CN100454525C - 复合材料及电路或电模块 - Google Patents

复合材料及电路或电模块 Download PDF

Info

Publication number
CN100454525C
CN100454525C CNB2004800124333A CN200480012433A CN100454525C CN 100454525 C CN100454525 C CN 100454525C CN B2004800124333 A CNB2004800124333 A CN B2004800124333A CN 200480012433 A CN200480012433 A CN 200480012433A CN 100454525 C CN100454525 C CN 100454525C
Authority
CN
China
Prior art keywords
composite material
metal
nanofibers
alloy
pottery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800124333A
Other languages
English (en)
Other versions
CN1784784A (zh
Inventor
于尔根·舒尔茨-哈德
恩斯特·哈麦尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kula Mick Holdings Ltd In Li Qu
Curamik Electronics GmbH
Original Assignee
ELECTROVAC GmbH
Curamik Electronics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ELECTROVAC GmbH, Curamik Electronics GmbH filed Critical ELECTROVAC GmbH
Publication of CN1784784A publication Critical patent/CN1784784A/zh
Application granted granted Critical
Publication of CN100454525C publication Critical patent/CN100454525C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49877Carbon, e.g. fullerenes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2204/00End product comprising different layers, coatings or parts of cermet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity

Abstract

本发明涉及一种新颖的复合材料,特别是应用在电气工程领域。在彼此垂直的三维坐标系中的至少两个轴上,所述新颖的复合材料的热膨胀系数小于12×10-6K-1

Description

复合材料及电路或电模块
技术领域
本发明涉及一种复合材料或复合原料,还涉及一种具有至少一个衬底以及至少一个电子元件的电路或电模块。
背景技术
本发明所述的“复合材料”或“复合原料”通常是指具有多种材料成分的原料,例如所述材料成分处于一个共同的连结体(matrix)中,或者至少部分处于至少两个结合在一起的相邻材料部分(section)中。
本发明所述的“热耗散元件”或“散热片”是通常应用在电子器件、特别是功率电子器件中的元件,用来消散热损耗并冷却电气或电子元件,例如电路或电模块中的底盘和/或散热板或冷却板、电气或电子元件的衬底、电气元件或电模块的外壳或外壳部件,以及如冷却器,热管或者通过像水这样的冷却液的流动来主动散热的元件。
在许多技术领域中,复合材料被用作建筑物、部件等的原料,尤其是在所需的原料特性不能由单一的材料成分实现的情况下。通过仔细选择各种成分以及这些成分的物理和/或化学特性,复合材料可以被优化以实现所期望的特性,例如热特性。
由Chung等人在2001年Appl.Therm.Eng.杂志的第21期第1593到1605页发表的“Materials for Thermal Conduction(热传导材料)”一文给出了热传导材料或热耗散材料的概况。该文简述了可能使用的各种成分的特性以及所述复合材料的相关例子。
Ting等人在1995年J.Mater.Res.,10(6),第1478至1484页报告了铝VGCF(蒸气生长碳素纤维)合成物的制造方法及其热传导特性。并且,Ting等人据此申请了有关Al-VGCF MMC的美国专利US5,814,408。
在Hoch等人申请的美国专利US 5,578,543中描述了在金属及聚合物结合体中的Carbon FibrilsTM合成物,即一种特定的CVD碳素纤维。
在Ushijima等人申请的美国专利US 6,406,790中描述了一种使用CVD生长碳素纤维的特定变体作为填充材料、通过对粘结金属进行压力渗透得到的合成材料的制造方法。
在Houle等人申请的美国专利US 6,469,381中描述了一种半导体器件,这种半导体器件通过在衬底中使用碳素纤维来消散在工作期间生成的热量。
在Bieler等人申请的美国专利US 5,660,923中描述了在具有金属结合体的复合材料中使用涂层碳素纤维的方法。
