WO2024135845A1 - 正極活物質層、正極および全固体二次電池 - Google Patents

正極活物質層、正極および全固体二次電池 Download PDF

Info

Publication number
WO2024135845A1
WO2024135845A1 PCT/JP2023/046248 JP2023046248W WO2024135845A1 WO 2024135845 A1 WO2024135845 A1 WO 2024135845A1 JP 2023046248 W JP2023046248 W JP 2023046248W WO 2024135845 A1 WO2024135845 A1 WO 2024135845A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
solid electrolyte
electrode active
core
Prior art date
Application number
PCT/JP2023/046248
Other languages
English (en)
French (fr)
Inventor
佑輔 久米
昭信 野島
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022205482A external-priority patent/JP2024089933A/ja
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2024135845A1 publication Critical patent/WO2024135845A1/ja

Links

Images

Definitions

  • the present invention relates to a positive electrode active material layer, a positive electrode, and an all-solid-state secondary battery.
  • a negative electrode active material for an all-solid-state battery has been proposed that includes a core portion containing a carbon material and a shell portion that covers at least a portion of the surface of the core portion (see Patent Document 1).
  • Patent Document 1 describes that the shell portion contains a metal oxide.
  • all-solid-state secondary batteries have insufficient self-discharge characteristics, and there has been a problem in that the capacity deteriorates in an open circuit state.
  • all-solid-state secondary batteries that use a halide-based solid electrolyte as the solid electrolyte the cell voltage drops significantly when left stationary in an open circuit state, and there has been a demand for improving the self-discharge characteristics.
  • the present invention was made in consideration of the above problems, and aims to provide a positive electrode active material layer capable of forming a positive electrode of an all-solid-state secondary battery with suppressed self-discharge, and a positive electrode and an all-solid-state secondary battery including the same.
  • the positive electrode active material layer includes a positive electrode active material and a solid electrolyte
  • the positive electrode active material includes particles having a core-shell structure including a core portion and a shell portion covering at least a portion of a surface of the core portion,
  • the core portion is made of a lithium transition metal oxide represented by the following formula (1):
  • the shell portion is made of a compound containing oxygen and at least one halogen element selected from the group consisting of F, Cl, Br, and I;
  • the solid electrolyte includes a halide-based solid electrolyte represented by the following formula (2).
  • M is one or more transition metals; 0.1 ⁇ x ⁇ 1.1, 1.8 ⁇ y ⁇ 2.2)
  • A is at least one element selected from Li and Cs.
  • E is at least one element selected from the group consisting of Al, Sc, Y, Zr, Hf, and lanthanoids.
  • G is OH, BO2 , BO3 , BO4, B3O6 , B4O7 , CO3 , NO3 , AlO2 , SiO3, SiO4, Si2O7, Si3O9, Si4O11, Si6O18 , PO3 , PO4 , P2O7 , P3O10 , O , SO , SO2 , SO3 , SO4 , SO5 , S2O3 , S2O4 , S2O5 , S2O6 ) , S2O7 , S2O8 , BF4 , PF6 , and BOB.
  • X is at least one element selected from the group consisting of F, Cl, Br, and I.
  • the positive electrode active material layer of the present invention includes a positive electrode active material and a solid electrolyte
  • the positive electrode active material includes particles having a core-shell structure including a core portion made of a lithium transition metal oxide represented by formula (1) and a shell portion made of a compound containing oxygen and a halogen element and covering at least a part of the surface of the core portion
  • the solid electrolyte includes a halide-based solid electrolyte represented by formula (2). Therefore, a shell portion made of a compound containing oxygen and a halogen element is arranged in a part between the core portion of the particle having the core-shell structure and the solid electrolyte.
  • a halogen element is an element with a large electronegativity.
  • the oxygen and the halogen element in the compound containing oxygen and a halogen element forming the shell portion form a strong covalent bond. Therefore, the compound containing oxygen and a halogen element forming the shell portion is electrochemically stable. For this reason, in an all-solid-state secondary battery having a positive electrode including the positive electrode active material layer of the present invention, the reaction between the core portion and the solid electrolyte is suppressed by the shell portion. As a result, this all-solid-state secondary battery is less likely to cause a cell voltage drop due to a side reaction when left stationary in an open circuit state, and has excellent self-discharge characteristics.
  • FIG. 1 is a cross-sectional schematic diagram showing an all-solid-state secondary battery according to a first embodiment.
  • 2 is an enlarged schematic cross-sectional view showing a part of a positive electrode active material layer 1B of the all-solid-state secondary battery 100 shown in FIG. 1 .
  • FIG. 2B is an enlarged schematic cross-sectional view of a portion of FIG. 2A.
  • the present inventors have focused on the reaction between a positive electrode active material and a solid electrolyte in a positive electrode active material layer including a solid electrolyte containing a halogen element, and have conducted extensive research. As a result, it has been found that it is sufficient to form an all-solid-state secondary battery structure having a cathode active material layer containing a cathode active material made of a specific lithium transition metal oxide and a solid electrolyte containing a specific halide-based solid electrolyte, and to perform an initial charge/discharge at a high temperature of 60° C.
  • the compound containing oxygen and a halogen element which is formed along at least a part of the surface of the particles of the positive electrode active material, is presumably formed by a reaction between oxygen released from the positive electrode active material and a halogen element diffused from the solid electrolyte when the all-solid-state secondary battery is charged and discharged at high temperatures of 60°C to 85°C.
