CN100350639C - 氮化物半导体led和其制造方法 - Google Patents

氮化物半导体led和其制造方法 Download PDF

Info

Publication number
CN100350639C
CN100350639C CNB038132354A CN03813235A CN100350639C CN 100350639 C CN100350639 C CN 100350639C CN B038132354 A CNB038132354 A CN B038132354A CN 03813235 A CN03813235 A CN 03813235A CN 100350639 C CN100350639 C CN 100350639C
Authority
CN
China
Prior art keywords
gan
layer
transition zone
forms
nitride semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB038132354A
Other languages
English (en)
Other versions
CN1659715A (zh
Inventor
李昔宪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Lekin Semiconductor Co Ltd
Original Assignee
LG Innotek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Innotek Co Ltd filed Critical LG Innotek Co Ltd
Publication of CN1659715A publication Critical patent/CN1659715A/zh
Application granted granted Critical
Publication of CN100350639C publication Critical patent/CN100350639C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)

Abstract

公开了一种氮化物半导体LED,包括:衬底;在衬底上形成的GaN基过渡层;在GaN基过渡层上形成的、上部和下部之间置有未掺杂的GaN层或掺杂铟的GaN层的夹层结构的AlyGa1-yN/GaN短周期超晶格(SPS)层(这里0≤y≤1);在AlyGa1-yN/GaN SPS上层形成的n-GaN层的第一电极层;在第一电极层上形成的有源层;以及在有源层上形成的p-GaN层的第二电极层。