在由McCullough等人申请的美国专利US 6,460,497中描述了Al结合体中的Al2O3纤维以及相应的纤维加固复合材料的制作方法。
由于电特性的改善,已知可以用金属-陶瓷衬底作为印制电路板,特别是功率模块中的印制电路板,例如由氧化铝(Al2O3)制成衬底,或者更多地是使用氮化铝(AlN)制成的衬底,这样的功率模块被广泛应用在例如交通和自动控制技术中的电子动力系统中。由于铜拥有很高的热传导性,它适用于使能量或热损耗消散,也可用于散热,因此由铜制成的层或底盘已经在衬底或过渡层中使用以进行散热,散热片通常需要从这样的功率模块消散掉相当可观的能量损耗。
这种功率模块的缺点是所用材料的热膨胀系数具有很高的波动性,也就是说,这种模块中有源的电气或电子元件中的陶瓷、铜以及硅的热膨胀系数具有高的波动性。这样的功率模块及其成分不仅在制作过程中而且在使用操作中将受到温度大幅变化的影响,例如在从使用阶段到停止使用阶段或非操作阶段的过渡期间及相反的过渡期间,以及当所述模块在使用中被开关时均将受到温度的影响。由于不同的膨胀系数,这种温度变化将在模块中产生机械应力,即在陶瓷和相邻的金属化层(metallization)或金属层(如位于陶瓷层一侧的底盘以及位于陶瓷层另一侧的条形导体、接触面等)之间产生机械应力,另外还在金属面和位于其上的电气或电子元件,特别是半导体元件之间产生机械应力。频繁变化的机械应力将导致材料的老化,并由此导致模块或其元件的失效。
由于另外的小型化因素的影响,并随着功率模块功率密度的增加,这一问题将变得更加复杂。具有铜-陶瓷衬底的功率模块的材料成分的热膨胀系数α落在铜的热膨胀系数α=16.8×10-6K-1和硅的热膨胀系数α=3×10-6K-1之间。
也可以参考下表,该表中详细说明了各种材料的热传导系数λ和热膨胀系数α。
  λ<sub>th</sub>单位W/mK   α单位10<sup>-6</sup>/K
  Ag   428   19.7
  Cu   395   16.8
  CuCo0.2   385   17.7
  CuSn0.12   364   17.7
  Au   312   14.3
  Al   239   23.8
  BeO   218   8.5
  AlN   140-170   2.6
  Si   152   2.6
  SiC   90   2.6
  Ni   81   12.8
  Sn   65   27
  AuSn20   57   15.9
  Fe   50   13.2
  Si<sub>3</sub>N<sub>4</sub>   10-40   3.1
  Al<sub>2</sub>O<sub>3</sub>   18.8   6.5
  FeNi42   15.1   5.1
  银环氧粘合剂   0.8-2   53
  环氧树脂模制件   0.63-0.76   18-30
  SiO<sub>2</sub>   0.1   0.5
  W   130   4.5
  Mo   140   5.1
  Cu/Mo/CU   194   6.0
  AlSiC   160-220   7-10
由于对功率损耗的消散而言热传导是必要的,特别是用在半导体模块或用在其金属化层、底盘等的衬底中的金属必须能够充分地导热。目前,具有铜或铝基的材料,如Cu-W、Cu-Mo或Al-SiC,都特别适合用在散热片上。
使用直接铜接合技术,在陶瓷上,例如氧化铝陶瓷上,形成条形导体、连接线等所需的金属化层的方法是本领域中已知的,所述金属化层是由金属箔或铜箔,或者金属或铜的薄片制成的,其表面层的特点是具有金属和反应气体(最好是氧气)的化学键的层或涂层(熔解层)。在上述方法中,例如在US-PS 3744120或DE-PS 2319854中,这种层或涂层(熔解层)形成一共晶体,所述共晶体的熔化温度低于金属(例如铜)的熔化温度,因此,当金属箔被敷设在陶瓷上并且所有的层都被加热时,它们就结合在一起了,也就是说,通过熔化基本上仅存在于熔解层或氧化层的区域中的金属或铜来实现。
上述DCB方法包括以下步骤:
●以产生均匀的铜氧化层的方式对铜箔进行氧化,;
●将铜箔放置在陶瓷层上;
●将该合成物或结构加热到大约1025至1083℃之间,例如大约为1071℃的处理温度;
●冷却到室温。
发明内容
本发明的目的在于提供一种复合材料,这种复合材料保持较高的热传导性,即所述复合材料的热传导性大于或至少等于铜或铜合金的热传导性,同时具有明显低于铜的热膨胀系数。通过以下所述的复合材料可实现上述目标。
根据本发明的复合材料可以应用到例如电气工程应用中,也可以应用到电功率模块中用作散热的衬底或元件,所述复合材料主要包含三种成分,即至少一种金属或至少一种合金、至少一种陶瓷和/或玻璃以及毫微纤维(nanofiber),所述毫微纤维的厚度在1.3nm到300nm之间,并且所述复合材料中所包含的大部分毫微纤维的长度/厚度比要大于10。所述陶瓷成分可以部分或全部地由玻璃替代,比如由二氧化硅替代。
所使用的毫微纤维能够在至少在两个垂直空间轴方向上,或者最好在所有三个垂直的空间轴方向上带来所期望的复合材料热膨胀系数的减小。
在根据本发明所述的复合材料的实施例中,下面所述的本发明其他实施例中的方法是可能的:
所述毫微纤维成各向同性地(isotropically)至少分布在它们的至少两个空间轴上。
至少部分毫微纤维,例如毫微导管(nanotube),在轴向上是特别稳定的,这样就可以非常有效地实现所期望的热膨胀系数的减小。
