WO2013044444A1 - 一种催化重整制氢方法与催化装置 - Google Patents

一种催化重整制氢方法与催化装置 Download PDF

Info

Publication number
WO2013044444A1
WO2013044444A1 PCT/CN2011/080216 CN2011080216W WO2013044444A1 WO 2013044444 A1 WO2013044444 A1 WO 2013044444A1 CN 2011080216 W CN2011080216 W CN 2011080216W WO 2013044444 A1 WO2013044444 A1 WO 2013044444A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalytic
tube
metal
gas
hydrogen production
Prior art date
Application number
PCT/CN2011/080216
Other languages
English (en)
French (fr)
Inventor
王蔚国
官万兵
牛金奇
吕新颜
张庆生
金乐
彭军
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to PCT/CN2011/080216 priority Critical patent/WO2013044444A1/zh
Publication of WO2013044444A1 publication Critical patent/WO2013044444A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
    • B01J19/0026Avoiding carbon deposits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1035Catalyst coated on equipment surfaces, e.g. reactor walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to the field of hydrogen production technology, and more particularly to a catalytic reforming hydrogen production process and a catalytic device.
  • Catalytic reforming is a highly efficient hydrogen production process, including hydrogen production from decane steam reforming, hydrogen production from ethanol steam reforming, etc.
  • commonly used catalysts include nickel-based catalysts and copper-based catalysts, which can be divided into shapes.
  • the present invention is a granular catalyst and a monolithic honeycomb catalyst, wherein the particulate catalyst is divided into a nanoparticulate catalyst and a non-nanoparticulate catalyst, and the whole honeycomb catalyst is extruded by a nanoparticulate catalyst and a non-nanoparticulate catalyst. Prepared.
  • the existing catalytic devices are usually filled with small-sized granular catalysts. With the development of nanotechnology, it has been found that the surface area of the particles is closely related to the activity of the catalyst, thereby producing a granular catalyst which becomes a catalytic reforming hydrogen production device.
  • First steps When the catalytic device is filled with the particulate catalyst, the feed material gas is thoroughly mixed on the surface of the catalyst. However, when the raw material gas passes through the surface of the packed granular catalyst, the disorderly distribution between the particulate catalysts invisibly flows into the gas. The resistance creates a turbulent flow field.
  • the particulate catalyst-filled catalytic device has a large gas flow resistance, requiring a large inlet gas pressure and flow rate of the raw material gas, and a discount when the gas pressure and flow rate are small.
  • a monolithic honeycomb catalyst In order to solve the catalyst failure caused by carbon deposition and prolong the service life of the catalyst, the researchers have further developed a monolithic honeycomb catalyst.
  • Chinese Patent Application No. 200510086319.1 and Application No. 99806550.1 respectively report the use of monolithic honeycombs.
  • Catalyst-filled catalytic device compared with the granular catalyst filling, the monolithic honeycomb catalyst-filled catalytic device reduces the catalyst-induced failure due to carbon deposition to some extent.
  • the monolithic honeycomb catalyst prepared at present has a short length and a small long diameter, and requires multiple laminations to produce a catalytic hydrogen production effect.
  • the flow field distribution in the catalytic device tends to coexist with laminar flow and turbulent flow. Due to the turbulent flow in the internal gas flow of the catalytic device, the gas is easily generated in the turbulent flow when passing through the catalyst surface. Carbon black is deposited at the site, blocking the gas passage of the catalyst, reducing the catalytic life. In addition, the monolithic honeycomb catalyst is prone to pulverization during operation, thereby causing the catalyst to fail.
  • the technical problem to be solved by the present invention is to provide a method for catalytic reforming hydrogen production, which avoids the occurrence of carbon deposition in the hydrogen production process, and the conversion efficiency of catalytic reforming hydrogen production is high. Further, the technical problem to be solved by the present invention is to provide a catalytic device for catalytic reforming hydrogen production, which can reduce the occurrence of carbon deposition and avoid catalyst pulverization.
  • the present invention provides a catalytic reforming hydrogen production method, comprising: using a metal catalyst tube having a length to diameter ratio of ⁇ 20 as a catalytic device, and introducing a mixed gas of a first gas raw material and water vapor into the metal In the catalytic tube, hydrogen is obtained after the reaction.
  • the first gas raw material is natural gas, gaseous ethanol or decane.
  • the reaction temperature is 200 to 950 °C.
  • the metal catalyst tube is made of nickel, copper, titanium, palladium, gold, silver, platinum or manganese.
  • the present invention also provides a catalytic device for catalytic reforming hydrogen production, comprising: a first connecting plate and a second connecting plate respectively having a vent hole;
  • a metal catalyst tube disposed between the first connecting plate and the second connecting plate, wherein the metal catalytic tube is respectively connected to the first connecting plate and the second connecting plate through the vent hole, the metal catalyst
  • the length to diameter ratio of the tube is ⁇ 20.
  • the method further includes a first buffer chamber wall and a second buffer chamber wall respectively disposed at two ends of the metal catalyst tube, wherein the first buffer chamber wall and the first connecting plate enclose a first buffer chamber
  • the first buffer chamber wall is provided with an air inlet
  • the second buffer chamber wall and the second connecting plate enclose a second buffer chamber
  • the second buffer chamber wall is provided with Air port.
  • the method further includes an air intake dispersing tube disposed in the first buffer chamber.
  • the casing further comprises a sleeve sleeved outside the metal catalytic tube, and the metal catalyst tube is a single metal catalytic tube or a plurality of metal catalytic tubes placed in parallel.
  • the metal catalyst tube is made of nickel, copper, titanium, palladium, gold, silver, platinum or manganese.
  • the metal catalyst tube has an aspect ratio of 40 to 80.
  • the invention provides a catalytic reforming hydrogen production method, comprising: using a metal catalytic tube with a length to diameter ratio of ⁇ 20 as a catalytic device, introducing a mixed gas of a first gas raw material and water vapor into the metal catalytic tube, and reacting After that, hydrogen is obtained.
  • a metal catalytic tube with the aspect ratio ⁇ 20 is used as the catalytic device, the first gas raw material and the water vapor form a laminar flow in the catalytic device, thereby avoiding the The occurrence of carbon deposition caused by turbulence increases the life of the catalyst and the conversion efficiency of catalytic reforming hydrogen production.
  • the metal catalyst tube since the metal catalyst tube has good strength, it is less prone to pulverization, thereby ensuring a catalytic effect in catalytic reforming hydrogen production.
  • the present invention further provides a catalytic device for catalytic reforming hydrogen production, comprising: a first connecting plate and a second connecting plate respectively having a vent hole; and disposed on the first connecting plate and the second connecting plate An intermetallic catalytic tube is connected to the first connecting plate and the second connecting plate through the vent hole, and the metal catalyst tube has an aspect ratio of ⁇ 20.
  • the device has a metal catalytic tube with a length to diameter ratio of ⁇ 20 as the main structure.
