TWI834762B - 由削減式製程形成的金屬互連結構 - Google Patents

由削減式製程形成的金屬互連結構 Download PDF

Info

Publication number
TWI834762B
TWI834762B TW108142703A TW108142703A TWI834762B TW I834762 B TWI834762 B TW I834762B TW 108142703 A TW108142703 A TW 108142703A TW 108142703 A TW108142703 A TW 108142703A TW I834762 B TWI834762 B TW I834762B
Authority
TW
Taiwan
Prior art keywords
layer
patterned metal
dielectric material
patterned
metal lines
Prior art date
Application number
TW108142703A
Other languages
English (en)
Other versions
TW202036791A (zh
Inventor
湯瑪士 韋勒 茂希爾
Original Assignee
美商蘭姆研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蘭姆研究公司 filed Critical 美商蘭姆研究公司
Publication of TW202036791A publication Critical patent/TW202036791A/zh
Application granted granted Critical
Publication of TWI834762B publication Critical patent/TWI834762B/zh

Links

Images

Abstract

藉由在形成兩個相連金屬化層之後形成一或更多介層窗,可製造一金屬互連結構。該一或更多介層窗係與第一金屬化層及第二金屬化層完全對準。在金屬互連結構之加工期間,硬遮罩材料或其他絕緣隔離材料被留在第一金屬化層及第二金屬化層之頂部上。對其中一些的硬遮罩材料或其他絕緣隔離材料進行蝕刻,然後利用導電材料將其回填以形成一或更多介層窗,其中該一或更多介層窗係容納於不與周圍介電材料重疊的間隙內。