  • the compound containing oxygen and a halogen element is electrochemically stable because it has a strong covalent bond between the halogen element, which has a high electronegativity, and oxygen.
  • the compound containing oxygen and a halogen element which is formed along at least a part of the surface of the particles of the positive electrode active material, is difficult to decompose, reduces the contact area between the positive electrode active material and the solid electrolyte, and suppresses the reaction between the positive electrode active material and the solid electrolyte when left to stand in an open circuit state.
  • the inventors have further investigated. As a result, they have found that it is possible to form an all-solid-state secondary battery structure having a positive electrode active material layer containing a positive electrode active material made of a specific lithium transition metal oxide, a solid electrolyte containing a specific halide-based solid electrolyte, and a compound containing a halogen element different from the halogen element contained in the solid electrolyte, and to perform an initial charge/discharge at a high temperature of 60°C to 85°C, thereby reacting the positive electrode active material with the compound containing a halogen element in the positive electrode active material layer and generating a compound containing oxygen and a halogen element along at least a portion of the surface of the particles of the positive electrode active material.
  • the compound containing oxygen and halogen elements thus produced along at least a portion of the surface of the particles of the positive electrode active material is also electrochemically stable and therefore does not easily decompose, reducing the contact area between the positive electrode active material and the solid electrolyte and suppressing the reaction between the positive electrode active material and the solid electrolyte when left stationary in an open circuit state.
  • a positive electrode comprising a positive electrode active material made of a specific lithium transition metal oxide and a solid electrolyte including a specific halide-based solid electrolyte, and having a positive electrode active material layer in which at least a portion of the surface of the particles of the positive electrode active material is coated with a compound containing oxygen and a halogen element, is less likely to experience a cell voltage drop due to a side reaction when an all-solid-state secondary battery having this is left stationary in an open circuit state, and has excellent self-discharge characteristics.
  • a positive electrode comprising a positive electrode active material and a solid electrolyte
  • the positive electrode active material includes particles having a core-shell structure including a core portion and a shell portion covering at least a portion of a surface of the core portion,
  • the core portion is made of a lithium transition metal oxide represented by the following formula (1):
  • the shell portion is made of a compound containing oxygen and at least one halogen element selected from the group consisting of F, Cl, Br, and I;
  • the positive electrode active material layer includes a solid electrolyte having a halide structure represented by the following formula (2):
  • M is one or more transition metals; 0.1 ⁇ x ⁇ 1.1, 1.8 ⁇ y ⁇ 2.2)
  • A is at least one element selected from Li and Cs.
  • E is at least one element selected from the group consisting of Al, Sc, Y, Zr, Hf, and lanthanoids.
  • G is OH, BO2 , BO3 , BO4, B3O6 , B4O7 , CO3 , NO3 , AlO2 , SiO3, SiO4, Si2O7, Si3O9, Si4O11, Si6O18 , PO3 , PO4 , P2O7 , P3O10 , O , SO , SO2 , SO3 , SO4 , SO5 , S2O3 , S2O4 , S2O5 , S2O6 ) , S2O7 , S2O8 , BF4 , PF6 , and BOB.
  • X is at least one element selected from the group consisting of F, Cl, Br, and I.
  • a positive electrode comprising the positive electrode active material layer according to any one of [1] to [5].
  • An all-solid-state secondary battery comprising the positive electrode according to [6], a negative electrode, and a solid electrolyte layer.
  • G is OH, BO2 , BO3 , BO4, B3O6 , B4O7 , CO3 , NO3 , AlO2 , SiO3, SiO4, Si2O7, Si3O9, Si4O11, Si6O18 , PO3 , PO4 , P2O7 , P3O10 , O , SO , SO2 , SO3 , SO4 , SO5 , S2O3 , S2O4 , S2O5 , S2O6 ) , S2O7 , S2O8 , BF4 , PF6 , and BOB.
  • X is at least one element selected from the group consisting of F, Cl, Br, and I.
  • the positive electrode active material layer, positive electrode, and all-solid-state secondary battery of this embodiment will be described in detail below with reference to the drawings as appropriate.
  • the drawings used in the following description may show enlarged characteristic parts for the sake of convenience in order to make the features of the present invention easier to understand. Therefore, the dimensional ratios of each component may differ from the actual ones.
  • the materials, dimensions, etc. exemplified in the following description are merely examples, and the present invention is not limited to them, and can be modified as appropriate within the scope of the present invention.
  • [All-solid-state secondary battery] 1 is a schematic cross-sectional view showing an all-solid-state secondary battery 100 according to the present embodiment.
  • the all-solid-state secondary battery 100 is used, for example, in laminate batteries, square batteries, cylindrical batteries, coin batteries, button batteries, and the like.
  • the all-solid-state secondary battery 100 has a laminate 4.
  • the laminate 4 has a positive electrode layer 1 (positive electrode), a negative electrode layer 2 (negative electrode), and a solid electrolyte layer 3 sandwiched between the positive electrode layer 1 and the negative electrode layer 2.
  • the number of layers of the positive electrode layer 1 and the negative electrode layer 2 included in the laminate 4 may be one each as shown in Fig. 1, or may be two or more.
  • one end of the positive electrode layer 1 is connected to a first external terminal (not shown).
  • One end of the negative electrode layer 2 is connected to a second external terminal (not shown).
  • the first external terminal and the second external terminal are made of a conductive material and are electrically connected to the outside.
  • the all-solid-state secondary battery 100 shown in FIG. 1 is charged or discharged by the exchange of ions between the positive electrode layer 1 and the negative electrode layer 2 via the solid electrolyte layer 3 .
