BRPI0713928B1 - Bata-maltose cristalina anidra, sua preparação e seus usos - Google Patents

Bata-maltose cristalina anidra, sua preparação e seus usos Download PDF

Info

Publication number
BRPI0713928B1
BRPI0713928B1 BRPI0713928-4A BRPI0713928A BRPI0713928B1 BR PI0713928 B1 BRPI0713928 B1 BR PI0713928B1 BR PI0713928 A BRPI0713928 A BR PI0713928A BR PI0713928 B1 BRPI0713928 B1 BR PI0713928B1
Authority
BR
Brazil
Prior art keywords
maltose
anhydrous crystalline
crystalline
converted
anhydrous
Prior art date
Application number
BRPI0713928-4A
Other languages
English (en)
Inventor
Tetsuya Ohashi
Hajime Aga
Tetsuya Nakada
Toshio Miyake
Original Assignee
Hayashibara Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashibara Co., Ltd filed Critical Hayashibara Co., Ltd
Publication of BRPI0713928A2 publication Critical patent/BRPI0713928A2/pt
Publication of BRPI0713928B1 publication Critical patent/BRPI0713928B1/pt

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K7/00Maltose
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C13/00Cream; Cream preparations; Making thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C13/00Cream; Cream preparations; Making thereof
    • A23C13/12Cream preparations
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C13/00Cream; Cream preparations; Making thereof
    • A23C13/12Cream preparations
    • A23C13/125Cream preparations in powdered, granulated or solid form
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/04Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G3/00Preparation of other alcoholic beverages
    • C12G3/005Solid or pasty alcoholic beverage-forming compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Abstract

BETA-MALTOSE CRISTALINA ANIDRA, SUA PREPARAÇÃO E SEUS USOS. A presente invenção refere-se a uma B-maltose cristalina anidra nova, sua preparação e seus usos. A presente invenção alcança os objetivos acima por fornecer uma B-maltose cristalina anidra com um ponto de ebulição de 154 a 159°C; um processo para a produção da mesma, incluindo uma etapa de manutenção de B-maltose cristalina aquosa em um solvente orgânico a uma temperatura ambiente ou maior para a desidratação; e os usos da mesma.