Description

由削減式製程形成的金屬互連結構
本發明係關於由削減式製程形成的金屬互連結構。
在積體電路(IC)中所加入的互連結構包含一或更多層的金屬線,用以將IC之電子裝置彼此連接並連接至外部的連接部。可透過一或更多介電材料中介層以使該等金屬線層彼此絕緣。互連結構可藉由加成式圖案化技術或削減式圖案化技術而形成。加成式圖案化技術可包含鑲嵌或雙重鑲嵌處理,其可用以製造具有諸如銅或鈷之金屬的互連結構。將渠溝及/或孔洞蝕刻於介電材料中、將金屬沉積於渠溝及/或孔洞中、並且利用化學機械平坦化(CMP)以移除過量的部分。然而,在削減式圖案化技術中,沉積一金屬覆蓋層並對其進行蝕刻以在金屬中形成渠溝及/或孔洞,並且將介電材料沉積於渠溝及/或孔洞中。
此處所提供之先前技術說明係為了大體上介紹本發明之背景。在此先前技術章節中所敘述之範圍內之本案列名之發明人的成果、以及在申請時不適格作為先前技術之說明書的實施態樣,皆非有意地或暗示地被承認為對抗本發明之先前技術。
本文提供一種製造金屬互連結構的方法。該方法包含:藉由削減式圖案化以在一基板上形成第一層的圖案化金屬線;以及藉由削減式圖案化以在該第一層的圖案化金屬線上方形成第二層的圖案化金屬線。該方法更包含:在形成該第二層的圖案化金屬線之後,形成提供該第一層的圖案化金屬線與該第二層的圖案化金屬線之間之電互連的一或更多介層窗,從而形成該金屬互連結構。
在某些實施例中,形成該一或更多介層窗之步驟包含:使一或更多介層窗開口形成通過至少該第二層的圖案化金屬線直至該第一層的圖案化金屬線;以及利用一導電材料填充該一或更多介層窗開口。在某些實施例中,該方法更包含:在該第一層的圖案化金屬線上形成複數第一絕緣特徵部;以及在形成該複數第一絕緣特徵部之後,在該第一層的相鄰金屬線之間的間隙中形成第一介電材料。該方法更包含:在該第二層的圖案化金屬線上形成複數第二絕緣特徵部;以及在形成該複數第二絕緣特徵部之後,在該第二層的相鄰金屬線之間的間隙中形成第二介電材料。在某些實施例中,形成該一或更多介層窗之步驟包含:蝕刻通過一或更多第二絕緣特徵部;蝕刻通過該第二層的圖案化金屬線;蝕刻通過一或更多第一絕緣特徵部以形成一或更多介層窗開口,俾使該第一層的圖案化金屬線暴露;以及在該一或更多介層窗開口中沉積導電材料,以在暴露的該第一層的圖案化金屬線上形成該一或更多介層窗。在某些實施例中,該方法更包含:在該複數第二絕緣特徵部及該第二介電材料上方形成一介層窗遮罩;以及在該介層窗遮罩中圖案化一或更多孔洞,其中該一或更多孔洞各自具有大於該第二層的圖案化金屬線及/或該第一層的圖案化金屬線之臨界尺 寸(CD)的直徑或寬度。該一或更多孔洞各自具有比該第二層的圖案化金屬線及/或該第一層的圖案化金屬線之CD大多達約100%的直徑或寬度。在某些實施例中,沉積該導電材料之步驟包含:利用該導電材料填充先前該等第一絕緣特徵部及該第二層的圖案化金屬線被蝕刻之處。在某些實施例中,該第一層的圖案化金屬線、該第二層的圖案化金屬線、及該導電材料之各者包含鉬(Mo)、釕(Ru)、鋁(Al)、或鎢(W)。在某些實施例中,該一或更多介層窗係與該第一層的圖案化金屬線及該第二層的圖案化金屬線完全對準。在某些實施例中,形成該第一層的圖案化金屬線之步驟包含:在該基板上方沉積第一金屬;在該第一金屬上方沉積第一遮罩層;對第一遮罩層進行蝕刻,以在該第一金屬上方形成複數第一絕緣特徵部;以及對該第一金屬進行蝕刻,以形成由該複數第一絕緣特徵部所界定的該第一層的圖案化金屬線。在某些實施例中,形成該第二層的圖案化金屬線之步驟包含:在該第一層的圖案化金屬線上方沉積第二金屬;在該第二金屬上方沉積第二遮罩層;對該第二遮罩層進行蝕刻,以在該第二金屬上方形成複數第二絕緣特徵部;以及對該第二金屬進行蝕刻,以形成由該複數第二絕緣特徵部所界定的該第二層的圖案化金屬線。
另一態樣涉及一種用於積體電路的金屬互連結構。該金屬互連結構包含:第一層的圖案化金屬線;複數第一絕緣特徵部,位在該第一層中的至少一些圖案化金屬線上;第二層的圖案化金屬線,位在該第一層的圖案化金屬線上方;複數第二絕緣特徵部,位在該第二層中的至少一些圖案化金屬線上;以及一或更多介層窗,其提供該第一層的圖案化金屬線與該第二層的圖案化金屬線之間的電互連,其中該一或更多介層窗係與該第一層的圖案化金屬線及該第二層的圖案化金屬線完全對準。
在某些實施例中,該一或更多介層窗延伸通過該等第一絕緣特徵部,以使該第一層的圖案化金屬線與該第二層的圖案化金屬線接觸。在某些實施例中,該金屬互連結構更包含:第一介電材料,其包圍該第一層的圖案化金屬線及該複數第一絕緣特徵部;以及第二介電材料,其包圍該第二層的圖案化金屬線及該複數第二絕緣特徵部。在某些實施例中,該金屬互連結構更包含:第三介電材料,位在該一或更多介層窗之凹陷介層窗金屬填充的上方。在某些實施例中,該第一介電材料及該第二介電材料之各者包含低k介電材料,其中該複數第一絕緣特徵部及該複數第二絕緣特徵部之各者具有與該低k介電材料不同的蝕刻選擇性。在某些實施例中,該一或更多介層窗包含一導電材料,其中該第一層的圖案化金屬線、該第二層的圖案化金屬線、及該導電材料之各者包含Mo、Ru、Al、或W。
以下參照圖式而進一步描述該等及其他實施態樣。
100:基板
101:第一金屬層
102:介電層
103:第一硬遮罩層
104:光阻
105:光阻下層
106:非晶碳
107:抗反射層
108:第一硬遮罩特徵部
109:光阻
110:光阻下層
111:旋塗碳
112:第一圖案化金屬線層
113:第一介電材料
114:氣隙
115:介層窗遮罩
116:光阻
117:光阻下層
118:旋塗碳
119:一或更多孔洞
120:介層窗開口
121:第二金屬層
122:第二硬遮罩層
123:光阻
124:光阻下層
125:非晶碳
126:抗反射層
127:介層窗
128:第二硬遮罩特徵部
129:光阻
130:光阻下層
131:旋塗碳
132:第二圖案化金屬線層
133:第二介電材料
300:程序
310:方塊
320:方塊
330:方塊
400:基板
401:第一金屬層
402:介電層
403:第一硬遮罩層
404:光阻
405:光阻下層
406:非晶碳層
407:抗反射層
408:第一硬遮罩特徵部
409:第一圖案化金屬線層
410:第一介電材料
411:第二金屬層
412:第二硬遮罩層
413:光阻
414:光阻下層
415:非晶碳層
416:抗反射層
417:第二硬遮罩特徵部
418:第二圖案化金屬線層
419:第二介電材料
420:介層窗遮罩
421:一或更多孔洞
422:光阻
423:光阻下層
424:旋塗碳
425:遮罩層
426:介層窗開口
427:導電材料
428:介層窗
429:凹陷介層窗金屬填充
430:第三介電材料
431:第一絕緣特徵部
432:第二絕緣特徵部
圖1A-1O顯示藉由削減式圖案化而形成金屬互連結構的例示性程序之示意圖。
圖2A顯示來自圖1F之線A-A的例示性部分加工金屬互連結構之橫剖面示意圖。
圖2B-1顯示來自圖1H之線B-B的例示性部分加工金屬互連結構之橫剖面示意圖,其中介層窗開口係與底下的金屬線對準。
圖2B-2顯示來自圖1H之線C-C的例示性部分加工金屬互連結構之橫剖面示意圖,其中介層窗開口未與底下的金屬線對準。
圖2C-1顯示來自圖1J之線C-C的例示性部分加工金屬互連結構之橫剖面示意圖,其中介層窗係與底下的金屬線對準。
圖2C-2顯示來自圖1J之線C-C的例示性部分加工金屬互連結構之橫剖面示意圖,其中介層窗未與底下的金屬線對準。
圖2D-1顯示來自圖1N之線D-D的例示性金屬互連結構之橫剖面示意圖,其中介層窗係與上覆的金屬線對準。
圖2D-2顯示來自圖1N之線D-D的例示性金屬互連結構之橫剖面示意圖,其中介層窗未與上覆的金屬線對準。
依據某些實施例,圖3顯示在積體電路中製造金屬互連結構之例示性方法的流程圖。
依據某些實施例,圖4A-4N顯示藉由削減式圖案化而形成具有完全對準之介層窗的金屬互連結構的例示性程序之示意圖。
依據某些實施例,圖5A顯示來自圖4J之線A-A的例示性部分加工金屬互連結構之橫剖面示意圖。
依據某些實施例,圖5B顯示來自圖4J之線B-B的例示性部分加工金屬互連結構之橫剖面示意圖。
依據某些實施例,圖5C顯示來自圖4N之線C-C的例示性金屬互連結構之橫剖面示意圖。
依據某些實施例,圖5D顯示來自圖4N之線D-D的例示性金屬互連結構之橫剖面示意圖。
在本揭示內容中,用語「半導體晶圓」、「晶圓」、「基板」、「晶圓基板」、及「部分加工之積體電路」係可互換地使用。該領域中具通常知識者將會理解:用語「部分加工之積體電路」可指涉積體電路加工之許多階段之任一者期間的矽晶圓。用於半導體裝置產業中的晶圓或基板通常具有200mm、或300mm、或450mm的直徑。以下的詳細說明假設在晶圓上施行本揭示內容。然而,實施例並非如此受限。工件可為各種外形、尺寸、及材料。除了半導體晶圓之外,可利用本揭示內容的其他工件包含各種物件,例如印刷電路板等。
前言
積體電路技術之進展涉及在積體電路中縮小至越來越小的特徵部。積體電路通常包含連接導電結構或膜層的導電微電子結構或介層窗。導電結構可包含在晶片上橫跨一距離的線特徵部(例如金屬線或金屬化層)、及將不同階層中之線特徵部連接的互連特徵部(例如介層窗)。可透過介電材料將線特徵部及互連特徵部絕緣。
鑲嵌及雙重鑲嵌製造技術已被使用於在金屬互連結構中產生介層窗及金屬線。鑲嵌及雙重鑲嵌技術為在製造金屬互連結構(例如銅互連結構)之過程中所依賴的加成式圖案化技術。然而,隨著積體電路中的特徵部尺寸持續縮小,加成式圖案化技術對於某些技術節點而言可能係不足的。在加成式圖案化技術不足的情況下,削減式圖案化技術可能為合適的。
概括而言,削減式圖案化技術沉積一金屬覆蓋層、將一遮罩塗佈於金屬覆蓋層、並且蝕刻金屬覆蓋層以圖案化由遮罩所界定的金屬線或特徵部。相對地,加成式圖案化技術沉積一介電材料覆蓋層、將一遮罩塗佈於介電 材料覆蓋層、在介電材料覆蓋層中蝕刻由遮罩所界定的開口或凹部、並且以金屬填充開口或凹部。在加成式圖案化技術中所使用的典型金屬包含銅(Cu)或鈷(Co)。銅具有高電導率(僅次於銀),這使其非常適合用作互連金屬。然而,諸如銅及鈷之金屬係難以進行蝕刻的,因此對於常用於積體電路製造中的削減式圖案化技術而言並非適合的選擇。
典型的削減式圖案化技術在製造金屬線及金屬互連結構的過程中使用諸如鋁(Al)之金屬。削減式圖案化技術所製造的線寬通常大約為若干微米至數百奈米。銅鑲嵌技術係在多年前導入以製造銅線及銅互連結構,其中鑲嵌技術所製造的線寬通常大約為數十及數百奈米。然而,利用銅鑲嵌技術難以可靠地獲得等於或小於30nm、或等於或小於20nm的線寬。例如,銅互連結構通常需要擴散阻障層及/或襯墊層以限制銅擴散至周圍介電材料中,且此等膜層可能佔據更多空間,因此使得較小線寬更難以達成。在可容許較薄擴散阻障層及/或襯墊層(或者兩者皆無)之削減式圖案化中可使用銅以外的金屬。此可在積體電路之製造中實現較小的尺寸及/或技術節點。
削減式圖案化
圖1A-1O顯示藉由削減式圖案化而形成金屬互連結構的例示性程序之示意圖。在圖1A中,將第一金屬層101(Mx)沉積於基板100上方。圖1A中之第一金屬層101為未經圖案化的一覆蓋層。可利用合適的沉積處理(例如物理氣相沉積(PVD)、化學氣相沉積(CVD)、電漿輔助化學氣相沉積(PECVD)、原子層沉積(ALD)、或電沉積)以沉積第一金屬層101。電沉積可包含例如電鍍或無電式電鍍(electroless plating)。在某些實施例中,第一金屬層101可包含可受蝕刻之金屬,其中此等金屬可包含(但不限於)鉬(Mo)、釕(Ru)、鎢(W)、或鋁(Al)。在某些 實施例中,可在第一金屬層101與基板100之間設置一襯墊層。襯墊層之範例包含(但不限於)氮化鈦(TiN)。其他範例包含氮化鉭(TaN)、氮化鎢(WN)、及碳氮化鎢(WCN)。襯墊層之厚度可等於或小於約5nm、或等於或小於約3nm。在某些實施例中,可在襯墊層與基板100之間設置一介電層102。襯墊層用以將第一金屬層101與介電層102分隔開。