  • the positive electrode layer 1 has a positive electrode current collector 1A and a positive electrode active material layer 1B. As shown in Fig. 1, the positive electrode active material layer 1B may be formed on only one side of the positive electrode current collector 1A, or may be formed on both sides of the positive electrode current collector 1A.
  • the positive electrode collector 1A has excellent electrical conductivity.
  • the positive electrode collector 1A is made of a metal such as silver, palladium, gold, platinum, aluminum, copper, nickel, stainless steel, iron, or an alloy thereof.
  • the positive electrode collector 1A may contain a positive electrode active material such as a lithium vanadium compound (LiV 2 O 5 , Li 3 V 2 (PO 4 ) 3 , LiVOPO 4 ).
  • Fig. 2A is a schematic cross-sectional view showing an enlarged portion of the positive electrode active material layer 1B of the all-solid-state secondary battery 100 shown in Fig. 1.
  • Fig. 2B is a schematic cross-sectional view showing an enlarged portion of Fig. 2A.
  • the positive electrode active material layer 1B includes particles 10 having a core-shell structure, which are positive electrode active materials, and a solid electrolyte 11.
  • the positive electrode active material layer 1B of this embodiment may include a conductive assistant 12.
  • the positive electrode active material reversibly releases and absorbs ions (for example, lithium ions) and desorbs and inserts ions.
  • the positive electrode active material includes a plurality of particles 10 having a core-shell structure including a particulate core portion 10a and a shell portion 10b covering at least a part of the core portion 10a.
  • the shell portion 10b may cover only a part of the surface of the core portion 10a, or may cover the entire surface of the core portion 10a. Ions such as lithium ions can be diffused in the shell portion 10b.
  • the all-solid-state secondary battery 100 having the positive electrode active material layer 1B including the particle 10 can be charged and discharged.
  • the multiple particles 10 contained in the positive electrode active material may be those in which only a portion of the surface of the core portion 10a is covered by the shell portion 10b, as shown in FIG. 2A, or those in which the entire surface of the core portion 10a is covered by the shell portion 10b, or both may be mixed in any ratio.
  • the particles 10 having a core-shell structure contained in the positive electrode active material may be of only one type, or may contain two or more types of particles having different materials forming the core portion 10a and/or the shell portion 10b.
  • the core portion 10a is made of a lithium transition metal oxide represented by the following formula (1).
  • Li x MO y ... (1) (In formula (1), M is one or more transition metals; 0.1 ⁇ x ⁇ 1.1, 1.8 ⁇ y ⁇ 2.2)
  • M in formula (1) is one or more transition metals.
  • M preferably includes one or more selected from Co, Ni, Mn, Fe, Mg, V, Ti, Al, Nb, Ti, Cu, and Cr, and more preferably includes one or more selected from Co, Ni, Mn, and Al.
  • the core portion 10a is reacted with a halogen element in a compound containing a halogen element contained in the positive electrode active material layer (a halogen element contained in the solid electrolyte 11 and/or a halogen element contained in a compound containing a halogen element different from the halogen element contained in the solid electrolyte 11), and a shell portion 10b having a sufficient thickness and a sufficiently high ratio of its area to the cross-sectional area of the particle 10 is easily formed.
  • x at least satisfies 0.1 ⁇ x ⁇ 1.1, and preferably satisfies 0.2 ⁇ x ⁇ 0.6. This is because the lithium transition metal oxide represented by formula (1) forming the core portion 10a has a stable crystal structure.
  • y at least satisfies 1.8 ⁇ y ⁇ 2.2, and preferably satisfies 1.9 ⁇ y ⁇ 2.1. This is because the lithium transition metal oxide represented by formula (1) forming the core portion 10a has a stable crystal structure.
  • LiCoO2 LiCoO2
  • LiNiO2 lithium nickel oxide
  • M is one or more elements selected from Al, Mg, Nb , Ti, Cu, and Cr
  • a composite metal oxide such as LiNixCoy
  • lithium transition metal oxides it is preferable to include any one selected from LiCoO 2 (LCO), LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NCM), and LiNi 0.85 Co 0.10 Al 0.05 O 2 (NCA), and LiCoO 2 (LCO) is the most preferable.
  • the core portion 10a is any one selected from LiCoO 2 (LCO), LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NCM), and LiNi 0.85 Co 0.10 Al 0.05 O 2 (NCA)
  • side reactions are less likely to occur when the battery is left stationary in an open circuit state, and the particles 10 have a core-shell structure that can form an all-solid-state secondary battery 100 with even better self-discharge characteristics.
  • the core portion 10a is particulate as shown in Figures 2A and 2B.
  • the particle size of the core portion 10a can be, for example, 5 ⁇ m to 30 ⁇ m, and is preferably 10 ⁇ m to 25 ⁇ m.
  • a shell portion 10b having a sufficient thickness and an appropriate area ratio to the cross-sectional area of the particle 10 can be easily formed by reacting the core portion 10a with a halogen element in a compound containing a halogen element contained in the positive electrode active material layer using a method in which the initial charge and discharge are performed at a high temperature of 60°C to 85°C.
  • the shell portion 10b is made of a compound containing oxygen and at least one halogen element selected from the group consisting of F, Cl, Br, and I.
  • the halogen element contained in the shell portion 10b is at least one selected from the group consisting of F, Cl, Br, and I, and preferably contains Br and/or Cl, i.e., at least one of Br and Cl. This is because the shell portion 10b is made of a compound having an appropriate covalent bond strength with oxygen, and the particle 10 can effectively suppress side reactions when left stationary in an open circuit state.