Description

氮化物半导体LED和其制造方法
技术领域
本发明涉及氮化物半导体,更具体地,涉及GaN基氮化物半导体发光器件(LED)和其制造方法。
背景技术
一般来说,GaN基氮化物半导体应用于作为高速开关和高功率器件的电子设备中,如蓝/绿LED、MESFET、HEMT等的光学元件。尤其是,蓝/绿LED正处于已经进行大规模生产并且在全球的销售呈指数增长的状态。
上述的常规GaN基氮化物半导体发光器件(LED)通常在蓝宝石衬底或SiC衬底上生长。另外,在低的生长温度下,在蓝宝石衬底或SiC衬底上生长AlyGa1-yN多晶层作为过渡层。然后,在高温下,未掺杂的GaN层、掺杂有浓度大于1×1017/cm3的硅的n-GaN层或其组合n-GaN层在过渡层上形成,作为第一电极层。另外,在Mg-AlGaN覆层上形成Mg-GaN层作为第二电极层,即得GaN基氮化物半导体LED。另外,发光层(多量子阱有源层)夹在第一电极层和第二电极层之间。
但是,上述结构的常规氮化物半导体LED的晶体缺陷非常高,约为108/cm3左右,产生于衬底和过渡层之间的界面。
因此,常规的氮化物半导体LED存在缺点,即电学性质,明确地说,即反偏置情况下的漏电流增大,对设备的可靠性产生重大影响。
另外,常规的氮化物半导体LED还有另一个缺点,过渡层和衬底之间的界面产生的晶体缺陷使发光层的结晶性变差,从而降低光发射效率。
发明内容
本发明的一个目的是提供氮化物半导体LED和其生产方法,以减小由于衬底和在衬底上生长的GaN基单晶层之间热膨胀系数差和晶格常数差所产生的晶体缺陷,改进GaN基单晶层的结晶性,从而提高器件的性能,并确保其可靠性。
为了实现这些和其他优点,根据本发明的目的,正如所实施和概括描述的那样,提供了一种氮化物半导体LED,其包括:衬底;在衬底上形成的GaN基过渡层;在GaN基过渡层上形成的、上部和下部之间置有未掺杂的GaN层或掺杂铟的GaN层的夹层结构的AlyGa1-yN/GaN短周期超晶格(SPS)层(这里0≤y≤1);在AlyGa1-yN/GaNSPS上层上形成的n-GaN层的第一电极层;在第一电极层上形成的有源层;和在有源层上形成的p-GaN层的第二电极层。
根据本发明的另一方面,提供了一种氮化物半导体LED,其包括:衬底;在衬底上形成的GaN基过渡层;在GaN基过渡层上形成的、包含高浓度掺杂物的n+-GaN层的第一电极层;在第一电极层上形成的、包含低浓度掺杂物的n-GaN层;在n-GaN层上形成的有源层;和在有源层上形成的p-GaN层的第二电极层。
根据本发明的另一个方面,提供了一种氮化物半导体LED的制造方法,该方法包括以下步骤:在衬底上生长GaN基过渡层;在GaN基过渡层上形成AlyGa1-yN/GaN短周期超晶格(SPS)层,其为上部和下部之间置有未掺杂的GaN层或掺杂铟的GaN层的夹层结构(这里0≤y≤1);在AlyGa1-yN/GaN SPS上层上形成包含高浓度掺杂物的n+-GaN层的第一电极层;在第一电极层上形成有源层;在有源层上形成p-GaN层的第二电极层。
附图说明
图1是说明根据本发明的第一实施方案的氮化物半导体LED的示意性结构的剖面图。
图2是说明根据本发明的第二实施方案的氮化物半导体LED的示意性结构的剖面图。
图3是说明根据本发明的第三实施方案的氮化物半导体LED的示意性结构的剖面图。
具体实施方式
下面将参考附图详细描述本发明的优选实施方案。
图1是说明根据本发明的第一实施方案的氮化物半导体LED的示意性结构的剖面图。
如图1所示,本发明氮化物半导体LED包括衬底101;在衬底101上形成的GaN基过渡层102;在GaN基过渡层102上形成的n-GaN层的第一电极层105;在第一电极层上形成的有源层120;在有源层120上形成的p-GaN层的第二电极层110。
这里,GaN  基过渡层102可以被形成为三层结构的AlyInxGa1-(x+y)N/InxGa1-xN/GaN(这里0≤x≤1,0≤y≤1);两层结构的InxGa1-xN/GaN(这里0≤x≤1);或超晶格结构(SLS)的InxGa1-xN/GaN(这里0≤x≤1)。