為了將第一金屬層101圖案化,可在第一金屬層101上方沉積第一硬遮罩層103。合適硬遮罩材料之範例可包含矽氮化物、矽氧化物、矽碳氮化物、矽碳氧化物、矽氮氧化物、非晶矽、多晶矽、或碳(例如非晶碳、金屬摻雜的非晶碳、類鑽碳、多晶鑽石)。可利用經受極紫外光(EUV)微影的光阻104及光阻下層105以將第一硬遮罩層103圖案化。可在光阻與第一硬遮罩層之間形成額外的膜層,其中該等額外的膜層在微影處理中可為有用的。例如,可將非晶碳106(a-C)及抗反射層107(ARL)設置於光阻104與第一硬遮罩層103之間。抗反射層107可用以防止後續微影處理中的輻射從下方膜層反射並干擾曝光處理。
在圖1B中,藉由將第一硬遮罩層103圖案化而形成複數第一硬遮罩特徵部108。可藉由利用微影術(例如EUV微影術)將光阻104圖案化以界定該複數第一硬遮罩特徵部108。此外,在某些實施例中,可藉由自對準雙重圖案化(SADP)處理以減小第一硬遮罩特徵部的特徵部尺寸。舉例而言,可藉由節距重覆(pitch doubling)而形成較狹窄的硬遮罩特徵部,其中可利用SADP處理將該複數第一硬遮罩特徵部108中的節距從80nm減小至40nm。
在圖1C中,可在複數第一硬遮罩特徵部108上方選用性地沉積和圖案化額外的遮罩層。可將該等額外的遮罩層圖案化,以用於將底下的複數第一硬遮罩特徵部108蝕刻成第一硬遮罩特徵部之期望配置,俾對第一金屬層101 進行圖案化。繼而,可依據第一硬遮罩特徵部108之期望配置而對第一金屬層101進行圖案化和「切割」。在某些實施例中,額外的遮罩層可包含光阻109、光阻下層110、及旋塗碳111(SoC)。然而,應理解,取代使用額外的遮罩層以蝕刻底下的複數第一硬遮罩特徵部108,而可在蝕刻第一金屬層101之後進行第一硬遮罩特徵部108之蝕刻。換言之,第一金屬層101係透過額外的遮罩層而加以「切割」而非使該複數第一硬遮罩特徵部108經歷「切割」處理。
在圖1D中,透過額外的遮罩層對複數第一硬遮罩特徵部108進行圖案化。透過「切割」蝕刻處理,額外的遮罩層使該複數第一硬遮罩特徵部108形成為期望的特徵部配置。隨後將該等額外的遮罩層移除。
在圖1E中,將第一金屬層101圖案化以形成第一圖案化金屬線層112。在金屬線蝕刻處理期間,第一圖案化金屬線層112係由複數第一硬遮罩特徵部108加以界定。金屬線蝕刻處理可選擇性地蝕刻通過金屬以形成第一圖案化金屬線層112,而不會對下伏介電層102進行蝕刻。可使用合適的蝕刻劑以蝕刻金屬而實質上不蝕刻下伏介電層102之介電材料。如本文所使用,「實質上不蝕刻」可指涉以下蝕刻處理:對象材料(例如介電質)的蝕刻速率為欲蝕刻之目標材料(例如金屬)的蝕刻速率的至少1/5倍低的蝕刻處理。例如,削減式電漿蝕刻可以比下伏介電層102明顯更高的蝕刻速率移除金屬覆蓋層。在形成第一圖案化金屬線層112之後,可將複數硬遮罩特徵部108移除。在某些實施例中,可在第一圖案化金屬線層112上沉積擴散阻障層及/或襯墊層。擴散阻障層及/或襯墊層將第一圖案化金屬線層112與周圍的介電材料分隔開。
在圖1F中,第一介電材料113被沉積在第一圖案化金屬線層112上方,並填充於相鄰的第一金屬線之間的間隙中。第一介電材料113可將第一圖案 化金屬線層112包圍。在蝕刻金屬覆蓋層以形成第一圖案化金屬線層112之後,第一介電材料113填充於先前由金屬覆蓋層所填充的間隙、凹部、開口、或間隔中。在某些實施例中,在沉積第一介電材料113之後,可藉由一平坦化處理(例如化學機械研磨(CMP)及/或毯式回蝕(blanket etchback))使第一介電材料113平坦化。在某些實施例中,第一介電材料113為具有低介電常數的介電材料(低k介電質)。低k介電質可具有等於或低於約5.0的介電常數,其可為等於或低於矽氧化物的介電常數(約4.2)。低k介電材料可包含經氟摻雜或碳摻雜的矽氧化物或含有機物之低k材料,例如有機矽玻璃(OSG)。在某些實施例中,可在相鄰圖案化金屬線之間的第一介電材料113中形成氣隙,其中該等氣隙可用於進一步使相鄰圖案化金屬線之間的第一介電材料113的介電常數減小。在從圖1F之線A-A截取的部分加工金屬互連結構之橫剖面示意圖的圖2A中可觀察到此等氣隙114。如圖2A中所示,第一介電材料113填充相鄰圖案化金屬線之間的間隙。氣隙114係形成於相鄰圖案化金屬線之間的間隙中之第一介電材料113中,其中圖案化金屬線係經由剩餘的第一介電材料113而與氣隙114分隔開。
在圖1G中,可在第一介電材料113上方形成介層窗遮罩115。在某些實施例中,介層窗遮罩115可包含一或更多遮罩層,其中該一或更多遮罩層包含光阻116、光阻下層117、及旋塗碳118(SoC)。為了形成連接至第一圖案化金屬線層112的介層窗,在第一介電材料113中圖案化和形成如介層窗遮罩115所界定的介層窗開口。可將微影處理施用於光阻116,以將介層窗遮罩115的光阻116圖案化。可在介層窗遮罩115中形成一或更多孔洞119,以在第一介電材料113中界定介層窗開口。意圖使介層窗遮罩115中的一或更多孔洞119與第一圖案化金屬線層112對準。
在圖1H中,藉由蝕刻而在第一介電材料113中形成介層窗開口120。介層窗開口120係由介層窗遮罩115的一或更多孔洞119所界定。意圖使介層窗開口120與第一圖案化金屬線層112的一或更多圖案化金屬線對準。然而,如下所述,在微影處理期間可能發生對準誤差,其可能使得介層窗開口120未與第一圖案化金屬線層112的一或更多圖案化金屬線對準。可在形成介層窗開口120之後將介層窗遮罩115移除。在圖2B-1中可觀察到與第一圖案化金屬線層112的一或更多圖案化金屬線完全對準的介層窗開口120,而在圖2B-2中可觀察到未與第一圖案化金屬線層112的一或更多圖案化金屬線對準的介層窗開口120。
隨著特徵部尺寸縮小,將習知微影處理尺度化以提供較小特徵部尺寸可能係困難的。此係至少部分歸因於金屬互連結構中之特徵部之間的對準或覆蓋誤差。在微影處理期間總是會發生對準或覆蓋誤差,因為遮罩未與下層結構完全對準。例如,在微影處理中使用倍縮光罩的曝光階段期間,用於介層窗及渠溝的圖案化遮罩可能存在若干奈米的錯位。因此,意圖與圖案化金屬線連接的介層窗可能為未對準的。雖然可藉由重新進行微影處理以使覆蓋誤差最小化,但一定程度的覆蓋誤差係無法避免的。
如圖2B-1中所示,當經由一或更多遮罩層而圖案化的介層窗開口120與第一圖案化金屬線層112完全對準時,介層窗開口120不偏離第一圖案化金屬線層112。介層窗開口120係直接形成於第一圖案化金屬線層112上方,而不形成於第一圖案化金屬線層112之相鄰圖案化金屬線之間的間隙中。然而,對準或覆蓋誤差可能使得一或更多遮罩層在x方向或y方向上發生錯位,即使係若干奈米。如圖2B-2中所示,介層窗開口120係經由一或更多遮罩層而圖案化,且係未與第一圖案化金屬線層112對準。錯位使得介層窗開口120的一部分形成於第一 圖案化金屬線層112之相鄰圖案化金屬線之間的間隙中。錯位導致第一圖案化金屬線層112之圖案化金屬線與介層窗之間的接觸面積的損失,且介層窗與包圍第一圖案化金屬線層112的介電材料之部分重疊。此外,錯位可能造成鄰近氣隙114之缺口的風險,其可能導致短路或漏電。
在圖1I中,在第一介電材料113上沉積第二金屬層121(Mx+1),其中第二金屬層121填充介層窗開口120而形成一或更多介層窗。第二金屬層121在第一介電材料113上方提供金屬覆蓋層。在某些實施例中,在第二金屬層121與第一介電材料113之間設置襯墊層。襯墊層亦可被設置於第一圖案化金屬線層112的一或更多圖案化金屬線與介層窗之間。第二金屬層121可在第一介電材料113上方提供金屬覆蓋層,或者可被沉積至第二金屬層121的目標厚度。第二金屬層121之沉積可能造成表面形貌問題或表面粗糙,其可歸因於金屬填充介層窗開口120且覆蓋第一介電材料113。在某些實施例中,可利用平坦化處理以使第二金屬層121平坦化,俾產生相對平滑、平坦的金屬薄層。在某些實施例中,藉由合適的沉積技術(例如PVD、CVD、PECVD、ALD、或電沉積)以沉積第二金屬層121。在某些實施例中,第二金屬層121包含Mo、Ru、Al、或W。在某些實施例中,可藉由與沉積金屬於第一介電材料113上之金屬沉積處理不同的金屬沉積處理以填充介層窗開口120。例如,可利用合適的沉積處理,使用上列金屬中之一者來填充介層窗開口120。在此之後可進行一個別處理,用以在第一介電材料113上沉積上列金屬中之一者的覆蓋層並連接至介層窗。在某些實施例中,可進行一平坦化處理直至第二金屬層121之期望厚度。
在圖1J中,在第二金屬層121上方沉積第二硬遮罩層122。合適的硬遮罩材料之範例包含矽氮化物、矽氧化物、矽碳氮化物、矽碳氧化物、矽氮 氧化物、非晶矽、多晶矽、或碳(例如非晶碳、金屬摻雜的非晶碳、類鑽碳、多晶鑽石)。可利用經受極紫外光(EUV)微影的光阻123及光阻下層124以將第二硬遮罩層122圖案化。可在光阻123與第二硬遮罩層122之間形成額外的膜層,其中該等額外的膜層在微影處理中可為有用的。例如,可將非晶碳125(a-C)及抗反射層126(ARL)設置於光阻123與第二硬遮罩層122之間。
圖2C-1及2C-2顯示從圖1J之線C-C截取的部分加工金屬互連結構之橫剖面示意圖。如圖2C-1及2C-2中所示,第二金屬層121填充介層窗開口120以形成介層窗127,其提供與第一圖案化金屬線層112的電連接。在圖2C-1中,介層窗127與第一圖案化金屬線層112完全對準。然而,歸因於對準或覆蓋誤差,如圖2C-2中所示,介層窗127未與第一圖案化金屬線層112對準。歸因於對準或覆蓋誤差,介層窗127部分地「著陸」(land)於第一圖案化金屬線層112之一或更多圖案化金屬線的頂表面上,從而使介層窗127偏移而更靠近第一圖案化金屬線層112之鄰近圖案化金屬線並進入周圍的介電材料。此使得導電特徵部之間的距離減小,其意指介層窗127與第一圖案化金屬線層112之鄰近圖案化金屬線之間的絕緣間隙較小。距離減小可能導致短路餘裕不足及依時性介電質崩潰(TDDB)減低、或甚至完全短路。TDDB為一故障模式,絕緣層(例如第一介電材料113)隨時間而崩潰並且不再作為典型電場中的有效電絕緣體。TDDB係取決於金屬線之間的電場,因為暴露於較高電場的區域較容易受到TDDB故障的影響。高電壓及/或減小的絕緣體厚度會導致較高的電場。TDDB亦係取決於相鄰金屬線之間的間距,因為該間距可能減小至絕緣層無法承受電場的程度,從而導致相鄰金屬線之間的非期望電導。當絕緣層無法承受工作電場時,最終結果為短路或可靠度降低。「未著陸」(unlanded)的介層窗可能造成因TDDB劣化而導致的嚴重 可靠度問題。此外,「未著陸」的介層窗可能造成底下氣隙114的缺口,該等氣隙114被導電材料所沉積,其可能導致短路。
在圖1K中,藉由將第二硬遮罩層122圖案化而形成複數第二硬遮罩特徵部128。可藉由利用微影術(例如EUV微影術)將光阻123圖案化以界定該複數第二硬遮罩特徵部128。此外,在某些實施例中,可藉由自對準雙重圖案化(SADP)處理以減小第二硬遮罩特徵部128的特徵部尺寸。舉例而言,可藉由節距重覆(pitch doubling)而形成較狹窄的硬遮罩特徵部,其中可利用SADP處理將該複數第二硬遮罩特徵部128中的節距從40nm減小至20nm。