  • the shell portion 10b is made of a compound having a strong covalent bond strength with oxygen, so that the all-solid-state secondary battery equipped with this shell portion 10b can effectively suppress side reactions when left stationary in an open circuit state.
  • the halogen element contained in the shell portion 10b may be the same element as the halogen element contained in the solid electrolyte of the positive electrode active material layer 1B, or may be different.
  • the halogen element contained in the shell portion 10b may be the same element as the halogen element contained in the solid electrolyte of the positive electrode active material layer 1B, and particles different from the halogen element contained in the solid electrolyte of the positive electrode active material layer 1B may be mixed in any ratio.
  • the halogen element contained in the shell portion 10b of all particles 10 having a core-shell structure is the same element as the halogen element contained in the solid electrolyte of the cathode active material layer 1B. This is because the cathode active material layer 1B is capable of forming an all-solid-state secondary battery 100 that is less likely to undergo side reactions when left stationary in an open circuit state and has even better self-discharge characteristics.
  • the cathode active material layer 1B including the cathode active material including particles 10 having a core-shell structure with a core portion 10a and a shell portion 10b, and the solid electrolyte 11 by using a method of performing the initial charge and discharge at a high temperature of 60°C to 85°C without using a compound containing a halogen element different from the halogen element contained in the solid electrolyte 11.
  • the shell portion 10b is preferably composed of oxygen, at least one halogen element selected from the group consisting of F, Cl, Br, and I, Li, and M (one or more transition metals) in formula (1) forming the core portion 10a.
  • halogen element selected from the group consisting of F, Cl, Br, and I, Li, and M (one or more transition metals) in formula (1) forming the core portion 10a.
  • the shell portion 10b preferably has an average thickness of 0.1 ⁇ m to 1.0 ⁇ m, and more preferably 0.3 ⁇ m to 0.8 ⁇ m.
  • the average thickness of the shell portion 10b is 0.1 ⁇ m or more, the release of oxygen from the core portion 10a can be effectively suppressed in the all-solid-state secondary battery 100 having the cathode layer 1 with the cathode active material layer 1B. This makes it possible to more effectively suppress the reaction between the core portion 10a and the solid electrolyte 11.
  • the all-solid-state secondary battery 100 having the cathode layer 1 with the cathode active material layer 1B of this embodiment is less likely to undergo side reactions when left stationary in an open circuit state, and has even better self-discharge characteristics.
  • a method of performing the initial charge/discharge at a high temperature of 60°C to 85°C can be used to easily produce a positive electrode active material layer 1B that includes a positive electrode active material containing particles 10 having a core-shell structure with a core portion 10a and a shell portion 10b, and a solid electrolyte 11.
  • the average thickness of the shell portion 10b in this embodiment is a value measured by the method described below.
  • the cut surface of the positive electrode active material layer 1B is observed at a magnification of 30k times using a scanning electron microscope (SEM) to obtain a 256-tone grayscale image of the core-shell structured particles 10.
  • SEM scanning electron microscope
  • the light-colored region (whitish region (average grayscale brightness 193 to 207)) is the core portion 10a
  • the dark-colored region blackish region (average grayscale brightness 174 to 187)
  • the thickness of the shell portion 10b along the diameter direction of the particle 10 is measured at any five points, and the average value is the average thickness of the shell portion 10b.
  • the proportion of the area of the shell portion 10b in the cross-sectional area of the particle 10 having a core-shell structure is preferably 1% to 40%, and more preferably 15% to 30%.
  • the shell portion 10b can effectively reduce the contact area between the core portion 10a and the solid electrolyte 11.
  • the desorption of oxygen from the core portion 10a of the all-solid-state secondary battery 100 to the solid electrolyte 11 is suppressed, and the reaction between the core portion 10a and the solid electrolyte 11 is more effectively suppressed. This makes it even less likely for side reactions to occur when the battery is left stationary in an open circuit state, and makes it possible to form an all-solid-state secondary battery 100 with even better self-discharge characteristics.
  • a cathode active material layer 1B including a cathode active material including a particle 10 having a core-shell structure with a core portion 10a and a shell portion 10b, and a solid electrolyte 11 can be easily manufactured by using a method in which the initial charge and discharge is performed at a high temperature of 60°C to 85°C.
  • the ratio of the area of the shell portion 10b to the cross-sectional area of the particle 10 having a core-shell structure is a value measured by the method described below.
  • a grayscale image of 256 gradations of the particles 10 having a core-shell structure is obtained.
  • the light-colored regions of the particles 10 having a core-shell structure in the obtained image are designated as the core portion 10a, and the dark-colored regions are designated as the shell portion 10b.
  • the areas of the core portion 10a and the shell portion 10b are determined.
  • the ratio of the area of the shell portion 10b to the cross-sectional area of the particles 10 having a core-shell structure ( ⁇ area of the shell portion 10b/(area of the core portion 10a+area of the shell portion 10b) ⁇ 100(%)) is calculated for each of the five particles 10 having a core-shell structure, and the average value is regarded as the ratio of the area of the shell portion 10b to the cross-sectional area of the particles 10 having a core-shell structure.
  • the ratio of the content of halogen elements at the interface 14 between the shell portion 10b and the solid electrolyte 11 and the interface 13 between the shell portion 10b and the core portion 10a is preferably 0.6 or more and less than 1.0, and more preferably 0.6 to 0.9.