  • the gas flow field is mainly laminar in the metal catalytic tube, thereby avoiding the occurrence of turbulent flow.
  • FIG. 1 is a schematic structural view of a catalytic device for catalytic reforming hydrogen production according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of a catalytic device for catalytic reforming hydrogen production according to an embodiment of the present invention
  • FIG. 3 is a structural exploded view of a catalytic device for catalytic reforming hydrogen production according to an embodiment of the present invention
  • FIG. 4 is a plan view of an intake dispersing pipe disclosed in an embodiment of the present invention
  • Figure 5 is a bottom plan view of an intake dispersing pipe disclosed in an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of an intake dispersing pipe disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a metal catalyst tube disclosed in an embodiment of the present invention.
  • FIG. 8 is a schematic view showing the operation of a catalytic device for catalytic reforming hydrogen production according to an embodiment of the present invention
  • FIG. 9 is a gas chromatographic quantitative analysis spectrum of a gas prepared in Example 1 of the present invention
  • Figure 10 is a graph showing the relationship between the catalytic conversion efficiency of the gas prepared in Example 1 of the present invention and time;
  • Figure 11 is a gas chromatographic quantitative analysis spectrum of the gas prepared in Example 2 of the present invention.
  • the invention discloses a catalytic reforming hydrogen production method, comprising:
  • a metal catalytic tube having a length to diameter ratio of ⁇ 20 is used as a catalytic device, and a mixed gas of a first gas raw material and water vapor is introduced into the metal catalytic tube, and hydrogen is obtained after the reaction.
  • the material of the metal catalyst tube used in the present invention is preferably a catalytic metal such as nickel, copper, titanium, palladium, gold, silver, platinum or manganese, and the material selection thereof is closely related to the composition of the first gas raw material.
  • the first gas raw material used in the present invention is preferably natural gas, gaseous ethanol or decane. The first gaseous raw material and the steam are reacted under the catalytic action of a metal catalytic tube to obtain hydrogen gas, thereby realizing catalytic reforming to produce hydrogen.
  • a metal catalyst tube with a length to diameter ratio of ⁇ 20 is an important factor for ensuring the catalytic effect and not generating carbon deposits.
  • the metal catalyst tube has an aspect ratio of 40 to 80, more preferably 50 to 70, and most preferably 60.
  • the inventors have found that the laminar flow distribution of the gas flow field in the hydrogen production process is an optimal gas distribution mode. Therefore, the present invention uses a metal catalytic tube having a length to diameter ratio of ⁇ 20 as a catalytic device, a first gas raw material and water vapor.
  • the mixed gas is distributed in a laminar flow in the catalytic device, which can avoid the occurrence of carbon deposition caused by turbulence during hydrogen production, and does not cause carbon deposits to block the gas passage.
  • the metal catalyst tube has a good strength of 4 ⁇ , the pulverization phenomenon is less likely to occur, thereby ensuring the catalytic effect in the hydrogen production process of the catalytic reforming.
  • the aspect ratio of the metal catalyst tube ⁇ 20 can ensure the catalytic effect in the process of catalytic hydrogen production.
  • the aspect ratio of the metal catalyst tube is too small, the catalytic efficiency is not good, which is not conducive to the formation of hydrogen;
  • the aspect ratio is ⁇ 20, the time and space for the first gas raw material to have sufficient contact reaction with water vapor can be ensured, and the catalytic conversion efficiency is improved.
  • the experimental results show that the catalytic conversion efficiency of the metal catalyst tube reaches 60. The theory can approach 100%.
  • the gas pressure and flow rate of the gas raw material and the steam reforming into the catalytic device are large due to the disordered accumulation between the catalysts.
  • the airspeed is generally above 200011 ⁇ 1 .
  • the catalytic reforming hydrogen production method provided by the present invention uses a metal catalytic tube as a catalytic device, and the catalytic device exerts less pressure on the first gaseous raw material and water vapor, and the first gaseous raw material and the water vapor enter the pressure and the air velocity. It can be much smaller than conventional catalysts.
  • the shape of the metal catalyst tube is not particularly limited, and the cross-sectional area thereof may be various shapes, and the cross-sectional area thereof is preferably circular.
  • the length and diameter of the metal catalyst tube are not particularly limited, that is, Metal catalytic tubes with a length to diameter ratio of ⁇ 20 can meet the hydrogen production requirements.
  • the metal catalyst tube used in the present invention may be a straight tube or a tube having a certain degree of curvature such as a coil, preferably a straight tube.
  • the thickness of the metal catalyst tube can be a thickness well known to those skilled in the art, preferably 0.5 mm or more, which can satisfy the smooth passage of the first gas raw material and the water vapor, and form a laminar flow in the metal catalytic tube. Catalytic effect can be guaranteed.
  • the reaction temperature is preferably 200 to 950 ° C, more preferably 300 to 950 ° C.
  • the first gas raw material and the water vapor before the first gas raw material and the water vapor enter the metal catalytic tube, it is preferably heated to above 100 ° C, preferably lower than the decomposition temperature of the first gaseous raw material, such as natural gas steam reforming to produce hydrogen mixed gas.
  • the heat temperature can be set to 120 ⁇ 500 °C, so that the temperature of the first gas raw material and the water vapor entering the metal catalyst tube is more uniform, and the catalytic effect is better.
  • the present invention further provides a catalytic device for catalytic reforming hydrogen production, comprising: a first connecting plate 2 and a second connecting plate 3 respectively having a vent hole; a metal catalytic tube 1 between the first connecting plate 2 and the second connecting plate 3, and the metal catalytic tube 1 is respectively connected to the first connecting plate 2 and the second connecting plate 3 through a vent hole, and the aspect ratio of the metal catalytic tube 1 ⁇ 20.
  • the number of the metal catalytic tubes 1 may be one or more; when the number of the metal catalytic tubes 1 is greater than one, the plurality of metal catalytic tubes 1 may be placed at an angle or alternately in parallel. .
  • the plurality of metal catalyst tubes 1 may be arranged in a row or in a stack.
  • the through holes of the first connecting plate 2 and the second connecting plate 3 are respectively matched with the diameters of the metal catalyst tubes 1, and both ends of the metal catalyst tubes 1 are inserted into the first connecting plates 2 and the second connecting plates 3, respectively.
  • a metal catalyst tube having an aspect ratio of ⁇ 20 is an important factor for ensuring a catalytic effect and not generating carbon deposits.
  • the metal catalyst tube has an aspect ratio of 40 to 80, more preferably 50 to 70, and most preferably 60.
  • the catalytic device provided by the invention has a laminar flow distribution in the hydrogen production process, which avoids the occurrence of carbon deposition caused by turbulence in the hydrogen production process, and does not cause carbon deposits to block the gas passage.
  • the metal catalyst tube since the metal catalyst tube has a good strength of 4 ⁇ , the powdering phenomenon is less likely to occur, thereby ensuring the catalytic effect in the hydrogen production process of catalytic reforming.
