CN100448949C - 低压差蒸汽重整交换器 - Google Patents

低压差蒸汽重整交换器 Download PDF

Info

Publication number
CN100448949C
CN100448949C CNB021263035A CN02126303A CN100448949C CN 100448949 C CN100448949 C CN 100448949C CN B021263035 A CNB021263035 A CN B021263035A CN 02126303 A CN02126303 A CN 02126303A CN 100448949 C CN100448949 C CN 100448949C
Authority
CN
China
Prior art keywords
catalyzer
loaded
piece construction
pipes
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB021263035A
Other languages
English (en)
Other versions
CN1397629A (zh
Inventor
R·A·博林加梅
T·A·丘庞
L·G·哈克梅泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kellogy Brown & Luter Inc
Original Assignee
Kellogy Brown & Luter Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kellogy Brown & Luter Inc filed Critical Kellogy Brown & Luter Inc
Publication of CN1397629A publication Critical patent/CN1397629A/zh
Application granted granted Critical
Publication of CN100448949C publication Critical patent/CN100448949C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30223Cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30242Star
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32296Honeycombs
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开一种合成气的生产方法和重整交换器。本方法包含将第一部分与蒸汽和氧化剂混合的烃进料,通过自热式催化蒸汽重整区以形成减少了烃含量的第一蒸汽重整气体;将第二部分与蒸汽混合的烃进料,通过吸热催化蒸汽重整区,以形成减少了烃含量的第二蒸汽重整气体,将第一第二蒸汽重整气体混合,把此混合气体通过热交换区对此混合气体进行冷却,并向吸热催化蒸汽重整区供热。吸热催化蒸汽重整区和热交换区分别布置在壳管式蒸汽重整交换器内的管程和壳程。此重整交换器包括多个装填有低压差载有催化剂的整体结构的管子,这些管的内径小于催化剂结构的最大边缘尺寸的4倍。