换言之,在本发明氮化物半导体LED中,在衬底101(例如蓝宝石衬底或SiC衬底)上生长GaN基氮化物半导体作为GaN基过渡层102,形成n-GaN层105作为第一电极层,形成掺杂原子Mg的p-GaN层110作为第二电极层。另外,具有InGaN/GaN多量子阱结构的有源层120以夹层组合结构形成于n-GaN层的第一电极层105和p-GaN层的第二电极层110之间。
这里,有源层120可以由InxGa1-xN阱层106、InxGa1-xN/GaN阻挡层107、InxGa1-xN阱层108和InxGa1-xN/GaN阻挡层109形成。另外,在GaN基过渡层102和n-GaN层的第一电极层105之间还可以另外形成未掺杂的GaN层或掺杂铟的GaN层103和104。
另外,低温下在衬底101上生长GaN基过渡层102的过程中,使用金属有机化学气相沉积(MOCVD)设备,使其在100-700托的生长压力、500-800℃的低温下,以诸如三层结构的AlyInxGa1-(x+y)N/InxGa1-xN/GaN、两层结构的InxGa1-xN/GaN或超晶格结构(SLS)的InxGa1-xN/GaN等的层叠结构以小于700的厚度生长。
此时,对于在低温下生长GaN基过渡层102来说,使用MOCVD设备,该设备在引入TMGa、TMIn、TMAl源气体并同时引入NH3气体的时候供应载气H2、N2
另外,在GaN基过渡层102上生长GaN基单晶层的高温过程是在900-1100℃的温度下生长未掺杂的GaN层或掺杂铟的GaN层103和104,并在其所得产品上再形成掺杂原子硅的n-GaN层105(浓度大于1×1018/cm3)。这里n-GaN层105用作第一电极层,具有大于1×1018/cm3的载流子浓度。
此时,对于生长GaN基单晶层来说,使用MOCVD设备,其具有900-1100℃温度下供应的TMGa、TMIn气体源,以便生长GaN基单晶层。另外,引入TMGa、TMIn源气体,以100-700托的压力、0.1-700μmol/min的流量供应,以便生长GaN基单晶层。此时,使用SiH4气作为掺杂气体,以掺杂硅原子。
另一方面,图2是说明根据本发明的第二实施方案的氮化物半导体LED的示意性结构的剖面图。
如图2所示,在本发明的氮化物半导体LED中,在衬底201(例如蓝宝石衬底或SiC衬底)上提供GaN基过渡层202,其具有三层结构的AlyInxGa1-(x+y)N/InxGa1-xN/GaN(这里0≤x≤1,0≤y≤1);两层结构的InxGa1-xN/GaN(这里0≤x≤1);或超晶格结构(SLS)的InxGa1-xN/GaN(这里0≤x≤1)。另外,在GaN基过渡层202上形成未掺杂的GaN层或掺杂铟的GaN层203。
另外,在未掺杂的GaN层或掺杂铟的GaN层203上形成AlyGa1-yN/GaN SPS层204和206,其为上部和下部之间置有未掺杂的GaN层或掺杂铟的GaN层205的夹层结构。
在AlyGa1-yN/GaN SPS上层206上形成n-GaN层207作为第一电极层。这里,n-GaN层的第一电极层207具有大于1×1018/cm3的载流子浓度,硅用作掺杂物。
另外,氮化物半导体LED包括作为光发射层的InxGa1-xN/GaN有源层220。这里,有源层220可以多量子阱结构形成,该结构具有InxGa1-xN阱层208、InxGa1-xN/GaN阻挡层209、InxGa1-xN阱层210和InxGa1-xN/GaN阻挡层211。
在本发明中,当形成有源层220时,于700-800℃的生长温度、N2气氛下InxGa1-xN阱层208和210、InxGa1-xN/GaN阻挡层209和211分别生长至厚度小于70。然后,提高生长温度至900-1020℃,引入Cp2Mg掺杂气体,使p-GaN层212以0.01-0.5μm的厚度生长,以用作第二电极层。此时,作为气氛气体的NH3、H2的混合气体气氛维持为高纯度。
此时,如图2所示,本发明的氮化物半导体LED包括AlyGa1-yN/GaN SPS层204和206。因此,为了评价夹层结构的AlyGa1-yN/GaN SPS层204和206对结晶性变化的影响,生长一种不包括InxGa1-xN/GaN多量子阱结构的有源层220和p-GaN层的第二电极层212的结构,然后进行DC-XRD分析。