在圖1L中,可在複數第二硬遮罩特徵部128上方選用性地沉積和圖案化額外的遮罩層。可將該等額外的遮罩層圖案化,以用於將底下的複數第二硬遮罩特徵部128蝕刻成第二硬遮罩特徵部128之期望配置,俾對第二金屬層121進行圖案化。繼而,可依據第二硬遮罩特徵部128之期望配置而對第二金屬層121進行圖案化和「切割」。在某些實施例中,額外的遮罩層可包含光阻129、光阻下層130、及旋塗碳131(SoC)。然而,應理解,取代使用額外的遮罩層以蝕刻底下的複數第二硬遮罩特徵部128,而可在蝕刻第二金屬層121之後進行第二硬遮罩特徵部128之蝕刻。換言之,第二金屬層121係透過額外的遮罩層而加以「切割」而非使該複數第二硬遮罩特徵部128經歷「切割」處理。
在圖1M中,透過額外的遮罩層對複數第二硬遮罩特徵部128進行圖案化。透過「切割」蝕刻處理,額外的遮罩層使該複數第二硬遮罩特徵部128形成為期望的特徵部配置。隨後將該等額外的遮罩層移除。
在圖1N中,將第二金屬層121圖案化以形成第二圖案化金屬線層132。在金屬線蝕刻處理期間,圖案化金屬線係由複數第二硬遮罩特徵部128加 以界定。金屬線蝕刻處理可選擇性地蝕刻通過金屬以形成第二圖案化金屬線層132,而不會蝕刻第一介電材料113。可使用合適的蝕刻劑以移除金屬而不蝕刻或實質上不蝕刻第一介電材料113。例如,削減式電漿蝕刻可以比下伏第一介電材料113明顯更高的蝕刻速率移除金屬覆蓋層。在形成第二圖案化金屬線層132之後,可將複數第二硬遮罩特徵部128移除。在某些實施例中,可在第二圖案化金屬線層132上沉積擴散阻障層及/或襯墊層。擴散阻障層及/或襯墊層將第二圖案化金屬線層132與周圍的介電材料分隔開。
介層窗127提供第二圖案化金屬線層132與第一圖案化金屬線層112之間的電互連,俾形成一金屬互連結構。如前所述,當在介層窗遮罩115中圖案化一或更多孔洞119時,存在與第一圖案化金屬線層112錯位的風險。不僅與第一圖案化金屬線層112(Mx)錯位的風險存在,而且還存在與第二圖案化金屬線層132(Mx+1)錯位的風險。當圖案化第二圖案化金屬線層132時,存在介層窗127與第二圖案化金屬線層132之間錯位的風險。圖2D-1顯示從圖1N之線D-D截取的金屬互連結構之橫剖面示意圖,其中介層窗127係與第二圖案化金屬線層132對準。在圖2D-1中,介層窗127與第二圖案化金屬線層132之間沒有接觸面積的損失。圖2D-2顯示從圖1N之線D-D截取的金屬互連結構之橫剖面示意圖,其中介層窗127係與第二圖案化金屬線層132錯位。歸因於錯位,在圖2D-2中,介層窗127與第二圖案化金屬線層132之間存在接觸面積的損失。此導致介層窗面積的損失。電阻與材料的電阻率及其長度成正比,且與材料的截面積成反比。介層窗面積的損失造成較高的介層窗電阻,其導致性能減低且可靠度減低。
在圖1O中,藉由與Mx本質上相同的方式,介電材料133被沉積在第二圖案化金屬線層132上方,並填充於相鄰的第二金屬線之間的間隙中。介電 材料133(在下文中稱為第二介電材料)可將第二圖案化金屬線層132包圍。在蝕刻金屬覆蓋層以形成第二圖案化金屬線層132之後,第二介電材料133填充於先前由金屬覆蓋層所填充的間隙、凹部、開口、或間隔中。在某些實施例中,在沉積第二介電材料133之後,可藉由一平坦化處理(例如CMP及/或毯式回蝕(blanket etchback))使第二介電材料133平坦化。在某些實施例中,第二介電材料133為一低k介電材料。在某些實施例中,第二介電材料133具有與第一介電材料113相同的組成。在某些實施例中,可在相鄰的第二金屬線之間的第二介電材料中形成氣隙,其中該等氣隙可用於進一步使相鄰第二金屬線之間的第二介電材料133的介電常數減小。在沉積第二介電材料133之後,製成一金屬互連結構。藉由削減式圖案化技術所形成的金屬互連結構具有第一圖案化金屬線層112、及位在第一圖案化金屬線層112上方的第二圖案化金屬線層132,其中一或更多介層窗127提供第一圖案化金屬線層112與第二圖案化金屬線層132之間的電互連。應理解,可沉積和圖案化額外的金屬線(例如Mx+2、Mx+3等)以建立於該金屬互連結構上。可藉由與第二圖案化金屬線層132及第一圖案化金屬線層112相同或相似的方式形成額外的金屬線。
削減式圖案化中的自對準介層窗
本發明係關於金屬互連結構之製造,其中在形成兩個相連金屬化層之後形成一或更多介層窗。藉由在圖案化第一金屬層之後和圖案化第二金屬層之後利用導電材料填充一或更多介層窗開口,而形成該一或更多介層窗。該金屬互連結構係藉由削減式圖案化技術而加以製造。該一或更多介層窗係與該兩個相連金屬化層之各者對準。該一或更多介層窗與該等相連金屬化層之間的對準狀態係透過以下方式而達成:於形成兩個相連金屬化層之後在圖案化金屬 線上方留下一些硬遮罩材料或其他絕緣隔離材料。在蝕刻通過該等相連金屬化層中之一者時將其中一些剩餘絕緣隔離材料移除,以形成一或更多介層窗開口。由於周圍介電材料與絕緣隔離材料之間的蝕刻選擇性差異、以及周圍介電材料與相連金屬化層之間的蝕刻選擇性差異,因此一或更多介層窗之形成係限制於不會形成為周圍介電材料的空間內。在某些實施例中,該一或更多介層窗與該兩個相連金屬化層係完全對準,俾提供改良的接觸面積、減小的電阻率、減低的TDDB故障風險、及減低的短路風險。
依據某些實施例,圖3顯示在積體電路中製造金屬互連結構之例示性方法的流程圖。可按不同的順序、及/或利用不同的、更少的、或額外的操作來執行程序300中之操作。
在程序300的方塊310,藉由削減式圖案化以在基板上形成第一圖案化金屬線層(Mx)。在某些實施例中,基板為半導體晶圓、被設置在半導體晶圓上、或半導體晶圓之部分。基板可包含一介電層,第一圖案化金屬線層係在該介電層上形成。在某些實施例中,可在介電層上沉積擴散阻障層及/或襯墊層,以將第一圖案化金屬線層與介電層分隔開。第一圖案化金屬線層代表金屬互連結構中的第一金屬化層。如本文所使用,圖案化金屬線層亦可稱為金屬化層、金屬層、金屬線、金屬特徵部、或線特徵部。第一圖案化金屬線層或第一金屬化層亦可稱為底部的圖案化金屬線層或底部金屬化層。
在程序300的方塊310,藉由削減式圖案化而形成第一圖案化金屬線層可涉及一或更多操作。在某些實施例中,形成第一圖案化金屬線層之操作包含在基板上沉積第一金屬層、在第一金屬層上沉積第一絕緣層、蝕刻第一絕緣層以在第一金屬層上方形成第一絕緣特徵部、以及蝕刻第一金屬層以形成由 複數第一絕緣特徵部所界定之第一圖案化金屬線層。在某些實施例中,第一絕緣層可為第一硬遮罩層,且第一絕緣特徵部可為第一硬遮罩特徵部。第一金屬層可包含可利用削減式圖案化技術進行蝕刻和圖案化之任何合適的金屬。例如,第一金屬層可包含Mo、Ru、Al、或W。在某些實施例中,利用任何合適的沉積技術(例如PVD、CVD、PECVD、ALD、或電沉積)以沉積第一金屬層。電沉積可包含例如電鍍或無電式電鍍(electroless plating)。在某些實施例中,第一層(Mx)之圖案化金屬線的臨界尺寸(CD)係等於或小於約50nm、等於或小於約20nm、等於或小於約15nm、或等於或小於約10nm。在某些實施例中,第一層(Mx)之圖案化金屬線的節距係等於或小於約100nm、等於或小於約40nm、等於或小於約30nm、或等於或小於約20nm。
在某些實施例中,程序300更包含在第一金屬層上形成複數第一絕緣特徵部。該複數第一絕緣特徵部可界定第一金屬層中的圖案化金屬線。程序300更包含在相鄰金屬線之間的間隙中形成第一介電材料。第一介電材料可包圍複數第一絕緣特徵部及第一圖案化金屬線層。在形成第一介電材料之後,保留複數第一絕緣特徵部,以覆蓋第一圖案化金屬線層的頂表面。此可用於在形成一或更多介層窗時限制後續的蝕刻處理。
圖4A-4D顯示藉由削減式圖案化而在基板上形成第一圖案化金屬線層的例示性程序之示意圖。與圖4A-4D所示者相比,程序300之方塊310的第一圖案化金屬線層之形成可涉及不同、較少、或額外的操作。在圖4A中,將第一金屬層401(Mx)沉積於基板400上方。圖4A中之第一金屬層401為未經圖案化的金屬覆蓋層。在某些實施例中,可在第一金屬層401與基板400之間設置一襯墊層。襯墊層之範例包含(但不限於)氮化鈦(TiN)。其他範例包含氮化鉭 (TaN)、氮化鎢(WN)、及碳氮化鎢(WCN)。襯墊層之厚度可等於或小於約5nm、或等於或小於約3nm。在某些實施例中,可在襯墊層與基板400之間設置一介電層402。襯墊層用以將第一金屬層401與介電層402分隔開。
為了將第一金屬層401圖案化,可在第一金屬層401上方沉積第一硬遮罩層403。合適硬遮罩材料之範例可包含矽氮化物、矽氧化物、矽碳氮化物、矽碳氧化物、矽氮氧化物、非晶矽、多晶矽、或碳(例如非晶碳、金屬摻雜的非晶碳、類鑽碳、多晶鑽石)。可利用光阻404及光阻下層405以將第一硬遮罩層403圖案化,如圖1A中所示,並且非晶碳層406及抗反射層407係選用性地設置於光阻404與第一硬遮罩層403之間,如圖1A中所示。
在圖4B中,藉由將第一硬遮罩層403圖案化而形成複數第一硬遮罩特徵部408。可藉由利用微影術(例如EUV微影術)將光阻404圖案化以實現第一硬遮罩層403之圖案化。在某些實施例中,可藉由如圖1B中所示之節距重覆(pitch doubling)而形成較小的特徵部尺寸。在某些實施例中,可進行額外的遮蔽操作,以將第一硬遮罩特徵部408「切割」成第一硬遮罩特徵部408之期望配置,如圖1C及1D中所示。繼而,在額外的遮蔽及切割操作之後,將如第一硬遮罩特徵部408所界定而圖案化第一金屬層401。
在圖4C中,將第一金屬層401圖案化以形成第一圖案化金屬線層409。在金屬線蝕刻處理期間,第一圖案化金屬線層409係由複數第一硬遮罩特徵部408加以界定。金屬線蝕刻處理可選擇性地蝕刻通過金屬以形成第一圖案化金屬線層409,而不蝕刻或實質上不蝕刻下伏介電層402。例如,削減式電漿蝕刻可以比下伏介電層402明顯更高的蝕刻速率移除金屬覆蓋層。保留該複數第一硬遮罩特徵部408,而不從圖4C中之第一圖案化金屬線層409移除該複 數第一硬遮罩特徵部408。在某些實施例中,可在複數第一硬遮罩特徵部408及第一圖案化金屬線層409上沉積襯墊層及/或擴散阻障層。襯墊層及/或擴散阻障層將第一圖案化金屬線層409及複數第一硬遮罩特徵部408與周圍的介電材料分隔開。
在圖4D中,第一介電材料410被沉積在第一圖案化金屬線層409及複數第一硬遮罩特徵部408的周圍,並填充於相鄰的圖案化金屬線之間的間隙中。第一介電材料410可將第一圖案化金屬線層409及第一硬遮罩特徵部408包圍。在某些實施例中,第一介電材料410被沉積在複數第一硬遮罩特徵部408上方。在蝕刻金屬覆蓋層以形成第一圖案化金屬線層409之後,第一介電材料410填充於先前由金屬覆蓋層所填充的間隙、凹部、開口、或間隔中。在某些實施例中,在沉積第一介電材料410之後,可藉由一平坦化處理(例如CMP及/或毯式回蝕(blanket etchback))使第一介電材料410及複數第一硬遮罩特徵部408平坦化。平坦化處理可使覆蓋第一圖案化金屬線層409之第一硬遮罩特徵部408的頂表面暴露。第一硬遮罩特徵部408與第一介電材料410的頂表面係共面的。在某些實施例中,第一介電材料410為一低k介電材料。低k介電材料可包含經氟摻雜或碳摻雜的矽氧化物或含有機物之低k材料,例如OSG。在某些實施例中,可在相鄰圖案化金屬線之間的第一介電材料410中形成氣隙,其中該等氣隙可用於進一步使相鄰圖案化金屬線之間的第一介電材料410的介電常數減小。氣隙係形成於相鄰圖案化金屬線之間的間隙中之第一介電材料410中,其中圖案化金屬線係經由剩餘的第一介電材料410而與氣隙分隔開。