Description

CAMPO TÉCNICO
A presente invenção refere-se a uma β-maltose cristalina anidra, a sua preparação e a seus usos, particularmente, a uma β-maltose cristalina anidra com um ponto de ebulição de 154 a 159°C, um processo para a produção da mesma, incluindo uma etapa de manutenção de β-maltose cristalina aquosa em um solvente orgânico a uma temperatura ambiente ou maior para a desidratação, e a usos da mesma como uma base para solidificar ou pulverizar composições contendo umidade ou contendo álcool.
ANTECEDENTES DA TÉCNICA
Maltose é um dissacarídeo redutor onde duas moléculas de glicose são ligadas via ligação α-1,4, e é chamado açúcar do malte. Já que a maltose tem uma terminação redutora, ou seja, um grupo aldeído, estão presentes como isômeros o a-anômero (α-maltose) e o e—anômero (β-maltose). Sabe-se que o cristal mono-aquoso (de aqui em diante, simplesmente chamado de "cristal aquoso") e o cristal anidro estão presentes como maltose cristalina. Maltose cristalina aquosa é usualmente obtida como β-maltose, e um produto pulverulento incluindo β-maltose cristalina aquosa é produzido em uma escala industrial e comercializado.
Enquanto isso, uma maltose cristalina anidra pode ser obtida de uma solução concentrada com um conteúdo de umidade de menos de 5% (p/p) (Ref. Patente Japonesa Kokoku No 43,360/93). Já que a maltose cristalina anidra contém de 55 a 80% (p/p) de a-anômero e de 20 a 45% (p/p) de e-anômero, a entidade é um cristal de complexo α/β. Entretanto, já que a maltose cristalina anidra tem um conteúdo de a-anômero relativamente alto, ela é frequentemente chamada de "a-maltose cristalina anidra" (Ref. Patente Japonesa Nos 43,360/93 e 10,341/95). Já que a a-maltose cristalina anidra absorve umidade e é convertida em β-maltose cristalina aquosa, e a β-maltose cristalina aquosa resultante não absorve umidade sob condições de umidade relativa de 90% ou menor, a α-maltose cristalina anidra é aplicada para pulverizar alimentos contendo umidade (Ref. Patente Japonesa Nos 59.697/93 e 10,341/95). A α-maltose cristalina anidra acima é comercializada por Ha- yashibara Shoji Inc., Okayama, Japão, como "FINETOSE®".
A Patente Japonesa Kokoku N2 59,697/93 e J. E. Hodge et al., "Cereal Science Today", Vol. 17, 7, págs. 180-188 (1972) descrevem uma β- maltose cristalina anidra e um método para preparação de β-maltose cristalina anidra por aquecimento de β-maltose cristalina aquosa sob uma pressão reduzida para desidratação. Entretanto, já que a β-maltose cristalina anidra tem o defeito de absorver facilmente umidade, ela ainda não tem sido produzida em uma escala industrial. Na literatura acima por J. E. Hodge et al., é reportado que a β-maltose cristalina anidra, obtida pelo método acima, mostra um ponto de ebulição de 120 a 125°C. Entretanto, uma β-maltose cristalina aquosa com um ponto de ebulição maior que 125°C tem sido desconhecida até agora.
DESCRIÇÃO DA INVENÇÃO
Um objetivo da presente invenção é fornecer uma maltose cristalina anidra, sua preparação e seus usos. Os presentes inventores estudaram extensivamente um processo para a produção de sacarídeos cristalinos. No decorrer de seus estudos, descobriu-se inesperadamente que uma maltose cristalina anidra, obtida por manutenção de β-maltose cristalina aquosa em um solvente orgânico a uma temperatura ambiente ou maior para a desidratação, é uma β-maltose cristalina anidra nova com um ponto de ebulição de 154 a 159°C, que é menor que aquele (168 a 175°C) da a-maltose cristalina anidra convencional (maltose cristalina anidra de complexo α/β) e maior que aquele (120 a 125°C) da β-maltose cristalina anidra convencional divulgado em J. E. Hodge et al., "Cereal Science Today", Vol. 17, 7, págs. 180-188 (1972). Descobriu-se também que a β-maltose cristalina anidra nova tem efeitos vantajosos de ter uma propriedade de absorção de umidade relativamente menor quando comparada com a da β-maltose cristalina anidra bem-conhecida e de ser facilmente manuseada como um cristal pulverulento.
Além disso, descobriu-se inesperadamente que a β-maltose cristalina anidra nova é mais útil que a a-maltose cristalina anidra bem-conhecida como uma base para solidificar ou pulverizar composições contendo umidade ou contendo álcool. Baseado no conhecimento acima, os presentes inventores cumpriram a presente invenção por estabelecimento da β-maltose cristalina anidra, sua preparação e seus usos.
A presente invenção alcança os objetivos acima por fornecimento de uma β-maltose cristalina anidra nova com um ponto de ebulição de 154 a 159°C, um processo para a produção da mesma, incluindo uma etapa de manutenção de β-maltose cristalina aquosa em um solvente orgânico a uma temperatura ambiente ou maior para a desidratação, e seus usos como uma base para solidificar ou pulverizar composições contendo umidade ou contendo álcool.
Já que a β-maltose cristalina anidra da presente invenção mostra uma propriedade vantajosa de ter uma propriedade de absorção de umidade relativamente menor quando comparada com a β-maltose cristalina anidra convencional, ela pode ser facilmente manuseada como um cristal pulverulento. De acordo com a presente invenção, a β-maltose cristalina anidra nova pode ser facilmente produzida pelo processo incluindo uma etapa de desidratação de maltose cristalina aquosa em um solvente orgânico. Quando a β-maltose cristalina anidra da presente invenção é dissolvida em água para gerar uma concentração relativamente alta, β-maltose cristalina aquosa é rapidamente cristalizada na solução porque o anômero da maltose de material está na forma β. Por uso de cristalização, uma composição contendo umidade pode ser solidificada. Quando o pó de β-maltose cristalina anidra da presente invenção é permitida absorver umidade, ela é rapidamente convertido em β-maltose cristalina aquosa estável enquanto mantendo a forma pulverulenta. Além disso, já que o pó da β-maltose cristalina anidra da presente invenção tem uma estrutura porosa e um volume de intrusão relativamente grande, ele pode ser usado para reter uma quantidade relativamente grande de substâncias voláteis, como álcoois. Baseado nas propriedades acima, a β-maltose cristalina anidra da presente invenção pode ser mais vantajosamente usada como uma base para solidificar ou pulverizar composições contendo umidade ou contendo álcool para várias comidas e bebidas, cosméticos e farmacêuticos que a oc-maltose cristalina anidra que tem sido usada na técnica.
BREVE DESCRIÇÃO DAS FIGURAS
A figura 1 mostra uma fotografia de SEM (x 100) de uma maltose cristalina anidra obtida por tratamento em etanol a 70°C por 480 min. A figura 2 mostra uma fotografia de SEM (x 2.000) de uma maltose cristalina anidra obtida por tratamento em etanol a 70°C por 480 min. A figura 3 mostra uma fotografia de SEM (x 100) da maltose cristalina aquosa de Controle 1. A figura 4 mostra uma fotografia de SEM (x 2.000) da maltose cristalina aquosa de Controle 1. A figura 5 mostra uma fotografia de SEM (x 100) da a-maltose cristalina anidra de Controle 2. A figura 6 mostra uma fotografia de SEM (x 2.000) da a-maltose cristalina anidra de Controle 2. A figura 7 mostra uma fotografia de SEM (x 100) da β-maltose cristalina anidra de Controle 3. A figura 8 mostra uma fotografia de SEM (x 2.000) da β-maltose cristalina anidra de Controle 3. A figura 9 mostra diagramas de difração de raios-X pulverulento de uma maltose cristalina anidra convertida pelo tratamento com etanol e aqueles da β-maltose cristalina aquosa de Controle 1, da a-maltose cristalina anidra de Controle 2, e da β-maltose cristalina anidra de Controle 3. A figura 10 mostra padrões endotérmicos em calorimetria exploratória diferencial (DSC) de uma maltose cristalina anidra convertida pelo tratamento com etanol e aqueles da a-maltose cristalina anidra de Controle 2 e da β-maltose cristalina anidra de Controle 3. A figura 11 mostra um cromatograma de GLC para a medição de uma razão de α/β anômero de uma maltose cristalina anidra convertida pelo tratamento com etanol. A figura 12 mostra as distribuições de tamanho de poro de uma β-maltose cristalina anidra convertida pelo tratamento com etanol, medidas pelo método de preenchimento de mercúrio, e aquelas da a-maltose cristali- na anidra de Controle 2 e da β-maltose cristalina anidra de Controle 3. A figura 13 mostra uma fotografia mostrando os resultados de um teste de solidificação de água deionizada (após 2 horas da dissolução das amostras) comparando a utilidade de uma β-maltose cristalina anidra convertida pelo tratamento com etanol (Presente invenção) com a da a- maltose cristalina anidra (Controle) como uma base para a solidificação. A figura 14 mostra uma fotografia mostrando os resultados de um teste de solidificação de água deionizada (após 20 horas da dissolução das amostras) comparando a utilidade de uma β-maltose cristalina anidra convertida pelo tratamento com etanol (Presente invenção) com a da a- maltose cristalina anidra (Controle) como uma base para a solidificação. A figura 15 mostra uma fotografia mostrando os resultados de um teste de mistura com água deionizada comparando a utilidade de uma β- maltose cristalina anidra convertida pelo tratamento com etanol (Presente invenção) com a da a-maltose cristalina anidra (Controle) como uma base para a pulverização. A figura 16 mostra uma fotografia mostrando os resultados de um teste de mistura com etanol comparando a utilidade de uma β-maltose cristalina anidra convertida pelo tratamento com etanol (Presente invenção) com a da a-maltose cristalina anidra (Controle) como uma base para a pulverização.
EXPLICAÇÃO DOS SÍMBOLOS