Description

低压差蒸汽重整交换器
技术领域
本发明涉及生产合成气的蒸汽重整交换器,特别是催化剂管内径与催化剂颗粒尺寸之比值较小的蒸汽重整交换器。
背景技术
以蒸汽重整烃来制造合成气是众所周知的方法。通行的一种技术是用自热式蒸汽重整炉结合一台重整变换器,如Le Blance于美国专利5,011,625中所述。该专利的整体内容已综合在一起作为参考。简单地说,是把烃与氧源供给此自热式蒸汽重整炉中,以燃烧反应是放热反应,并为此自热式重整炉内发生的催化重整反应提供所需的热,该催化重整反应是吸热反应,产生出相对热的重整气体。来自此自热式蒸汽重整炉的热气体然后便用作该蒸汽重整交换器的热源,而此蒸汽重整交换器则起到吸热催化蒸汽重整区的作用。在蒸汽重整交换器内供给包括蒸汽和烃的混合物,使其通过装有催化剂的那些管子。这些管的出口端排出吸热反应重整气体,在壳程入口附近与来自自热式蒸汽重整炉的热气体混合。此热气体混合物然后逆向横穿这些管,间接进行热交换以供给发生吸热重整反应所需的热。
蒸汽重整交换器在市场上能买到,例如,产自Kellogg Brown&Root,lnc.公司的贸易品牌KRES就是。对上述蒸汽重整交换器的各种改进设计已经出现,例如Cizmar et al.于美国专利5,362,454中所述。该专利的整体内容已综合在此以作参考。
本发明改进之处是蒸汽重整交换器的基础设计。最初设计所考虑的是使设备的投资费用最小,这是个复杂的难题,因为昂贵的合金必须用于该管束和管板结构,以适应运行时较高的温度和压力。另一个设计所考虑的是在实际制造能力的范围内使该蒸汽重整交换器的容积最大,而且希望该蒸汽重整交换器的尺寸和重量最小,易于维护工作,这种维护工作需要移动管束。
我们在减少投资和增大上述该蒸汽重整交换器容量的方法是增大可用于热转换的表面积以增加热的转换率。然而,在现有重整交换器中,增加常规的装有催化剂的管子的长度不实际;因为管程压差(ΔP)会增加,超出容许不用过度复杂的管板和管板支架设计,以及要增加上升蒸汽流运行压力和加压费用。此外,长管将使维护工作变得复杂,包括移动管束。
其他增大热转换面积的方法是减小装有催化剂管的直径。然而,重整反应器一般的设计者认为,热转换管的最小内径必须是催化剂颗粒直径或其他边缘尺寸的5倍。按此准则,因为有装填、挂料、气流通路以及其他潜在的问题。例如,James T.Richardson所著“催化剂研制原理(Principles of Catalyst Development)”(Plenum出版社,纽约,P.8(1986)(引用E.G.Christoffel),“实验室反应器与非均质催化剂的处理”Catal.Rev.-Sci.Eng.Vol24,P.159(1982))的报告指出,反应器对颗粒直径之比值应该为5-10,反应器的长度至少50-100倍于颗粒直径,以保证流体为湍流,均匀的,以及近似于柱塞流。
观察这些设计规范,意味着减小管径与增加管数作为一种增加表面积的方法,需要用较小结构的催化剂。例如,管的内径(ID)为2英寸时,所用的催化剂的形状在重整交换器中普遍使用,为轴向有孔的圆柱形,典型的尺寸为外径(OD)0.315英寸,内径0.125英寸,长0.31英寸,像周知的拉希格圈。当规定用小内径的管,考虑催化剂的颗粒必须相应地减小,遵守惯用的方程Dt/Dp>5。这里Dt为蒸汽重整交换器内管的内径,Dp为催化剂结构最大的边缘尺寸。遗憾地是因为用较小的催化剂颗粒于较小的管内,观察通常的设计规范,管程压差增大的结果不能接受。相反,因为现有蒸汽重整交换器设计,催化剂颗粒的尺寸对管的内径之比值已经是或是接近最大值,则在现行的管子设计催化剂颗粒的尺寸增加,以作为一种装置来降低管的单位长度的压差以便采用长管是不可能的,显然设计的蒸汽重整交换器已经达到最大容量的限制,再增大热交换似无实用的办法。
发明内容
目前对蒸汽重整交换器设计的调查表明,在蒸汽重整反应器内,吸热重整反应受热转换限制,不受催化剂活性限制。换言之,在蒸汽重整交换器内,壳程与管程之间流体增大热转换倾向于加大反应率,而增大或减小催化剂的活性或表面积在反应率上几乎没有作用。借助此观察,本申请人等用有较低的管程压差(ΔP)的催化剂就能增加热转换系数,而不一定要有一等效的催化活性或几何表面积。此外,本申请人等发现,严格地向这些管内装填催化剂颗粒,通常设计催化剂直径Dp和管内径Dt之间的关系式不适用,Dt/Dp的比值最好小于4,更好是小于3或更小,可用来在较小的管内径(ID)的管中降低压差。十分令人惊奇的是,本申请者们也发现用有较小的ID和较小的Dt/Dp比值的管,比设计有惯用的Dt/Dp比值的管子,热转换系数较大且效率更高。
本发明于是提供一种解决先前陷入困境的蒸汽重整交换器的设计方法。本发明发现在设计合成气蒸汽重整交换器中管子时,用催化剂结构和/或允许安排用较长和/或较小ID的管子。充填了催化剂的这些管子比先前的蒸汽重整炉中的可以有一较低的Dt/Dp比值。这样就允许蒸汽重整交换器的容量在给定的尺寸内增大。换句话说,对给定合成气生产量的蒸汽重整交换器的尺寸和费用能够大大地降低。
在一个方面,本发明提供了一种合成气生产的方法,此方法包括:(1)把第一部分供给的烃与蒸汽和氧化剂的混合物通过一自热式催化蒸汽重整区形成第一烃含量降低的蒸汽重整气体;(2)把第二部分供给烃与蒸汽的混合物通过吸热催化蒸汽重整区形成第二含烃量降低的蒸汽重整气体;(3)把第一和第二蒸汽重整气体混合,将此混合物通过热交换区用于对此混合物进行冷却以及向吸热催化蒸汽重整区供热;(4)吸热催化蒸汽重整区和热交换区分别布置在壳管式蒸汽重整交换器内有管程和壳程,包括多个载有催化剂的整体结构充填管。在这里Dt/Dp不大于4,Dt是这些管的内径,Dp是催化剂结构最大边缘尺寸;(5)回收包括已冷却的气体混合物的合成气。
另一方面,本发明提供了用于重整烃生产合成气的设备。此设备包括有这样的装置,用来将第一部分供给的烃与蒸汽和氧化剂混合物通过自热式催化蒸汽重整区形成了第一减少了烃含量的重整气体。还提供了这样的装置,用来将第二部分供给烃与蒸汽混合通过吸热催化蒸汽重整区,形成第二减少烃含量的重整气体。再提供了这样的装置,用来将第一、第二蒸汽重整的气体混合,把此气体混合物通过热交换区以冷却此气体混合物以及给吸热催化蒸汽重整区供热。此吸热催化蒸汽重整区和热交换区分别布置在壳管式蒸汽重整交换器内的管程和壳程,包括多个载有催化剂的整体结构充填管。这些管的内径不大于上述催化剂结构最大边缘尺寸的4倍。此外,还提供了用来回收包括已冷却的气体混合物的合成气的装置。