  • the metal catalyst tube length to diameter ratio ⁇ 20 can guarantee The catalytic effect in the catalytic hydrogen production process ensures that the first gas raw material and the water vapor have a sufficient contact reaction time and space, and the catalytic conversion efficiency is improved.
  • the shape of the metal catalyst tube is not particularly limited, and the cross-sectional area thereof may be various shapes, and the cross-sectional area thereof is preferably circular. Meanwhile, the length and diameter of the metal catalyst tube are not particularly limited, that is, Metal catalytic tubes satisfying the aspect ratio ⁇ 20 can meet the hydrogen production requirements.
  • the thickness of the metal catalyst tube can be a thickness well known to those skilled in the art, preferably 0.5 mm or more, which can satisfy the smooth passage of the first gas raw material and the water vapor, and form a laminar flow in the metal catalytic tube. Catalytic effect can be guaranteed.
  • the metal catalyst tube used in the present invention may be a straight tube or a tube having a certain degree of curvature such as a coil, preferably a straight tube.
  • the metal catalyst tube is made of nickel, copper, titanium, palladium, gold, silver, platinum or manganese.
  • the catalytic device further preferably includes a first buffer chamber wall 4 and a second buffer chamber wall 6 respectively disposed at two ends of the metal catalyst tube 1, and the first buffer chamber wall 4 and the first connecting plate 2
  • the first buffer chamber is provided with an air inlet 5 on the first buffer chamber wall 4, and the second buffer chamber wall 6 and the second connecting plate 3 enclose a second buffer chamber, and the second buffer chamber wall 6 is disposed.
  • the first buffer chamber wall 4 is preferably surrounded by a first air inlet plate 41 and a first chamber wall 42;
  • the second buffer chamber wall 6 is preferably surrounded by a second air inlet plate 61 and a second chamber wall 62.
  • the apparatus further includes an intake dispersing tube 8 disposed in the first buffer chamber, the intake dispersing tube 8 Preferably, it is disposed at the air inlet 5, and after the first gas material and the water vapor enter through the air inlet, the dispersion of the air inlet dispersing tube 8 can be uniformly dispersed in the plurality of metal catalyst tubes.
  • the intake dispersing pipe used in the present invention is preferably in the form as shown in the figure.
  • the metal dispersing pipe 8 is a metal pipe 81 having a through hole therein, and an outer wall of the metal pipe 81 is provided with an air inlet hole (not shown) and The intake holes are opposite to the dispersion holes 82.
  • the metal dispersion tube 8 may be made of a high temperature resistant metal material, more preferably made of a stainless steel material. It should be noted that the metal dispersion tube is not limited to the above-described structural form, and may be other structures well known to those skilled in the art.
  • the catalytic device further preferably includes an intake pipe 9 connected to the intake port 5 and a first pipe joint 10 connected to the other end of the intake pipe 9; in addition, the device preferably further includes an outlet connected to the air outlet 7 The gas pipe 11 and the second pipe joint 12 connected to the other end of the gas outlet pipe 11. 8 is a schematic view showing the operation of a catalytic device for catalytic reforming hydrogen production according to the present invention.
  • the first gas raw material and steam are preferably used as a reaction raw material, and the first gaseous raw material and After entering the catalytic device through the pipe joint 10 and the intake pipe 9, the water vapor enters the first buffer chamber through the air inlet 5, preferably after being dispersed through the air intake dispersing pipe 8, and enters the metal catalytic tube 1 to catalyze the metal catalytic tube 1.
  • the first gas raw material reacts with water vapor to obtain hydrogen gas, and then is discharged through the gas outlet port 7 for collection.
  • the catalytic device further preferably includes a sleeve 13 sleeved outside the metal catalyst tube 1.
  • the metal catalyst tube 1 is a single metal catalytic tube or a plurality of metal placed in parallel.
  • the catalytic tube 1 and the metal catalytic tube 1 are straight tubes.
  • the first gas raw material and the water vapor are respectively introduced into the casing 13 and the metal catalytic tube 1, respectively, and a laminar flow is formed in the casing 13 and the metal catalytic tube 1, respectively, which can further improve the catalytic efficiency and reduce the carbon deposition. occur.
  • the material of the sleeve 13 is preferably nickel, copper, titanium, palladium, gold, silver, platinum or manganese.
  • the plurality of parallel-placed metal catalytic tubes 1 employed in the present invention can be placed in a stacked manner to further reduce the space of the catalytic device.
  • the metal catalytic tube is a metal nickel straight-through tube
  • the raw material is a mixed gas of natural gas and water vapor (the cylinder is called a water-gas mixed gas)
  • the length of the nickel tube is 290-295 mm
  • the electric heating region is The length is about 300mm
  • the thermocouple is placed in the middle of 300mm.
  • the preheating furnace temperature of the water-gas mixture is set to 600 °C, the actual detection outlet temperature is 470 ⁇ 480 °C; the nickel tube catalytic heating furnace set temperature is 950 °C, the actual The inlet temperature of the steam natural gas mixed gas is 580 ⁇ 600 °C; the outlet temperature of the reforming gas is 830 ⁇ 850 °C, the above temperature is the temperature of the outer wall of the pipeline, and the temperature of the reaction zone of the inner wall of the pipeline should be slightly lower than the above display temperature.
  • the prepared reformed tail gas is subjected to gas sample collection, and the collected tail gas is quantitatively analyzed by gas chromatography.
  • the result is shown in FIG. 9 , and the gas chromatographic quantitative analysis spectrum of the gas prepared in the present example can be obtained from the figure. It can be seen that the natural gas conversion rate of the catalytic reforming in this example was 91.1%.
  • the catalytic converter is used to continuously carry out the natural gas reforming hydrogen conversion experiment, as shown in Fig. 10, which is the relationship between the catalytic conversion efficiency and time. It can be seen from the figure that after 3360 minutes of continuous catalytic experiments, natural gas steam nickel Tube catalysis maintains more than 90% conversion and works stably.
  • Fig. 10 Metal Nickel Straight Pipe Ethanol Steam Reforming Hydrogen Production
  • Preparation conditions The molar ratio of ethanol to water is 1:3, the temperature of the water-gas mixture heating furnace is set to 400 °C, the temperature of the reforming furnace is set to 700 °C, and the temperature of the outer wall of the reforming tube is actually detected as the water gas inlet. At 475 ° C, the outlet wall of the reforming tube is 590 ° C.
  • a hydroalcohol mixed gas is introduced for reforming, and exhaust gas is collected for quantitative analysis, and a gas chromatographic quantitative analysis spectrum of the gas shown in Fig. 11 is obtained.
  • the hydrogen content is 74%
  • carbon monoxide is 12.5%
  • carbon dioxide is 9.6%
  • crater is 4.0%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明公开了一种催化重整制氢方法,包括:以长径比≥20的金属催化管为催化装置,将第一气体原料与水蒸气的混合气体通入所述金属催化管内,反应后得到氢气。与现有技术相比,由于本发明以长径比≥20的金属催化管为催化装置,因此,第一气体原料与水蒸气在该催化装置内形成层流,避免了在制氢过程中由于紊流带来的积碳现象的发生,提高了催化剂的寿命和催化重整制氢的转化效率。另外,本发明还提供一种用于催化重整制氢的催化装置,该装置以长径比≥20的金属催化管为主要结构,在该装置的工作过程中,气体流场在金属催化管内主要为层流方式,避免了由于紊流产生的堆积碳黑,不会堵塞催化剂的气体通道,保证了催化装置的寿命。