上述DC-XRD分析的结果表明,在具有未掺杂GaN/n-GaN结构作为过渡层的常规氮化物半导体的情况下,获得约290弧度秒的FWHM(半高宽(full widthhalf-maximum))值;但是在具有如图2所示的本发明结构的情况下,获得约250弧度秒的FWHM值。考虑到以上情况,在如本发明中具有夹层结构的AlyGa1-yN/GaNSPS层204和206的情况下,可以理解的是改善了结晶性。
此外,作为分析具有图2所示结构的氮化物半导体LED的电特性的结果,正向偏置特性如工作电压(VF)和亮度等不变。但是,可以理解的是,当施加反偏置时,常规的反偏置击穿电压从“-15V”升高至超过“-19V”,从而改善了电流泄漏。
上述改善的特性是由有效减少了衬底201中和侵入表面的GaN基过渡层202中形成位错的效果所引起的。因此,其由以下结果所导致:有源层220的InxGa1-xN/GaN多量子阱结构和p-GaN层212的可结晶性得到改善。
另一方面,为了更加改善所述特性,本发明提供了具有下列结构的氮化物半导体LED。
图3是说明根据本发明的第三实施方案的氮化物半导体LED的示意性结构的剖面图。
如图3所示,在本发明的氮化物半导体LED中,在高浓度掺杂的n+-GaN层307的第一电极层上还生长了掺杂约1×1017/cm3的低浓度硅的n-GaN层308。因此,在InxGa1-xN阱层309的界面上,应力可以被抑制,结晶性可以改善,其中阱层309首先在相对低的生长温度下在InxGa1-xN/GaN多量子阱结构的有源层320上生长。
这里,在n-GaN层308由半绝缘的GaN层形成时,它还可以起到电流保护层的作用,以有效隔绝电流泄漏,所述的电流泄漏是在反偏置时反向侵入光发射层(多量子阱有源层)中的。
另外,当氮化物半导体LED被反偏置时,其结晶性变差,导致电流泄漏。因此,为了防止这一点,它可以形成为插入有薄半绝缘GaN层或小于1×1018/cm3的低浓度掺杂n-GaN层的结构。
换言之,本发明的氮化物半导体LED包括衬底301;在衬底301上形成的GaN基过渡层302;在GaN基过渡层302上形成的、包含高浓度掺杂物的n+-GaN层的第一电极层307;在第一电极层上形成的、包含低浓度掺杂物的n-GaN层308;在n-GaN层308上形成的有源层320;和在有源层320上形成的p-GaN层的第二电极层313。
这里;在衬底301上提供了GaN基过渡层302,其具有三层结构的AlyInxGa1-(x+y)N/InxGa1-xN/GaN(这里0≤x≤1,0≤y≤1);两层结构的InxGa1-xN/GaN(这里0≤x≤1);或超晶格结构(SLS)的InxGa1-xN/GaN(这里0≤x≤1)。另外,在GaN基过渡层302上形成未掺杂的GaN层或掺杂铟的GaN层303。
另外,在未掺杂的GaN层或掺杂铟的GaN层303上形成AlyGa1-yN/GaN SPS层304和306,其为上部和下部之间置有掺杂铟的GaN层305的夹层结构。
在AlyGa1-yN/GaN SPS上层306上形成n+-GaN层307作为第一电极层。这里n+-GaN层的第一电极层307的载流子浓度大于1×1018/cm3,含有用作掺杂物的硅。
另外,氮化物半导体LED包括作为光发射层的InxGa1-xN/GaN的有源层320。这里,有源层320可以形成为具有InxGa1-xN阱层309、InxGa1-xN/GaN阻挡层310、InxGa1-xN阱层311和InxGa1-xN/GaN阻挡层312的多量子阱结构。
另一方面,在根据本发明的氮化物半导体LED的制造方法中,当生长未掺杂的GaN层和掺杂铟的GaN层305与306以及n+-GaN层的第一电极层307时,除了高纯度的NH3和H2载气,还混合N2气体并用作载气。在上述加工情况下,掺杂和生长的厚度一致性得以改善。另外,从对正向和反向电学性质的分析可以看出,可以获得在晶片中具有非常规则分散分布的工作电压和反向击穿电压。
工业应用
如上所述,本发明的半导体LED和其制造方法可以减少由于在衬底和衬底上生长的GaN基单晶层之间的热膨胀系数差和晶格常数差所导致的晶体缺陷,并改善GaN基单晶层的结晶性。因此,本发明具有可以改善氮化物半导体LED的性能并确保其可靠性的优点。