Na figura 9, a: Maltose cristalina anidra convertida pelo tratamento com etanol (Presente invenção) b: β-Maltose cristalina anidra (Controle 3) c: a-Maltose cristalina anidra (Controle 2) d: Maltose cristalina aquosa (Contole 1) Picos de difração característicos da maltose cristalina anidra convertida pelo tratamento com etanol
Na figura 10, a: Maltose anidra cristalina convertida pelo tratamento com eta- nol (Presente invenção) b: β-Maltose cristalina anidra (Controle 3) c: β-Maltose cristalina anidra (Controle 2) Na figura 11, a: a-Anômero de maltose (α-maltose) b: β-Anomero de maltose (β-maltose)
Na figura 12, o: Maltose cristalina anidra convertida pelo tratamento com eta- nol (Presente invenção) • : β-Maltose cristalina anidra (Controle 3) Δ: a-Maltose cristalina anidra (Controle 2)
Nas figuras 13 e 14, de a a e: Amostras preparadas por dissolução de 18,8, 13,3, 11,5, 10,0 ou 8,2 g de uma β-maltose cristalina anidra convertida pelo tratamento com etanol (Presente invenção) de a’ a d’: Amostras preparadas por dissolução de 18,8, 13,3, 11,5, 10,0 ou 8,2 g da a-maltose cristalina anidra (Controle)
Na figura 15, a: Amostra preparada por mistura de 1,25 mL de água deionizada com 10 g de uma β-maltose cristalina anidra convertida pelo tratamento com etanol (Presente invenção) b: Amostra preparada por mistura de 1,25 mL de água deionizada com 10 g da a-maltose cristalina anidra (Controle)
Na figura 16, a: Amostra preparada por mistura de 6 mL de etanol com 10 g de uma β-maltose cristalina anidra convertida pelo tratamento com etanol (Presente invenção) b: Amostra preparada por mistura de 6 mL de etanol com 10 g da a-maltose cristalina anidra (Controle)
MELHOR MODO PARA REALIZAR A INVENÇÃO
A β-maltose cristalina anidra da presente invenção é uma β- maltose cristalina anidra nova com um ponto de ebulição de 154 a 159°C. A β-maltose cristalina anidra da presente invenção frequentemente contém 90% ou mais de β-anomero (β-maltose) como um isômero de maltose. Além disso, a β-maltose cristalina anidra da presente invenção mostra picos característicos em um diagrama de difração de raios-X pulverulento a ângulos de difração (20) de 7,8°, 19,5°, 20,7°, e 22,6°, que não são detectados em β- maltose cristalina aquosa convencional, em a-maltose cristalina anidra e em β-maltose cristalina anidra.
A β-maltose cristalina anidra da presente invenção pode ter uma forma de cristal poroso com um número de poros finos. O termo "cristal poroso" como referido na presente invenção significa especificamente um sa- carídeo cristalino mostrando um número de poros finos quando fotografados com um fator de escala de, por exemplo, 2000 vezes usando um microscópio exploratório de elétrons (de aqui em diante, abreviado como "SEM"). O cristal poroso tem uma área de superfície específica e distribuição de tamanho de poros específica relativamente grandes como propriedades físicas. Especificamente, o cristal poroso da β-maltose cristalina anidra da presente invenção tem propriedades físicas únicas como se segue: (a) a área de superfície específica é de 1 m2/g ou maior quando determinada por isotermas de adsorção de gás usando nitrogênio; e (b) o volume de intrusão do poro é de 0,1 mUg ou maior e os poros mostram um pico na faixa de um diâmetro de tamanho de poro menor que 5 μm, onde uma distribuição de tamanho de poro é medida por um método de preenchimento de mercúrio.
A β-maltose cristalina anidra da presente invenção pode ser produzida por desidratação de β-maltose cristalina aquosa em um solvente orgânico a uma temperatura ambiente ou maior. Como um solvente orgânico, é preferível usar, frequentemente, um solvente orgânico com uma polaridade relativamente alta e sendo facilmente misturado em água como álcoois e acetona, desejavelmente, uma solução aquosa (*) de álcool com um conteúdo de álcool de 85% ou maior, mais desejavelmente, uma solução aquosa (*) de etanol com um conteúdo de etanol de 85% ou maior.
Quando β-maltose cristalina aquosa é desidratada, uma razão de β-maltose cristalina aquosa e solvente orgânico não é restrita contanto que o objetivo seja alcançado. No caso de usar etanol como o solvente orgânico, um volume preferível de etanol para o peso de β-maltose cristalina aquosa é de, frequentemente, 5 vezes ou maior, desejavelmente, 10 vezes ou maior. Considerando um tempo requerido para o tratamento, é preferível controlar uma temperatura para a desidratação, frequentemente, a 40°C ou maior, desejavelmente, 50°C ou maior, mais desejavelmente, 60°C ou maior. Na de-sidratação, é preferível agitar o solvente orgânico suspenso com β-maltose cristalina aquosa para a desidratação eficiente. Após a desidratação, o solvente orgânico usado para a desidratação contém água, mas o solvente é reutilizável após a destilação.
A β-maltose cristalina anidra convencional facilmente absorve umidade e pode ser dificilmente manuseada como um cristal pulverulento, enquanto que a β-maltose cristalina anidra da presente invenção tem as características vantajosas de mostrar uma higroscopia relativamente baixa e poder ser facilmente manuseada. A β-maltose cristalina anidra da presente invenção é convertida em β-maltose cristalina aquosa como nos casos da β- maltose cristalina anidra convencional e da a-maltose cristalina anidra quando ela é permitida absorver umidade sob uma condição de umidade relativamente alta, mas não mostra absorção em excesso de umidade, diferente da maltose cristalina anidra convencional. Além disso, já que um cristal poroso da β-maltose cristalina anidra da presente invenção tem um número de poros e uma área de superfície específica relativamente grande, ela mostra solubilidade vantajosa em água em comparação com a β-maltose cristalina anidra convencional, particularmente, ela pode ser dissolvida rapidamente em água gelada.
Quando a β-maltose cristalina anidra da presente invenção é permitida dissolver em água para gerar uma concentração relativamente alta, ou seja, uma concentração maior que a concentração de saturação da β-maltose cristalina aquosa, o cristal é dissolvido em água e então a β-maltose cristalina aquosa é rapidamente cristalizada da solução resultante e solidificada para formar um bloco. Como descrito depois nos Exemplos, no caso de investigar a- maltose cristalina anidra convencional que tenha sido usada para pulverizar composições contendo umidade, ela requer uma concentração relativamente alta e um tempo relativamente longo para a cristalização e solidificação de β-maltose cristalina aquosa. Enquanto isso, a β-maltose cristalina anidra da presente invenção pode ser usada para cristalizar e solidificar rapidamente a β-maltose cristalina aquosa até mesmo a uma concentração relativamente baixa. A característica da β-maltose cristalina anidra da presente invenção pode ser usada para solidificar várias composições contendo umidade, por exemplo, licores alcoólicos como "saquê", sucos, como suco de frutas ou suco de vegetais, xaropes, e composições contendo lipídeos e umidade como creme de "espumante", em uma forma de bloco. Logo, a β-maltose cristalina anidra da presente invenção é útil nos vários campos como a indústria alimentícia.
Quando a β-maltose cristalina anidra da presente invenção é permitida absorver umidade, ela é rapidamente convertida em β-maltose cristalina aquosa enquanto mantendo sua forma pulverulenta. Logo, usando a β-maltose cristalina anidra da presente invenção, um suco pulverulento pode ser preparado facilmente. Além disso, já que a β-maltose cristalina anidra da presente invenção tem um número de poros, uma área de superfície específica relativamente grande, e um volume de intrusão grande, ela tem uma característica de reter uma quantidade relativamente grande de álcoois ou lipídeos enquanto mantendo sua forma pulverulenta. Usando a característica, álcoois pulverulentos e lipídeos pulverulentos podem ser preparados facilmente.
A β-maltose cristalina anidra porosa da presente invenção pode ser aplicada para vários usos usando as propriedades físicas, ou seja, um número de poros, área de superfície específica grande, e volume de intrusão grande. Por exemplo, vários materiais úteis podem ser estabilizados por con- finação dos materiais úteis em poros do cristal poroso. Além disso, o cristal poroso pode ser usado como uma microcápsula por confinação de fragrâncias voláteis nos poros e selagem dos poros por revestimento. Além disso, já que o cristal poroso contém ar nos poros, ele tem uma propriedade de "espumante" e pode ser usada para a preparação de cremes "espumantes" finos. De maneira correta, a β-maltose cristalina anidra porosa da presente invenção pode ser usada nos campos de comidas e bebidas, cosméticos, cosméticos medicados, e farmacêuticos assim como a β-maltose cristalina aquosa e a a-maltose cristalina anidra bem-conhecidas.
Os seguintes exemplos explicam a presente invenção em detalhes. Entretanto, a presente invenção não deve ser restrita por esses.
Exemplo 1
Preparação de uma maltose cristalina anidra
Em um balão de fundo redondo de 2 L equipado com um agitador e um termômetro, 1.200 mL de etanol foi colocado e aquecido a 70°C. Então, 120 g de "MALTOSE OM", um produto de maltose com uma pureza de 98% ou maior, produzido por Hayashibara Co., Ltd., Okayama, Japão, foram misturados com o etanol pré-aquecido e agitado a 170 rpm. Em intervalos constantes, cerca de 100 mL cada da suspensão de cristal foram coletados e centrifugados para separar sólidos e líquidos usando um separador centrífugo do tipo cesta, e o etanol aderido à superfície do cristal foi removido por espalhamento do cristal coletado em uma palheta e por secagem do resultante em um secador de circulação a 50°C por 20 min. O conteúdo de umidade do cristal resultante foi medido pelo método de Karl Fisher convencional. O curso de tempo do conteúdo de umidade do cristal é mostrado na Tabela 1.
Figure img0001