本发明在其又一方面提供了一种合成气蒸汽重整交换器,这种交换器有一管程流体入口、一壳程流体入口和出口,以及一具有较高与较低温度端的细长壳体。此壳程流体入口与上述高温端邻近,用于接收供给的热的气体。管程流体入口与上述低温端邻近,用以接收烃与蒸汽的混合物。管程流体的出口通过一个管板与管程入口从流体的意义上是隔开的,管板与低温端邻近,此管程流体出口用于排出来自蒸汽重整交换器的冷却气体。管束是由多个管子和一个或多个纵向间隔的横防护板制成。这些管子具有一与管板连接的入口端,用来接收供给的混合物以及一出口端,该出口端与壳程流体入口邻近,用于把蒸汽重整气体排入供给的热气体。载有催化剂的整体式结构布置在管子内,用来把供给的混合气体重整为蒸汽重整气体。这些管子具有的内径不大于催化剂结构最大边缘尺寸的4倍。
本方法中,设备和重整交换器,这些管子最好具有Lt/Dt的比值至少为300,这里,Lt是充填在管内催化剂的长度。管的ID和载有催化剂整体结构的组合,对给定的压差最好的结果是有较高的热转换率,即总的热转换率对给定的压差,在内径为2英寸的管内充填有0.31英寸长,0.31英寸外径,0.125英寸内径的拉希格圈至少高出5%。
在一实施例中,载有催化剂的整体结构,包括一扭转带插件,此扭转带插件最好用镍或镍合金制成,以及具有浸渍含有镍催化剂的可洗涤的表面涂层。此扭转带插件具有的长度能够与充填着催化剂管的长度共同扩张,其外径OD大约等于管的内径ID,如Dk/Dp基本上小于1,把扭转带插件的长度看作最长边缘尺寸Dp,如上定义。
在另一实施例中,此载有催化剂的整体结构中,包括一中央纵向滑动件和从其中横向伸出许多硬毛,这些硬毛有能洗涤的涂层和浸渍着含有镍的催化剂。再有,滑动件具有的长度与充填着催化剂的管子长度共同扩张,其外径OD大约等于管的内径ID,比如此Dt/Dp基本上小于1,再有,把滑动件长度看作最长的边缘尺寸,Dp,定义如上述。
在接着的实施例中,此载有催化剂的整体结构包括陶瓷泡沫。这种陶瓷泡沫能用液化初级陶瓷粒子充填有机海绵状基质空隙与煅烧此基质而制成陶瓷泡沫。这种陶瓷泡沫浸渍着镍或另外具有催化活性的材料,最好制成片状,丝堵从板材切割而成,其直径小于厚度,以及众多的丝堵端对端地堆放在每根管内,这些陶瓷泡沫丝堵的长度或高度,最好大约等于或略大于这些管的内径ID,其外径OD大约等于管的内径ID,比如Dt/Dp接近1。
再接着的另一实施例中,载有催化剂的整体结构包括有鳍状片的空心圆柱体,也称呈肋状圈。此呈肋状圈最好有一沿中心轴的纵向孔,此这些肋之间的槽路的深度,即这些肋的径向高,最好是此结构的外径(OD)的0.1到0.3倍,测量至肋的外径。此呈肋状圈具有的长度粗略计是管内径ID的1/3至1/4,比如Dt/Dp的比值大约3至4。
附图说明
图1是蒸汽重整交换器的示意图;
图2A和2B分别是依据本发明的实施例之一的呈肋状圈催化剂载体末端的透视图;
图3是图2A和2B的充填在依据本发明的蒸汽重整交换器的管内的呈肋状圈催化剂载体部分透视图;
图4是依据本发明的另一实施例扭转带催化剂整体插入件在蒸汽重整交换器管内的部分透视图;
图5是依据本发明接着的实施例刷形催化剂整体插入对在蒸汽重整交换器管内的部分透视图;
图6A和6B分别是依据本发明另一实施例插入型陶瓷泡沫催化剂载体端视图和透视图;
图7是图6A和6B的陶瓷泡沫催化剂载体的部分透视图,充其填在依据本发明的蒸汽重整交器管内;以及
图8是柱状图,其比较了在重整交换器内相对于拉希格圈(ID=1.94)管子内径为1.38英寸或1.05英寸以及内径1.94英寸的管中肋状圈的热交换/压降。
具体实施方式
参考图1,所示为一蒸汽重整交换器100,一般,根据LeBlance和Cizmer等的上面提到的专利制成,也结合了本发明的原理。此重整交换器100有管程流体入口102,壳程流体入口104,以及在细长的壳108内的壳程流体出口106,该壳体分别具有较高和较低的温度端110和112。此壳程流体入口104与高温端110邻近,用于接收热气体进料。此管程流体入口2102与低温端112邻近,用于烃和蒸汽的进料混合物。此壳程流体出口106通过管板114与管程的入口2102流体地隔开,管板与低温端112邻近。用于排出重整交换器的冷却了的气体。
管束116包括许多管子118和一个或多个纵向间隔的横挡板120。管118的入口端122与管板114连接用于接收气体混合物;其出口端124与壳程流体入口104邻近,用于把重整气体排入热气进料。低压差(ΔP)载有催化剂的整体结构(见图2-7)分布在这些管内,用于把气体进料混合物重整成重整气体。
最好,管子118具有的Lt/Dt比值至少为300,至少为450-500则更好。确定Lt/Dt时,在正圆形圆柱管的情况下,直径Dt指管子118的内径,或在非圆形管的情况下,Dt指等效的液力直径。长度Lt指装有催化剂或充填着催化剂的长度。较高的Lt/Dt比值在本发明中优先,因为热转系数一般高于较低的Lt/Dt比值以及最终设备的成本较低。一种较长,较小内径ID的催化剂管118,一般会导致在管束116内有更多的管子118,但是管束116具有较小的直径是用于给定的重整能力,允许壳体108用较小的直径。通常,减小壳体108和管束106的直径,其结果要比增加其任何长度都节省更多的投资费用,因此,本发明的重整交换器100,比制造先前同等能力的蒸汽重整交换器要便宜许多。此结果特别有利于新蒸汽转交换器100的设计。
或者,如果希望使用先前的重整交换器的管长和相同壳体直径,以便其投资费用基本上相等,则重整交换器100的重整能力会大大增加。此最新结果,在用有更小的ID管118的管束116代替现有管束,以使改进的重整交换器100比原来的重整交换器有较高的能力来改进现有交换器的方面是有利的。
在本发明中,管内径(ID),Dt,与催化剂结构的最大边缘尺寸(Dp)之比值比常规的蒸汽重整交换器中的相等比值相比较小。例如,先前的重整交换器产品使用拉希格圈催化剂,其尺寸OD为0.31英寸,ID为0.125英寸,长为0.31英寸,管的最小ID大约2英寸。在本发明中,同样的拉希格圈催化剂用于管的ID近似1.25英寸,或甚至1英寸,其热转换/压差的比值相等或稍为高一点。在本发明中,此Dt/Dp比值最好不大于4,更好大约等于3或小于3。