  • the particle 10 having a core-shell structure is produced by using a method in which the initial charge and discharge are performed at a high temperature of 60°C to 85°C, the content of halogen elements diffused from the compound containing halogen elements contained in the positive electrode active material layer becomes higher in the part of the shell portion 10b closer to the interface 14 with the solid electrolyte 11. On the other hand, the content of halogen elements becomes lower in the part of the shell portion 10b closer to the interface 13 with the core portion 10a.
  • the halogen element When the ratio of the content of the halogen element at the interface 14 to the interface 13 is 0.6 or more, the halogen element is sufficiently contained throughout the shell portion 10b. Therefore, a strong covalent bond between the halogen element and oxygen is sufficiently formed in the shell portion 10b. Therefore, the cathode active material layer 1B having the shell portion 10b which is electrochemically more stable is obtained. As a result, the particle 10 having a core-shell structure which is less likely to cause side reactions when left stationary in an open circuit state and can form an all-solid-state secondary battery 100 with even better self-discharge characteristics is obtained.
  • the cathode active material layer 1B including the particle 10 having a core-shell structure with the shell portion 10b covering a part of the core portion 10a can be easily manufactured by using a method of performing the initial charge and discharge at a high temperature of 60°C to 85°C.
  • the particle 10 is one in which excess covalent bonds between halogen elements and oxygen are suppressed at the interface 13 between the shell portion 10b and the core portion 10a, and the crystal structure of the core portion 10a is stable.
  • the particle 10 is one that can form an all-solid-state secondary battery 100 with even better self-discharge characteristics.
  • the ratio of the content of halogen elements at the interface 14 between the shell portion 10b and the solid electrolyte 11 in the particle 10 having a core-shell structure to the interface 13 between the shell portion 10b and the core portion 10a is a value measured by the method shown below.
  • a mapping analysis of halogen elements is performed in a square measurement range (measurement interval 0.1 ⁇ m) of 3 ⁇ m in length and 3 ⁇ m in width using a scanning transmission electron microscope (STEM) energy dispersive X-ray spectroscopy (EDS) device.
  • STEM scanning transmission electron microscope
  • the ratio of the content of the halogen elements is calculated using the measured value closest to the interface with core part 10a in the thickest shell part 10b along the diameter direction of particle 10 and the measured value closest to the interface with solid electrolyte 11, and the average value is calculated.
  • the positive electrode active material contained in the positive electrode active material layer 1B of this embodiment may be only particles 10 having a core-shell structure, as shown in FIG. 2A, or may contain positive electrode active materials used in known all-solid-state secondary batteries together with particles 10 having a core-shell structure, to the extent that the effects of the present application can be obtained.
  • positive electrode active materials that may be contained together with particles 10 having a core-shell structure include particles consisting of a core portion 10a that is not covered with a shell portion 10b.
  • the solid electrolyte 11 contained in the positive electrode active material layer 1B improves the ionic conductivity in the positive electrode active material layer 1B.
  • the solid electrolyte 11 contained in the positive electrode active material layer 1B includes a halide-based solid electrolyte represented by the following formula (2).
  • A is at least one element selected from Li and Cs.
  • E is at least one element selected from the group consisting of Al, Sc, Y, Zr, Hf, and lanthanoids.
  • G is OH, BO2 , BO3 , BO4, B3O6 , B4O7 , CO3 , NO3 , AlO2 , SiO3, SiO4, Si2O7, Si3O9, Si4O11, Si6O18 , PO3 , PO4 , P2O7 , P3O10 , O , SO , SO2 , SO3 , SO4 , SO5 , S2O3 , S2O4 , S2O5 , S2O6 ) , S2O7 , S2O8 , BF4 , PF6 , and BOB.
  • X is at least one element selected from the group consisting of F, Cl, Br, and I.
  • A is an essential component and is at least one element selected from Li and Cs, preferably Li or both Li and Cs, and more preferably Li.
  • a satisfies 0.5 ⁇ a ⁇ 6, preferably 2.0 ⁇ a ⁇ 4.0, and more preferably 2.5 ⁇ a ⁇ 3.5.
  • a satisfies 0.5 ⁇ a ⁇ 6 the content of A in the halide-based solid electrolyte represented by formula (2) becomes appropriate, and the ionic conductivity of the solid electrolyte 11 becomes sufficiently high.
  • E in formula (2) is an essential component that improves the ionic conductivity of the solid electrolyte 11.
  • E in formula (2) is at least one element selected from the group consisting of Al, Sc, Y, Zr, Hf, and lanthanides (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu).
  • E is preferably at least one element selected from the group consisting of Al, Sc, Y, Zr, Hf, and La, more preferably contains Al and/or Zr, and most preferably is Zr.
  • b is 0 ⁇ b ⁇ 2. It is preferable that b is 0.6 ⁇ b ⁇ 1, because the effect of improving the ionic conductivity of the solid electrolyte 11 by including E is more pronounced.
  • G is OH, BO2 , BO3 , BO4 , B3O6 , B4O7 , CO3 , NO3 , AlO2 , SiO3 , SiO4 , Si2O7 , Si3O9 , Si4O11, Si6O18, PO3, PO4, P2O7, P3O10 , O , SO , SO2 , SO3 , SO4 , SO5 , S2O3 , S2O4 , S2O5 , S2O6 , S2O7 , S2O8 , BF4 , PF6 . , BOB.
  • G is preferably at least one group selected from the group consisting of O, SO, SO 2 , SO 3 and SO 4 , and is particularly preferably O and/or SO 4 .