Description

一种催化重整制氢方法与催化装置
技术领域
本发明涉及制氢技术领域, 更具体地说, 涉及一种催化重整制氢方法与催 化装置。
背景技术
催化重整是一种高效的制氢方法, 包括曱烷水蒸气重整制氢、 乙醇水蒸气 重整制氢等, 其中, 常用的催化剂包括镍基催化剂和铜基催化剂等, 按形状可 以分为颗粒状催化剂和整体蜂窝式催化剂等, 其中,颗粒状催化剂分为纳米颗 粒状催化剂和非纳米颗粒状催化剂,整体蜂窝式催化剂则是由纳米颗粒状催化 剂和非纳米颗粒状催化剂经过挤压成型制备得到。
现有的催化装置通常采用尺寸细小的颗粒状催化剂填装, 随着纳米技术的 发展,人们发现颗粒的表面积与催化剂的活性有密切相关,从而制造颗粒状催 化剂成为了催化重整制氢装置的首要步骤。 以颗粒状催化剂填装催化装置时, 通入的原料气体在催化剂表面充分混合, 然而,原料气体经过填装的颗粒状催 化剂表面时,颗粒状催化剂之间杂乱无章的分布无形之中给气体流动形成了阻 力, 形成了紊流的流场。 因此, 原料气体经过该以颗粒状催化剂填装的催化装 置时, 易在颗粒状催化剂表面形成积碳, 堵塞催化剂气体通道, 使得催化剂易 于失效, 缩短催化剂的使用寿命。 此外, 颗粒状催化剂填装的催化装置气体流 阻较大, 要求原料气体的进口压力和流量需较大, 当气体压力和流量较小时, 折扣。
为了解决催化剂因积碳引起的失效, 延长催化剂的使用寿命, 相关研究人 员进一步研制了整体式蜂窝状催化剂, 例如申请号为 200510086319.1和申请号 为 99806550.1的中国专利申请分别报道了采用整体式蜂窝状催化剂填装的催 化装置, 与颗粒状催化剂填装相比, 整体式蜂窝状催化剂填装的催化装置在一 定程度上降低了催化剂因积碳引起的失效。但是, 目前制备的整体式蜂窝状催 化剂的长度较短, 长径比较小, 需要多个层叠使用才会产生催化制氢的效果, 因此, 当原料气体通入时, 该催化装置内流场分布趋于层流和紊流共存。 由于 该催化装置内部气流存在紊流,使得气体在催化剂表面通过时易于在紊流产生 处堆积碳黑, 堵塞催化剂的气体通道, 降低了催化寿命。 此外, 整体式蜂窝状 催化剂在工作过程中易发生粉化现象, 从而使催化剂失效。
发明内容
有鉴于此, 本发明要解决的技术问题在于提供一种催化重整制氢方法, 该 方法避免了制氢过程中积碳现象的发生,催化重整制氢的转化效率较高。另外, 本发明要解决的技术问题还在于提供一种用于催化重整制氢的催化装置,该装 置可以降低积碳现象的发生, 避免催化剂粉化。
为了解决以上技术问题, 本发明提供一种催化重整制氢方法, 包括: 以长径比≥20的金属催化管为催化装置, 将第一气体原料与水蒸气的混合 气体通入所述金属催化管内, 反应后得到氢气。
优选的, 所述第一气体原料为天然气、 气态乙醇或曱烷。
优选的, 所述反应温度为 200~950°C。
优选的, 所述金属催化管的材质为镍、 铜、 钛、 钯、 金、 银、 铂或锰。 相应的, 本发明还提供一种用于催化重整制氢的催化装置, 包括: 分别具有通气孔的第一连接板和第二连接板;
设置于所述第一连接板与第二连接板之间的金属催化管,所述金属催化管 通过所述通气孔分别与所述第一连接板和第二连接板相连接,所述金属催化管 的长径比≥20。
优选的,还包括分别设置于所述金属催化管两端的第一緩沖室腔壁和第二 緩沖室腔壁, 所述第一緩沖室腔壁与所述第一连接板围成第一緩沖室, 所述第 一緩沖室腔壁上设置有进气口,所述第二緩沖室腔壁与所述第二连接板围成第 二緩沖室, 所述第二緩沖室腔壁上设置有出气口。
优选的, 还包括设置于所述第一緩沖室内的进气分散管。
优选的,还包括套置于所述金属催化管外的套管, 所述金属催化管为单根 金属催化管或多根平行放置的金属催化管。
优选的, 所述金属催化管的材质为镍、 铜、 钛、 钯、 金、 银、 铂或锰。 优选的, 所述金属催化管的长径比为 40~80。
本发明提供一种催化重整制氢方法, 包括: 以长径比≥20的金属催化管为 催化装置,将第一气体原料与水蒸气的混合气体通入所述金属催化管内,反应 后得到氢气。 与现有技术相比, 由于本发明以长径比≥20的金属催化管为催化 装置, 因此, 第一气体原料与水蒸气在该催化装置内形成层流, 避免了在制氢 过程中由于紊流带来的积碳现象的发生,提高了催化剂的寿命和催化重整制氢 的转化效率。 另外, 由于该金属催化管具有很好的强度, 不易发生粉化现象, 从而保证了在催化重整制氢过程中催化效果。
另外, 本发明还提供一种用于催化重整制氢的催化装置, 包括: 分别具有 通气孔的第一连接板和第二连接板;设置于所述第一连接板与第二连接板之间 的金属催化管,所述金属催化管通过所述通气孔与所述第一连接板与第二连接 板相连接,所述金属催化管的长径比≥20。与现有技术相比,该装置以长径比≥20 的金属催化管为主要结构,在该装置的工作过程中, 气体流场在金属催化管内 主要为层流方式,避免了由于紊流产生的堆积碳黑, 不会堵塞催化剂的气体通 道, 保证了催化装置的寿命。 并且, 由于金属催化管具有 4艮好的强度, 从而避 免了催化剂粉化现象的出现。 附图说明 图 1为本发明实施例公开的用于催化重整制氢的催化装置的结构示意图; 图 2 为本发明实施例公开的用于催化重整制氢的催化装置的立体结构示 意图;
图 3为本发明实施例公开的用于催化重整制氢的催化装置的结构分解图; 图 4为本发明实施例公开的进气分散管的俯视图;
图 5为本发明实施例公开的进气分散管的仰视图;
图 6为本发明实施例公开的进气分散管的剖视图;
图 7为本发明实施例公开的金属催化管的结构示意图;
图 8为本发明实施例公开的用于催化重整制氢的催化装置的工作示意图; 图 9为本发明实施例 1制备的气体的气相色谱定量分析谱图;