回到圖3,在程序300的方塊320,藉由削減式圖案化在第一圖案化金屬層上方形成第二圖案化金屬層。在某些實施例中,可在第一介電材料及 複數第一絕緣特徵部的暴露表面上沉積擴散阻障層及/或襯墊層。第二圖案化金屬層代表金屬互連結構中的第二金屬化層。
在程序300的方塊320,藉由削減式圖案化而形成第二圖案化金屬線層可涉及一或更多操作。在某些實施例中,形成第二圖案化金屬線層之操作包含在第一介電材料及第一圖案化金屬線層的上方沉積第二金屬層、在第二金屬層上沉積第二絕緣層、蝕刻第二絕緣層以在第二金屬層上方形成複數第二絕緣特徵部、以及蝕刻第二金屬層以形成由複數第二絕緣特徵部所界定之第二圖案化金屬線層。在某些實施例中,第二絕緣層可為第二硬遮罩層,且第二絕緣特徵部可為第二硬遮罩特徵部。第二金屬層可包含可利用削減式圖案化技術進行蝕刻和圖案化之任何合適的金屬。例如,第二金屬層可包含Mo、Ru、Al、或W。在某些實施例中,第二金屬層為與第一金屬層相同的材料。在某些實施例中,利用任何合適的沉積技術(例如PVD、CVD、PECVD、ALD、或電沉積)以沉積第二金屬層。電沉積可包含例如電鍍或無電式電鍍(electroless plating)。在某些實施例中,第二層(Mx+1)之圖案化金屬線的臨界尺寸係等於或小於約50nm、等於或小於約20nm、等於或小於約15nm、或等於或小於約10nm。在某些實施例中,第二層(Mx+1)之圖案化金屬線的節距係等於或小於約100nm、等於或小於約40nm、等於或小於約30nm、或等於或小於約20nm。
在某些實施例中,程序300更包含在第二金屬層上形成複數第二絕緣特徵部。該複數第二絕緣特徵部可界定第二金屬層中的第二圖案化金屬線層。程序300更包含在相鄰金屬線之間的間隙中形成第二介電材料。第二介電材料可包圍複數第二絕緣特徵部及第二圖案化金屬線層。在形成第二介電材料之 後,保留複數第二絕緣特徵部,以覆蓋第二圖案化金屬線層的頂表面。此可用於在形成一或更多介層窗時限制後續的蝕刻處理。
圖4E-4H顯示藉由削減式圖案化而在第一圖案化金屬線層上形成第二圖案化金屬線層的例示性程序之示意圖。與圖4E-4H所示者相比,程序300之方塊320的第二圖案化金屬線層之形成可涉及不同、較少、或額外的操作。在圖4E中,將第二金屬層411(Mx+1)沉積於第一圖案化金屬線層409上方、及第一介電材料410上方、及複數第一硬遮罩特徵部408上方。圖4E中的第二金屬層411在第一介電材料410及複數第一硬遮罩特徵部408上方提供一金屬覆蓋層。在某些實施例中,在第二金屬層411與第一介電材料410之間、以及第二金屬層411與複數第一硬遮罩特徵部408之間設置一襯墊層。在圖案化第二金屬層411的期間,可在第二金屬層411上方沉積第二硬遮罩層412,其中可利用光阻413及光阻下層414以將第二硬遮罩層412圖案化,如圖1J中所示,並且非晶碳層415及抗反射層416係選用性地設置於光阻413與第二硬遮罩層412之間,如圖1J中所示。
在圖4F中,藉由將第二硬遮罩層412圖案化而形成複數第二硬遮罩特徵部417。可藉由利用微影術(例如EUV微影術)將光阻413圖案化以實現第二硬遮罩層412之圖案化。在某些實施例中,可藉由如圖1K中所示之節距重覆(pitch doubling)而形成較小的特徵部尺寸。在某些實施例中,可進行額外的遮蔽操作,以將第二硬遮罩特徵部417「切割」成第二硬遮罩特徵部417之期望配置,如圖1L及1M中所示。繼而,在額外的遮蔽及切割操作之後,將如第二硬遮罩特徵部417所界定而圖案化第二金屬層411。
在圖4G中,將第二金屬層411圖案化以形成第二圖案化金屬線層418。在金屬線蝕刻處理期間,第二圖案化金屬線層418係由複數第二硬遮罩特 徵部417加以界定。金屬線蝕刻處理可選擇性地蝕刻通過第二金屬層411以形成第二圖案化金屬線層418,而不蝕刻或實質上不蝕刻第一介電材料410及複數第一硬遮罩特徵部408。例如,削減式電漿蝕刻可以比第一介電材料410及複數第一硬遮罩特徵部408明顯更高的蝕刻速率移除金屬覆蓋層。如本文所使用,「明顯更高的蝕刻速率」可指涉:欲蝕刻之目標材料的蝕刻速率為其他材料的至少5倍大。保留該複數第二硬遮罩特徵部417,而不從圖4G中之第二圖案化金屬線層418移除該複數第二硬遮罩特徵部417。在某些實施例中,可在複數第二硬遮罩特徵部417及第二圖案化金屬線層418上沉積襯墊層及/或擴散阻障層。襯墊層及/或擴散阻障層將第二圖案化金屬線層418及複數第二硬遮罩特徵部417與周圍的介電材料分隔開。
在圖4H中,第二介電材料419被沉積在第二圖案化金屬線層418及複數第二硬遮罩特徵部417的周圍,並填充於相鄰的圖案化金屬線之間的間隙中。第二介電材料419可將第二圖案化金屬線層418及第二硬遮罩特徵部417包圍。在某些實施例中,第二介電材料419被沉積在複數第二硬遮罩特徵部417上方。在蝕刻金屬覆蓋層以形成第二圖案化金屬線層418之後,第二介電材料419填充於先前由金屬覆蓋層所填充的間隙、凹部、開口、或間隔中。在某些實施例中,在沉積第二介電材料419之後,可藉由一平坦化處理(例如CMP及/或毯式回蝕(blanket etchback))使第二介電材料419及複數第二硬遮罩特徵部417平坦化。平坦化處理可使覆蓋第二圖案化金屬線層418之第二硬遮罩特徵部417的頂表面暴露。第二硬遮罩特徵部417與第二介電材料419的頂表面係共面的。在某些實施例中,第二介電材料419為一低k介電材料。在某些實施例中,可在相鄰 圖案化金屬線之間的第二介電材料419中形成氣隙,其中圖案化金屬線係經由剩餘的第二介電材料419而與氣隙分隔開。
回到圖3,在程序300的方塊330,形成提供第一圖案化金屬線層與第二圖案化金屬線層之間之電互連的一或更多介層窗,而形成金屬互連結構。該一或更多介層窗係在形成第一圖案化金屬線層與第二圖案化金屬線層之後形成。此外,該一或更多介層窗係在以下步驟之後形成:第一金屬層之削減式圖案化和利用第一介電材料填充於第一圖案化金屬線層周圍的間隙、以及第二金屬層之削減式圖案化和利用第二介電材料填充於第二圖案化金屬線層周圍的間隙。換言之,圖案化該一或更多介層窗之操作係在界定兩個金屬化層之後進行。
在程序300的方塊330,該一或更多介層窗之形成可涉及一或更多操作。藉由使一或更多介層窗開口形成通過至少第二圖案化金屬線層直至第一圖案化金屬線層、並利用導電材料填充該一或更多介層窗開口,可形成該一或更多介層窗。形成一或更多介層窗開口之操作包含蝕刻通過一或更多第二絕緣特徵部、蝕刻通過第二圖案化金屬線層、及蝕刻通過一或更多第一絕緣特徵部。在不蝕刻或實質上不蝕刻周圍材料之情況下蝕刻通過三或更多層材料可能帶來許多挑戰。在某些實施例中,蝕刻通過一或更多第二絕緣特徵部之操作係在不蝕刻或實質上不蝕刻第二介電材料之情況下發生。在某些實施例中,蝕刻通過第二圖案化金屬線層之操作係在不蝕刻或實質上不蝕刻第二介電材料之情況下發生。在某些實施例中,蝕刻通過一或更多第一絕緣特徵部之操作係在不蝕刻或實質上不蝕刻第一介電材料之情況下發生。如本文所使用,「實質上不蝕刻」可指涉以下蝕刻處理:對象材料(例如介電質)的蝕刻速率為欲蝕刻之目標材料 (例如硬遮罩)的蝕刻速率的至少1/5倍低的蝕刻處理。換言之,欲蝕刻之目標材料對其他材料之蝕刻選擇性等於或大於約5:1。蝕刻通過三或更多層材料之操作可使用利用相同蝕刻劑的相同蝕刻處理、或者可使用利用不同蝕刻劑的不同蝕刻處理。在某些實施例中,利用導電材料填充一或更多介層窗開口之操作包含回填第二圖案化金屬線層及一或更多第一絕緣特徵部被蝕刻掉之處。此等回填操作形成該一或更多介層窗,俾提供與剩餘之第二圖案化金屬線層的電連接。
使一或更多介層窗開口形成直至第一圖案化金屬線層之操作可藉由第一絕緣特徵部及第二絕緣特徵部加以限制,使得該一或更多介層窗開口不會偏移或錯位。具體而言,第一絕緣特徵部及第二絕緣特徵部用以限制蝕刻處理,使得介層窗開口不會形成於周圍的介電材料中。在形成第一圖案化金屬線層與第二圖案化金屬線層之後未保留第一絕緣特徵部及第二絕緣特徵部之情況下,可能發生對準或覆蓋誤差,其在第一圖案化金屬線層與第二圖案化金屬線層之間產生不樂見之電連接(例如不樂見之短路)。
第一及第二絕緣特徵部與周圍介電材料之間的材料差異促成蝕刻對比,因此限制介層窗之形成,從而使得一或更多介層窗能夠與第一圖案化金屬線層及第二圖案化金屬線層自對準。用於提供金屬化層之間之介層窗的習知製造處理通常使用相同介電材料作為金屬化層之間的空間補償,而本發明之第一及第二絕緣特徵部提供與周圍介電材料的材料差異,其具有不同的蝕刻選擇性。
周圍介電材料的垂直壁部用作限制介層窗蝕刻的蝕刻邊界,使得介層窗之形成與第一圖案化金屬線層及第二圖案化金屬線層對準。介層窗蝕刻不會延伸至周圍介電材料或鄰接的介層窗中。藉由限制介層窗形成,此確保一 或更多介層窗與第一圖案化金屬線層及第二圖案化金屬線層之自對準。當一或更多介層窗與至少第一圖案化金屬線層對準時,該一或更多介層窗直接接觸第一圖案化金屬線層的頂表面而沒有重疊。因此,該一或更多介層窗不會與第一介電材料重疊,並且解決因未對準之介層窗而導致的TDDB劣化及短路問題。當一或更多介層窗與至少第二圖案化金屬線層對準時,一或更多介層窗在先前第二層的一或更多圖案化金屬線受蝕刻之處填充有導電材料,且不與第二介電材料重疊。此解決了因未對準之介層窗而導致之減小的接觸面積、較高的介層窗電阻、及降低的可靠度之問題。因此,自對準介層窗圖案化方案可提供與第二圖案化金屬線層及第一圖案化金屬線層完全對準的一或更多介層窗。
在某些實施例中,程序300更包含在第二複數絕緣特徵部及第二介電材料上方沉積介層窗遮罩、以及在介層窗遮罩中圖案化一或更多孔洞以界定一或更多介層窗開口。一或更多孔洞之各者具有大於第二圖案化金屬線層及/或第一圖案化金屬線層之臨界尺寸的直徑或寬度。在某些實施例中,一或更多孔洞之各者具有比第二圖案化金屬線層及/或第一圖案化金屬線層之臨界尺寸大多達約100%的直徑或寬度。使得介層窗遮罩中之一或更多孔洞的直徑或寬度過大,從而大於實際形成的一或更多介層窗之直徑或寬度。藉此方式,一或更多孔洞與欲蝕刻之下伏層之間的任何錯位不會導致留下欲蝕刻之目標材料。透過具有過大的孔洞,此亦確保實際上不管任何對準誤差而蝕刻欲蝕刻之下伏層。此係部分歸因於在蝕刻期間使第二絕緣特徵部相對於第二介電材料而具選擇性、在蝕刻期間使第二圖案化金屬線層相對於第二介電材料而具選擇性、以及在蝕刻期間使第一絕緣特徵部相對於第一介電材料而具選擇性。然而,應理解,一或更多孔洞之直徑或寬度並非過大以至於有延伸至相鄰金屬線中之風險。因 此,介層窗遮罩中之一或更多孔洞之直徑或寬度係些微過大以解決錯位公差之問題,但不過大以至於蝕刻至其他金屬線中。
