China
Prior art keywords
layer
copper
sacrifice layer
seed layer
manufacture method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200710040469A
Other languages
English (en)
Other versions
CN101060096A (zh
Inventor
张丛春
杨春生
丁桂甫
刘兴刚
张楷亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN200710040469A priority Critical patent/CN100593845C/zh
Publication of CN101060096A publication Critical patent/CN101060096A/zh
Application granted granted Critical
Publication of CN100593845C publication Critical patent/CN100593845C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种全局互连铜镂空结构的制造方法,属于集成电路金属互连多层结构的制造方法。包括如下步骤:(1)形成图形化的阻挡层,溅射种子层,光刻,掩膜电镀,形成图形化的铜柱子;(2)刻蚀底膜,填充牺牲层,研磨抛光,溅射种子层,光刻电镀,去胶,刻蚀底膜,形成互相绝缘的分立通孔图形;(3)同2,填牺牲层,研磨抛光并溅射种子层,光刻,再次电镀上层铜柱子;(4)形成镂空互连结构。本发明使全局互连导线通过牺牲层技术镂空,这种互连不但可以将电介质的介电常数大幅度降低到很低水平,而且由于实际上阻断了互连引线之间的联系通道,避免导体材料的扩散迁移。

Description

全局互连铜镂空结构的制造方法
技术领域
本发明涉及的是一种集成电路技术领域的制造方法,特别是一种全局互连铜镂空结构的制造方法。
背景技术
半导体制造技术的发展推动了具有多层互连线的集成电路的发展。对于高端集成电路,金属互连层数多达8~9层,这样金属导线间的电容、层间电容和金属导线的电阻增大,从而导致布线RC延迟的增加,限制了芯片的处理速度。为了提高芯片的速度和降低布线的RC延迟,一方面金属导线要用铜替代铝;另一方面要降低金属互连层间绝缘层的介电常数k,即要用低k绝缘层替代SiO2层(k=3.9~4.2),低k绝缘层可降低绝缘层所产生的寄生电容。
当集成电路技术进步到90nm以下技术时代时,多孔低k介质(<2.7)的采用将成为重要问题,人们对低k介质与Cu的互连集成技术研究很多,低k材料除了其低的k值可以保证获得小的互连电容外,还需要好的介电性和好的机械力学特性、与其他互连材料如Cu及势垒层材料的性质兼容、能够与IC工艺兼容(如后续的清洁、刻蚀、研磨抛光、热处理等工艺)、能够在器件特定工作条件下高可靠性地工作。多孔低k介质的机械强度往往不能满足后续工艺的需要,通孔和沟槽的刻蚀及刻蚀后的清洗问题是低k介质材料技术中的技术难点。相比低k多孔介质而言,另外一种降低互连电容的方法是在互连结构中引入气隙,即介质层和空气是分开的。
经对现有技术文献的检索发现,Z.Gabric等人于Proc.2004IEEE(international connect technology conference)(美国电气电子工程师学会2004年国际互连技术会议)第151-153页中所提出的“Air gap technology byselective Ozone/TEOS deposition”(选择性沉积Ozone/TEOS的气隙互连技术),这种方法使相连金属间的电容比没有气隙的互连结构减小了两个数量级。然而,空气间隙形成时,金属线内壁和空气间隙间有一层SiO2边墙,边墙太厚则使电容增加,太薄则不能有效防止金属线间形成的电迁移,因此需要优化边墙厚度,工艺复杂。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种全局互连铜镂空结构的制造方法,即将MEMS(微机电系统)技术中常用的牺牲层技术应用到铜互连结构的制造工艺中,使其全局互连导线通过牺牲层技术镂空,这种互连不但可以将电介质的介电常数大幅度降低到很低水平,而且由于实际上阻断了互连引线之间的联系通道,避免导体材料的扩散迁移。