Claims (19)

1.一种氮化物半导体LED,包括:
衬底;
在衬底上形成的GaN基过渡层;
在GaN基过渡层上形成的AlyGa1-yN/GaN短周期超晶格层,其为在AlyGa1-yN/GaN短周期超晶格层的上层和下层之间置有未掺杂的GaN层或掺杂铟的GaN层的夹层结构,其中0≤y≤1;
在AlyGa1-yN/GaN短周期超晶格层的上层上形成的n-GaN层的第一电极层;
在第一电极层上形成的有源层;和
在有源层上形成的p-GaN层的第二电极层。
2.权利要求1的氮化物半导体LED,其中GaN基过渡层具有三层结构的AlyInxGa1-(x+y)N/InxGa1-xN/GaN,0≤x≤1,0≤y≤1;两层结构的InxGa1-xN/GaN,0≤x≤1;或超晶格结构的InxGa1-xN/GaN,0≤x≤1。
3.权利要求1的氮化物半导体LED,其还包括在AlyGa1-yN/GaN短周期超晶格下层和GaN基过渡层之间的未掺杂的GaN层或掺杂铟的GaN层。
4.一种氮化物半导体LED,包括:
衬底;
在衬底上形成的GaN基过渡层;
在GaN基过渡层上形成的未掺杂的GaN层或掺杂铟的GaN层;
在未掺杂的GaN层或掺杂铟的GaN层上形成的AlyGa1-yN/GaN短周期超晶格层,其为在AlyGa1-yN/GaN短周期超晶格层的上层和下层之间置有未掺杂的GaN层或掺杂铟的GaN层的夹层结构,其中0≤y≤1;
在AlyGa1-yN/GaN短周期超晶格层的上层上形成的、包含高浓度掺杂物的n+-GaN层的第一电极层;
在第一电极层上形成的、包含低浓度掺杂物的n-GaN层;
在n-GaN层上形成的有源层;和
在有源层上形成的p-GaN层的第二电极层。
5.权利要求4的氮化物半导体LED,其中GaN基过渡层具有三层结构的AlyInxGa1-(x+y)N/InxGa1-xN/GaN,0≤x≤1,0≤y≤1;两层结构的InxGa1-xN/GaN,0≤x≤1;或超晶格结构的InxGa1-xN/GaN,0≤x≤1。
6.一种氮化物半导体LED,包括:
衬底;
在衬底上形成的GaN基过渡层;
在GaN基过渡层上形成的、包含高浓度掺杂物的n+-GaN层的第一电极层;
在第一电极层上形成的、包含低浓度掺杂物的n-GaN层;
在n-GaN层上形成的有源层;和
在有源层上形成的p-GaN层的第二电极层,
其中,GaN基过渡层具有三层结构的AlyInxGa1-(x+y)N/InxGa1-xN/GaN,0≤x≤1,0≤y≤1或超晶格结构的InxGa1-xN/GaN,0≤x≤1。
7.权利要求6的氮化物半导体LED,其中n+-GaN层中掺杂物的浓度大于1×1018/cm3
8.权利要求6的氮化物半导体LED,其中n-GaN层中掺杂物的浓度小于1×1018/cm3
9.权利要求6的氮化物半导体LED,其中n-GaN层中掺杂物的浓度为1×1017/cm3
10.权利要求6的氮化物半导体LED,其还包括在GaN基过渡层上形成的AlyGa1-yN/GaN短周期超晶格层,其为在AlyGa1-yN/GaN短周期超晶格层的上部和下部之间置有未掺杂的GaN层或掺杂铟的GaN层的夹层结构,其中0≤y≤1。
11.一种氮化物半导体LED的制造方法,该方法包括以下步骤:
在衬底上生长GaN基过渡层;
在GaN基过渡层上形成AlyGa1-yN/GaN短周期超晶格层,其为在AlyGa1-yN/GaN短周期超晶格层的上部和下部之间置有未掺杂的GaN层或掺杂铟的GaN层的夹层结构,其中0≤y≤1;
在AlyGa1-yN/GaN短周期超晶格层的上层上形成包含高浓度掺杂物的n+-GaN层的第一电极层;
在第一电极层上形成有源层;和
在有源层上形成p-GaN层的第二电极层。
12.权利要求11的制造方法,其还包括在n+-GaN层的第一电极层和有源层之间形成包含低浓度掺杂物的n-GaN层的步骤。
13.权利要求11的制造方法,其中GaN基过渡层使用MOCVD设备、在引入TMGa、TMIn和TMAl源气体并同时引入NH3气体的时候、在具有H2和N2载气的气氛中于500-800℃温度下生长到50-800的厚度。
14.权利要求11的制造方法,其中GaN基过渡层在TMGa、TMIn、TMAl源气体流量为5-300μmol/min、生长压力100-700托的条件下生长。
15.权利要求11的制造方法,其中GaN基过渡层具有三层结构的AlyInxGa1-(x+y)N/InxGa1-xN/GaN,0≤x≤1,0≤y≤1;两层结构的InxGa1-xN/GaN,0≤x≤1;或超晶格结构的InxGa1-xN/GaN,0≤x≤1。
16.权利要求11的制造方法,其还包括在AlyGa1-yN/GaN短周期超晶格层和GaN基过渡层之间形成未掺杂的GaN层或掺杂铟的GaN层的步骤。
17.权利要求11的制造方法,其中n+-GaN层中掺杂物的浓度大于1×1018/cm3
18.权利要求12的制造方法,其中n-GaN层中掺杂物的浓度为1×1017/cm3
19.权利要求12的制造方法,其中n-GaN层由半绝缘层形成。
CNB038132354A 2002-08-19 2003-08-19 氮化物半导体led和其制造方法 Expired - Lifetime CN100350639C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2002-0049009A KR100497890B1 (ko) 2002-08-19 2002-08-19 질화물 반도체 발광소자 및 그 제조방법
KR1020020049009 2002-08-19