  • c satisfies 0 ⁇ c ⁇ 6. If the halide-based solid electrolyte represented by formula (2) contains G (0 ⁇ c), the potential window on the reduction side of the solid electrolyte 11 becomes wider, making it difficult to reduce. c is preferably 0.5 ⁇ c, since the effect of widening the potential window on the reduction side by including G becomes more pronounced. c is preferably c ⁇ 3, so that a decrease in the ionic conductivity of the solid electrolyte caused by an excessively high G content does not occur.
  • X in formula (2) is an essential component for improving the ionic conductivity of the solid electrolyte 11.
  • X in formula (2) is at least one selected from the group consisting of F, Cl, Br, and I, and preferably contains Br and/or Cl because the effect of the positive electrode active material layer 1B containing particles 10 having a core-shell structure is significant.
  • d satisfies 0 ⁇ d ⁇ 6.1. It is preferable that d is 1 ⁇ d. When d is 1 ⁇ d, the ionic conductivity of the solid electrolyte 11 becomes higher. In addition, it is preferable that d is d ⁇ 5 so that the potential window of the solid electrolyte 11 is not narrowed due to an excessively large content of X.
  • halide-based solid electrolytes represented by formula ( 2 ) include Li2ZrSO4Cl4 ( LZSOC) , Li2ZrCCl4 ( LZOC ) , Li2ZrCl6 ( LZC), Li2ZrBr6 ( LZBr ) , Li2ZrBO2Cl5 , Li2ZrBF4Cl5 , Li3YSO4Cl4 , Li3YCO3Cl4 , Li3YBO2Cl5 , Li3YBF4Cl5 , and the like .
  • Li 2 ZrSO 4 Cl 4 (LZSOC), Li 2 ZrCCl 4 (LZOC), Li 2 ZrCl 6 (LZC), and Li 2 ZrBr 6 (LZBr), and Li 2 ZrSO 4 Cl 4 (LZSOC) is the most preferable.
  • the side reaction is more unlikely to occur when left stationary in an open circuit state, and the positive electrode active material layer 1B can be formed to form an all-solid-state secondary battery 100 with even better self-discharge characteristics.
  • the solid electrolyte 11 contained in the positive electrode active material layer 1B of this embodiment may be only one type, or may contain two or more solid electrolytes with different compositions. When the solid electrolyte 11 contains two or more solid electrolytes with different compositions, all of them may be halide-based solid electrolytes represented by formula (2), or may contain a solid electrolyte used in a known all-solid-state secondary battery in addition to the halide-based solid electrolyte represented by formula (2) to the extent that the effects of the present application can be obtained.
  • the solid electrolyte 11 contained in the positive electrode active material layer 1B of this embodiment may be the same as the solid electrolyte contained in the solid electrolyte layer 3 described later.
  • the conductive assistant 12 is not particularly limited as long as it improves the electronic conductivity in the positive electrode active material layer 1B, and a known conductive assistant can be used.
  • the conductive assistant 12 may be in the form of powder or fiber.
  • Examples of the conductive assistant 12 include carbon-based materials such as graphite, carbon black, graphene, and carbon nanotubes, metals such as gold, platinum, silver, palladium, aluminum, copper, nickel, stainless steel, and iron, conductive oxides such as ITO (indium tin oxide), and mixtures thereof.
  • the conductive assistant 12 is preferably a carbon-based material such as carbon nanotubes, since it can improve the physical strength of the positive electrode active material layer 1B.
  • the positive electrode active material layer 1B contains a sufficient amount of the conductive additive 12, the electron conductivity in the positive electrode active material layer 1B is improved.
  • the particles 10 having a core-shell structure are generated by performing the initial charge/discharge at a high temperature of 60°C to 85°C, at least a part of the surface of the particulate material made of the lithium transition metal oxide represented by formula (1) is covered with the conductive additive 12, preventing the diffusion of halogen elements from the solid electrolyte 11 into the lithium transition metal oxide represented by formula (1).
  • the generation of excess shell portion 10b is suppressed, and the proportion of the area of the shell portion 10b in the cross-sectional area of the particles 10 having a core-shell structure is appropriate.
  • the positive electrode active material layer 1B contains a sufficient number of particles 10 having a core-shell structure
  • the release and occlusion, and the desorption and insertion of ions can be sufficiently carried out.
  • the positive electrode active material layer 1B contains a sufficient amount of the solid electrolyte 11 made of the halide-based solid electrolyte represented by formula (2)
  • the ionic conductivity in the positive electrode active material layer 1B is improved.
  • the amount of halogen elements diffusing from the solid electrolyte 11 becomes sufficiently large when the particles 10 having a core-shell structure are generated, and the shell portion 10b is generated sufficiently.
  • the positive electrode active material layer 1B of this embodiment may contain, in addition to the particles 10 having a core-shell structure, the solid electrolyte 11, and the conductive assistant 12 which may be contained as necessary, a compound containing the same halogen element as the halogen element contained in the shell portion 10b of the particles 10 having a core-shell structure.
  • compounds containing a halogen element include sodium chloride and sodium bromide.
  • the negative electrode layer 2 has a negative electrode current collector 2A and a negative electrode active material layer 2B. As shown in Fig. 1, the negative electrode active material layer 2B may be formed on only one side of the negative electrode current collector 2A, or may be formed on both sides of the negative electrode current collector 2A.
  • the negative electrode current collector 2A is the same as the positive electrode current collector 1A.