圖4I-4L顯示形成一或更多介層窗的例示性程序之示意圖,其中該一或更多介層窗係用以在第一圖案化金屬線層與第二圖案化金屬線層之間提供電互連。與圖4I-4L所示者相比,程序300之方塊330的一或更多介層窗之形成可涉及不同、較少、或額外的操作。在圖4I中,可在複數第二硬遮罩特徵部417及第二介電材料419上方形成介層窗遮罩420。介層窗遮罩420可具有一或更多孔洞421,用以將一或更多介層窗開口圖案化通過至少第二圖案化金屬線層418。介層窗遮罩420可包含用於圖案化的一或更多膜層,其中該一或更多膜層可包含光阻422、光阻下層423、旋塗碳424(SoC)、及遮罩層425(例如硬遮罩層)。可將微影處理施用於光阻422以將遮罩層425圖案化,其中可在遮罩層425中形成一或更多孔洞。可蝕刻遮罩層425之部分以形成一或更多孔洞,用以界定一或更多介層窗開口。意圖使遮罩層425中的一或更多孔洞與以下各者對準:將於其中形成一或更多介層窗的第二硬遮罩特徵部417、第二圖案化金屬線層418、及第一硬遮罩特徵部408。在某些實施例中,該一或更多孔洞的直徑係大於第二圖案化金屬線層418及/或第一圖案化金屬線層409之臨界尺寸。在某些實施例中,第一圖案化金屬線層409或第二圖案化金屬線層418之臨界尺寸可為等於或小於約50nm、等於或小於約20nm、或等於或小於約10nm。在某些實施例中,該直徑比第二圖案化金屬線層418及/或第一圖案化金屬線層409之臨界尺寸更大大約1%至大約100%、更大大約5%至大約100%、或更大大約10%至大約50%。該一或更多孔洞的直徑大於形成通過第二圖案化金屬線層418之實際的一或更多介層窗開口,其中尺寸上的差異解決某些錯位公差問題而不會 蝕刻相鄰的金屬線。在某些實施例中,介層窗遮罩420的遮罩層425包含與第二硬遮罩特徵部417、第二圖案化金屬線層418、及第一硬遮罩特徵部408之材料不同的材料。
在圖4J中,藉由蝕刻使一或更多介層窗開口426形成通過至少第二圖案化金屬線層418直至第一圖案化金屬線層409。一或更多介層窗開口426係由介層窗遮罩420中的一或更多孔洞421所界定。意圖使一或更多介層窗開口426與第二圖案化金屬線層418之一或更多圖案化金屬線及第一圖案化金屬線層409之一或更多圖案化金屬線對準。藉由將電絕緣材料(例如第一及第二硬遮罩特徵部)留在具有與周圍介電材料不同的蝕刻選擇性之圖案化金屬線的頂表面上,可解決錯位公差問題。藉此方式,電絕緣材料用於限制蝕刻處理,使得一或更多介層窗開口426不會形成於周圍介電材料中。亦可藉由以下方式解決錯位公差問題:使介層窗遮罩420中具有些微過大的孔洞、以及確保蝕刻處理相對於周圍介電材料而對第二硬遮罩特徵部417、第二圖案化金屬線層418、及第一硬遮罩特徵部408具選擇性。藉此方式,介層窗遮罩420中之過大孔洞減低蝕刻處理錯過欲蝕刻之目標材料的風險,因此形成一或更多介層窗開口426之操作不會留下任何的目標材料。
形成一或更多介層窗開口426之操作包含蝕刻通過一或更多第二硬遮罩特徵部417、蝕刻通過第二圖案化金屬線層418、及蝕刻通過一或更多第一硬遮罩特徵部408。蝕刻處理在第一圖案化金屬線層409上停止。在蝕刻處理之後暴露出第一圖案化金屬線層409。蝕刻通過一或更多第二硬遮罩特徵部之操作相對於第二介電材料419而具選擇性、蝕刻通過第二圖案化金屬線層418之操作相對於第二介電材料419而具選擇性、且蝕刻通過一或更多第一硬遮罩特徵部 408之操作相對於第一介電材料410而具選擇性。在分別沿著圖4J之線A-A及線B-B截取的圖5A及5B中,可觀察到介層窗開口426形成通過一或更多第二硬遮罩特徵部417、通過第二圖案化金屬線層418、且通過一或更多第一硬遮罩特徵部408。
在圖4K中,將導電材料427沉積於一或更多介層窗開口426中,以填充該一或更多介層窗開口426。透過將先前填充一或更多第一硬遮罩特徵部408及第二圖案化金屬線層418的該一或更多介層窗開口426填充,而形成一或更多介層窗428。在某些實施例中,導電材料427為與第一圖案化金屬線層409及第二圖案化金屬線層418相同的材料。例如,導電材料427包含Mo、Ru、Al、或W。在某些實施例中,導電材料427為與第一圖案化金屬線層409及第二圖案化金屬線層418不同的材料。在某些實施例中,藉由合適的沉積技術(例如PVD、CVD、PECVD、ALD、或電沉積)以沉積導電材料427,俾至少實質上填充一或更多介層窗開口426。在某些實施例中,在利用導電材料427填充一或更多介層窗開口426之前,可在一或更多介層窗開口426中沉積擴散阻障層及/或襯墊層。擴散阻障層及/或襯墊層可將一或更多介層窗428與周圍的介電材料分隔開。
透過利用導電材料427回填第二圖案化金屬線層418及一或更多第一硬遮罩特徵部408被蝕刻掉之處,而形成一或更多介層窗428。藉由回填,導電材料427接觸暴露的第一圖案化金屬線層409,並提供與第二圖案化金屬線層418的電互連。在某些實施例中,沉積導電材料427以填充一或更多介層窗開口426、填充遮罩層425中的一或更多孔洞、並在一或更多介層窗開口426上方提 供導電材料427之覆蓋層。此在一或更多介層窗開口426上方提供導電材料427之表蓋層。
在圖4L中,將導電材料427之一部分移除,使得導電材料427之剩餘部分將一或更多第一硬遮罩特徵部408及第二圖案化金屬線層418先前填充一或更多介層窗開口426之處填充。此等移除導電材料427之該部分的操作包含蝕刻下列區域的導電材料427:一或更多介層窗開口426上方、遮罩層425中之一或更多孔洞中、及一或更多第二硬遮罩特徵部417先前填充一或更多介層窗開口426之處。此將導電材料427之表蓋層移除,並餘留導電材料427達第二硬遮罩特徵部417之底部水平。因此,可使一或更多凹部形成通過該一或更多孔洞至第二硬遮罩特徵部417之底部水平,從而提供至少一凹陷金屬填充429至第二硬遮罩特徵部417之底部水平。在圖4L,金屬互連結構被製造成具有由一或更多完全對準的介層窗428所連接的兩個相連金屬化層。
回到圖3,程序300可更包含利用第三介電材料覆蓋導電材料的暴露部分。在某些實施例中,可在凹陷介層窗金屬填充及第二絕緣特徵部上方沉積第三介電材料。可對第三介電材料進行蝕刻或拋光以使其與第二絕緣特徵部共面。在某些實施例中,第三介電材料可為與第二絕緣特徵部相同的材料。
在某些實施例中,程序300可更包含藉由削減式圖案化以在第二圖案化金屬線層上形成第三圖案化金屬線層(Mx+2)。第三圖案化金屬線層可代表金屬互連結構中的第三金屬化層。在某些實施例中,可形成一或更多的額外介電窗,其提供第二圖案化金屬線層與第三圖案化金屬線層之間的電互連。可繼續在金屬互連結構中製造額外的金屬化層及介層窗,其中可以與第一金屬化層及第二金屬化層相同或相似的方式形成額外的金屬化層,且可以與提供第一 圖案化金屬線層與第二圖案化金屬線層之間的電互連之一或更多介層窗相同或相似的方式形成額外的介層窗。
圖4M-4N顯示利用第三介電材料封蓋凹陷介層窗金屬填充的例示性程序之示意圖。與圖4M-4N所示者相比,封蓋凹陷介層窗金屬填充之操作可涉及不同、較少、或額外的操作。在圖4M中,將第三介電材料430沉積在複數第二硬遮罩特徵部417及凹陷介層窗金屬填充429上方。可在將填充一或更多介層窗開口426的導電材料427之部分移除之後所形成的一或更多凹部中沉積第三介電材料430。在某些實施例中,第三介電材料430為與第二硬遮罩特徵部417相同的材料。在某些實施例中,將第三介電材料430沉積在遮罩層425上方。第三介電材料430可為與遮罩層425相同的材料或相同類型的材料。沉積第三介電材料430以覆蓋導電材料427之暴露部分。
在圖4N中,進行一平坦化處理以移除第三介電材料430直至第二硬遮罩特徵部417。該平坦化處理可包含CMP及/或毯式回蝕(blanket etchback),使得第三介電材料430與第二硬遮罩特徵部417係共面的。此外,在移除其中一些第三介電材料430的同時,可移除複數第二硬遮罩特徵部417上方的遮罩層425。第三介電材料430及第二硬遮罩特徵部417用於封蓋或覆蓋第二圖案化金屬線層418。隨後可以相同或相似於第一圖案化金屬線層409、第二圖案化金屬線層418、及一或更多介層窗428的方式形成額外的圖案化金屬線層及額外的介層窗。在將凹陷介層窗金屬填充429封蓋之後,在分別沿著圖4N之線C-C及線D-D截取的圖5C及5D中,可觀察到一金屬互連結構。圖5C及5D中之金屬互連結構顯示完全對準的介層窗428,其提供第一圖案化金屬線層409與第二圖案化金屬線層418之間的電互連。
在形成提供第一圖案化金屬線層409與第二圖案化金屬線層418之間的電互連之一或更多介層窗428之後,形成一金屬互連結構。一積體電路的例示性金屬互連結構係顯示於圖5C及5D中。金屬互連結構可包含第一圖案化金屬線層409、在第一圖案化金屬線層409中之至少一些圖案化金屬線上的複數第一絕緣特徵部431、在第一圖案化金屬線層409上方的第二圖案化金屬線層418、以及在第二圖案化金屬線層418中之至少一些圖案化金屬線上的複數第二絕緣特徵部432。該金屬互連結構更包含提供第一圖案化金屬線層409與第二圖案化金屬線層418之間的電互連的一或更多介層窗428,其中該一或更多介層窗428係與第一圖案化金屬線層409及第二圖案化金屬線層418完全對準。第一介電材料410將第一圖案化金屬線層409及複數第一絕緣特徵部431包圍。第二介電材料419將第二圖案化金屬線層418及第二絕緣特徵部432包圍。一或更多介層窗428係完全對準,使得一或更多介層窗428直接接觸第一圖案化金屬線層409而未與第一介電材料410或第二介電材料419重疊。該一或更多介層窗428係在圖案化第一圖案化金屬線層409及第二圖案化金屬線層418之後形成。
在某些實施例中,金屬互連結構更包含在凹陷介層窗金屬填充429上方的第三介電材料430,其中第二圖案化金屬線層418之頂表面係被第二絕緣特徵部432所覆蓋,且凹陷介層窗金屬填充429係被第三介電材料430所覆蓋。在某些實施例中,第三介電材料430為與第二絕緣特徵部432相同的材料。在某些實施例中,第一介電材料410與第二介電材料419之各者為低k介電材料。第一絕緣特徵部431及第二絕緣特徵部432具有與該低k介電材料不同的蝕刻選擇性。在某些實施例中,第一圖案化金屬線層409及第二圖案化金屬線層418包含Mo、Ru、Al、或W。在某些實施例中,一或更多介層窗428包含Mo、Ru、Al、 或W,其中該一或更多介層窗428之材料與第一圖案化金屬線層409及第二圖案化金屬線層418之材料相同或不同。
本文所述之處理可與例如用於製造半導體元件、顯示器、LED、光伏面板等之微影圖案化工具或處理一起使用。一般而言,雖然並非必要,但此類工具/處理會在一共同的製造廠房中一起使用或進行。薄膜之微影圖案化通常包括下列操作之一些或全部,每一操作以幾個可能的工具而提供:(1)使用旋塗式或噴塗式工具以在工作件(亦即,基板)上塗佈光阻;(2)使用加熱板或加熱爐或UV固化工具以使光阻固化;(3)以工具(例如,晶圓步進機)使光阻暴露至可見光或UV光或x射線光;(4)使光阻顯影,以便使用工具(例如,濕式清洗台)選擇性地移除光阻及從而使其圖案化;(5)使用乾式或電漿輔助蝕刻工具,將光阻圖案轉移至下方薄膜或工作件中;及(6)使用工具(例如,RF或微波電漿光阻剝除器)以移除光阻。
結論
在以上的敘述中,說明了大量的特定細節,以提供對所提出之實施方式的徹底理解。在毋須若干或全部此等特定細節之情況下即可實行所揭示之實施例。在其他範例中,為了不使所揭示之實施例晦澀難懂,習知的處理操作不會有詳細描述。雖然所揭示之實施例與特定實施例一同敘述,但應理解,並非試圖限制所揭示之實施例。
雖然上述實施例已為了清楚理解的目的而以一些細節描述,但顯然地,某些改變和修飾可在隨附申請專利範圍之範疇內實施。應注意,有許多替代方式執行本發明實施例的處理、系統、和設備。因此,本發明實施例係被視為說明性而非限制性,且該等實施例並不限於本文所提供之細節。
409:第一圖案化金屬線層
410:第一介電材料
418:第二圖案化金屬線層
419:第二介電材料
428:介層窗
430:第三介電材料
431:第一絕緣特徵部
432:第二絕緣特徵部