Como é evidente da Tabela 1, foi revelado que um conteúdo de umidade da β-maltose cristalina aquosa é decrescido para menos de 1% (p/p) pela desidratação em etanol (conversão por etanol) a 70°C por 480 min e a β-maltose cristalina aquosa é convertida em maltose cristalina anidra. O conteúdo de umidade e a cristalinidade, determinada pelo método de Ruland baseado em um diagrama de difração de raios-X pulverulento, da preparação de maltose cristalina anidra, obtida pelo tratamento por 480 min, eram de 0,32% (p/p) e 78%, respectivamente. De aqui em diante, a β-maltose cristalina anidra, obtida por aquecimento e desidratação em etanol, é chamada "a maltose cristalina anidra convertida pelo tratamento com etanol" em distinção à maltose cristalina anidra convencional.
Exemplo 2
Propriedades físicas da maltose cristalina anidra convertida pelo tratamento com etanol As seguintes preparações de maltose, (i), (ii), e (iii), foram usadas como Controle 1, Controle 2, e Controle 3, respectivamente, para comparação das propriedades físicas com aquelas da maltose cristalina anidra convertida pelo tratamento com etanol: (i) β-Maltose cristalina aquosa, usada como um material no Exemplo 1; (ii) a-maltose cristalina anidra convencional (produzida por Ha- yashibara Co., Ltd., Okayama, Japão, cristal de complexo α/β, conteúdo de maltose de 98% ou maior); e (iii) β-Maltose cristalina anidra, preparada por aquecimento de β-maltose cristalina aquosa a 95°C por 40 horas sob uma pressão reduzida de acordo com o método descrito em J. E. Hodge etal., "Cereal Science Today", Vol. 17, 7, páginas 180-188 (1972).
Os conteúdos de umidade, as razões de α- e β-anomero (de a- qui em diante, chamada de "razão de anômero") determinadas por cromato- grafia de gás-líquido (GLC), e as cristalinidades determinadas pelo método de Ruland baseado em seus diagramas de difração de raios-X pulverulentos, de preparações de maltose cristalina, os Controles de 1 a 3, estão resumi- dos na Tabela 2.
Figure img0002
Exemplo 2-1
Fotografia de SEM da maltose cristalina anidra convertida pelo tratamento com etanol Fotografias de SEM da maltose cristalina anidra convertida pelo tratamento com etanol no Exemplo 1, são mostradas na figura 1 (x 100) e figura 2 (x 2.000). Similarmente, as fotografias de SEM de maltose cristalina de Controle 1, Controle 2 e Controle 3 são mostradas nas figuras 3 (x 100) e 4 (x 2.000), e figuras 5 (x100) e 6 (x 2.000), e figuras 7 (x 100) e 8 (x 2.000), respectivamente.
Como é evidente das figuras 4, 6 e 8, poros foram dificilmente observados na β-maltose cristalina aquosa de material (Controle 1), a-maltose cristalina anidra preparada pelo método convencional (Controle 2), e β-maltose cristalina anidra preparada de acordo com o método divulgado na literatura por J. E. Hodge et al. (Controle 3). Enquanto isso, como mostrado na figura 2, uma maltose cristalina anidra obtida por aquecimento e desidratação em etanol mostrou um agregado de cristais de coluna finos e um número de poros, revelando que a maltose cristalina anidra tem uma estrutura porosa. Exemplo 2-2 Diagrama de difração de raios-X da maltose cristalina anidra convertida pelo tratamento com etanol
Difratometria de raios-X pulverulenta da maltose cristalina anidra convertida pelo tratamento com etanol foi realizada usando radiação Cu-Kcc e "GEIGERFLEX RDA-IIB", um difratômetro de raios-X pulverulento comer-cializado por Rigaku Co., Tóquio, Japão. O diagrama de difração de raios-X pulverulenta da maltose cristalina anidra convertida pelo tratamento com e- tanol no Exemplo 1 e aqueles das preparações de maltose cristalina, os Controles de 1 a 3, são mostrados na figura 9.
Como é evidente da figura 9, o diagrama de difração de raios-X da maltose cristalina anidra convertida pelo tratamento com etanol (figura 9, Símbolo "a") foi completamente diferente daquele de uma β-maltose cristalina anidra de Controle 3 (figura 9, Símbolo "b"), uma a-maltose cristalina anidra de Controle 2 (figura 9, Símbolo "c"), e uma β-maltose cristalina aquosa de Controle 1 (figura 9, Símbolo "d"). A maltose cristalina anidra convertida pelo tratamento com etanol mostrou picos característicos em um diagrama de difração de raios-X pulverulento a ângulos de difração (2θ) de 7,8s, 19,5s, 20,7s, e 22,6s, que não são detectados nas maltoses cristalinas dos Controles de 1 a 3. Os resultados indicam que a maltose cristalina anidra convertida pelo tratamento com etanol tem uma forma de cristal completamente diferente daquela da maltose cristalina bem-conhecida.
Exemplo 2-3
Calorimetria exploratória diferencial da maltose cristalina anidra convertida pelo tratamento com etanol Um padrão endotérmico em calorimetria exploratória diferencial (DSC) das amostras foi medida usando "DSC8230", um calorímetro exploratório diferencial comercializada por Rigaku Co., Tokyo, Japão. O padrão endotérmico da maltose cristalina anidra, convertida pelo tratamento com etanol no Exemplo 1, e aqueles das maltoses cristalinas anidras de Controle 2 e Controle 3 são mostrados na figura 10.
Como é evidente da figura 10, um padrão endotérmico da maltose cristalina anidra convertida pelo tratamento com etanol (figura 10, Símbolo "a") mostrou um pico endotérmico agudo a 167,3°C. Enquanto isso, aquele da β-maltose cristalina anidra de Controle 3 (figura 10, Símbolo "b") mostrou um pico endotérmico a 131,4s e aquele da a-maltose cristalina anidra de
Controle 2 (figura 10, Símbolo "c") mostrou picos endotérmicos largos a 176,8°C e 187,7°C. O padrão endotérmico da maltose cristalina anidra convertida pelo tratamento com etanol foi completamente diferente daqueles das maltoses cristalinas anidras de Controle 3 e de Controle 3.
Baseado nos fatos de que um diagrama de difração de raios-X pulverulento e no padrão endotérmico da análise de DSC da maltose cristalina anidra convertida pelo tratamento com etanol foram completamente diferentes daqueles das maltoses cristalinas anidras bem conhecidas convencionais usadas como Controle 2 e Controle 3, a maltose cristalina anidra convertida pelo tratamento com etanol no Exemplo 1 é concluída como sen-do uma maltose cristalina anidra nova. Sucessivamente, um ponto de ebulição e uma razão de anômero da maltose cristalina anidra convertida pelo tratamento com etanol foram medidos e os resultados foram comparados com aqueles das maltoses cristalinas anidras convencionais de Controle 2 e Controle 3 nos Exemplos 2-4 e 2-5 seguintes.
Exemplo 2-4
Ponto de ebulição da maltose cristalina anidra convertida pelo tratamento com etanol O ponto de ebulição da maltose cristalina anidra convertida pelo tratamento com etanol do Exemplo 1 foi medido por meios convencionais usando "MP-21", um aparelho de ponto de ebulição comercializado por Ya- mato Scientific Co., Ltd., Tóquio, Japão. Como resultado, foi revelado que o ponto de ebulição da maltose cristalina anidra convertida pelo tratamento com etanol era de 154 a 159°C. O valor era claramente menor que 168 a 175°C, o ponto de ebulição da a-maltose cristalina anidra bem-conhecida (cristal de complexo α/β, conteúdo de a-anômero de 73%) descrito na literatura por J. E. Hodge, e claramente maior que 120 a 125°C, o ponto de ebulição da β-maltose cristalina anidra bem-conhecida (conteúdo de β-anomero de 88%) descrito na mesma literatura. A maltose cristalina anidra convertida pelo tratamento com etanol no Exemplo 1 é completamente diferente da a- maltose cristalina anidra e da β-maltose cristalina anidra bem-conhecidas convencionais. A maltose cristalina anidra com um ponto de ebulição de 154 a 159°C é uma maltose cristalina anidra nova que tem sido desconhecida até agora.
Exemplo 2-5
Razão de anômero da maltose cristalina anidra convertida pelo tratamento com etanol Cerca de 70 mg de uma maltose cristalina anidra, convertida pelo tratamento com etanol do Exemplo 1, foram dissolvidos em 5 mL de piridina anidra. Então, 100 pL da solução resultante foram usados para deri- vatização com trimetilsilil convencional (derivatização com TMS) e a amostra resultante foi analisada por cromatografia de gás-líquido (GLC) e os conteúdos de a-anômero e β-anomero de maltose foram calculados pelo método de porcentagem de área simples para determinar a razão de anômero. GLC foi realizada sob as seguintes condições:
<Condições para análise de GLC>
Cromatógrafo de gás: GC-14-, produzido por Shimadzu Corporation, Kyoto, Japão; Coluna: Coluna com 2% de Silicon OV-17/Chromosorb W/AW/DMCS (ID 3 mm x 2 m); Temperatura da coluna: 210°C; Temperatura no injetor: 330°C; Gás de veículo: Nitrogênio; Gás de combustão: Hidrogênio; Gás de suporte: Ar; Detector: FID
Um cromatograma de GLC da maltose cristalina anidra convertida pelo tratamento com etanol é mostrado na figura 11. Os conteúdos de oc- anômero (figura 11, Símbolo "a") e de β-anomero (figura 11, Símbolo "b") da maltose cristalina anidra convertida pelo tratamento com etanol no Exemplo 1 era de 5,5% e 94,5%, respectivamente, e a maltose cristalina anidra era composta em sua maioria de β-anomero. Dos resultados do Exemplo 2-5, foi revelado que a maltose cristalina anidra convertida pelo tratamento com etanol é uma β-maltose. Baseado no resultado, a maltose cristalina anidra con- vertida pelo tratamento com etanol é chamada de "a β-maltose cristalina a- nidra convertida pelo tratamento com etanol", de aqui em diante.
Exemplo 2-6