所述毫微纤维最好由导电性材料制成,这样,包含毫微纤维的复合材料或者包含毫微纤维的复合材料的一部分也可以用于条形电导体或触点等,也就是说,所述复合材料为这种应用提供了必要的电传导性。
所述毫微纤维最好由碳和/或氮化硼和/或碳化钨构成。也可以使用其他适合的材料或复合物制造所述毫微纤维,特别地,是由碳制成并且涂有氮化硼和/或碳化钨的毫微纤维。
本发明所述复合材料使用的陶瓷最好是氧化铝或氮化铝的陶瓷,其中,这种铝氮化物陶瓷具有特别高的电强度及增强的热传导特性。
本发明所使用的金属成分最好是铜或铜合金。这种金属成分特别适合在所述复合材料用作衬底或印制电路板或电路或模块中的散热组件的情况下使用。铜和铜合金相对容易处理,特别是当复合材料的材料成分中包含毫微纤维时。
在至少一种金属或至少一种合金中,和/或在陶瓷中,和/或在玻璃中,例如在由金属或合金构成的结合体中,可以提供所述毫微纤维。
相对于包含所述纤维的复合材料成分的整个体积而言,所述复合材料中的毫微纤维含量值应在例如10%到70%的体积百分比之间,最好在40%到70%的体积百分比之间。
如果所述复合材料的金属或合金中包含所述毫微纤维,那么这一特殊的设计可以使用很多方法来实现。例如,可以首先由所述毫微纤维形成一个预制坯(Preform),该预制坯可以是例如三维格状、毛状结构、中空体或管状结构,其中,在所述预制坯中至少结合有一种金属或至少一种合金。上述设计可以使用多种不同的方法实现,特别地,例如通过化学和/或电解沉淀(percipitation),或通过熔解渗透等等。
根据本发明的一个实施例,所述复合材料就是用作电气或电子应用中的衬底的纤维加固陶瓷-玻璃合成物,并且所述复合材料包括由基于陶瓷和/或玻璃材质的承载衬底,以及被敷设到一个面上的至少一个纤维加固金属层。所述金属层中的纤维可以是例如厚度在1.3nm到300nm之间,长度/厚度比大于10的碳制毫微导管,并且所述金属层的金属结合体中毫微纤维的含量值在10%到70%体积百分比。如果所述载体衬底也包含所述毫微纤维,那么它们将具有高的氮化物和/或碳化钨含量。
此外,可以将金属和毫微纤维敷设到由金属和/或陶瓷制成的预制坯或衬底上,例如,通过化学和/或电解沉淀来敷设。
使用所述毫微纤维制作至少一种金属或至少一种合金结合体的其他方法是可以想象得到的,例如使用所谓的HIP技术,其中将至少一种金属或至少一种合金插入到装有混合着毫微纤维的粉剂的容器中,再用盖子将该容器紧密密封。然后,将容器内部抽成真空并密封所述容器使其不漏气。随后,在将它加热到500到1000℃之间的处理温度的同时,向整个容器施加压力(例如,使用惰性气体,比如氩气,来施加气压或使用静液压),由此对所述容器中包含的材料施加压力。
在另一个处理步骤中,经过冷却后,所述容器及包含毫微纤维的金属坯料(blank)就分离开了,这样所述坯料就可以进行进一步处理,例如通过车床加工或切割、锯切和/或辗轧,以加工成板材或箔片,然后与陶瓷层结合起来制成金属-陶瓷衬底或印制电路板。
特别地,根据本发明应用在电气或电子元件中的复合材料可被设计为层压薄片(laminate),即具有至少两个结合在一起的材料部分或层,其中一个材料部分或层由至少一种金属或至少一种合金制成,而另一材料部分或层由陶瓷制成。那么,例如在由金属或合金制成的至少一个材料部分中包含了所述毫微纤维。通常,所述毫微纤维也可以类似地包含在陶瓷中,例如,为了增强陶瓷的机械强度和/或改善陶瓷的热传导性。
如果所述复合材料包含由至少一种金属或至少一种合金制成的至少一个材料部分,并且包含由陶瓷制成的材料部分,那么这两个材料部分或层可以结合在一起,例如通过焊接,最好通过有源焊接过程,或使用众所周知的直接粘接技术结合在一起。
特别地,在将所述复合材料用作金属-陶瓷衬底或印制电路板的可能的实施例中,在陶瓷层的至少一个表面上提供金属化层,所述金属化层由至少一种金属或至少一种合金形成,并且包含毫微纤维。所述金属层就是例如这种衬底的底盘或者是与这种底盘粘合在一起的金属层,所述衬底和它一起与例如冷却体形式的无源散热片结合,或与例如有冷却液流过的冷却器形式的有源散热片结合,或与微型冷却器结合。
在所述陶瓷层的另一面例如提供用在电路或模块元件中的诸如条形导体和/或接触面和/或固定或加固面。形成这些条形导体、接触面等等的金属或合金也可以包含所述毫微纤维,在这种情况下,就可以通过常规方法生成所述条形导体等的结构化的金属化层,也就是例如通过蚀刻掩模的处理方法,使所述金属层形成到结构化的金属化层中。
因此,本发明可用于制作复合材料,通过将毫微纤维分散在所述金属结合体中,例如铜结合体中,可实现相当高的传导性(例如大于380W(mK)-1),同时还能减少热膨胀。此外,特别是由于使用铜作为金属结合体,可以确保包含了所述毫微纤维的金属易于处理,因此所有标准的处理方法,比如钻孔、铣销、冲压以及化学处理都可以使用。
本发明所述的复合材料可应用于热量管理领域的解决方案中,所述热量管理领域在以前存在很多主要问题,例如也存在于激光技术中,由于激光棒的半导体材料和散热片的金属之间的热膨胀系数不同,使得激光二极管或激光二极管阵列使用寿命大大缩减。在电气和电子功率模块中可使用改善的导热性以获得比以前更高的功率密度,即使得电气和电子模块及组件的小型化成为可能,而且也带来了特别在例如航空和空间技术领域中附加应用的可能性,在这些领域里,小型化和随之而来的质量与重量的减少是非常重要的。
本发明所述的复合材料可以将之前缺乏较好兼容性的多个材料特性结合在一起。如果在所述的金属结合体中提供所述毫微纤维,那么这些毫微纤维就充当了加固成分,通过它们的高热传导性(高于1000W(mK)-1)以及可忽略不计的热膨胀系数,能明显地减小整个复合材料的热膨胀系数,并改善该复合材料的热传导性。