本发明是通过如下技术方案实现的,具体包括如下步骤:
(1)掩膜电镀,形成图形化的铜柱子(即互连铜线):首先在清洗干净的单面氧化硅衬底上光刻,再采用磁控溅射法(常规操作)沉积20nm~50nm的阻挡层,丙酮去胶,形成图形化的阻挡层;接着再溅射70nm~110nm厚度的种子层(即种子层),光刻,在有阻挡层的上方电镀铜柱子(即铜线)去除光刻胶,干法刻蚀去除种子层(即等离子体刻蚀种子层),形成分立的铜线图形。
(2)形成互相绝缘的分立通孔图形:在分立的铜线间填充牺牲层,研磨抛光使表面平坦化并露出铜线;溅射种子层,再光刻形成通孔图形,以光刻胶为掩膜电镀通孔,去胶;以铜为掩膜,同上用干法刻蚀去除通孔之外的种子层,形成互相绝缘的分立通孔图形。
(3)再次电镀上层铜柱子:在分立的通孔图形间再次填充牺牲层,研磨抛光至露出铜通孔,再溅射种子层,光刻形成上层沟槽,在沟槽里电镀上层铜柱子,铜柱高度与胶持平,再溅射上层保护层。
(4)形成镂空互连结构:用丙酮去光刻胶,干法刻蚀去除种子层,将浓磷酸放在水浴锅中加热到60℃~80℃,再将互连结构浸泡在浓磷酸中以去除牺牲层,形成全局互连铜镂空结构。
所述的阻挡层,是指:能阻挡金属扩散并与介质层具有较好粘结性的金属层,可选择钽(Ta)、氮化钽(TaN)或氮化钨钽(TaWN)。采用磁控溅射或化学气相沉积的方法制备。
所述的种子层,是指:磁控溅射沉积的CrCu薄膜,其中铬作为粘结层。
所述的干法刻蚀去除种子层,具体条件是:本底真空2.0*10-6mbar,工作压力0.02mbar,刻蚀气体高纯氩气,流量70sccm,功率750W。
所述的填充牺牲层,其牺牲层是指:磁控溅射的氧化铝薄膜或旋涂的聚酰亚胺层。若牺牲层是磁控溅射的氧化铝薄膜,则溅射氧化铝条件为本底真空2.0×10-4Pa,溅射气压2.67Pa,功率4KW;若牺牲层是聚酰亚胺,则是通过旋涂填充,具体条件是:用程控烘箱,从室温缓慢升温到90℃,保温1h,再0.5h升到130℃,保温0.5h,最后1h升到150℃,保温1h,以保证后续抛光时有一定的强度,而且要防止后面干法刻蚀去除种子层时温度升高导致聚酰亚胺变性而难以去除。
所述的氧化铝薄膜,其结构是柱状非晶态,其厚度与铜柱(或通孔)高度一样,可以避免在以后的研磨抛光过程中由于牺牲层和铜的硬度差别大导致图形损坏。选择性去除牺牲层时,去氧化铝时所用腐蚀液是水浴加热的浓磷酸。牺牲层是聚酰亚胺时,用温热的稀氢氧化钠溶液去除。
所述的溅射上层保护层,其溅射条件为:本底真空5×10-5Pa,流量30sccm,功率100W。
所述的上层保护层,其材料是磁控溅射的钨。
所述的去除牺牲层,是指:若牺牲层是氧化铝时,采用水浴加热浓磷酸去除牺牲层;牺牲层是聚酰亚胺时,采用温热的稀氢氧化钠溶液去除牺牲层。
本发明的原理及有益效果:
本发明针对互连延迟的主要部分,即全局互连部分,提供形成镂空铜互连结构的方法,即采用与局域互连完全不同的解决方法,借助MEMS(微机电系统)技术常用的牺牲层技术理念,将全局互连的导线通过牺牲层技术镂空,然后再次填充低k介质材料(聚酰亚胺或者是含氟的硅酸盐玻璃),或者干脆悬空工作,构成针对全局互连的超低k三维互连架构。这种互连不但可以将电介质的介电常数大幅度降低到很低水平,而且由于实际上阻断了互连引线之间的联系通道,导体材料的扩散迁移过程将不会发生。
附图说明
图1本发明所制备的镂空铜互连结构剖视图。
图2本发明制造工艺流程中形成第一层铜线的示意图。
图3本发明制造工艺流程中形成通孔的示意图。
图4本发明制造工艺流程中形成上层铜线的示意图。
具体实施方式
下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
本实施例1是在以下实施条件和技术要求条件下实施的:
(1)掩膜电镀,形成图形化的铜柱子。参见图2,将清洗干净的硅衬底1于180℃烘烤半小时以增强胶和衬底的结合力,再甩胶光刻,采用化学气相沉积或溅射法沉积20nm厚的阻挡层4,阻挡层是氮化钽(TaN),用丙酮去胶,借助liftoff(剥离)技术使阻挡层图形化,接着磁控溅射110nm厚的CrCu种子层2,再光刻,形成沟槽,在沟槽里电镀铜线3。接着丙酮去胶,以铜柱为掩膜,用干法等离子体刻蚀去除种子层,形成分立绝缘的铜线。若合理控制物理刻蚀条件,则铜柱的损失基本可以忽略,直接以铜柱为掩膜来刻蚀种子层是可行的。刻蚀具体条件是:本底真空2.0*10-6mbar,工作压力0.02mbar,刻蚀气体高纯氩气,流量70sccm,功率750W。然后填充牺牲层5,牺牲层是磁控溅射的氧化铝,溅射氧化铝条件为本底真空2.0×10-4Pa,溅射气压2.67Pa,功率4KW。研磨抛光表面并露出铜线,再溅射种子层。