Publications (2)

Publication Number Publication Date
CN1659715A CN1659715A (zh) 2005-08-24
CN100350639C true CN100350639C (zh) 2007-11-21

Family

ID=31884912

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038132354A Expired - Lifetime CN100350639C (zh) 2002-08-19 2003-08-19 氮化物半导体led和其制造方法

Country Status (5)

Country Link
US (2) US7615772B2 (zh)
KR (1) KR100497890B1 (zh)
CN (1) CN100350639C (zh)
AU (1) AU2003257717A1 (zh)
WO (1) WO2004017431A1 (zh)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1694887A2 (en) * 2003-12-12 2006-08-30 Yale University Controlled growth of gallium nitride nanostructures
KR100611491B1 (ko) 2004-08-26 2006-08-10 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR100670531B1 (ko) * 2004-08-26 2007-01-16 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR100661708B1 (ko) 2004-10-19 2006-12-26 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
CN100433378C (zh) * 2004-11-19 2008-11-12 深圳市方大国科光电技术有限公司 一种发光二极管结构及其生长方法
KR100661709B1 (ko) * 2004-12-23 2006-12-26 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR100580752B1 (ko) 2004-12-23 2006-05-15 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR100765004B1 (ko) 2004-12-23 2007-10-09 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR100662191B1 (ko) 2004-12-23 2006-12-27 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR100580751B1 (ko) 2004-12-23 2006-05-15 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
JP2007158132A (ja) * 2005-12-06 2007-06-21 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子及びその製造方法
KR101041843B1 (ko) * 2005-07-30 2011-06-17 삼성엘이디 주식회사 질화물계 화합물 반도체 발광소자 및 그 제조방법
CN1996625A (zh) * 2006-01-06 2007-07-11 大连路明科技集团有限公司 GaN基光电子器件及其制法
KR101241477B1 (ko) 2006-01-27 2013-03-08 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조 방법
KR101294518B1 (ko) 2006-02-14 2013-08-07 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조 방법
KR100837846B1 (ko) * 2006-02-27 2008-06-13 한국광기술원 레이저 에너지 흡수 초격자 층을 구비한 질화물 발광소자및 그의 제조방법
KR100828873B1 (ko) * 2006-04-25 2008-05-09 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR101432766B1 (ko) 2006-05-26 2014-08-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작방법
US7951693B2 (en) * 2006-12-22 2011-05-31 Philips Lumileds Lighting Company, Llc III-nitride light emitting devices grown on templates to reduce strain
KR100920915B1 (ko) * 2006-12-28 2009-10-12 서울옵토디바이스주식회사 초격자 구조의 장벽층을 갖는 발광 다이오드
EP1976031A3 (en) 2007-03-29 2010-09-08 Seoul Opto Device Co., Ltd. Light emitting diode having well and/or barrier layers with superlattice structure
KR101283261B1 (ko) * 2007-05-21 2013-07-11 엘지이노텍 주식회사 발광 소자 및 그 제조방법
KR101283233B1 (ko) * 2007-06-25 2013-07-11 엘지이노텍 주식회사 발광 소자 및 그 제조방법
KR100877774B1 (ko) 2007-09-10 2009-01-16 서울옵토디바이스주식회사 개선된 구조의 발광다이오드
US20090072269A1 (en) * 2007-09-17 2009-03-19 Chang Soo Suh Gallium nitride diodes and integrated components
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
TWI415295B (zh) * 2008-06-24 2013-11-11 Advanced Optoelectronic Tech 半導體元件的製造方法及其結構
CN101621094B (zh) * 2008-06-30 2012-10-17 展晶科技(深圳)有限公司 半导体元件的制造方法及其结构
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
CN101989637A (zh) * 2009-07-30 2011-03-23 歌尔声学股份有限公司 蓝光发光二极管
KR101173072B1 (ko) * 2009-08-27 2012-08-13 한국산업기술대학교산학협력단 경사진 기판 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
CN103003961B (zh) 2010-04-30 2015-11-25 波士顿大学理事会 具有能带结构电位波动的高效紫外发光二极管
US20120126239A1 (en) * 2010-11-24 2012-05-24 Transphorm Inc. Layer structures for controlling stress of heteroepitaxially grown iii-nitride layers
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8362458B2 (en) 2010-12-27 2013-01-29 Industrial Technology Research Institute Nitirde semiconductor light emitting diode
US8748867B2 (en) * 2011-01-26 2014-06-10 Lg Innotek Co., Ltd. Light emitting device
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
KR20120100056A (ko) * 2011-03-02 2012-09-12 엘지이노텍 주식회사 발광 소자
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
US9257547B2 (en) 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
CN103296151A (zh) * 2012-03-01 2013-09-11 上海蓝光科技有限公司 一种降低led外延翘曲应力的方法
US9093366B2 (en) 2012-04-09 2015-07-28 Transphorm Inc. N-polar III-nitride transistors
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
US9171730B2 (en) 2013-02-15 2015-10-27 Transphorm Inc. Electrodes for semiconductor devices and methods of forming the same