  • the negative electrode active material layer 2B includes a negative electrode active material and may include a conductive assistant and a solid electrolyte.
  • the negative electrode active material is a compound capable of absorbing and releasing ions.
  • the negative electrode active material is a compound exhibiting a lower potential than the positive electrode active material.
  • As the negative electrode active material a known material can be used, and a material similar to the positive electrode active material may be used.
  • the negative electrode active material and the positive electrode active material used in the all-solid-state secondary battery 100 are determined in consideration of the potential of the negative electrode active material and the potential of the positive electrode active material.
  • the conductive additive improves the electronic conductivity of the negative electrode active material layer 2 B.
  • the same materials as those usable in the positive electrode active material layer 1 B can be used.
  • Solid electrolyte The solid electrolyte contained in the negative electrode active material layer 2B improves the ionic conductivity in the negative electrode active material layer 2B.
  • the solid electrolyte one or more known solid electrolytes can be used in combination.
  • the solid electrolyte include oxide-based solid electrolytes, sulfide-based solid electrolytes, complex hydride-based solid electrolytes, and halide-based solid electrolytes.
  • the solid electrolyte the same one as the solid electrolyte 11 used in the above-mentioned positive electrode active material layer 1B may be used.
  • Solid electrolyte layer The solid electrolyte layer 3 can move ions by an electric field applied from the outside.
  • the solid electrolyte forming the solid electrolyte layer 3 one or more known solid electrolytes can be used in combination.
  • the solid electrolyte include oxide-based solid electrolytes, sulfide-based solid electrolytes, complex hydride-based solid electrolytes, and halide-based solid electrolytes.
  • the solid electrolyte layer 3 preferably contains a halide-based solid electrolyte represented by formula (2) similar to the solid electrolyte 11 contained in the positive electrode active material layer 1B, and preferably contains Li 2 ZrSO 4 Cl 4.
  • the reaction between the solid electrolyte layer 3 and the layer that will become the positive electrode active material layer 1B is easily promoted at the interface between the solid electrolyte layer 3 and the layer that will become the positive electrode active material layer 1B by performing the initial charge and discharge at a high temperature of 60°C to 85°C.
  • the laminate 4 having the positive electrode layer 1, the solid electrolyte layer 3, and the negative electrode layer 2 is preferably housed and sealed in an exterior body (not shown).
  • the exterior body may be any body capable of preventing the intrusion of moisture or the like from the outside to the inside, and any known exterior body may be used, and is not particularly limited.
  • the exterior body may be a bag-shaped metal laminate film formed by coating both sides of a metal foil with a polymer film. Such an exterior body is sealed by heat sealing the opening.
  • the metal foil forming the metal laminate film may be, for example, aluminum foil or stainless steel foil.
  • the polymer film placed on the outside of the exterior body is preferably made of a polymer with a high melting point, for example, polyethylene terephthalate (PET) or polyamide.
  • PET polyethylene terephthalate
  • the polymer film placed on the inside of the exterior body may be, for example, polyethylene (PE) or polypropylene (PP).
  • the all-solid-state secondary battery 100 of this embodiment can be manufactured by using, for example, a powder molding method.
  • a resin holder having a through hole in the center, a lower punch, and an upper punch are prepared.
  • a powdered positive electrode mixture as a material for the positive electrode active material layer 1B, a powdered negative electrode mixture as a material for the negative electrode active material layer 2B, and a powdered solid electrolyte as a material for the solid electrolyte layer 3 are prepared.
  • a mixed powder of a powder (particles) made of lithium transition metal oxide represented by formula (1), a powder of a solid electrolyte containing a halide-based solid electrolyte represented by formula (2), and a powder of a conductive assistant contained as necessary is prepared as the positive electrode mixture.
  • the composition of the powder (particles) made of lithium transition metal oxide represented by formula (1) corresponds to the composition of the core portion 10a.
  • the composition of the powder of the solid electrolyte containing a halide-based solid electrolyte represented by formula (2) corresponds to the composition of the solid electrolyte 11.
  • a lower punch is inserted from below the through hole of the resin holder, and the powdered materials, that is, the positive electrode mixture, the solid electrolyte, and the negative electrode mixture, are poured in this order from the opening side of the resin holder.
  • an upper punch is inserted on top of the poured powdered materials, and the product is placed in a press and pressed.
  • the pressing pressure is, for example, 20 kPa.
  • the powdered material put into the resin holder is pressed by the upper and lower punches inside the resin holder, thereby forming a compact in which the positive electrode active material layer 1B, the solid electrolyte layer 3, and the negative electrode active material layer 2B are laminated.
  • a positive electrode collector 1A is placed on top of the positive electrode active material layer 1B of the molded body, and a negative electrode collector 2A is placed under the negative electrode active material layer 2B.
  • a laminate 4 is obtained in which the positive electrode collector 1A/positive electrode active material layer 1B/solid electrolyte layer 3/negative electrode active material layer 2B/negative electrode collector 2A are laminated in this order.
  • external terminals are welded to the positive electrode collector 1A of the positive electrode layer 1 and the negative electrode collector 2A of the negative electrode layer 2, which form the laminate 4, by a known method, respectively, to electrically connect the positive electrode collector 1A or the negative electrode collector 2A to the external terminal.
  • the laminate 4 connected to the external terminal is housed in an exterior body. The opening of the exterior body is then heat sealed to seal it, forming an all-solid-state secondary battery structure.