Área de superfície específica da B-maltose cristalina anidra convertida por tratamento com etanol A área de superfície específica da β-maltose cristalina anidra convertida pelo tratamento com metanol foi medida por isotermas de absorção de nitrogênio usando "MODEL ASAP-2400", um analisador de área de superfície específica/distribuição de tamanho de poro comercializado por Micromeritics, Geórgia, EUA. Cerca de 3 g da β-maltose cristalina anidra, obtida no Exemplo 1, foram secos no aparelho sob uma pressão reduzida a cerca de 40°C por cerca de 15 horas como um pré-tratamento, e então usados para a medição da área de superfície específica pelas isortemas de absorção de nitrogênio. O resultado foi analisado pelo método de BET (Brun- nauer, Emmet e Teller) convencional. Aquelas da a-maltose cristalina anidra de Controle 2 e da β-maltose cristalina anidra de Controle 3 foram medidas pelo mesmo método.
A área de superfície específica da β-maltose cristalina anidra convertida pelo tratamento com etanol foi determinada como sendo de 3,39 m2/g, e aquela da a-maltose cristalina anidra de Controle 2 e da β-maltose cristalina anidra de Controle 3 foram de 0,48 m2/g, e 0,82 m2/g, respectivamente. A área de superfície específica da β-maltose cristalina anidra convertida pelo tratamento com etanol era de cerca de 7 a 4 vezes maior que aquela dos controles. A β-maltose cristalina anidra convertida pelo tratamento com etanol mostrou uma área de superfície específica grande devido ao número de poros.
Exemplo 2-7
Distribuição do tamanho de poro da β-maltose cristalina anidra convertida pelo tratamento com etanol A distribuição de tamanho de poro e o volume de intrusão da β- maltose cristalina anidra convertida pelo tratamento com etanol foram medidos por um método de preenchimento de mercúrio usando "AUTOPORE 9520", um analisador de distribuição de tamanho de poro comercializado por Micromeritics, Geórgia, USA. Cerca de 0,5 g da maltose cristalina anidra, obtida por tratamento em etanol a 70°C por 480 min no Exemplo 1, foi amostrada e a distribuição de tamanho de poro foi medida usando uma pressão inicial de 15 kPa. Aqueles da a-maltose cristalina anidra de Controle 2 e da β-maltose cristalina anidra de Controle 3 foram também medidas pelo mes-mo método. Os resultados estão na Tabela 3, e os diagramas de distribuição de tamanho de poros estão na figura 12.
Figure img0003
Como é evidente da Tabela 3, a β-maltose cristalina anidra con vertida pelo tratamento com etanol mostrou um volume de intrusão relativamente grande, ou seja, 1,05 mUg e um claro pico no diâmetro do tamanho de poro menor que 5 μm (figura 12, "o"). Na figura 12, as distribuições de tamanho de poro, observadas na a-maltose cristalina anidra de Controle 2 e a β-maltose cristalina anidra de Controle 3 (figura 12, Símbolos "Δ" e "•") não foram originadas dos poros, e se originaram de um fenômeno de injeção de mercúrio em um espaço entre as partículas de cristal, pois elas têm tamanho de partícula pequeno.
Exemplo 3
Hiqroscopicidade da β-maltose cristalina anidra convertida pelo tratamento com etanol A higroscopicidade da β-maltose cristalina anidra convertida pelo tratamento com etanol foi comparada com aquela da β-maltose cristalina aquosa de Controle 1, aquela da a-maltose cristalina anidra de Controle 2, e a β-maltose cristalina anidra de Controle 3 pelo teste de higroscopicidade convencional. Cerca de um grama de qualquer uma das amostras de maltose cristalina acima foi precisamente pesado em uma taça de alumínio de 5 pesagem (diâmetro: 50 mm x altura: 25 mm), então as tacas foram colocadas em um recipiente fechado (300 mm x 210 mm x 100 mm) controlado para gerar uma umidade relativa (UR) de 47%, 58%, 75%, ou 90% por uso de uma solução saturada de nitrato de lítio, brometo de sódio, cloreto de sódio, ou cloreto de bário, e mantido a 27°C por 2, 4, 6, 8, 24, 96 e 192 horas.
Os conteúdos de umidade das amostras a respectivos períodos foram medidos baseados na mudança do início do teste. Os conteúdos de umidade das amostras no início do teste foram medidos pelo método de Karl Fischer. Os cursos de tempo dos conteúdos de umidade das amostras nas condições de umidade respectivas são resumidos na Tabela 4.
Figure img0004
AC: Cristal anidro, HC: Cristal aquoso Mal: Maltose, ND: Não determinado, UR: Umidade relativa
Como é evidente dos na Tabela 4, no caso da β-maltose cristalina aquosa de Controle 1, o conteúdo de umidade quase não mudou de cerca de 5,3% (p/p) sob todas as condições de umidade. Foi revelado que a β- maltose cristalina aquosa de Controle 1 é um cristal estável com baixa hi- groscopicidade. A a-maltose cristalina anidra de Controle 2 absorveu umidade logo após o início do teste sob umidade de 75% de UR ou maior, mas quase não absorveu umidade sob 58% de UR ou menor e manteve o conteúdo de umidade de cerca de 0,8% (p/p). A β-maltose cristalina anidra de Controle 3 absorveu umidade logo após o início do teste sob uma umidade de 58% de UR, para gerar um conteúdo de umidade de cerca de 7% (p/p) após quatro horas e então liberou a umidade para gerar um conteúdo de umidade de cerca de 5,5% (p/p) após de seis a 24 horas do início do teste. Enquanto isso, a β-maltose cristalina anidra convertida pelo tratamento com etanol da presente invenção manteve um conteúdo de umidade de cerca de 0,4% (p/p) por 24 horas sob uma umidade de 58% de UR e então absorveu umidade. A β-maltose cristalina anidra da presente invenção mostrou uma higroscopicidade relativamente baixa em comparação com a β-maltose cristalina anidra convencional de Controle 3.
Como também é evidente dos resultados na Tabela 4, sob a condição de 90% de UR, a β-maltose cristalina anidra de Controle 3 e a a- maltose cristalina anidra de Controle 2 absorveram umidade para gerar conteúdos de umidade de cerca de 10% (p/p) e cerca de 17% (p/p), respectivamente, que são maiores que aqueles da maltose cristalina aquosa, ou seja, cerca de 5,3%, e então liberaram umidade. Enquanto isso, foi revelado que a β-maltose cristalina anidra convertida pelo tratamento com etanol gradualmente absorveu umidade, requerendo de 2 a 6 horas sob a condição de 75% de UR e de zero a 4 horas sob a condição de 90% de UR, e foi convertida em maltose cristalina aquosa sem mostrar um excesso de umidade de mais de 5,3% (p/p) como descrito acima. A β-maltose cristalina anidra convertida pelo tratamento com etanol da presente invenção (uma β-maltose cristalina anidra nova), com a característica acima, é útil como uma base para pulverizar composições contendo umidade sem solidificá-las.
Exemplo 4
β-Maltose cristalina anidra convertida pelo tratamento com etanol como uma base para solidificar solução aquosa A fim de investigar a utilidade da β-maltose cristalina anidra convertida pelo tratamento com etanol da presente invenção como base para solidificar composições contendo umidade, um teste de solidificação foi realizado usando água deionizada como um modelo de composição contendo umidade como se segue. Dez gramas de água deionizada com uma temperatura de 25°C foram despejados em um frasco de vidro de 60 mL (Diâmetro interno: 44 mm, Altura: 57 mm), e então, 8,2,10,0,11,5, 13,3, ou 18,8 g da β-maltose cristalina anidra convertida pelo tratamento com etanol, obtida pelo método no Exemplo 1, foram gradualmente misturados com a água deionizada em um minuto e dissolvidos com agitação em 240 a 250 rpm usando uma barra de agitação. Após completar a dissolução, cada solução de teste foi adicionalmente agitada por quatro minutos e então a agitação foi interrompida. Sucessivamente, cada solução de teste foi deixada repousar e uma solidificação da solução de teste pela cristalização da maltose cristalina aquosa foi monitorada macroscopicamente por duas horas. Nos casos das amostras solidificadas, o tempo de início da cristalização e o de final de solidificação foram checados. (Entretanto, a solução de teste dissolvendo 18,8 g de cristal teve sua agitação interrompida em três minutos após a dissolução, pois a cristalização de maltose cristalina aquosa iniciou imediatamente). A- pós monitoramento macroscópico por duas horas, cada frasco contendo qualquer uma das soluções de amostra foi fechado e deixado repousar adicionalmente por 18 horas. Depois, a condição (aparência) das amostras de teste após 20 horas da dissolução foi monitorada macroscopicamente e classificada pelas três seguintes fases: (1) solução clara; (2) solução nebulosa; e (3) solidificada. As amostras preparadas usando 10,0, 11,5, 13,3, ou 18,8 g da a-maltose cristalina anidra usada no Exemplo 2, como um substituto das amostras de teste, foram tratadas pelo mesmo procedimento como nos controles. O resultado foi realizado em uma sala onde a temperatura foi mantida a 25°C. Os resultados de cada amostra após 2 e 20 horas estão mostrados na Tabela 5 e na figura 13, e na Tabela 6 e na figura 14, respectivamente.
Figure img0005
Não determinado.
Figure img0006
*: Concentração calculada Não determinado.
Como é evidente da Tabela 5 e da figura 13, no caso da solução de teste preparada por dissolução de 18,8 g de β-maltose cristalina anidra convertida pelo tratamento com etanol, a cristalização se iniciou em 3 min após a dissolução e a solidificação foi completada em 3,5 min após a dissolução (Símbolo "a" na figura 13). No caso da solução de teste preparada por dissolução de 13,3 g da β-maltose cristalina anidra convertida pelo tratamento com etanol, a cristalização da maltose cristalina aquosa se iniciou em 6 min após a dissolução e a solidificação foi completada em 8 min após a dissolução (Símbolo "b" na figura 13). Entretanto, nos casos das soluções de teste preparadas por dissolução 11,5 g ou menos da β-maltose cristalina anidra convertida pelo tratamento com etanol (Símbolos de "c" a "e" na figura 13), a solidificação não foi observada. Enquanto isso, nos casos das solu-ções de controle preparadas por dissolução de a-maltose cristalina aquosa, a solidificação durante 2 horas após a dissolução não foi nem um pouco observada nas soluções de controle (Símbolos de "a’" a "d’" na figura 13).