低ΔP催化剂结构可定义为任何适用的催化剂结构,其结果是,在类似运行条件和重整下,要比ID为2英寸的重整交换器管的单位管程压差的热转换率要高,该重整交换器管充填有OD为0.31英寸,ID为0.125英寸,长为0.31英寸的载催化剂的拉希格圈。
考虎几种不同类型的低ΔP整体催化剂支承结构在本发明中是有用的。虽然低ΔP对本发明是最重要的性质,但是,典型的催化剂一般也发现具有较高的空隙率,而且使管程流体产生曲折的流道。活性较低的催化剂能缓和转换率显著的降低而不会使其显著地降低,不过使用高活性的催化剂,一般除涉及较高的费用之外,没有什么不利。
参考图2A,2B和3,此催化剂载体200是一种呈肋状圈结构,包括轮廓形状是圆柱体,有一中央纵向孔202和平行于纵向轴线的外部肋片204,这些肋片之间的V形沟的深度最好是载体200OD的0.1-0.3倍,载体200的尺寸为:外径OD 0.362英寸(6mm),内径ID 0.0787英寸(2mm),长0.2362英寸(6mm),其肋片204高0.787英寸(2mm),包括适用于标定为1英寸或1.5英寸管内使用的载体200。
这种呈肋状圈的载体200用陶瓷母体放入带销的模具内压制成中心孔202,随后在升高的温度下,如提升2500°F煅烧此物料,以形成呈肋状圈的载体其是用α-铝土制成,例如,此α-铝土浸琐有镍或其他适用的催化活性物料。呈肋状圈的催化剂在市场上可买到,例如,肯塔基州的路易斯威尔市(Louisville,Kentucky)的Süd-Chemie lnc.公司就生产。因为这种呈肋状圈的催化剂尺寸比管118 ID较大,最好用密集填料方法,例如利用美国专利6,132,157,5,897,282,和5,890,868中所描述的方法和设备去完成,以把任何填装或桥接问题最小化,在此已综合在一起以供参考。
参考图4,此催化剂插件300是扭转带形,其OD大致和其所用于的管的ID相同。插件300的OD稍微小于管的ID,以便于放置插件带300。插件300的长度基本上与管的长度相同,而且在每个管118内有一个插件300,或多个插件300可端对端地安排在每个管118内。对于此多个插件300,每个插件300最好具有的长度,至少和直径一样大,以保持插件300在118管内纵向对准。此插件300可用具有催化活性的物料制成,比如镍,或用催化活性物料的涂覆。例如,插件300可洗涂有陶瓷,如Silversand在美国专利5,980,843或Murrell等在美国专利5,935,889所描述的,把他们综合在一起供参考,可用通常的浸渍技术为该陶瓷涂层浸渍镍催化剂。催化作用不活跃的增加壳管式热交换器内管程热转换系数的插件300可从购买Texas的Houston市的Brown Fintube Company购得。
参考图5,此催化剂插件400是刷形,包括一中心滑动件402和从此横向伸出的众多刷毛或细丝404。该刷形插件400的OD大约和其所用于的管118的ID相同,在每个管118内有一个插件400,其长度基本上与管118的长度相同,或多个插件400在每个118管内安排成端至端,可选地有些重叠。对多数插件400,每个插件400应具有的长度至少是直径的若干倍,以把插件400在管118内纵向对准。此插件400可用具有催化活性的物料制成,比如镍,或用具有催化活性的涂覆。例如,插件400可洗涂有上述陶瓷,此陶瓷涂层用通常的陶瓷浸渍技术浸渍镍催化剂。催化剂作用不活跃的插件400,可以在市场上买到,用于增加壳管式热交换器内管程的热转换系数:例如商业品牌为HITRAN的。
参考图6A,6B及7,此催化剂插件500是陶瓷泡沫型。此陶瓷泡沫插件500最好是用液化陶瓷母体充填有机海绵基质的空隙并经焙烧该基底而制成。用通常的镍浸渍技术为此陶瓷泡沫浸渍镍或别的具有催化活性的物料。此陶瓷泡沫插件500,最好制成片状,丝堵502从板材切割成直径小于厚度,许多丝堵502端到端堆积在每根管118内。如果必需,此板材充填有液体蜡,其固化后易于切割丝堵502,然后使其熔化脱除蜡。丝堵502的外径OD大约与其所用于的管118的内径ID相等。每个丝堵502的长度至少和管118的内径ID一样大,有助于在118管内使丝堵502对准。此丝堵502端至端地安放在每根118管内,如图7所示。
示例
在下面的一些例子中,管程热转换系数,流率以及压差是基于具有表1组分的管程入口气体的:
表1
  成分   摩尔百分比
  N<sub>2</sub>   0.23
  H<sub>2</sub>   0.34
  CH<sub>4</sub>   15.49
  Ar   <0.01
  CO<sub>2</sub>   0.03
  C<sub>2</sub>H<sub>6</sub>   1.03
  C<sub>3</sub>H<sub>8</sub>   0.34
  iC<sub>4</sub>H<sub>10</sub>   0.10
  iC<sub>5</sub>H<sub>12</sub>   0.02
  nC<sub>6</sub>   0.02
  CO   0.00
  H<sub>2</sub>O   82.40
  总数   100.00
例1-2
对不同类型的催化剂尺寸和管子插件作了概念性尺寸的总结。现用于蒸气重整交换器内标准尺寸的催化剂可以从Kellogg Brown&Root公司买到,商业品牌为KRES(拉希格圈外径OD为0.31英寸,内径ID为0.125英寸,长为0.31英寸),一种较小的催化剂尺寸(拉希格圈外径OD为0.25英寸,内径ID为0.10英寸,长为0.25英寸),一种最小的催化剂尺寸(拉希格圈外径OD 0.185英寸,内径ID为0.07英寸,长为0.185英寸),一种浸渍着镍201(99.6镍)的扭转带插件比如Turbulator可以从Brown Fintube公司买到,以及浸渍有镍的陶瓷泡沫插件,其结果概括于表2。
表2
  参考   基本情况   比较例A   比较例B   比较例C   实施例1   实施例2
  催化剂   标准(0.31×0.125×0.31)   较小(0.25×0.10×0.25   最小(0.185×0.07×0.185)   固体圆柱片(0.185×0.185   扭转带   陶瓷泡沫