图 10为本发明实施例 1制备的气体的催化转化效率与时间的关系曲线; 图 11为本发明实施例 2制备的气体的气相色谱定量分析谱图。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述 的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。基于本发明中的 实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明公开了一种催化重整制氢方法, 包括:
以长径比≥20的金属催化管为催化装置, 将第一气体原料与水蒸气的混合 气体通入所述金属催化管内, 反应后得到氢气。
本发明采用的金属催化管的材质优选为镍、 铜、 钛、 钯、 金、 银、 铂或锰 等具有催化作用的金属, 其材质的选择与第一气体原料的成分有密切关系。 本 发明采用的第一气体原料优选为天然气、 气态乙醇或曱烷, 该第一气体原料与 水蒸气在金属催化管的催化作用下, 反应后得到氢气, 实现了催化重整制氢。
在催化重整制氢过程中, 长径比≥20的金属催化管是保证催化效果并且不 产生积碳的重要因素。 优选的, 所述金属催化管的长径比为 40~80, 更优选为 50-70, 最优选为 60。 本发明人发现, 制氢过程中气体流场呈层流分布是最佳 的气体分布方式, 因此, 本发明以长径比≥20的金属催化管作为催化装置, 第 一气体原料与水蒸气的混合气体在该催化装置内呈层流分布,可以避免在制氢 过程中由紊流带来的积碳现象的发生, 不会出现积碳堵塞气体通道的现象。 另 夕卜, 由于该金属催化管具有 4艮好的强度, 不易发生粉化现象, 从而保证了在催 化重整制氢过程中催化效果。 同时, 金属催化管的长径比≥20可以保证在催化 制氢过程中的催化效果,金属催化管的长径比过小会导致催化效率不佳, 不利 于形成氢气; 而在金属催化管的长径比≥20时, 可以保证第一气体原料与水蒸 气具有充分接触反应的时间和空间, 提高了催化转化效率, 实验结果表明, 金 属催化管的长径比在达到 60时, 催化转化效率理论可接近 100%。
另外, 现有技术中采用颗粒状催化剂或整体式蜂窝状催化剂填装催化装置 时, 因催化剂之间的无序堆积,造成气体原料与水蒸气重整进入催化装置的气 体压力和流量较大, 例如空速一般在 200011·1以上。 然而, 本发明提供的催化重 整制氢方法由于以金属催化管为催化装置,该催化装置对第一气体原料与水蒸 气造成的压力较小,第一气体原料与水蒸气进入压力和空速可较传统催化剂小 的多。 不仅如此, 采用传统的颗粒状催化剂和整体式蜂窝状催化剂粉化或失效 后须重新更换所填装的所有催化剂, 但是, 以本发明提供的方法制氢时, 即使 由于积碳等因素使得催化效果降低, 也可采用高压水沖洗等方法恢复初始效 率, 重复使用次数基本不受限制, 可大幅度降低成本。
本发明对所述金属催化管的形状并无特别限制, 其截面积可以为各种形 状, 优选其截面积为圓形, 同时, 对所述金属催化管的长度和直径均无特别限 制, 即长径比≥20的金属催化管均可以满足制氢要求。 本发明采用的金属催化 管可以为直管, 也可以为具有一定弯曲度的管如盘管, 优选为直管。 另外, 该 金属催化管的厚度可以采用本发明技术人员熟知的厚度, 优选大于等于 0.5mm, 该厚度既可以满足第一气体原料与水蒸气的顺利通过, 在该金属催化 管内形成层流, 还可以保证催化效果。
本发明中, 所述反应温度优选为 200~950°C , 更优选为 300~950°C。 另外, 在第一气体原料与水蒸气进入金属催化管之前, 优选将其加热至 100°C以上, 以低于第一气体原料的分解温度为宜,如天然气水蒸气重整制氢混合气预热温 度可以设定到 120~500°C ,从而使得第一气体原料与水蒸气进入金属催化管的 温度更为均勾, 催化效果更佳。
如图 1、 图 2、 图 3所示, 本发明还提供一种用于催化重整制氢的催化装 置, 包括: 分别具有通气孔的第一连接板 2和第二连接板 3 ; 设置于第一连接 板 2与第二连接板 3之间的金属催化管 1 , 金属催化管 1通过通气孔分别与第 一连接板 2和第二连接板 3相连接, 金属催化管 1的长径比≥20。 金属催化管 1的个数可以为一根, 也可以为多根; 在金属催化管 1的根数大于一根时, 多 根金属催化管 1可以交错放置即呈一定的角度, 也可以平行放置。 其中, 多根 金属催化管 1可以呈排形分布,也可以层叠排列。 第一连接板 2和第二连接板 3具有的通孔分别与金属催化管 1的管径相匹配, 金属催化管 1的两端分别插 入第一连接板 2和第二连接板 3中。
更具体的, 长径比≥20的金属催化管是保证催化效果并且不产生积碳的重 要因素。 优选的, 所述金属催化管的长径比为 40~80, 更优选为 50~70, 最优 选为 60。 本发明提供的催化装置在制氢过程中气体流场为层流分布, 避免了 在制氢过程中由紊流带来的积碳现象的发生,不会出现积碳堵塞气体通道的现 象。 另外, 由于该金属催化管具有 4艮好的强度, 不易发生粉化现象, 从而保证 了在催化重整制氢过程中催化效果。 同时, 金属催化管的长径比≥20可以保证 在催化制氢过程中的催化效果保证第一气体原料与水蒸气具有充分接触反应 的时间和空间, 提高了催化转化效率。