Claims (10)

  1. 一種製造金屬互連結構的方法,該方法包含:藉由削減式圖案化以在一基板上形成第一層的圖案化金屬線;在該第一層的圖案化金屬線上形成複數第一絕緣特徵部;在形成該複數第一絕緣特徵部之後,在該第一層的圖案化金屬線之中的相鄰金屬線之間的間隙中形成第一介電材料;藉由削減式圖案化以在該第一層的圖案化金屬線上方形成第二層的圖案化金屬線;在該第二層的圖案化金屬線上形成複數第二絕緣特徵部;在形成該複數第二絕緣特徵部之後,在該第二層的圖案化金屬線之中的相鄰金屬線之間的間隙中形成第二介電材料;在形成該第二層的圖案化金屬線之後,形成提供該第一層的圖案化金屬線與該第二層的圖案化金屬線之間之電互連的一或更多介層窗,從而形成該金屬互連結構,其中形成該一或更多介層窗之步驟包含:蝕刻通過一或更多第二絕緣特徵部,其中蝕刻通過該一或更多第二絕緣特徵部之操作相對於包圍該一或更多第二絕緣特徵部之該第二介電材料而具選擇性;蝕刻通過該第二層的圖案化金屬線,其中蝕刻通過該第二層的圖案化金屬線之操作相對於包圍該第二層的圖案化金屬線之該第二介電材料而具選擇性; 蝕刻通過一或更多第一絕緣特徵部以形成一或更多介層窗開口,俾使該第一層的圖案化金屬線暴露,其中蝕刻通過該一或更多第一絕緣特徵部之操作相對於包圍該一或更多第一絕緣特徵部之該第一介電材料而具選擇性;以及在該一或更多介層窗開口中沉積導電材料,以在暴露的該第一層的圖案化金屬線上形成該一或更多介層窗。
  2. 如請求項1之製造金屬互連結構的方法,其中形成該一或更多介層窗之步驟包含:使一或更多介層窗開口形成通過至少該第二層的圖案化金屬線直至該第一層的圖案化金屬線;以及利用一導電材料填充該一或更多介層窗開口。
  3. 如請求項1之製造金屬互連結構的方法,更包含:在該複數第二絕緣特徵部及該第二介電材料上方形成一介層窗遮罩;以及在該介層窗遮罩中圖案化一或更多孔洞,其中該一或更多孔洞各自具有大於該第二層的圖案化金屬線及/或該第一層的圖案化金屬線之臨界尺寸(CD)的直徑或寬度。
  4. 如請求項3之製造金屬互連結構的方法,其中該一或更多孔洞各自具有比該第二層的圖案化金屬線及/或該第一層的圖案化金屬線之CD大多達約100%的直徑或寬度。
  5. 如請求項3之製造金屬互連結構的方法,其中沉積該導電材料之步驟包含:利用該導電材料填充先前該等第一絕緣特徵部及該第二層的圖案化金屬線被蝕刻之處。
  6. 如請求項1之製造金屬互連結構的方法,其中該第一層的圖案化金屬線、該第二層的圖案化金屬線、及該導電材料之各者包含Mo、Ru、Al、或W。
  7. 如請求項1之製造金屬互連結構的方法,其中該第一介電材料及該第二介電材料之各者包含低k介電材料,且其中該複數第一絕緣特徵部及該複數第二絕緣特徵部之各者具有與該低k介電材料不同的蝕刻選擇性。
  8. 如請求項1-7之任一項之製造金屬互連結構的方法,其中該一或更多介層窗係與該第一層的圖案化金屬線及該第二層的圖案化金屬線完全對準。
  9. 如請求項1-7之任一項之製造金屬互連結構的方法,其中該第一層的圖案化金屬線及該第二層的圖案化金屬線之CD等於或小於約20nm。
  10. 如請求項1-7之任一項之製造金屬互連結構的方法,其中形成該第一層的圖案化金屬線之步驟包含:在該基板上方沉積第一金屬;在該第一金屬上方沉積第一遮罩層;對該第一遮罩層進行蝕刻,以在該第一金屬上方形成複數第一絕緣特徵部;以及對該第一金屬進行蝕刻,以形成由該複數第一絕緣特徵部所界定的該第一層的圖案化金屬線;其中形成該第二層的圖案化金屬線之步驟包含:在該第一層的圖案化金屬線上方沉積第二金屬;在該第二金屬上方沉積第二遮罩層; 對該第二遮罩層進行蝕刻,以在該第二金屬上方形成複數第二絕緣特徵部;以及對該第二金屬進行蝕刻,以形成由該複數第二絕緣特徵部所界定的該第二層的圖案化金屬線。
TW108142703A 2018-11-30 2019-11-25 由削減式製程形成的金屬互連結構 TWI834762B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862774046P 2018-11-30 2018-11-30
US62/774,046 2018-11-30