Além disso, como é evidente da Tabela 6 e da figura 14, nos casos das amostras de teste preparadas por dissolução de 18,8 g e 13,3 g da β-maltose cristalina anidra convertida pelo tratamento com etanol, que foram solidificadas em 3,5 min e 8 min após a dissolução, as amostras de teste mantiveram suas fases solidificadas até mesmo após 20 horas (Símbolos "a" e "b" na figura 14). No caso das amostras de teste preparadas por dissolução de 11,5 g da β-maltose cristalina anidra convertida pelo tratamento com etanol, que não se solidificou durante 2 horas após a dissolução, a cristalização parcial da maltose cristalina aquosa foi observada, mas a solidificação não foi observada após até mesmo 20 horas (Símbolo "c" na figura 14). A- lém disso, nos casos das amostras de teste preparadas por dissolução de 10,0 g ou menos da β-maltose cristalina anidra convertida pelo tratamento com etanol (Símbolos "d" e "e" na figura 14), a cristalização não foi observada. Enquanto isso, no caso da amostra de controle preparada por dissolução de 18,8 g da a-maltose cristalina anidra, a solidificação foi completada em 20 horas após a dissolução (Símbolo "a" na figura 14). Entretanto, no caso da amostra de controle preparada por dissolução de 13,3 g, ela era uma so- lução nebulosa (Símbolo "b’" na figura 14). Nos casos das amostras de controle preparadas por dissolução de 11,5 g ou menos, a cristalização não foi observada e as amostras de controle mantiveram as formas de solução clara (Símbolos "c’" e "d’" na figura 14).
Os resultados acima indicam que a β-maltose cristalina anidra da presente invenção pode ser usada para solidificar componentes contendo umidade em uma quantidade menor e mais rapidamente que a a-maltose cristalina anidra, que foi tem sido usada como uma base para solidificar e pulverizar composições contendo umidade, e é útil como uma base para a solidificação.
Exemplo 5
Uísque sólido Quinze partes em peso de um uísque comercialmente produzido (40% de "prova") foram colocadas em um frasco, e então 20 partes em peso da β-maltose cristalina anidra, convertida pelo tratamento com etanol no E- xemplo 1, foram gradualmente misturadas com o uísque com agitação. A β- maltose cristalina anidra misturada foi completamente dissolvida no uísque, e após um breve intervalo, β-maltose cristalina aquosa foi rapidamente cristalizada da solução de uísque e o conteúdo total foi solidificado em uma forma de bloco. O produto é um uísque sólido com uma textura suave e uma doçura fina e pode ser vantajosamente usado para a produção de confeccionarias.
Exemplo 6
Xarope de bordo sólido Um xarope de bordo comercialmente produzido (concentração de sacarídeo de 66% (p/p)) foi diluído com água deionizada para gerar uma concentração de sacarídeo de 50% (p/p). Catorze partes em peso do xarope de bordo diluído foram colocadas em um frasco, e então nove partes em peso da β-maltose cristalina anidra, convertida pelo tratamento com etanol no Exemplo 1, foram completamente dissolvidos no xarope de bordo, e após um breve intervalo, β-maltose cristalina aquosa foi rapidamente cristalizada do xarope e o conteúdo total foi solidificado em uma forma de bloco. O pro- duto é um xarope de bordo sólido com uma textura suave e pode ser vantajosamente usado para a produção de confeccionarias.
Exemplo 7
Creme de "espumante" sólido
Quinze partes em peso de um creme de "espumante" comercialmente produzido (quantidade de gordura de leite: 40% (p/p), de sólidos não-gordurosos: 4% (p/p)) foram colocadas em um frasco, e então 13,8 partes em peso da β-maltose cristalina anidra, convertida pelo tratamento com etanol no Exemplo 1, foram gradualmente misturadas com o creme de "espumante" com agitação. A β-maltose cristalina anidra misturada foi comple-tamente dissolvida no creme de "espumante", e após um breve intervalo, β- maltose cristalina aquosa foi rapidamente cristalizada do creme e o conteúdo total foi solidificado em uma forma de bloco. O produto é um creme de "espumante" sólido com uma textura suave e pode ser vantajosamente usado para a produção de confeccionarias.
Exemplo 8
β-maltose cristalina anidra como uma base para pulverizar solução aquosa A fim de investigar o efeito da β-maltose cristalina anidra convertida pelo tratamento com etanol como uma base para pulverizar composições contendo umidade, um teste de pulverização foi realizado usando água deionizada como um modelo de composições contendo umidade como se segue. Dez gramas da β-maltose cristalina anidra convertida pelo tratamento com etanol, obtida pelo método no Exemplo 1, foram colocados em um be- cher de vidro de 200 m!_, e então 0,25 ml_ por onça (**) de água deionizada foram misturados com o cristal com agitação usando uma colher. A utilidade do cristal foi julgada pela quantidade de água deionizada adicionada ao limite de manutenção de uma forma de pó. A forma do pó foi classificada pelas quatro fases seguintes: (1) pó; (2) agregado; (3) torta; e (4) pasta. Como um controle, a a-maltose cristalina anidra usada no Exemplo 2 foi tratada pelo mesmo procedimento. O teste foi realizado em uma sala onde a temperatura foi mantida a 25°C. Os resultados do teste e a forma de cada amostra após misturar com 1,25 ml_ de água deionizada são mostrados na Tabela 7 e na figura 15, respectivamente.
Figure img0007
Como é evidente dos resultados na Tabela 7, a β-maltose cristalina anidra convertida pelo tratamento com etanol manteve sua boa forma pulverulenta quando 1,25 mL ou uma quantidade menor de água deionizada foi misturada (Símbolo "a" na figura 15). Quando 1,5 a 2,0 mL de água deionizada foram misturados, ela manteve sua forma pulverulenta embora agregados tenham sido formados. Enquanto isso, no caso da a-maltose cristalina anidra como um controle, ela manteve sua forma pulverulenta quando uma quantidade de 0,5 mL ou menor de água deionizada foram misturados. Entretanto, ela mostrou uma forma de agregado por 0,75 mL, forma de torta por 1,0 mL, e forma de pasta por 1,25 mL de água deionizada (Símbolo "b" na figura 15). Ela não manteve sua forma pulverulenta por mistura com 1,0 mL ou uma quantidade maior de água deionizada. Os resultados indicam que a β-maltose cristalina anidra convertida pelo tratamento com etanol é mais útil que a a-maltose cristalina anidra, como uma base para pulverizar composições contendo umidade.
Exemplo 9
β-maltose cristalina anidra como uma base para pulverizar álcoois Exceto para uso de etanol desidratado como substituto de água deionizada e mistura com 0,5 mL por onça (**), a utilidade da β-maltose cris- talina anidra convertida pelo tratamento com etanol como uma base para pulverizar álcoois foi investigada pelo mesmo procedimento como no Exemplo 8. Os resultados do teste e a forma de cada amostra após mistura com 6 mL de etanol desidratado são mostrados na Tabela 8 e na figura 16, respec- 5 tivamente.
Figure img0008
Como é evidente dos resultados na Tabela 8, a β-maltose crista lina anidra convertida pelo tratamento com etanol manteve sua boa forma pulverulenta quando 8,0 mL ou uma quantidade menor de álcool desidratado 10 foram misturados. Quando 9,0 a 10,0 mL de etanol desidratado foram misturados, ela manteve sua forma pulverulenta embora agregados tenham sido formados. Enquanto isso, no caso da a-maltose cristalina anidra como controle, ela manteve sua forma pulverulenta quando 3,0 mL ou uma quantidade menor de água (***) de álcool desidratado foram misturados. Entretanto, ela 15 mostrou uma forma de agregado por 3,5 mL, forma de torta por 4,0 a 5,0 mL, e forma de pasta (ver Símbolo "b" na figura 16) por 5,5 mL ou uma quantidade maior de etanol desidratado. Ela não pôde manter sua forma pulverulenta por mistura com 4,0 ml_ ou uma quantidade maior de etanol desidratado. Os resultados indicam que a v-maltose cristalina anidra convertida pelo tratamento com etanol é mais útil que a a-maltose cristalina anidra, como uma base para pulverizar composições contendo álcool.
Exemplo 10
"Aguardente" pulverulenta Mil gramas da β-maltose cristalina anidra, convertida pelo tratamento com etanol no Exemplo 1, foram colocadas em um frasco, e então 300 ml_ de um "aguardente" comercialmente produzido (40% de "prova") foram gradualmente misturados com o pó com agitação para fazer uma "a- guardente" pulverulenta. O produto é um "aguardente" pulverulento úmido e pode ser vantajosamente usado para produção de confeccionarias. APLICAÇÃO INDUSTRIAL
A presente invenção fornece uma β-maltose cristalina anidra nova. A β-maltose cristalina anidra da presente invenção tem uma propriedade de absorção de umidade relativamente baixa em comparação com a β-maltose cristalina anidra convencional e pode ser facilmente manipulada como um cristal pulverulento. A β-maltose cristalina anidra da presente invenção é rapidamente convertida em β-maltose cristalina aquosa por absorção de umidade. Adicionalmente, já que a β-maltose cristalina anidra da presente invenção exerce efeitos vantajosos em comparação com a-maltose cristalina anidra que tem sido usada como uma base para pulverizar composições contendo umidade, ela pode ser usada como uma base para solidificar ou pulverizar composições contendo umidade ou composições contendo álcool. Além disso, também se espera que um cristal poroso da β-maltose cristalina anidra da pre-sente invenção possa ser usado não apenas como maltose e uma base para a solidificação ou pulverização, mas também como substâncias para estabilizar substâncias úteis, microencapsular fragrâncias voláteis e "espumante". A presente invenção estabeleceu a β-maltose cristalina anidra nova, o processo para a produção da mesma e seus usos, e contribui grandemente para vários campos relacionados como manufaturados de açúcar, comidas e bebidas, cosméticos, e farmacêuticos, bem como para pesquisas científicas.