本发明对所述金属催化管的形状并无特别限制, 其截面积可以为各种形 状, 优选其截面积为圓形, 同时, 对所述金属催化管的长度和直径均无特别限 制, 即满足长径比≥20的金属催化管均可以满足制氢要求。 另外, 该金属催化 管的厚度可以采用本发明技术人员熟知的厚度,优选大于等于 0.5mm,该厚度 既可以满足第一气体原料与水蒸气的顺利通过, 在该金属催化管内形成层流, 还可以保证催化效果。本发明采用的金属催化管可以为直管,也可以为具有一 定弯曲度的管如盘管, 优选为直管。 所述金属催化管的材质为镍、铜、钛、钯、 金、 银、 铂或锰。
作为优选实施方式,该催化装置还优选包括分别设置于金属催化管 1两端 的第一緩沖室腔壁 4和第二緩沖室腔壁 6, 第一緩沖室腔壁 4与第一连接板 2 围成第一緩沖室, 第一緩沖室腔壁 4上设置有进气口 5 , 第二緩沖室腔壁 6与 第二连接板 3围成第二緩沖室, 第二緩沖室腔壁 6上设置有出气口 7。 第一气 体原料与水蒸气进入金属催化管之前,优选经第一緩沖室的緩沖,在第一緩沖 室内得到了一定程度的混合,有利于在金属催化管内充分的反应。 第一緩沖室 腔壁 4优选由第一进气板 41和第一室腔壁 42围成;第二緩沖室腔壁 6优选由 第二进气板 61和第二室腔壁 62围成。
另外, 如图 1、 图 4、 图 5、 图 6所示, 在金属催化管 1为多根时, 该装 置还包括设置于第一緩沖室内的进气分散管 8, 该进气分散管 8优选设置于进 气口 5处, 第一气体原料与水蒸气经进气口进入后, 经进气分散管 8的分散作 用, 可以均匀分散于多根金属催化管内。本发明采用的进气分散管优选采用如 图所示的形式, 金属分散管 8为内设通孔的金属管 81 , 金属管 81外壁上设置 有进气孔(图中未示出)和与所述进气孔相对的分散孔 82。 金属分散管 8可 采用耐高温金属材质, 更优选由不锈钢材料制作而成, 应当指出, 金属分散管 并不仅限于上述结构形式, 还可以为本发明技术人员熟知的其他结构。
更具体的, 所述催化装置还优选包括与进气口 5相连的进气管 9和与进气管 9另一端相连的第一管接头 10; 另外, 该装置还优选包括与出气口 7相连的出气 管 11和与出气管 11另一端相连的第二管接头 12。 图 8为本发明公开的用于催化重整制氢的催化装置的工作示意图, 在催化 装置的工作过程中,优选以第一气体原料和水蒸气为反应原料,将所述第一气 体原料和水蒸气经管接头 10和进气管 9进入催化装置后,经进气口 5进入第一緩 沖室, 优选经进气分散管 8分散后, 进入金属催化管 1内, 在金属催化管 1的催 化作用下, 第一气体原料和水蒸气反应, 得到氢气, 然后经出气口 7排出收集。
作为另外一种优选实施方式,如图 7所示, 该催化装置还优选包括套置于 金属催化管 1外的套管 13 , 金属催化管 1为单根金属催化管或多根平行放置 的金属催化管 1 , 金属催化管 1为直管。 在第一气体原料和水蒸气分别通入套 管 13和金属催化管 1内,在套管 13和金属催化管 1内分别形成层流, 该结构 可以进一步提高催化效率, 并减少了积碳的发生。 套管 13的材质优选为镍、 铜、 钛、 钯、 金、 银、 铂或锰。 本发明采用的多根平行放置的金属催化管 1 可以采用堆叠的方式放置, 从而进一步缩小催化装置的空间。
为了进一步说明本发明的技术方案,下面结合实施例对本发明优选实施方 案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点, 而不是对本发明权利要求的限制。
实施例 1金属镍直通管天然气水蒸气催化重整制氢
采用本发明如图 1所示的催化装置,金属催化管为金属镍直通管,原料为 天然气和水蒸气的混合气体(筒称水气混合气体), 镍管长度为 290~295mm, 电加热区域长度 300mm左右, 热电偶布置在 300毫米的中间。
在天然气水蒸气制氢过程中, 水气混合气体的预热炉温度设定为 600 °C , 实际检测出口温度为 470~480°C ; 镍管催化加热炉设定温度为 950°C , 实际水 蒸气天然气混和气体进口温度为 580~600°C ; 重整气出口温度 830~850°C , 上 述温度均为管路外壁温度, 管路内壁反应区域的温度应略低于上述显示温度。
将对制备得到的重整尾气进行气样采集,将采集的尾气通过气相色谱进行 定量分析,结果如图 9所示,为本实施例制备的气体的气相色谱定量分析谱图, 从图中可以看出, 本实施例催化重整的天然气转化率为 91.1 %。
利用该催化装置连续进行天然气重整制氢转化实验, 如图 10所示, 为催 化转化效率与时间的关系曲线, 从图中可以看出, 经过 3360分钟时间的连续 催化实验, 天然气水蒸气镍管催化维持了 90%以上的转化率, 工作稳定。 实施例 2金属镍直通管乙醇水蒸气催化重整制氢
采用如图 1所示的催化装置,采用和实施例相同的方法进行乙醇水蒸气重 整制氢实验。
制备条件: 乙醇和水的摩尔比为 1 : 3 ,水气混和加热炉温度设定为 400°C , 重整加热炉温度设定为 700 °C , 实际检测重整管外壁温度为水气进口 475°C , 重整管外壁出口温度 590°C。
采用上述制备条件,通入水醇混合气体进行重整,收集尾气进行定量分析, 得到如图 11所示的气体的气相色谱定量分析谱图, 从图中可以看出, 本实施 例中乙醇全部转化,该条件下氢气含量 74%、一氧化碳 12.5%、二氧化碳 9.6%、 曱坑 4.0%。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见 的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下, 在 其它实施例中实现。 因此, 本发明将不会被限制于本文所示的这些实施例, 而 是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims

权 利 要 求
1、 一种催化重整制氢方法, 包括:
以长径比≥20的金属催化管为催化装置, 将第一气体原料与水蒸气的混合 气体通入所述金属催化管内, 反应后得到氢气。
2、 根据权利要求 1所述的催化重整制氢方法 , 其特征在于, 所述第一气 体原料为天然气、 气态乙醇或曱烷。
3、 根据权利要求 1所述的催化重整制氢方法 , 其特征在于, 所述反应温 度为 200~950°C。
4、 根据权利要求 1所述的催化重整制氢方法 , 其特征在于, 所述金属催 化管的材质为镍、 铜、 钛、 钯、 金、 银、 铂或锰。
5、 一种用于催化重整制氢的催化装置, 包括
分别具有通气孔的第一连接板和第二连接板;
设置于所述第一连接板与第二连接板之间的金属催化管,所述金属催化管 通过所述通气孔分别与所述第一连接板和第二连接板相连接,所述金属催化管 的长径比≥20。
6、 根据权利要求 5所述的催化装置, 其特征在于, 还包括分别设置于所 述金属催化管两端的第一緩沖室腔壁和第二緩沖室腔壁,所述第一緩沖室腔壁 与所述第一连接板围成第一緩沖室, 所述第一緩沖室腔壁上设置有进气口, 所 述第二緩沖室腔壁与所述第二连接板围成第二緩沖室,所述第二緩沖室腔壁上 设置有出气口。
7、 根据权利要求 6所述的催化装置, 其特征在于, 还包括设置于所述第 一緩沖室内的进气分散管。
8、 根据权利要求 1所述的催化装置, 其特征在于, 还包括套置于所述金 属催化管外的套管,所述金属催化管为单根金属催化管或多根平行放置的金属 催化管。
9、 根据权利要求 1所述的催化装置, 其特征在于, 所述金属催化管的材 质为镍、 铜、 钛、 钯、 金、 银、 铂或锰。
10、 根据权利要求 1所述的催化装置, 其特征在于, 所述金属催化管的长 径比为 40~8(
PCT/CN2011/080216 2011-09-27 2011-09-27 一种催化重整制氢方法与催化装置 WO2013044444A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/080216 WO2013044444A1 (zh) 2011-09-27 2011-09-27 一种催化重整制氢方法与催化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/080216 WO2013044444A1 (zh) 2011-09-27 2011-09-27 一种催化重整制氢方法与催化装置