  反应器耐火材料内径(英寸)   103   114   110   120   48   88
  管长(英尺)   44   44   27   24   60   41
  管外径(英寸)   2   2.5   1.5   1.5   0.75   1.15
  相关的管数   基值   0.79   2.03   2.33   1.61   1.62
  相关的表面积   基值   0.986   0.936   0.954   0.822   0.833
  管压差ΔP(psi)   28   29   28   27   10   29
  壳程压差ΔP(psi)   8   8   8   8   8   8
  平均温差(°F)   145.5   153.2   140.7   135.9   139.8   150
  总热转换效率(Btu/时-英尺<sup>2</sup>-°F)   55.7   53.4   63.8   65.3   68.3   60.0
  近似平衡温度(°F)   3.6   3.4   5.1   5.9   5.1   5.3
  估价(相对的)   基值   1.06   0.96   0.99   0.37   0.48
分别比较例A,B和C,这些结果表明用较小或最小穿孔圆柱形催化剂,或固态圆柱片催化剂几乎没有或没有优点。如在比较例A、B和C一样,假定允许相同的压差,用较小尺寸的催化剂,结果能得到较大直径的反应器(耐火材料内径ID)。虽然在例B,C中管的长度比较短,但是,比较大直径的反应器,结果在额外费用和管板制造以及质量控制上也存在一些问题。
设计扭转带插件和陶瓷泡沫(例1和2),用较小的直径管和格子状或格栅型隔板,引起纵向壳程流且改善了壳程性能,与提高了的管程性能结合,这获得有较低压差的费用更有效的设计。例1是根据尺寸为宽0.625英寸,厚0.035英寸和每英尺扭转4圈的扭转带插件。性能尺寸的获得与传统催化剂一样的所需的甲烷降低率(25%)以及活性系的。在扭转带插件的陶瓷涂层的浸镍,能改善催化剂的活性。
例3
如在例1-2中一样,对拉希格圈催化剂与呈肋状圈催化剂的压差和性能进行了概念尺寸的比较总结。两种催化剂的结构大小都是外径OD 0.31英寸,内径0.125英寸,长0.31英寸,以及V-形切口在呈肋状圈催化剂之间的深度为0.17英寸,结果见表3:
表3
  参数   比较例D   例3
  催化剂   0.31英寸×0.125英寸×0.31英寸拉希格圈   0.31英寸×0.125英寸×0.31英寸呈肋状圈
  反应器耐火材料内径(英寸)   55   55
  管长(英尺)   25   25
  管内径(英寸)   2.00   2.00
  管外径(英寸)   2.25   2.25
  相关的管数   基值   1.0
  相关的催化剂体积   基值   1.0
  相关的表面积   基值   1.0
  压差ΔP(psi)   21.5   12.5
  壳程ΔP(psi)   8   8
  平均温差(°F)   211   225
  总热转换效率(Btu/时-英尺<sup>2</sup>-°F)   51   48
  近似平衡的温度(°F)   33.4   29.1
  甲烷降低率(%)   1.19   1.16
例3的数据表明,呈肋状圈催化剂性能,除管程压差基本上较低外,一般相等于同样尺寸的拉希格圈催化剂。较长管的数目减少对应蒸汽重整交换器呈肋状圈催化剂的费用减少很多,因为交换器内管的总长度比交换器直径便宜。
例4-5
如在例1-3中一样,用标准的拉希格圈催化剂对不同的催化剂管内径ID(2、1.55和1英寸)进行了概念尺寸的总结。结果见表4:
表4
  参数   比较例D   例4   例5
  催化剂   0.31英寸×0.125英寸×0.31英寸拉希格圈   0.31英寸×0.125英寸×0.31英寸拉希格圈   0.31英寸×0.125英寸×0.31英寸拉希格圈
  反应器耐火材料内径(英寸)   91.3   84.6   81.9
  管长(英尺)   40   35   25
  管内径(英寸)   2.00   1.55   1.00
  管外径(英寸)   2.25   1.75   1.125
  相关的管数   基值   1.43   2.91
  相关的催化剂体积   基值   0.75   0.45
  相关的表面积   基值   0.964   0.912
  管压差ΔP(psi)   35.5   34.5   33.8
  平均温差(°F)   167.9   157.9   150.2
  总热转换效率(Btu/时-英尺<sup>2</sup>-°F)   64.7   71.4   79.9
  近似平衡的温度(°F)   6.9   8.4   14.9
  估计费用(相对)   基值   0.84   0.64
例4和例5所示的数据十分令人惊奇,使用较小内径的管,即Dt/Dp的比值较低,用通常的拉希格圈,其结果是蒸汽重整交换器的催化剂体积和费用显著降低,且仍维持了上述交换器的相同能力。
例6
在实验室管子测定设备中,在不同尺寸的管内充填有催化剂的不同形状,包括拉希格圈,肋状圈和陶瓷泡沫丝堵,在雷诺数相似于商业蒸汽重整反应器管的条件下,让空气通过这些充填管。这些管由外部提供热源,管壁的温度在预定的商业蒸汽重整反应器内管的范围之内,确定管的内部表面的热转换系数(BTU/时-英尺2-°F),并测定压差(psi/ft)。此数据用于比较相对带拉希格圈催化剂载体的内径为1.94英寸管子中热转换与压差的比值。该比值的确定是用于在内径ID1.94英寸和内径1.38英寸时的拉希格圈和肋状圈的,还用于在管内径ID为1.05英寸时的拉希格圈,肋状圈和陶瓷泡沫。这些结果如图8所示,同时展示出,热转换对管程压差的相对比值对于肋状圈催化剂在所有的管直径内明显地较高,以及陶瓷泡沫在所测的较小的管直径内也比较高。
本发明以上的描述和一些例子,仅仅是它的说明。对本领域的普通技术人员而言,通过前面所描述的公开内容,各种变化和改型是显然的。所有上述落在后附权利要求范围或精神之内的变化都认为包括在内。