Claims (4)

1. β-maltose cristalina anidra, caracterizada pelo fato de que apresenta: um ponto de ebulição de 154 a 159°C; um teor de e-anômero de maltose sendo de 90% ou maior; picos característicos a ângulos de difração (2θ) de 7,8°, 19,5°, 20,7°, e 22,6°, em um diagrama de difração de raios-X pulverulento; e uma forma porosa com as seguintes propriedades físicas: (a) a área de superfície específica é de 1 m2/g ou maior, quando determinada por isotermas de adsorção de gás usando nitrogênio; e (b) o volume de intrusão do poro é de 0,1 mL/g ou maior, e os poros apresentam um pico na faixa de um diâmetro de tamanho de poro demenos do que 5 μm, onde uma distribuição de tamanho de poro é medida por um método de preenchimento com mercúrio.
2. Processo para produção de β-maltose cristalina anidra, como definida na reivindicação 1, caracterizado pelo fato de que compreende uma etapa de manutenção da β-maltose cristalina aquosa em um álcool a 60°C ou mais, para a desidratação.
3. Processo, de acordo com a reivindicação 2, caracterizado pelo fato de que o referido álcool é etanol.
4. Uso de β-maltose cristalina anidra, como definida na reivindi-cação 1, caracterizado pelo fato de que é como uma base para solidificar ou pulverizar composições contendo umidade ou contendo álcool.
BRPI0713928-4A 2006-07-06 2007-07-05 Bata-maltose cristalina anidra, sua preparação e seus usos BRPI0713928B1 (pt)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006186309 2006-07-06
JP2006-186309 2006-07-06
PCT/JP2007/063477 WO2008004626A1 (fr) 2006-07-06 2007-07-05 β-MALTOSE CRISTALLIN ANHYDRE, SON PROCÉDÉ DE FABRICATION ET D'UTILISATION