(2)参见图3,光刻形成通孔图形,再电镀通孔6,去胶,同步骤1中干法等离子体刻蚀种子层2。接着磁控溅射填充氧化铝牺牲层5,然后研磨抛光使表面平坦化,露出铜,再溅射种子层。
(3)参见图4,光刻电镀上层铜线,溅射7保护层(caplayer)W,溅射条件为:本底真空5×10-5Pa,流量30sccm,功率100W。去胶,物理刻蚀种子层。
(4)去除牺牲层5。当牺牲层是氧化铝时,置于水浴加热(60℃)的浓磷酸中,去除氧化铝;得到镂空的铜互连镂空结构,见图1,为镂空铜互连结构的示意图,其中1是单面氧化的硅衬底,2是种子层,3是铜线,4是阻挡层,5是牺牲层,6是铜通孔,7是外面保护层W。
从本实施例可以看出,通过掩膜电镀及牺牲层技术形成的铜互连镂空结构,有效介电常数为1.14,与气隙互连结构以及传统的互连结构相比,大大降低了全局互连延迟的影响;而且相比大马氏革工艺中形成气隙的互连结构而言,工艺简单成本低。
实施例2:
本实施例2是在以下实施条件和技术要求条件下实施的:
(1)同实施例1中相应步骤(1),形成分立的图形化的铜线,参见图2。不同的是溅射TaN阻挡层厚度为30nm,种子层厚度为90nm。再填充聚酰亚胺(PI)作为牺牲层,牺牲层的厚度与铜线高度相当。填充聚酰亚胺采用旋涂法,需要选择合适固化温度(150℃),保证后续抛光时有一定的强度,而且要防止后面干法刻蚀种子层时温度升高导致聚酰亚胺变性而难以去除。具体是:用程控烘箱,从室温缓慢升温到90℃,保温1h,再0.5h升到130℃,保温0.5h,最后1h升到150℃,保温1h。接着研磨抛光,再在平坦的表面溅射种子层。
(2)同实施例1相应步骤(2)形成分立绝缘的通孔图形,参见图3。注意丙酮去胶时要快速去胶,因为去胶时间太长,丙酮会使下面的PI变性。再旋涂填充聚酰亚胺,研磨抛光,再溅射同上种子层。
(3)同实施例1相应步骤(3)再次电镀上层铜柱子并重复后续工艺,参见图4。
(4)去除牺牲层5。用稀NaOH溶液去除聚酰亚胺,得到镂空的铜互连镂空结构。(或将浓磷酸放在水浴锅中加热到70℃,再将互连结构浸泡在浓磷酸中以去除牺牲层,形成全局互连铜镂空结构)参见图1,为镂空铜互连结构的示意图。
从本实施例可以看出,通过掩膜电镀及牺牲层技术形成的铜互连镂空结构,有效介电常数为1.21,与气隙互连结构以及传统的互连结构相比,大大降低了全局互连延迟的影响;而且相比大马氏革工艺中形成气隙的互连结构而言,工艺简单成本低。
实施例3
本实施例3是在以下实施条件和技术要求条件下实施的:
(1)在沟槽里电镀铜线之前的步骤都与实施例1相应步骤相同,不同的是溅射TaN阻挡层厚度为50nm,种子层厚度为70nm,而且第一层铜线镀完后先不去种子层,即此时铜线之间不是互相绝缘的。后续工艺是在胶上直接套刻电镀通孔,因此这里省去了刻种子层、研磨抛光及溅射种子层等步骤。
(2)同实施例1相应步骤(2),但第一层铜线上面不需要溅射种子层。甩胶平坦化,光刻形成通孔图形,电镀通孔,丙酮去胶,直接以铜柱为掩膜,干法刻蚀种子层,形成分立绝缘的铜线和通孔图形。甩光刻胶作为牺牲层,120℃烘烤以增强强度防止后续抛光时胶粘连而被揭起。研磨抛光表面并露出铜线,再溅射70nm厚度的种子层。参见图3。
(3)同实施例1相应步骤(3),光刻电镀上层铜线,溅射保护层(caplayer)W,丙酮去上层光刻胶,干法刻蚀种子层。与实施例1区别是,这里种子层较薄(厚度为70nm),刻蚀种子层时功率要低,所需时间也短,以防止光刻胶由于刻蚀种子层时温度升高而变性。参见图4。
(4)去除牺牲层。由于下层光刻胶经过高温烘烤,丙酮是不易去除的,可以用温热的10%NaOH溶液去除光刻胶,得到镂空的铜互连镂空结构。参见图1,为镂空铜互连结构的示意图。
从本实施例可以看出,通过掩膜电镀及牺牲层技术形成的铜互连镂空结构,有效介电常数为1.25,与气隙互连结构以及传统的互连结构相比,大大降低了全局互连延迟的影响,而且工艺简单成本低。