Claims (33)

1.一种生产合成气的方法,其包括:
将第一部分与蒸汽和氧化剂混合的烃进料,通过一自热式催化蒸汽重整区以形成烃含量减少了的第一重整气体;
将第二部分与蒸汽混合的烃进料,通过吸热催化蒸汽重整区,以形成烃含量减少了的第二重整气体;
将第一和第二重整气体混合,把此气体混合物通过热交换区对此气体混合物进行冷却,同时向吸热催化蒸汽重整区供热;
其中以吸热催化蒸汽重整区和热交换区分别布置在壳管式蒸汽重整交换器内的管程和壳程,壳管式蒸汽重整交换器包括多个充填了载有催化剂的整体结构的管子,这些管子具有的内径不大于催化剂结构最大边缘尺寸的4倍;以及
回收包括冷却了的气体混合物的合成气。
2.用于重整烃生产合成气的设备,其包括:
用于将第一部分与蒸汽和氧化剂混合的烃进料,通过一自热式催化蒸汽重整区以形成烃含量减少了的第一重整气体的装置;
用于将第二部分与蒸汽混合的烃进料,通过一吸热催化蒸汽重整区以形成烃含量减少了的第二重整气体的装置;
用于将第一和第二重整气体混合,把此气体混合物通过热交换区对气体混合物进行冷却,同时向吸热催化蒸汽区供热的装置;
其中吸热催化蒸汽重整区和热交换区分别布置在壳管式蒸汽重整交换器内的管程和壳程,壳管式蒸汽重整交换器包括多个充填了载有催化剂的整体结构的管子,这些管子具有的内径不大于催化剂结构最大边缘尺寸的4倍;以及
用于回收包括冷却气体混合物合成气的装置。
3.一种合成气蒸汽重整交换器,其包括:
一细长的壳体,其具有较高和较低的温度端;
一壳程流体入口,其与高温端邻近,用于接收热气体进料;
一管程流体入口,其与低温端邻近,用于接收烃与蒸汽的进料混合物;
一管程流体出口,用管板与管程流体入口隔开,用于排出冷却的气体,此管板邻近低温端;
一管束,其包括多个管子和一个或多个纵向间隔的横隔板,其中这些管子具有一入口端,连接于管板上用于接收进料混合物以及一邻近壳程流体入口的出口端,用于把重整气体排入热气体进料中;
载有催化剂的整体结构,其分布在这些管内,用于把气体进料混合物重整成重整气体,其中这些管子具有的内径不大于催化剂结构最大边缘尺寸的4倍。
4.如权利要求1的方法,其中这些管子具有的Lt/Dt比值至少为300,其中Lt是这些管子的载有催化剂的长度,Dt是这些管子的内径。
5.如权利要求2的设备,其中这些管子具有的Lt/Dt比值至少为300,其中Lt是这些管子的载有催化剂的长度,Dt是这些管子的内径。
6.如权利要求3的交换器,其中这些管子具有的Lt/Dt比值至少为300,其中Lt是这些管子的载有催化剂的长度,Dt是这些管子的内径。
7.如权利要求4的方法,其中对给定的压差,总的热转换率比在内径为50.8mm的管内充填有长度为7.87mm,外径7.87mm,内径为3.18mm的拉希格圈至少高出5%。
8.如权利要求5的设备,其中对给定的压差,总的热转换率比在内径为50.8mm的管内充填有长度为7.87mm,外径7.87mm,内径为3.18mm的拉希格圈至少高出5%。
9.如权利要求6的交换器,其中对给定的压差,总的热转换率比在内径为50.8mm的管内充填有长度为7.87mm,外径7.87mm,内径为3.18mm的拉希格圈至少高出5%。
10.如权利要求1的方法,其中载有催化剂的整体结构包括一扭转带插件。
11.如权利要求4的方法,其中载有催化剂的整体结构包括具有浸渍含镍催化剂的洗涤涂覆表面的扭转带插件。
12.如权利要求2的设备,其中载有催化剂的整体结构包括一扭转带插件。
13.如权利要求5的设备,其中载有催化剂的整体结构包括具有浸渍含镍催化剂的洗涤涂覆表面的扭转带插件。
14.如权利要求3的交换器,其中载有催化剂的整体结构包括一扭转带插件。
15.如权利要求6的交换器,其中载有催化剂的整体结构包括具有浸渍含镍催化剂的洗涤涂覆表面的扭转带插件。
16.如权利要求1的方法,其中此载有催化剂的整体结构包括一中央纵向滑动件和从其横向伸出的许多刷毛。
17.如权利要求4的方法,其中此载有催化剂的整体结构包括一中央纵向滑动件和从其横向地伸出的许多刷毛,这些刷毛上洗涤涂覆的并浸渍有含镍催化剂。
18.如权利要求2的设备,其中此载有催化剂的整体结构包括一中央纵向滑动件和从其横向地伸出的许多刷毛。
19.如权利要求5的设备,其中此载有催化剂的整体结构包括一中央纵向滑动件和从其横向地伸出的许多刷毛,这些刷毛是洗涤涂覆的并浸渍有含镍的催化剂。
20.如权利要求3的交换器,其中此载有催化剂的整体结构,包括一中央纵向滑动件和从其横向地伸出的许多刷毛。
21.如权利要求6的交换器,其中此载有催化剂的整体结构包括一中央纵向滑动件和从其横向地伸出的许多刷毛,这些刷毛是洗涤涂覆的并浸渍有含镍的催化剂。
22.如权利要求1的方法,其中载有催化剂的整体结构包括陶瓷泡沫。
23.如权利要求4的方法,其中此载有催化剂的整本结构包括陶瓷泡沫,此陶瓷泡沫是用液化陶瓷充填海绵状基质的空隙以及灼烧此基质而制成。
24.如权利要求23的方法,其中此陶瓷泡沫制成片材,丝堵从板材切割而成,其直径小于厚度,以及许多丝堵被端对端地堆放在每根管内。
25.如权利要求2的设备,其中此载有催化剂的整体结构包括陶瓷泡沫。
26.如权利要求5的设备,其中此载有催化剂的整体结构包括陶泡沫,此陶瓷泡沫是用液化陶瓷充填海绵状基质的空隙以及灼烧此基质而制成。
27.如权利要求26的设备,其中此陶瓷泡沫制成片材,丝堵从板材切割而成,其直径小于厚度,以及许多丝堵被端对端地堆放在每根管内。
28.如权利要求3的交换器,其中此载有催化剂的整体结构包括陶瓷泡沫。
29.如权利要求6的交换器,其中此载有催化剂的整体结构包括陶瓷泡沫,此陶瓷泡沫是用液化陶瓷充填海绵状基质的空隙以及灼烧此基质而制成。
30.如权利要求29的交换器,其中此陶瓷泡沫制成片材,丝堵从板材切割而成,其直径小于厚度,以及许多丝堵被端对端地堆放在每根管内。
31.如权利要求1的方法,其中此载有催化剂的整体结构包括拉希格圈。
32.如权利要求2的设备,其中此载有催化剂的整体结构包括拉希格圈。
33.如权利要求3的交换器,其中此载有催化剂的整体结构包括拉希格圈。
CNB021263035A 2001-07-18 2002-07-18 低压差蒸汽重整交换器 Expired - Lifetime CN100448949C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/908,307 US6855272B2 (en) 2001-07-18 2001-07-18 Low pressure drop reforming exchanger
US09/908307 2001-07-18