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9245992B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
KR102038885B1 (ko) 2013-05-27 2019-10-31 삼성전자주식회사 반도체 발광소자
KR102075644B1 (ko) * 2013-06-14 2020-02-10 엘지이노텍 주식회사 발광소자 및 조명시스템
KR20140146887A (ko) 2013-06-18 2014-12-29 엘지이노텍 주식회사 발광소자
WO2015009514A1 (en) 2013-07-19 2015-01-22 Transphorm Inc. Iii-nitride transistor including a p-type depleting layer
US20150137179A1 (en) * 2013-11-19 2015-05-21 Huga Optotech Inc. Power device
CN104064644B (zh) * 2014-06-30 2016-08-31 湘能华磊光电股份有限公司 Led的量子阱结构、其制作方法及包括其的led外延片
CN105304776A (zh) * 2014-07-09 2016-02-03 南通同方半导体有限公司 一种N-GaN层蓝光LED外延结构
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
KR102237154B1 (ko) 2015-02-25 2021-04-07 엘지이노텍 주식회사 발광 소자 및 이를 구비한 라이트 유닛
US11322599B2 (en) 2016-01-15 2022-05-03 Transphorm Technology, Inc. Enhancement mode III-nitride devices having an Al1-xSixO gate insulator
TWI813243B (zh) 2016-05-31 2023-08-21 美商創世舫科技有限公司 包含漸變空乏層的三族氮化物裝置
WO2019113815A1 (zh) * 2017-12-13 2019-06-20 深圳前海小有技术有限公司 一种半导体结构及其制作工艺
US10516076B2 (en) 2018-02-01 2019-12-24 Silanna UV Technologies Pte Ltd Dislocation filter for semiconductor devices
US11162189B2 (en) * 2018-03-02 2021-11-02 Dexerials Corporation Semiconductor substrate, gallium nitride single crystal, and method for producing gallium nitride single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129925A (ja) * 1995-10-31 1997-05-16 Toyoda Gosei Co Ltd 3族窒化物半導体素子
JPH09153643A (ja) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd 3族窒化物半導体素子
JPH10173220A (ja) * 1996-12-06 1998-06-26 Rohm Co Ltd 半導体発光素子の製法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281830A (en) * 1990-10-27 1994-01-25 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound
US5432808A (en) * 1993-03-15 1995-07-11 Kabushiki Kaisha Toshiba Compound semicondutor light-emitting device
JP3180871B2 (ja) 1994-01-28 2001-06-25 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子およびその電極形成方法
JP3509260B2 (ja) * 1994-03-08 2004-03-22 住友化学工業株式会社 3−5族化合物半導体と発光素子
US5523589A (en) * 1994-09-20 1996-06-04 Cree Research, Inc. Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
US6017774A (en) * 1995-12-24 2000-01-25 Sharp Kabushiki Kaisha Method for producing group III-V compound semiconductor and fabricating light emitting device using such semiconductor
US5874747A (en) * 1996-02-05 1999-02-23 Advanced Technology Materials, Inc. High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same
JP3753793B2 (ja) 1996-06-14 2006-03-08 豊田合成株式会社 3族窒化物化合物半導体発光素子
JP3304787B2 (ja) * 1996-09-08 2002-07-22 豊田合成株式会社 半導体発光素子及びその製造方法
JPH10150245A (ja) * 1996-11-21 1998-06-02 Matsushita Electric Ind Co Ltd 窒化ガリウム系半導体の製造方法
JPH10214999A (ja) 1997-01-30 1998-08-11 Toyota Central Res & Dev Lab Inc Iii−v族窒化物半導体素子
JPH10303458A (ja) 1997-04-24 1998-11-13 Toyoda Gosei Co Ltd 窒化ガリウム系化合物半導体素子
KR19980084825A (ko) * 1997-05-26 1998-12-05 윤종용 GaN계 발광 다이오드
US6194742B1 (en) 1998-06-05 2001-02-27 Lumileds Lighting, U.S., Llc Strain engineered and impurity controlled III-V nitride semiconductor films and optoelectronic devices
KR100304881B1 (ko) * 1998-10-15 2001-10-12 구자홍 Gan계화합물반도체및그의결정성장방법
JP2000244070A (ja) * 1999-02-19 2000-09-08 Sony Corp 半導体装置および半導体発光素子
JP3567790B2 (ja) * 1999-03-31 2004-09-22 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子
JP3412563B2 (ja) 1999-06-23 2003-06-03 日亜化学工業株式会社 窒化物半導体光素子及びその形成方法
JP2001119102A (ja) * 1999-10-15 2001-04-27 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体レーザダイオード
JP2000261037A (ja) * 2000-01-01 2000-09-22 Sharp Corp 半導体発光素子
KR100425341B1 (ko) * 2000-02-08 2004-03-31 삼성전기주식회사 질화물 반도체 발광 소자
KR20020084194A (ko) * 2000-03-14 2002-11-04 도요다 고세이 가부시키가이샤 Iii족 질화물계 화합물 반도체의 제조방법 및 iii족질화물계 화합물 반도체 소자
JP3778765B2 (ja) * 2000-03-24 2006-05-24 三洋電機株式会社 窒化物系半導体素子およびその製造方法
US6800876B2 (en) * 2001-01-16 2004-10-05 Cree, Inc. Group III nitride LED with undoped cladding layer (5000.137)
US6958497B2 (en) * 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
JP4150527B2 (ja) 2002-02-27 2008-09-17 日鉱金属株式会社 結晶の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129925A (ja) * 1995-10-31 1997-05-16 Toyoda Gosei Co Ltd 3族窒化物半導体素子
JPH09153643A (ja) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd 3族窒化物半導体素子
JPH10173220A (ja) * 1996-12-06 1998-06-26 Rohm Co Ltd 半導体発光素子の製法