附图说明
下面结合本发明的附图以及示范性的实施例,对本发明进行详细描述,其中:
图1为具有本发明所述的复合材料的电功率模块的简化示意图;
图2为通过HIP工艺的各个处理步骤(位置a-d)制作金属毫微纤维合成物的简化示意图;
图3为对包含至少一种金属或至少一种合金以及毫微纤维的最初材料作进一步处理的处理过程示意图;
图4和图5为用于对位于金属箔或预制坯上的金属和毫微纤维进行电解和/或化学协同沉淀(co-precipitaiton)的电解池的侧面及顶面示意图;
图6和图7为用于对位于由所述毫微纤维形成的预制坯上的金属进行电解和/或化学协同沉淀的电解池的顶面示意图。
具体实施方式
图1为电功率模块1的侧面的简化示图,所述功率模块由一个具有各种电子半导体元件3的陶瓷-铜衬底2以及底盘4及其他元件构成,为了描述清楚,在图中仅示出了一个功率元件。所述的铜-陶瓷衬底2包括:例如由氧化铝或氮化铝陶瓷构成的陶瓷层5,以及一个上面的金属化层6和一个下面的金属化层7,其中如果层5由多个部分构成,则每一部分可使用不同的陶瓷。上述实施例中金属化层6和7都分别由箔片构成,所述箔片在铜或铜合金的结合体中含有所述毫微纤维,例如,与各个箔片或金属化层的整个体积相比,所述毫微纤维的含量值应当在10%到70%体积百分比,最好在40%到70%体积百分比。
元件3是一个功率半导体元件,例如用于对高电流进行切换的晶体管,或例如控制电动机或驱动器的晶体管。也可以采用其他功率半导体元件,例如激光器二极管。所述底盘4在垂直于金属化层6和7平面的轴向上的厚度是金属化层6和7所用的金属箔厚度的几倍。
所述的两个金属化层6和7通过适当的方法以二维方式与陶瓷层5的一个表面结合在一起,例如通过DCB技术或有源焊接处理。此外,为了形成条形导体、接触面、用于固定或焊接部件3的固定面、具有感应器功能的屏蔽面或屏蔽带等等,最好使用本领域技术人员所知的蚀刻掩模(etch-masking)方法将金属化层6按所需的样式进行构造。采用其他方法也是可以的,例如在将金属化层6敷设到陶瓷层5之后或之前,通过对用来形成金属化层6的箔片进行机械处理以生成所希望构造的样式。用来形成金属化层7的箔片并未在所述的实施例中构造。在所述的实施例中,该箔片覆盖着陶瓷层5底部的大部分区域,其中为了增加电压强度,陶瓷层5的边缘区域没有被金属化层7覆盖,也就是说,金属化层7的边缘距离陶瓷层5的边缘还有一段距离。另外,所述的实施例中对底盘4进行了设计,使它的圆周很明显地从铜-陶瓷衬底2的圆周突出出来。所述底盘4例如可以是功率模块外壳的机座,对此没有进一步绘出。
所述金属化层7使用适当的方法以二维方式在背对陶瓷层5的表面的方向上连接到底盘4,所述适当的方法如焊接、钎焊或有源焊接,或者也可以使用DCB技术。所述实施例中的底盘4同样也可以由金属或合金制成,例如由铜或铜合金制成,其中在底盘4的金属或合金里同样可以包含其含量相对于底盘4的整个体积达到10%到70%体积百分比的毫微纤维,最好在40%到70%体积百分比之间。在金属化层6和7以及底盘4中的毫微纤维至少在两个垂直空间轴的方向上成各向同性或近似各向同性分布,这两个空间轴限定了金属化层6和7的平面以及与金属化层7相连接的底盘4的顶端的平面。
所述毫微纤维的厚度在1.3nm到300nm之间,其中包含在所述金属结合体中的大部分毫微纤维的长度/厚度比大于10。本实施例所述的毫微纤维是具有碳基的,或者是由碳构成的,例如具有毫微导管的形式。然而,通常情况下,由碳构成的毫微纤维也可以由其他适合的材料,例如氮化硼和/或碳化钨,构成的毫微纤维整个代替或部分代替。通常,所述毫微纤维在所有三个垂直空间轴方向上成各向同性分布,其中的两个空间轴限定了金属化层6和7的平面以及底盘4顶端的平面,另一个空间轴沿着垂直于其他两个轴的方向延伸。
在所述金属或金属合金的结合体中使用毫微纤维明显地减小了金属化层6和7、特别是底盘4的热膨胀系数,尤其是在毫微纤维优选的轴向上,也就是说,在限定了金属化层的平面以及底盘顶端的平面的轴向上减小了热膨胀系数,在半导体模块衬底的相应温度范围内,即在室温(大约20℃)到250℃之间,将所述热膨胀系数减小到小于5×10-6K-1。特别地,由金属化层6形成的条形导体的电传导性将与不包含毫微纤维的铜或铜合金的电传导性相当。
所述金属化层6和7以及底盘4的热传导性λ要比铜的热传导性大,例如在λ=600W(mk)-1的数量级上或者更大。由于与纯铜或铜合金相比其热膨胀系数α大大降低,无疑可以将该热膨胀系数与半导体元件3中硅的热膨胀系数相适配,也可以与陶瓷层5中陶瓷的热膨胀系数相适配。这样,在功率模块1的温度发生变化时,可以明显地减少金属化层6和元件3的硅体以及陶瓷层5的陶瓷之间的热应力,特别是可以明显地减少被底盘4加固的金属化层7和陶瓷层5之间的热应力。上述这种温度的变化可能是由功率模块1的开关状态引起的,或者是由功率模块在操作过程中,例如对这一模块进行相应控制时的功率变化所引起的。
相对于铜而言改善的热膨胀系数明显地改善了由半导体元件3产生的热损耗的热耗散,也明显地改善了通过金属化层7扩散的热量传导,并改善了向底盘的功率损耗的传递。后者接下来将连接到一个无源散热片,例如冷却器或散热器,所述散热片被安放在用于消散所述热量损耗的介质流中,最简单的介质流的例子是气流,或者将所述底盘4连接到一个有源散热片,例如微冷却器,在所述微冷却器中间流动着冷却剂流,例如气态的和/或蒸汽的和/或液态的(例如水)冷却剂。此外,也可以将底盘4放置在所谓的热管(heat pipe)上,所述热管可特别有效地将热损耗从底盘4消散到无源或有源的冷却器中。