Publications (2)

Publication Number Publication Date
CN1397629A CN1397629A (zh) 2003-02-19
CN100448949C true CN100448949C (zh) 2009-01-07

Family

ID=25425562

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021263035A Expired - Lifetime CN100448949C (zh) 2001-07-18 2002-07-18 低压差蒸汽重整交换器

Country Status (10)

Country Link
US (2) US6855272B2 (zh)
EP (1) EP1277698B1 (zh)
KR (1) KR100695052B1 (zh)
CN (1) CN100448949C (zh)
AT (1) ATE341525T1 (zh)
CA (1) CA2389638C (zh)
DE (1) DE60215080T2 (zh)
ES (1) ES2269566T3 (zh)
MX (1) MXPA02006987A (zh)
NO (1) NO20023422L (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855272B2 (en) * 2001-07-18 2005-02-15 Kellogg Brown & Root, Inc. Low pressure drop reforming exchanger
US6936238B2 (en) * 2002-09-06 2005-08-30 General Motors Corporation Compact partial oxidation/steam reactor with integrated air preheater, fuel and water vaporizer
EP1413547A1 (en) * 2002-09-26 2004-04-28 Haldor Topsoe A/S Process for the production of synthesis gas
DE60336444D1 (de) * 2002-09-26 2011-05-05 Haldor Topsoe As Verfahren zur Herstellung von Synthesegas
US7138001B2 (en) * 2003-03-16 2006-11-21 Kellogg Brown & Root Llc Partial oxidation reformer-reforming exchanger arrangement for hydrogen production
US7932296B2 (en) 2003-03-16 2011-04-26 Kellogg Brown & Root Llc Catalytic partial oxidation reforming for syngas processing and products made therefrom
US8273139B2 (en) 2003-03-16 2012-09-25 Kellogg Brown & Root Llc Catalytic partial oxidation reforming
US7220505B2 (en) * 2003-03-18 2007-05-22 Kellogg Brown & Root Llc Autothermal reformer-reforming exchanger arrangement for hydrogen production
US20040225138A1 (en) * 2003-05-07 2004-11-11 Mcallister Paul Michael Reactor system and process for the manufacture of ethylene oxide
EP1620199A1 (en) * 2003-05-07 2006-02-01 Shell Internationale Research Maatschappij B.V. A reactor system and process for the manufacture of ethylene oxide
DE10359205B4 (de) * 2003-12-17 2007-09-06 Webasto Ag Reformer und Verfahren zum Umsetzen von Brennstoff und Oxidationsmittel zu Reformat
US20050142049A1 (en) * 2003-12-31 2005-06-30 Amsden Jeffrey M. Multi-tubular reactors with monolithic catalysts
WO2006036677A2 (en) 2004-09-24 2006-04-06 Shell Internationale Research Maatschappij B.V. A process for selecting shaped particles, a process for installing a system, a process for reacting a gaseous feedstock in such a system, a computer program product, and a computer system
WO2006045746A1 (en) * 2004-10-20 2006-05-04 Shell Internationale Research Maatschappij B.V. Process to prepare a mixture of carbon monoxide and hydrogen
EP1650160A1 (en) * 2004-10-20 2006-04-26 Stichting Energieonderzoek Centrum Nederland Process for the production of synthesis gas and reactor for such process
RU2379100C2 (ru) * 2004-10-26 2010-01-20 Хальдор Топсеэ А/С Реактор и способ проведения эндотермических или экзотермических каталитических реакций
EP1809412A1 (en) * 2004-11-12 2007-07-25 Shell Internationale Research Maatschappij B.V. Tubular reactor with packing
GB0507269D0 (en) * 2005-04-11 2005-05-18 Johnson Matthey Plc Steam reforming
US7293533B2 (en) * 2005-08-08 2007-11-13 Utilization Technology Development, Nfp Recuperative reforming reactor
KR100674864B1 (ko) * 2005-09-29 2007-01-29 삼성전기주식회사 열특성이 우수한 연료 전지용 개질기
US7207323B1 (en) 2006-01-06 2007-04-24 Utilization Technology Development, Nfp Catalytic core reactor for thermochemical heat recovery
DE102006033441B4 (de) * 2006-06-29 2009-05-07 Enerday Gmbh Reformer für ein Brennstoffzellensystem
US20080016768A1 (en) 2006-07-18 2008-01-24 Togna Keith A Chemically-modified mixed fuels, methods of production and used thereof
US7635456B2 (en) * 2006-08-08 2009-12-22 Kellogg Brown & Root Llc Low pressure drop reforming reactor
US7501078B2 (en) 2007-01-10 2009-03-10 Air Products And Chemicals, Inc. Process for generating synthesis gas using catalyzed structured packing
US7887764B2 (en) * 2007-09-18 2011-02-15 Jernberg Gary R Mixer with a catalytic surface
CA2623407A1 (en) * 2008-02-28 2009-08-28 Hydro-Quebec Composite electrode material
EP2140933A1 (en) * 2008-07-02 2010-01-06 Werner Soyez Structured catalyst hold for pipe reactors
US8278363B2 (en) * 2009-03-23 2012-10-02 Thomas Charles Holcombe Fischer-tropsch reactions using heat transfer tubes with a catalyst layer on the outside surfaces
CN101818075B (zh) * 2010-04-29 2013-06-12 华南理工大学 一种降低催化重整装置再接触工艺能耗的方法
DE102011107933A1 (de) * 2011-07-19 2013-01-24 Thyssenkrupp Uhde Gmbh Prozessintensivierung von Dampfreformern durch Verwendung angepasster Katalysatoren
WO2013044444A1 (zh) * 2011-09-27 2013-04-04 中国科学院宁波材料技术与工程研究所 一种催化重整制氢方法与催化装置
CN103011077B (zh) * 2011-09-27 2016-04-06 中国科学院宁波材料技术与工程研究所 一种催化重整制氢方法与催化装置
US8545775B2 (en) 2011-10-20 2013-10-01 Kellogg Brown & Root Llc Reforming exchanger system with intermediate shift conversion
US9101899B2 (en) 2011-10-20 2015-08-11 Kellogg Brown & Root Llc Reforming exchanger with integrated shift conversion
CA2862527C (en) * 2012-02-06 2021-06-29 Helbio Societe Anonyme Hydrogen And Energy Production Systems Heat integrated reformer with catalytic combustion for hydrogen production
US9295960B2 (en) * 2012-03-23 2016-03-29 United Technologies Corporation Catalytic reaction in confined flow channel
RU2554008C1 (ru) 2014-01-13 2015-06-20 Общество с ограниченной ответственностью "Газохим Техно" Реактор для парциального окисления углеводородных газов
WO2016049326A1 (en) 2014-09-24 2016-03-31 Intellergy, Inc. Compact and maintainable waste reformation apparatus
ITUB20150576A1 (it) * 2015-04-24 2016-10-24 Hexsol Italy Srl Scambiatore di calore a fascio tubiero e struttura perfezionata
US11052364B2 (en) * 2016-02-08 2021-07-06 Kt Kinetics Technology Spa Enhanced efficiency endothermic reactor for syngas production with flexible heat recovery to meet low export steam generation
EP3900820A1 (en) * 2020-09-21 2021-10-27 Haldor Topsøe A/S Double tubes combined heat exchanger and steam reformer reactor comprising two types of catalyst beds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400309A (en) * 1972-06-30 1983-08-23 Foster Wheeler Energy Corporation Process for activating a steam reforming catalyst and the catalyst produced by the process
US5011625A (en) * 1989-12-11 1991-04-30 The M. W. Kellogg Company Autothermal steam reforming process
US5718881A (en) * 1996-06-24 1998-02-17 International Fuel Cells, Inc. Catalytic reactor designed to reduce catalyst slumping and crushing