Also Published As

Publication number Publication date
US20050230688A1 (en) 2005-10-20
CN1659715A (zh) 2005-08-24
KR20040016723A (ko) 2004-02-25
US7615772B2 (en) 2009-11-10
KR100497890B1 (ko) 2005-06-29
US8492779B2 (en) 2013-07-23
US20100019225A1 (en) 2010-01-28
AU2003257717A1 (en) 2004-03-03
WO2004017431A1 (en) 2004-02-26

Similar Documents

Publication Publication Date Title
CN100350639C (zh) 氮化物半导体led和其制造方法
EP1636858B1 (en) Light emitting device using nitride semiconductor and fabrication method of the same
KR100998540B1 (ko) Iii족 질화물계 반도체 발광 소자
KR102191213B1 (ko) 자외선 발광 소자
US8664638B2 (en) Light-emitting diode having an interlayer with high voltage density and method for manufacturing the same
US20030211645A1 (en) Gallium nitride-based semiconductor light emitting device and method
KR100931509B1 (ko) 질화물 반도체 발광소자 및 그 제조방법
JP2003037289A (ja) 低駆動電圧のiii族窒化物発光素子
JP2008205514A (ja) Iii−v族窒化物半導体素子
KR100649496B1 (ko) 질화물 반도체 발광소자 및 제조방법
CN102005513A (zh) 具有低温p型GaN层的氮化镓系发光二极管
CN103165785A (zh) 用于制造半导体器件的方法
CN117239025B (zh) GaN基绿光LED外延片及其制备方法、LED
CN100350638C (zh) 氮化物半导体及其制备方法
US8222639B2 (en) Nitride based semiconductor device and method of manufacturing the same
CN113571607B (zh) 高发光效率的发光二极管外延片及其制造方法
US8685775B2 (en) Group III nitride semiconductor light-emitting device and production method therefor
CN108365060A (zh) GaN基LED的外延结构及其生长方法
KR102553985B1 (ko) Ⅲ족 질화물 반도체
KR100881053B1 (ko) 질화물계 발광소자
KR100906972B1 (ko) 질화물계 발광소자
CN114188449B (zh) 一种电子阻挡层生长方法、外延层及led芯片
KR100813602B1 (ko) 질화물 반도체 발광소자의 제조방법
KR100911775B1 (ko) 질화물계 발광소자
CN115084328A (zh) 外延结构及其制备方法和半导体器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210824

Address after: 168 Changsheng North Road, Taicang City, Suzhou, Jiangsu Province

Patentee after: Suzhou Leyu Semiconductor Co.,Ltd.

Address before: Seoul, South Kerean

Patentee before: LG INNOTEK Co.,Ltd.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20071121