作为上述实施例的替代方案,也可以将底盘4设计成冷却器,特别是设计成为有源冷却器,例如有冷却液流过的微型冷却器,或热管。在这种情况下,使用含有所述毫微纤维的金属或者相应的合金来制造冷却器或热管上连接到所述金属化层7的部分是非常有利的。
图2显示了通过各种处理步骤(位置a-d)制作包含所述金属结合体以及包含在该结合体中的金属毫微纤维的初始材料的可能方法。该方法也被称作HIP方法,在这种方法中,将由所述金属或合金,例如铜或铜合金构成的微粒以及所述毫微纤维的粉化混合剂8加入到容器9中,在所述容器8中填入将近60%体积百分比的混合剂8。
特别地,为了使毫微纤维部分最大化,并且使这些毫微纤维达到均匀的分布,另外还为了减少毫微纤维间的粘连,也可在所述混合剂8中加入混合添加剂。此外,为了改善金属间,例如铜,以及毫微纤维中的碳之间的结合度,使用具有鱼骨型表面结构的毫微纤维是更有利的,这种表面结构能改善机械结合度。使用能形成化学结合的反应元素(reactive element)覆盖所述毫微纤维也是有利的,和/或通过例如蒸镀的方法使用金属和/或陶瓷和/或氮化硼和/或碳化钨填充所述毫微纤维也是有利的。
在另一个处理步骤(位置b)中,将盖子10放置在容器9的上面的开口上,并例如通过焊接将盖子与容器紧密地结合在一起。
在另一个处理步骤中,通过在盖子10上设置连接器11将容器9的内部抽成真空,并使容器8密封不漏气。
在另一个处理步骤(位置d)中,在处理温度为500到1000℃之间时,施加高压到所述易延展的、密封的容器9的各个面。通过作用在容器9上的静液压,如在该位置d处的箭头所示,施加在容器9各个面上的压力将作用于密闭仓12内。这一实际的HIP过程将造成体积的减小,导致容器9的变形。通常,变形期间出现的体积缩小大概在5%-10%,也可能更大,例如可高达20%。容器9和相应的盖子10以及这两个元器件间的连接应当保证容器9不被损坏。为了推算出缩小特性,容器9应当具有简单的几何形状以及薄的外壁。
经过HIP处理后,容器以及9在HIP工艺中做成例如块状(block)的初始材料将分离开,这样就可以采用适当的方法对所述初始材料作进一步处理。
容器9和它的盖子10在HIP工艺中起到多种作用,即在抽成真空的过程中作为一密闭的空间来减小所述粉状初始材料中的开放孔率(open porosity),在实际HIP工艺中,用于传送静液压,以及用于对本发明生产的最终产品进行定型。
图3显示了在各种位置a-d,对由HIP工艺产生的最终产品13进行进一步处理的可能方法。这在图3中用一个框来表示(位置a)。使用合适的轧制装置14,产品13就形成为箔片15(位置b),该箔片将被轧制以备后续应用(位置c)。位置d再一次展示了为了形成金属化层6和7,通过使用例如DCB方法或其他适合的步骤,将箔片15或来自所述箔片的相应的坯料敷设到所述陶瓷层5上,在这种情况下,金属化层6通过未在图3中描述的其他处理步骤来构造。
图4和图5展示了制作初始材料或原料的另一种可能的方法,所述初始材料或原料在金属结合体中包含毫微纤维。在这一处理中,金属箔或铜箔被放置在适当的装有毫微纤维及金属(例如铜)的电解池中,通过所述电解池使铜和毫微纤维以电解和/或化学方式在箔片坯体16上沉淀。
在根据本发明的复合材料的分层薄片实施例中,从上述过程获取的原始材料随后可直接用作包含金属或金属合金以及毫微纤维的层,例如用作图1所示功率模块1的金属化层6和7或者底盘4,或者在将上述过程中产生的(碟型)初始材料用作复合材料中的材料成分前,将其用于随后的处理过程中,例如轧制过程中。
与以上的描述不同的是,在图4和5的处理过程中也可以在所述电解池中提供一个或多个预制坯,所述预制坯由一个三维结构构成,例如是由毫微纤维构成的网状或绒絮状结构,因此,所述铜和附加毫微纤维从所述电解池17沉淀的过程将发生在各自的预制坯上,从而形成含有所述毫微纤维以及金属或铜的材料。为了更好地与金属结合,本实施例中的预制坯中的毫微纤维也可以首先用反应元素进行化学预处理,这能改善毫微纤维与金属(例如铜)之间的机械结合度。通过例如蒸镀的方法,使用金属对所述毫微纤维进行填充也可以包含在本过程中。
对于图4和5所述处理流程中的预制坯,也可以通过电解和/或化学方式将金属(铜)和毫微纤维从电解池17中沉淀在陶瓷层5上。出于这种目的,由于毫微纤维和金属的协同沉淀将发生在陶瓷层5的表面,如能够导电,陶瓷层5可以在其表面首先进行预处理,例如敷设薄的金属层或铜层。
图6和7显示了另一个可能的实施例的加工流程,其中铜以电解和/或化学的方式从电解池19沉淀在由交联的纤维形成的预制坯18上,所述电解池包含有铜或铜盐。由此获得的产品可作为初始材料作进一步的处理。另外,特别地,通过该实施例使得毫微纤维或敷铜的毫微纤维可以从包含它们的材料中突出出来,这样的结果是产生耐杂质的莲花效应和/或对所述材料的润湿(wetting)效益进行控制成为可能。
本发明已经在前面根据示范性的实施例进行了描述。显然,对上述实施例所进行的各种修改以及变型是可能的,而不会背离本发明的基本思想。
例如,可以使用图1所示功率模块1由包含所述毫微纤维的材料来仅制造底盘4和/或仅制造所述金属化层6或7之一。另外,为了增加例如陶瓷层的热传导性,也可以在所述陶瓷层5中提供毫微纤维。
附图标记
1功率模块
2铜-陶瓷衬底
3功率元件
4底盘
5陶瓷层
6,7金属化层
8混合剂
9容器
10盖子
11盖子连接
12容器
13带有毫微纤维的金属结合体的初始产品
14轧制装置
15箔片
16初始箔片
17用于进行毫微纤维和铜协同沉淀的电解池
18预制坯
19用于进行铜沉淀的电解池