Publications (2)

Publication Number Publication Date
TW202036791A TW202036791A (zh) 2020-10-01
TWI834762B true TWI834762B (zh) 2024-03-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170256451A1 (en) 2016-03-07 2017-09-07 Imec Vzw Self-aligned interconnects

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170256451A1 (en) 2016-03-07 2017-09-07 Imec Vzw Self-aligned interconnects

Similar Documents

Publication Publication Date Title
US10763166B2 (en) Self-forming barrier for use in air gap formation
US8232196B2 (en) Interconnect structure having a via with a via gouging feature and dielectric liner sidewalls for BEOL integration
US6910907B2 (en) Contact for use in an integrated circuit and a method of manufacture therefor
US20190363048A1 (en) Via prefill in a fully aligned via
US20060019485A1 (en) Multi-layer wiring structure, semiconductor apparatus having multi-layer wiring structure, and methods of manufacturing them
CN101159257A (zh) 具有高密度三维电阻器的互连结构及其制造方法
US7119006B2 (en) Via formation for damascene metal conductors in an integrated circuit
TW201913762A (zh) 半導體裝置的形成方法與半導體裝置
CN109427656B (zh) 半导体装置及其制造方法
TWI693675B (zh) 用於對齊積體電路結構諸層的標記結構及其形成方法
TWI834762B (zh) 由削減式製程形成的金屬互連結構
TW201916172A (zh) 基本原則區域中完全對準介層窗
US20210210379A1 (en) Patterning line cuts before line patterning using sacrificial fill material
TW202036791A (zh) 由削減式製程形成的金屬互連結構
KR20090024854A (ko) 반도체 소자의 금속배선 및 그 형성방법
JP2010165760A (ja) 半導体装置及び半導体装置の製造方法
US7314813B2 (en) Methods of forming planarized multilevel metallization in an integrated circuit
US7662711B2 (en) Method of forming dual damascene pattern
US20230024306A1 (en) Top via cut fill process for line extension reduction
KR100322887B1 (ko) 반도체장치의 다층 금속배선 형성방법
KR20030074870A (ko) 반도체 소자의 금속 배선 형성 방법
JP2006049534A (ja) 半導体装置の製造方法及び半導体装置
KR100887019B1 (ko) 다중 오버레이 마크를 갖는 마스크
KR100698743B1 (ko) 반도체 소자의 제조 방법
KR101069440B1 (ko) 반도체 소자의 금속 패턴 및 그 형성방법