Publications (2)

Publication Number Publication Date
BRPI0713928A2 BRPI0713928A2 (pt) 2012-12-04
BRPI0713928B1 true BRPI0713928B1 (pt) 2022-04-12

Family

ID=38894593

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI0713928-4A BRPI0713928B1 (pt) 2006-07-06 2007-07-05 Bata-maltose cristalina anidra, sua preparação e seus usos

Country Status (9)

Country Link
US (1) US8168779B2 (pt)
EP (1) EP2045255B1 (pt)
JP (1) JP5208738B2 (pt)
KR (1) KR101464637B1 (pt)
CN (1) CN101484460B (pt)
AU (1) AU2007270359B2 (pt)
BR (1) BRPI0713928B1 (pt)
TW (1) TWI405774B (pt)
WO (1) WO2008004626A1 (pt)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107447058A (zh) * 2017-09-26 2017-12-08 精晶药业股份有限公司 一种结晶麦芽糖的制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092299A (ja) 1983-10-25 1985-05-23 Sanwa Kosan Kk 粉末マルト−スの製造法
US4816445A (en) * 1984-06-21 1989-03-28 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Crystalline alpha-maltose
JPS6135800A (ja) 1984-07-26 1986-02-20 株式会社林原生物化学研究所 結晶性α−マルト−スの製造方法
JPS617214A (ja) * 1985-04-11 1986-01-13 Hayashibara Biochem Lab Inc 用時溶解型非経口的栄養補給用固体製剤
US4870059A (en) * 1985-11-27 1989-09-26 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Dehydration of hydrous matter with anhydrous maltose
JPS62136240A (ja) 1985-12-11 1987-06-19 Hayashibara Biochem Lab Inc 脱水剤及びそれを用いる含水物の脱水方法
JPH0710341B2 (ja) 1985-11-27 1995-02-08 株式会社林原生物化学研究所 脱水剤及びそれを用いる含水物の脱水方法
JPS62138174A (ja) 1985-12-11 1987-06-20 Hayashibara Biochem Lab Inc 脱水食品とその製造方法
JPH0826345B2 (ja) * 1986-07-10 1996-03-13 株式会社林原生物化学研究所 固状油溶性物質の製造方法
JPH0826346B2 (ja) 1986-07-10 1996-03-13 株式会社林原生物化学研究所 固状油溶性物質の製法
JPH0692299A (ja) * 1992-09-16 1994-04-05 Toshiba Corp 排熱装置
JP3313183B2 (ja) 1993-03-30 2002-08-12 三和興産株式会社 無水結晶マルトースの製造方法
JP4212103B2 (ja) * 2002-06-19 2009-01-21 上野製薬株式会社 結晶状マルチトールの製造方法
CN101360836B (zh) 2005-12-26 2011-11-09 株式会社林原生物化学研究所 多孔性结晶糖质及其制备方法以及用途

Also Published As

Publication number Publication date
JP5208738B2 (ja) 2013-06-12
CN101484460B (zh) 2013-03-06
US20090292116A1 (en) 2009-11-26
KR101464637B1 (ko) 2014-11-24
AU2007270359A1 (en) 2008-01-10
TW200811198A (en) 2008-03-01
KR20090026341A (ko) 2009-03-12
BRPI0713928A2 (pt) 2012-12-04
EP2045255B1 (en) 2011-11-23
JPWO2008004626A1 (ja) 2009-12-03
CN101484460A (zh) 2009-07-15
US8168779B2 (en) 2012-05-01
TWI405774B (zh) 2013-08-21
EP2045255A4 (en) 2009-09-02
AU2007270359B2 (en) 2012-11-15
WO2008004626A1 (fr) 2008-01-10
EP2045255A1 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
Makower et al. Sugar crystallization, equilibrium moisture content and crystallization of amorphous sucrose and glucose
SIMPSON et al. Crystalline forms of lactose produced in acidic alcoholic media
Angberg Lactose and thermal analysis with special emphasis on microcalorimetry
Buckton et al. The effect of spray-drying feed temperature and subsequent crystallization conditions on the physical form of lactose
JP5394525B2 (ja) 多孔性結晶糖質とその製造方法並びに用途
US11337910B2 (en) Particulate composition comprising crystalline alpha, alpha-trehalose dihydrate, its preparation and uses
BRPI0713928B1 (pt) Bata-maltose cristalina anidra, sua preparação e seus usos
JP2848721B2 (ja) 結晶ラクチュロース三水和物とその製造法
Hargreaves Characterisation of lactose in the liquid and solid state using nuclear magnetic resonance and other methods: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University
JPH06228179A (ja) ラクチュロース無水物の製造法
JP3013954B2 (ja) 結晶ラクチュロース三水和物の製造法
Jouppila Mono-and Disaccharides: Selected Physicochemical and Functional Aspects
Matsumoto et al. Effect of dehydrated nystose addition on the reduction of water activity
Patel et al. Influence of sucrose, glucose and lactose on loss of water from solutions
Choi et al. Lactose Crystallization in Dry Products of Milk. I. A Method for Estimating the Degree of Crystallization
De Reijkex et al. Relationship between refractive index and dry-substance content for lactulose syrups
Nyqvist et al. Precipitation and physico-chemical properties of a drug substance
Van Scoik Nucleation and crystallization phenomena in amorphous sucrose systems
Jawad downloaded from the King’s Research Portal at https://kclpure. kcl. ac. uk/portal
JPS59146600A (ja) ゲルマニウムを固溶した砂糖
MXPA96002537A (en) Crystallization of methyl ester of alpha-l-aspartil-l-phenylalanin starting from aqua solutions

Legal Events

Date Code Title Description
B06G Technical and formal requirements: other requirements [chapter 6.7 patent gazette]
B25A Requested transfer of rights approved

Owner name: HAYASHIBARA CO., LTD. (JP)

B06A Patent application procedure suspended [chapter 6.1 patent gazette]
B15K Others concerning applications: alteration of classification

Free format text: AS CLASSIFICACOES ANTERIORES ERAM: C07H 3/04 , A23C 13/00 , A23L 1/09 , C12G 3/12 , C13K 7/00

Ipc: C07H 3/04 (2006.01), A23C 13/00 (2006.01), C12G 3/

B09B Patent application refused [chapter 9.2 patent gazette]

Free format text: INDEFIRO O PEDIDO DE ACORDO COM O(S) ARTIGO(S) 25 DA LPI

B12B Appeal against refusal [chapter 12.2 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 05/07/2007, OBSERVADAS AS CONDICOES LEGAIS. PATENTE CONCEDIDA CONFORME ADI 5.529/DF, QUE DETERMINA A ALTERACAO DO PRAZO DE CONCESSAO.

B21F Lapse acc. art. 78, item iv - on non-payment of the annual fees in time

Free format text: REFERENTE A 16A ANUIDADE.

B24J Lapse because of non-payment of annual fees (definitively: art 78 iv lpi, resolution 113/2013 art. 12)

Free format text: EM VIRTUDE DA EXTINCAO PUBLICADA NA RPI 2730 DE 02-05-2023 E CONSIDERANDO AUSENCIA DE MANIFESTACAO DENTRO DOS PRAZOS LEGAIS, INFORMO QUE CABE SER MANTIDA A EXTINCAO DA PATENTE E SEUS CERTIFICADOS, CONFORME O DISPOSTO NO ARTIGO 12, DA RESOLUCAO 113/2013.