Claims (35)

1.一种复合材料,其特征在于,所述复合材料含有以下主要成分:
至少一种金属或合金;
至少一种陶瓷和/或玻璃,以及
厚度在1.3nm到300nm之间的毫微纤维,
并且其中大部分毫微纤维的长度/厚度比大于10。
2.如权利要求1所述的复合材料,其特征在于,如果所述复合材料是作为用于热量管理的电气应用的衬底的纤维增强金属-陶瓷-玻璃复合材料,所述复合材料包括基于陶瓷或玻璃材料的承载衬底以及至少一种敷设在一个面上的纤维增强金属层,所述金属层中的毫微纤维由碳毫微导管组成,其厚度在1.3nm到300nm之间,并且其长度/厚度比大于10,所述金属结合体中的毫微纤维含量在10%到70%体积百分比之间。
3.如权利要求1或2所述的复合材料,其特征在于,所述承载衬底包含由氮化硼和/或碳化钨制成的毫微纤维。
4.如权利要求1或2所述的复合材料,其特征在于,在至少两个垂直的空间轴上,所述材料的热膨胀系数小于12×10-6K-1,和/或在至少一部分区域内复合材料的热传导性要比金属或合金大。
5.如权利要求1或2所述的复合材料,其特征在于,在至少一部分区域内复合材料的热传导性高于铜。
6.如权利要求1或2所述的复合材料,其特征在于,所述毫微纤维至少在其至少两个空间轴方向上成各向同性分布或成近似各向同性分布。
7.如权利要求1或2所述的复合材料,其特征在于,所述毫微纤维的至少一部分是毫微导管。
8.如权利要求1或2所述的复合材料,其特征在于,所述毫微纤维由导电材料制成。
9.如权利要求1或2所述的复合材料,其特征在于,使用由碳和/或氮化硼和/或碳化钨制成的毫微纤维。
10.如权利要求1或2所述的复合材料,其特征在于,所述陶瓷由氮化铝和/或氧化铝和/或氮化硅制成。
11.如权利要求1或2所述的复合材料,其特征在于,所述金属为铜或铜合金。
12.如权利要求1或2所述的复合材料,其特征在于,所述金属为铝或铝合金。
13.如权利要求1或2所述的复合材料,其特征在于,所述毫微纤维设置在由至少一种金属或至少一种合金形成的结合体中。
14.如权利要求1或2所述的复合材料,其特征在于,所述毫微纤维设置在所述陶瓷和/或玻璃中。
15.如权利要求1或2所述的复合材料,其特征在于,所述陶瓷微粒及毫微纤维设置在由至少一种金属或至少一种合金形成的结合体中。
16.如权利要求1或2所述的复合材料,其特征在于,在至少一种金属或至少一种合金结合体中的所述毫微纤维的含量在10%到70%体积百分比之间。
17.如权利要求16所述的复合材料,其特征在于,在至少一种金属或至少一种合金结合体中的所述毫微纤维的含量在40%到70%体积百分比之间。
18.如权利要求1或2所述的复合材料,其特征在于,至少一种金属或合金通过熔解渗透的方式敷设到由所述毫微纤维制成的预制坯(18)中。
19.如权利要求1或2所述的复合材料,其特征在于,含有所述毫微纤维的至少一种金属或至少一种合金的结合体是通过HIP工艺形成的。
20.如权利要求1或2所述的复合材料,其特征在于,至少一种金属或至少一种合金以及所述毫微纤维的结合体是在所述毫微纤维或在由所述毫微纤维制成的预制坯(18)上通过对该金属或合金进行电解和/或化学沉淀而产生的。
21.如权利要求1或2所述的复合材料,其特征在于,至少一种金属或至少一种合金以及所述毫微纤维的结合体是在由金属或合金或陶瓷制成的预制坯(16)上通过对该金属或合金以及毫微纤维进行电解和/或化学沉淀而产生的。
22.如权利要求1或2所述的复合材料,其特征在于,在作为分层薄片的实施例中,所述分层薄片具有形成该分层薄片的至少两个交联的材料部分或层(4,5,6,7)。
23.如权利要求22所述的复合材料,其特征在于,至少一个材料部分是陶瓷层(5),并且至少一个附加材料部分(4,6,7)由至少一种金属或至少一种合金制成。
24.如权利要求23所述的复合材料,其特征在于,所述至少一个由陶瓷制成的材料部分中包含所述毫微纤维。
25.如权利要求23所述的复合材料,其特征在于,所述至少一个由至少一种金属或至少一种合金制成的材料部分(4,6,7)中包含所述毫微纤维。
26.如权利要求22所述的复合材料,其特征在于,所述材料部分(4,5,6,7)通过有源焊接处理结合在一起。
27.如权利要求22所述的复合材料,其特征在于,所述材料部分(4,5,6,7)通过直接焊接结合在一起。
28.如权利要求22所述的复合材料,其特征在于,所述材料部分(4,5,6,7)通过粘接结合在一起。
29.如权利要求22所述的复合材料,其特征在于,由至少一种金属或至少一种合金制成的材料部分(4,7)包含多个单元或多个层。
30.如权利要求1或2所述的复合材料,其特征在于,在作为陶瓷-金属衬底或印制电路板的实施例中,具有至少一个由陶瓷构成的绝缘层(5)以及至少一个由金属或合金在陶瓷层的至少一个表面上形成的金属化层或金属层(6,7),其中所述金属或合金和/或陶瓷中包含所述毫微纤维。
31.如权利要求30所述的复合材料,其特征在于,所述金属化层(6)在所述陶瓷层(5)的至少一个表面上形成条形导体和/或接触面和/或固定面。
32.如权利要求31所述的复合材料,其特征在于,对所述金属层(6)进行构造,以形成所述条形导体和/或接触面和/或固定面。
33.如权利要求1或2所述的复合材料,其特征在于,至少一个金属化层或金属层(7)与由金属或合金制成的附加元件(4)相连,并且该附加元件中含有所述毫微纤维。
34.如权利要求1或2所述的复合材料,其特征在于,其实现为热耗散元件、散热片或外壳,或者作为外壳的一部分(4)。
35.具有至少一个衬底(2,4)以及至少一个电子元件(3)的电路或电模块,其特征在于,所述衬底(2,4)的至少一部分由根据任一在先权利要求所述的复合材料构成。
CNB2004800124333A 2003-05-08 2004-04-20 复合材料及电路或电模块 Expired - Fee Related CN100454525C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10320838.0 2003-05-08
DE2003120838 DE10320838B4 (de) 2003-05-08 2003-05-08 Faserverstärktes Metall-Keramik/Glas-Verbundmaterial als Substrat für elektrische Anwendungen, Verfahren zum Herstellen eines derartigen Verbundmaterials sowie Verwendung dieses Verbundmaterials