Publications (1)

Publication Number Publication Date
WO2013044444A1 true WO2013044444A1 (zh) 2013-04-04

Family

ID=47994114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080216 WO2013044444A1 (zh) 2011-09-27 2011-09-27 一种催化重整制氢方法与催化装置

Country Status (1)

Country Link
WO (1) WO2013044444A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497856B1 (en) * 2000-08-21 2002-12-24 H2Gen Innovations, Inc. System for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
CN1397629A (zh) * 2001-07-18 2003-02-19 凯洛格.布朗及鲁特有限公司 低压差蒸汽重整交换器
JP2005001912A (ja) * 2003-06-10 2005-01-06 Toyo Radiator Co Ltd 改質器
US7517373B2 (en) * 2004-06-29 2009-04-14 Toyo Engineering Corporation Reformer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497856B1 (en) * 2000-08-21 2002-12-24 H2Gen Innovations, Inc. System for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
CN1397629A (zh) * 2001-07-18 2003-02-19 凯洛格.布朗及鲁特有限公司 低压差蒸汽重整交换器
JP2005001912A (ja) * 2003-06-10 2005-01-06 Toyo Radiator Co Ltd 改質器
US7517373B2 (en) * 2004-06-29 2009-04-14 Toyo Engineering Corporation Reformer

Similar Documents

Publication Publication Date Title
CA2862527C (en) Heat integrated reformer with catalytic combustion for hydrogen production
US11305250B2 (en) Catalytically heated fuel processor with replaceable structured supports bearing catalyst for fuel cell
JP5757581B2 (ja) 炭化水素を改質するための方法及び装置
KR100695052B1 (ko) 낮은 압력 강하 개질 교환기
JP5111419B2 (ja) 熱化学反応の反応速度を高める方法及び装置
Venkataraman et al. Steam reforming of methane and water‐gas shift in catalytic wall reactors
NO172886B (no) Fremgangsmaate for fremstilling av syntesegass fra hydrokarbonholdig raamateriale
JP5443173B2 (ja) 円筒式水蒸気改質器
CN1702419A (zh) 热交换工艺和反应器
RU2220901C2 (ru) Получение синтез-газа паровым реформингом с использованием катализированного оборудования
EP2125177A1 (en) Low-pressure-drop mixing device and use thereof in the mixing of two gases/vapours
Simsek et al. Oxidative steam reforming of methane to synthesis gas in microchannel reactors
US11607657B2 (en) Heat integrated reformer with catalytic combustion for hydrogen production
CN103011077B (zh) 一种催化重整制氢方法与催化装置
CN103990420A (zh) 列管式固定床反应器及其应用
CN1261821A (zh) 感应加热的催化反应器
WO2013044444A1 (zh) 一种催化重整制氢方法与催化装置
CN101195476A (zh) 制备氢气的方法和装置
RU2548410C2 (ru) Способ и устройство для получения синтез-газа
KR101785484B1 (ko) 반응 효율이 우수한 탄화수소 수증기 개질용 촉매반응기
CN107986260B (zh) 一种微波热解式煤制碳纳米管装置
CN206935327U (zh) 甲醇合成反应器
US7718146B2 (en) Enhanced bed separation in a styrene monomer reactor using milled plates
CN210186909U (zh) 一种双盘管式预热混合器
JPH0867502A (ja) 燃料改質装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873397

Country of ref document: EP

Kind code of ref document: A1