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1542473A1 (de) 1966-08-10 1970-03-26 Schmidt Dipl Phys Herbert Verfahren und Vorrichtung fuer katalytische,chemische und physikalische Reaktionen in den Phasen gasfoermig,fluessig,gasfoermig-fluessig,gasfoermig-fest,fluessig-fest und fest
US3864083A (en) * 1970-06-26 1975-02-04 Exxon Research Engineering Co Carbon Detection
JPS52112607A (en) * 1976-03-09 1977-09-21 Agency Of Ind Science & Technol Reformers
EP0025308B1 (en) 1979-09-06 1984-07-11 Imperial Chemical Industries Plc A process and apparatus for catalytically reacting steam with a hydrocarbon in endothermic conditions
US4363787A (en) 1979-12-18 1982-12-14 Conoco Inc. Monolith heat exchange reactor
JPS5817841A (ja) * 1981-07-24 1983-02-02 Mitsubishi Heavy Ind Ltd 排ガス処理用触媒短繊維担体
US4822521A (en) * 1983-06-09 1989-04-18 Uop Integrated process and apparatus for the primary and secondary catalytic steam reforming of hydrocarbons
DE3532413A1 (de) * 1985-09-11 1987-03-12 Uhde Gmbh Vorrichtung zur erzeugung von synthesegas
DE3765377D1 (de) * 1986-09-10 1990-11-08 Ici Plc Katalysatoren.
US6153152A (en) * 1990-04-03 2000-11-28 The Standard Oil Company Endothermic reaction apparatus and method
US5362454A (en) * 1993-06-28 1994-11-08 The M. W. Kellogg Company High temperature heat exchanger
TW299307B (zh) 1993-11-29 1997-03-01 Shell Internat Res Schappej Bv
TW299345B (zh) * 1994-02-18 1997-03-01 Westinghouse Electric Corp
SE504795C2 (sv) * 1995-07-05 1997-04-28 Katator Ab Nätbaserad förbränningskatalysator och framställning av densamma
US5897282A (en) * 1996-10-01 1999-04-27 Comardo; Mathis P. Catalytic reactor charging system and method for operation thereof
US5935889A (en) * 1996-10-04 1999-08-10 Abb Lummus Global Inc. Catalyst and method of preparation
EP0936182A3 (en) * 1998-02-13 2000-02-23 Haldor Topsoe A/S Method of soot-free start-up of autothermal reformers
DK173742B1 (da) * 1998-09-01 2001-08-27 Topsoe Haldor As Fremgangsmåde og reaktorsystem til fremstilling af syntesegas
US6579510B2 (en) 1999-07-30 2003-06-17 Alfred E. Keller SPOX-enhanced process for production of synthesis gas
US6409940B1 (en) 1999-10-18 2002-06-25 Conoco Inc. Nickel-rhodium based catalysts and process for preparing synthesis gas
EP1265706A2 (en) 2000-02-18 2002-12-18 Conoco Inc. Reticulated ceramic foam catalysts for synthesis gas production
US6635191B2 (en) 2000-06-13 2003-10-21 Conocophillips Company Supported nickel-magnesium oxide catalysts and processes for the production of syngas
US6855272B2 (en) * 2001-07-18 2005-02-15 Kellogg Brown & Root, Inc. Low pressure drop reforming exchanger
US7635456B2 (en) * 2006-08-08 2009-12-22 Kellogg Brown & Root Llc Low pressure drop reforming reactor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400309A (en) * 1972-06-30 1983-08-23 Foster Wheeler Energy Corporation Process for activating a steam reforming catalyst and the catalyst produced by the process
US5011625A (en) * 1989-12-11 1991-04-30 The M. W. Kellogg Company Autothermal steam reforming process
US5718881A (en) * 1996-06-24 1998-02-17 International Fuel Cells, Inc. Catalytic reactor designed to reduce catalyst slumping and crushing

Also Published As

Publication number Publication date
US6855272B2 (en) 2005-02-15
NO20023422D0 (no) 2002-07-17
ATE341525T1 (de) 2006-10-15
US20050086864A1 (en) 2005-04-28
CN1397629A (zh) 2003-02-19
KR100695052B1 (ko) 2007-03-14
EP1277698A2 (en) 2003-01-22
DE60215080T2 (de) 2007-02-22
KR20030009151A (ko) 2003-01-29
CA2389638A1 (en) 2003-01-18
CA2389638C (en) 2010-12-14
US20030064011A1 (en) 2003-04-03
MXPA02006987A (es) 2003-02-24
EP1277698A3 (en) 2004-03-24
ES2269566T3 (es) 2007-04-01
US8216531B2 (en) 2012-07-10
NO20023422L (no) 2003-01-20
EP1277698B1 (en) 2006-10-04
DE60215080D1 (de) 2006-11-16

Similar Documents

Publication Publication Date Title
CN100448949C (zh) 低压差蒸汽重整交换器
US11286169B2 (en) Chemical reactor with integrated heat exchanger, heater, and high conductance catalyst holder
EP1839735A1 (en) A transverse tubular heat exchange reactor and a process for catalytic synthesis therein
JP6498689B2 (ja) 水蒸気改質
US4544544A (en) Plate reactors for chemical syntheses under high pressure in gaseous phase and with heterogeneous catalysis
JP2592662B2 (ja) 不均一触媒化学プロセスの実施法
CN101501167B (zh) 低压降重整反应器
CA1078615A (en) Convective power reformer equipment and system
WO2018111149A1 (ru) Способ активации катализатора, реактор и способ получения углеводородов в процессе фишера-тропша
JP2003525115A (ja) 吸熱反応工程およびその装置
US20040102530A1 (en) Multistage compact fischer-tropsch reactor
CN101970095A (zh) 催化反应器
KR20170110848A (ko) 쉘-앤드-멀티-더블 컨센트릭-튜브 반응기 및 열교환기
KR100719484B1 (ko) 금속모노리스 촉매를 이용한 컴팩트형 수증기개질구조촉매 및 이를 이용한 수소의 제조방법
JP2010013422A (ja) メタノール合成反応器およびメタノール合成方法
KR20080060871A (ko) 탄화수소 수증기 개질용 금속모노리스 열교환기를 장착한다단 촉매반응기 및 이를 이용한 수소 제조방법
EP1291072A1 (en) A gas-solid phase exothermic catalytic reactor with low temperature difference and its process
US5045568A (en) Process and apparatus for performing chemical reactions under pressure in a multi-stage reaction zone with external intermediary thermal conditioning
US5192512A (en) Apparatus for performing chemical reactions under pressure in a multi-stage reaction zone with external intermediary thermal conditioning
CN112588206B (zh) 一种用于大规模dmo反应的卧式多流程板式反应设备
KR101841188B1 (ko) 촉매 반응 효율이 우수한 고분자전해질막 연료전지용 연료변환기
EA045817B1 (ru) Форма частиц катализатора
JPH0329723B2 (zh)
JPH10277383A (ja) 反応器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20090107

CX01 Expiry of patent term