Publications (2)

Publication Number Publication Date
CN1784784A CN1784784A (zh) 2006-06-07
CN100454525C true CN100454525C (zh) 2009-01-21

Family

ID=33394381

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800124333A Expired - Fee Related CN100454525C (zh) 2003-05-08 2004-04-20 复合材料及电路或电模块

Country Status (6)

Country Link
US (1) US20060263584A1 (zh)
EP (1) EP1620892A2 (zh)
JP (1) JP2007500450A (zh)
CN (1) CN100454525C (zh)
DE (1) DE10320838B4 (zh)
WO (1) WO2004102659A2 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1598866B1 (de) * 2004-05-18 2008-08-20 Soemtron AG Kühlvorrichtung
JP2006152338A (ja) * 2004-11-26 2006-06-15 Sumitomo Electric Ind Ltd ダイヤモンド被覆電極及びその製造方法
WO2008063148A2 (en) * 2005-05-20 2008-05-29 University Of Central Florida Carbon nanotube reinforced metal composites
US8231703B1 (en) * 2005-05-25 2012-07-31 Babcock & Wilcox Technical Services Y-12, Llc Nanostructured composite reinforced material
US7886813B2 (en) * 2005-06-29 2011-02-15 Intel Corporation Thermal interface material with carbon nanotubes and particles
DE102006037185A1 (de) 2005-09-27 2007-03-29 Electrovac Ag Verfahren zur Behandlung von Nanofasermaterial sowie Zusammensetzung aus Nanofasermaterial
DE102005046404B4 (de) * 2005-09-28 2008-12-24 Infineon Technologies Ag Verfahren zur Minderung von Streuungen in der Durchbiegung von gewalzten Bodenplatten und Leistungshalbleitermodul mit einer nach diesem Verfahren hergestellten Bodenplatte
TW200726344A (en) * 2005-12-30 2007-07-01 Epistar Corp Hybrid composite material substrate
US7592688B2 (en) * 2006-01-13 2009-09-22 International Rectifier Corporation Semiconductor package
DE102007001743A1 (de) * 2006-09-29 2008-04-03 Osram Opto Semiconductors Gmbh Halbleiterlaser und Verfahren zur Herstellung eines solchen
EP2074654A1 (en) * 2006-10-06 2009-07-01 Microsemi Corporation High temperature, high voltage sic void-less electronic package
DE102007031490B4 (de) * 2007-07-06 2017-11-16 Infineon Technologies Ag Verfahren zur Herstellung eines Halbleitermoduls
AT505491B1 (de) * 2007-07-10 2010-06-15 Electrovac Ag Verbundwerkstoff
DE102007051613A1 (de) * 2007-10-24 2009-04-30 Siemens Ag Schalt- und Schutzeinrichtung, Schmelzsicherung, Schaltanlage/Verteilersystem, Stromschienenverteiler und Anschlusseinrichtung
DE102008044641A1 (de) * 2008-04-28 2009-10-29 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
DE202009008337U1 (de) * 2009-06-12 2009-08-27 Picolas Gmbh Vorrichtung zur Absteuerung eines Laserdiodenarrays
JP2012253125A (ja) * 2011-06-01 2012-12-20 Sumitomo Electric Ind Ltd 半導体装置及び配線基板
DE102012102611B4 (de) * 2012-02-15 2017-07-27 Rogers Germany Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
JP2014047127A (ja) * 2012-09-04 2014-03-17 Toyo Tanso Kk 金属−炭素複合材、金属−炭素複合材の製造方法及び摺動部材

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083719A (en) * 1975-10-29 1978-04-11 Hitachi, Ltd. Copper-carbon fiber composites and process for preparation thereof
JPH01148542A (ja) * 1987-12-04 1989-06-09 Ok Trading Kk 繊維強化メタライズドセラミツクス
WO1990007023A1 (en) * 1988-12-16 1990-06-28 Hyperion Catalysis International Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
US5495979A (en) * 1994-06-01 1996-03-05 Surmet Corporation Metal-bonded, carbon fiber-reinforced composites
US5660923A (en) * 1994-10-31 1997-08-26 Board Of Trustees Operating Michigan State University Method for the preparation of metal matrix fiber composites
US6406790B1 (en) * 1999-09-30 2002-06-18 Yazaki Corporation Composite material and manufacturing method therefor
US6469381B1 (en) * 2000-09-29 2002-10-22 Intel Corporation Carbon-carbon and/or metal-carbon fiber composite heat spreader
EP1265281A2 (en) * 2001-06-06 2002-12-11 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3744120A (en) * 1972-04-20 1973-07-10 Gen Electric Direct bonding of metals with a metal-gas eutectic
US3766634A (en) * 1972-04-20 1973-10-23 Gen Electric Method of direct bonding metals to non-metallic substrates
JPS6141538A (ja) * 1984-08-06 1986-02-27 株式会社日立製作所 セラミツク基板及びその製造方法
US5165909A (en) * 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
NL9001662A (nl) * 1990-07-20 1992-02-17 Velterop F M Bv Werkwijze voor het verbinden van een keramisch materiaal met een ander materiaal.
JPH06196585A (ja) * 1992-12-24 1994-07-15 Toshiba Corp 回路基板
JP2914076B2 (ja) * 1993-03-18 1999-06-28 株式会社日立製作所 セラミックス粒子分散金属部材とその製法及びその用途
US5424054A (en) * 1993-05-21 1995-06-13 International Business Machines Corporation Carbon fibers and method for their production
US5814408A (en) * 1996-01-31 1998-09-29 Applied Sciences, Inc. Aluminum matrix composite and method for making same
US5981085A (en) * 1996-03-21 1999-11-09 The Furukawa Electric Co., Inc. Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
JPH1053405A (ja) * 1996-08-06 1998-02-24 Otsuka Chem Co Ltd 微結晶からなる六方晶窒化ホウ素多結晶体及びその製造法
US5707715A (en) * 1996-08-29 1998-01-13 L. Pierre deRochemont Metal ceramic composites with improved interfacial properties and methods to make such composites
JP3607934B2 (ja) * 1996-09-19 2005-01-05 国立大学法人 東京大学 カーボンナノチューブ強化アルミニウム複合材料
US6245442B1 (en) * 1997-05-28 2001-06-12 Kabushiki Kaisha Toyota Chuo Metal matrix composite casting and manufacturing method thereof
JP2001010874A (ja) * 1999-03-27 2001-01-16 Nippon Hybrid Technologies Kk 無機材料とアルミニウムを含む金属との複合材料の製造方法とその関連する製品
JP3953276B2 (ja) * 2000-02-04 2007-08-08 株式会社アルバック グラファイトナノファイバー、電子放出源及びその作製方法、該電子放出源を有する表示素子、並びにリチウムイオン二次電池
JP2002080280A (ja) * 2000-06-23 2002-03-19 Sumitomo Electric Ind Ltd 高熱伝導性複合材料及びその製造方法
JP3893860B2 (ja) * 2000-08-11 2007-03-14 株式会社豊田自動織機 電子部品のケース及びその製造方法
US6420293B1 (en) * 2000-08-25 2002-07-16 Rensselaer Polytechnic Institute Ceramic matrix nanocomposites containing carbon nanotubes for enhanced mechanical behavior
US6407922B1 (en) * 2000-09-29 2002-06-18 Intel Corporation Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader
US6460497B1 (en) * 2000-10-16 2002-10-08 Donald Eugene Hodgson Hodgson piston type engine
WO2002067324A1 (fr) * 2001-02-22 2002-08-29 Ngk Insulators, Ltd. Element pour circuit electronique, procede de fabrication d'un tel element et portion electronique
JP3632682B2 (ja) * 2001-07-18 2005-03-23 ソニー株式会社 電子放出体の製造方法、冷陰極電界電子放出素子の製造方法、並びに、冷陰極電界電子放出表示装置の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083719A (en) * 1975-10-29 1978-04-11 Hitachi, Ltd. Copper-carbon fiber composites and process for preparation thereof
JPH01148542A (ja) * 1987-12-04 1989-06-09 Ok Trading Kk 繊維強化メタライズドセラミツクス
WO1990007023A1 (en) * 1988-12-16 1990-06-28 Hyperion Catalysis International Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
US5495979A (en) * 1994-06-01 1996-03-05 Surmet Corporation Metal-bonded, carbon fiber-reinforced composites
US5660923A (en) * 1994-10-31 1997-08-26 Board Of Trustees Operating Michigan State University Method for the preparation of metal matrix fiber composites
US6406790B1 (en) * 1999-09-30 2002-06-18 Yazaki Corporation Composite material and manufacturing method therefor
US6469381B1 (en) * 2000-09-29 2002-10-22 Intel Corporation Carbon-carbon and/or metal-carbon fiber composite heat spreader
EP1265281A2 (en) * 2001-06-06 2002-12-11 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same