Claims (10)

1.一种全局互连铜镂空结构的制造方法,其特征在于,包括如下步骤:
(1)掩膜电镀,形成图形化的铜柱子:首先在清洗干净的单面氧化硅衬底上光刻,再采用磁控溅射法沉积20nm~50nm的阻挡层,丙酮去胶,形成图形化的阻挡层;接着再溅射70nm~110nm厚度的种子层,光刻,在有阻挡层的上方电镀铜柱子去除光刻胶,干法刻蚀去除种子层,形成分立的铜线图形;
(2)形成互相绝缘的分立通孔图形:在分立的铜线间填充牺牲层,研磨抛光使表面平坦化并露出铜线;溅射种子层,再光刻形成通孔图形,以光刻胶为掩膜电镀通孔,去胶;以铜为掩膜,同上用干法刻蚀去除通孔之外的种子层,形成互相绝缘的分立通孔图形;
(3)再次电镀上层铜柱子:在分立的通孔图形间再次填充牺牲层,研磨抛光至露出铜通孔,再溅射种子层,光刻形成上层沟槽,在沟槽里电镀上层铜柱子,铜柱高度与胶持平,再溅射上层保护层;
(4)形成镂空互连结构:用丙酮去光刻胶,干法刻蚀去除种子层,去除牺牲层,形成全局互连铜镂空结构。
2.如权利要求1所述的全局互连铜镂空结构的制造方法,其特征是,所述的阻挡层,是指:能阻挡金属扩散并与介质层具有较好粘结性的金属层。
3.如权利要求1所述的全局互连铜镂空结构的制造方法,其特征是,所述的阻挡层为可选择钽(Ta)、氮化钽(TaN)或氮化钨钽(TaWN)。
4.如权利要求1所述的全局互连铜镂空结构的制造方法,其特征是,所述的种子层,是指:磁控溅射沉积的CrCu薄膜,其中铬作为粘结层。
5.如权利要求1所述的全局互连铜镂空结构的制造方法,其特征是,所述的干法刻蚀去除种子层,具体条件是:本底真空2.0×10-6mbar,工作压力0.02mbar,刻蚀气体高纯氩气,流量70sccm,功率750W。
6.如权利要求1所述的全局互连铜镂空结构的制造方法,其特征是,所述的填充牺牲层,若牺牲层是磁控溅射的氧化铝薄膜,则溅射氧化铝条件为:本底真空2.0×10-4Pa,溅射气压2.67Pa,功率4KW;若牺牲层是聚酰亚胺,则是通过旋涂填充,具体条件是:从室温缓慢升温到90℃,保温1h,再0.5h升到130℃,保温0.5h,最后1h升到150℃,保温1h。
7.如权利要求1或6所述的全局互连铜镂空结构的制造方法,其特征是,所述的填充牺牲层,其牺牲层是指:磁控溅射的氧化铝薄膜或旋涂的聚酰亚胺层。
8.如权利要求1所述的全局互连铜镂空结构的制造方法,其特征是,所述的溅射上层保护层,其溅射条件为:本底真空5×10-5Pa,流量30sccm,功率100W。
9.如权利要求1或8所述的全局互连铜镂空结构的制造方法,其特征是,所述的上层保护层,其材料是磁控溅射的钨。
10.如权利要求1所述的全局互连铜镂空结构的制造方法,其特征是,所述的去除牺牲层,是指:若牺牲层是氧化铝时,采用水浴加热浓磷酸去除牺牲层;牺牲层是聚酰亚胺时,采用温热的稀氢氧化钠溶液去除牺牲层。
CN200710040469A 2007-05-10 2007-05-10 全局互连铜镂空结构的制造方法 Expired - Fee Related CN100593845C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710040469A CN100593845C (zh) 2007-05-10 2007-05-10 全局互连铜镂空结构的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710040469A CN100593845C (zh) 2007-05-10 2007-05-10 全局互连铜镂空结构的制造方法

Publications (2)

Publication Number Publication Date
CN101060096A CN101060096A (zh) 2007-10-24
CN100593845C true CN100593845C (zh) 2010-03-10

Family

ID=38866098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710040469A Expired - Fee Related CN100593845C (zh) 2007-05-10 2007-05-10 全局互连铜镂空结构的制造方法

Country Status (1)

Country Link
CN (1) CN100593845C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646654A (zh) * 2011-02-22 2012-08-22 中国科学院微电子研究所 一种位于不同平面电路间的垂直电连接结构及其制作方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299138A (zh) * 2010-06-23 2011-12-28 中国科学院微电子研究所 金铁合金互联线及其制作方法
CN102645359A (zh) * 2012-04-11 2012-08-22 上海交通大学 芯片互连用铜-锡界面合金共化物微拉伸试样的制备方法
CN103730382B (zh) * 2013-12-24 2016-08-24 华进半导体封装先导技术研发中心有限公司 一种铜铜键合凸点的制作方法
CN109564934B (zh) 2016-04-25 2023-02-21 应用材料公司 水平环绕式栅极元件纳米线气隙间隔的形成
CN108807324B (zh) * 2018-06-11 2020-06-23 中国电子科技集团公司第十三研究所 微同轴结构的制备方法及微同轴结构
CN111146155B (zh) * 2020-01-02 2022-02-18 上海航天电子通讯设备研究所 一种微波功放芯片载体及其制备方法
CN111609887B (zh) * 2020-05-29 2021-07-13 上海交通大学 一种柔性聚合物封闭膜仿生纤毛微传感器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646654A (zh) * 2011-02-22 2012-08-22 中国科学院微电子研究所 一种位于不同平面电路间的垂直电连接结构及其制作方法
CN102646654B (zh) * 2011-02-22 2015-07-01 中国科学院微电子研究所 一种位于不同平面电路间的垂直电连接结构及其制作方法

Also Published As

Publication number Publication date
CN101060096A (zh) 2007-10-24

Similar Documents

Publication Publication Date Title
CN100593845C (zh) 全局互连铜镂空结构的制造方法
CN101366116B (zh) 制造厚布线结构的双镶嵌工艺
US5679608A (en) Processing techniques for achieving production-worthy, low dielectric, low dielectric, low interconnect resistance and high performance IC
JP4017173B2 (ja) ボンディング・パッドと高性能銅インダクタの集積化
US10755974B2 (en) Interconnect structure and method of forming same
JP2003521123A (ja) 半導体素子に銅相互接続を形成する方法
JP2002319625A (ja) 半導体装置及びその製造方法
WO2011103735A1 (zh) 形成带有mim电容器的铜互连结构的方法及所形成的结构
KR100701375B1 (ko) 반도체 소자의 금속 배선 제조 방법
JPH03244126A (ja) 半導体装置の製造方法
CN101399220A (zh) 金属互连的制造方法
JP2001077195A (ja) 半導体装置
CN104701251B (zh) 有源硅基板的制作方法
US20100167531A1 (en) Semiconductor device and method for manufacturing the same
US11804406B2 (en) Top via cut fill process for line extension reduction
TWI834762B (zh) 由削減式製程形成的金屬互連結構
KR20030074870A (ko) 반도체 소자의 금속 배선 형성 방법
KR100286253B1 (ko) 질소플라즈마를 이용한 선택적 금속박막 증착방법 및 그를 이용한 다층금속 연결배선 방법
KR20030000728A (ko) 반도체소자의 금속배선 형성방법
KR100467815B1 (ko) 반도체 소자 및 그 제조 방법
KR20040009789A (ko) 반도체 소자 및 그 제조 방법
JPH11284066A (ja) 半導体装置およびその製造方法
KR100720530B1 (ko) 반도체 소자의 금속배선 및 그의 형성방법
JP2001057366A (ja) 半導体集積回路装置およびその製造方法
KR100306240B1 (ko) 반도체소자의다층배선형성방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100310

Termination date: 20130510