Also Published As

Publication number Publication date
JP2007500450A (ja) 2007-01-11
CN1784784A (zh) 2006-06-07
EP1620892A2 (de) 2006-02-01
DE10320838B4 (de) 2014-11-06
WO2004102659A3 (de) 2005-06-09
DE10320838A1 (de) 2004-12-02
US20060263584A1 (en) 2006-11-23
WO2004102659A2 (de) 2004-11-25

Similar Documents

Publication Publication Date Title
CN100454525C (zh) 复合材料及电路或电模块
US9520377B2 (en) Semiconductor device package including bonding layer having Ag3Sn
US10785862B2 (en) Microelectronic modules with sinter-bonded heat dissipation structures and methods for the fabrication thereof
RU2750688C2 (ru) Способ изготовления электронного силового модуля посредством аддитивной технологии и соответственные подложка и модуль
CN111164747B (zh) 用于散热的热结构及其制造方法
US6909185B1 (en) Composite material including copper and cuprous oxide and application thereof
US20060246314A1 (en) Method of producing a heat dissipation substrate of molybdenum powder impregnated with copper with rolling in primary and secondary directions
CN101764121B (zh) 层间绝缘叠层复合材料及其制备方法
US20180033716A1 (en) Sintered multilayer heat sinks for microelectronic packages and methods for the production thereof
US6833617B2 (en) Composite material including copper and cuprous oxide and application thereof
US10381223B2 (en) Multilayer composite bonding materials and power electronics assemblies incorporating the same
JP2003124410A (ja) 多層ヒートシンクおよびその製造方法
CN104733399A (zh) 一种层状高导热绝缘基板及其制备方法
CN103057202B (zh) 层叠结构热沉材料及制备方法
US20210381110A1 (en) Transient liquid phase bonding compositions and power electronics assemblies incorporating the same
US10083917B1 (en) Power electronics assemblies and vehicles incorporating the same
CN107154393B (zh) 电力电子模块
US10886251B2 (en) Multi-layered composite bonding materials and power electronics assemblies incorporating the same
KR101411953B1 (ko) 이종접합 방열 구조체 및 그 제조방법
US6529379B1 (en) Article exhibiting enhanced adhesion between a dielectric substrate and heat spreader and method
JP2000277953A (ja) セラミックス回路基板
KR101063576B1 (ko) 다이아몬드 복합 방열기판 및 그 제조방법
US11929310B2 (en) Radio frequency packages containing substrates with coefficient of thermal expansion matched mount pads and associated fabrication methods
Yoon et al. Semiconductor device package including bonding layer having Ag 3 Sn
JP2008243878A (ja) 放熱構造体,その製造方法およびパワーモジュール

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Free format text: FORMER OWNER: ZAI LIQU, CURAMIK HOLDING GMBH

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: German Eschenbach

Co-patentee after: Kula Mick Holdings Ltd. in Li Qu

Patentee after: CURAMIK ELECTRONICS GmbH

Address before: German Eschenbach

Co-patentee before: Electrovac Gesmbh.

Patentee before: Curamik Electronics GmbH

TR01 Transfer of patent right

Effective date of registration: 20110913

Address after: German Eschenbach

Patentee after: CURAMIK ELECTRONICS GmbH

Address before: German Eschenbach

Co-patentee before: Kula Mick Holdings Ltd. in Li Qu

Patentee before: Curamik Electronics GmbH

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090121

Termination date: 20150420

EXPY Termination of patent right or utility model