  • the all-solid-state secondary battery structure thus formed is subjected to an initial charge and discharge at a high temperature of 60°C to 85°C. If the temperature during the initial charge and discharge is 60°C or higher, oxygen released from the lithium transition metal oxide reacts with halogen elements diffused from the halide solid electrolyte at the interface between the powder (particle) made of the lithium transition metal oxide represented by formula (1) and the powder of the solid electrolyte containing the halide solid electrolyte represented by formula (2). This produces particles 10 having a core-shell structure with a core portion 10a and a shell portion 10b.
  • the temperature in the initial charge and discharge is 60° C. or more, preferably 70° C. or more, and can be appropriately determined depending on the time required for charge and discharge. If the temperature in the initial charge and discharge is 85° C. or less, the oxygen released from the lithium transition metal oxide and the halogen element diffused from the halide-based solid electrolyte do not react excessively, and particles 10 having a stable crystal structure of the core portion 10a are obtained.
  • the temperature difference between the charging temperature and the discharging temperature in the initial charging and discharging is preferably 25° C. or less.
  • Conditions other than temperature, such as current and voltage, during the initial charge and discharge of the all-solid-state secondary battery structure can be publicly known conditions, and can be appropriately determined according to the application of the all-solid-state secondary battery 100 to be manufactured within a range in which particles 10 having a core-shell structure are produced.
  • the following method can be used for the initial charge/discharge of the all-solid-state secondary battery structure.
  • the all-solid-state secondary battery structure is placed in a thermostatic chamber at 60° C. to 85° C., and is charged at a constant current of 0.01 C to 2.00 C until the battery voltage reaches 2.75 V to 2.85 V. Then, the battery is charged at a constant voltage for 0.5 to 8.0 hours at that battery voltage. After that, the battery is discharged at a constant current of 0.05 C until the battery voltage reaches 1.3 V.
  • the proportion of the area of the shell portion 10b in the cross-sectional area of the particle 10 having a core-shell structure changes. Specifically, when the constant current charging conditions in the initial charge are 0.02C or higher, particles 10 in which the area of the shell portion 10b is 40% or less are more likely to be produced, and when the constant current charging conditions are 0.04C or higher, particles 10 in which the area of the shell portion 10b is 30% or less are more likely to be produced.
  • the ratio of the halogen element content at the interface 14 between the shell portion 10b and the solid electrolyte 11 in the particle 10 having a core-shell structure and the interface 13 between the shell portion 10b and the core portion 10a tends to decrease.
  • the ratio of the halogen element content tends to increase.
  • the constant voltage charging time in the initial charge is increased, the average thickness of the shell portion 10b increases, and if the constant voltage charging time is decreased, the average thickness of the shell portion 10b decreases. If the constant voltage charging time in the initial charge is 1.0 hour or more, particles 10 whose shell portion 10b has an average thickness of 0.1 ⁇ m or more tend to be produced, and if it is 3.0 hours or more, particles 10 whose shell portion 10b has an average thickness of 0.3 ⁇ m or more tend to be produced.
  • the constant voltage charging time in the initial charge is 7.0 hours or less, particles 10 whose shell portion 10b has an average thickness of 1.0 ⁇ m or less tend to be produced, and if it is 6.0 hours or less, particles 10 whose shell portion 10b has an average thickness of 0.8 ⁇ m or less tend to be produced.
  • the lithium transition metal oxide represented by formula (1) reacts with the halide-based solid electrolyte represented by formula (2) in the layer that becomes the positive electrode active material layer 1B. Then, a compound containing oxygen and a halogen element is generated along at least a part of the surface of the particle made of the lithium transition metal oxide represented by formula (1), and a particle 10 having a core-shell structure including a core portion 10a and a shell portion 10b is generated.
  • the all-solid-state secondary battery 100 can be manufactured.
  • the all-solid-state secondary battery 100 can be manufactured in the same manner as the manufacturing method described above, except that a mixed powder of a powder (particle) made of a lithium transition metal oxide represented by formula (1), a powder of a solid electrolyte containing a halide-based solid electrolyte represented by formula (2), a powder of a compound containing a halogen element to be contained in the shell portion 10b, and a powder of a conductive assistant to be contained as necessary is used as the positive electrode mixture.
  • a mixed powder of a powder (particle) made of a lithium transition metal oxide represented by formula (1), a powder of a solid electrolyte containing a halide-based solid electrolyte represented by formula (2), a powder of a compound containing a halogen element to be contained in the shell portion 10b, and a powder of a conductive assistant to be contained as necessary is used as the positive electrode mixture.
  • the above-mentioned positive electrode mixture is preferably manufactured by a method in which a powder (particle) made of lithium transition metal oxide represented by formula (1) is mixed with a compound containing a halogen element to be contained in the shell portion 10b to obtain a mixture, and the obtained mixture is mixed with a powder of a solid electrolyte containing a halide-based solid electrolyte represented by formula (2) and a powder of a conductive assistant to be contained as necessary.
  • the contact area between the powder (particle) made of lithium transition metal oxide and the compound containing a halogen element to be contained in the shell portion 10b is sufficiently larger than the contact area between the powder (particle) made of lithium transition metal oxide and the solid electrolyte.
  • the compound containing the halogen element to be contained in the shell portion 10b of the positive electrode mixture can be a compound containing the same halogen element as the halogen element contained in the shell portion 10b described above.
  • the lithium transition metal oxide represented by formula (1) reacts preferentially with the compound containing a halogen element to be contained in the shell portion 10b in the layer that becomes the positive electrode active material layer 1B. Then, a compound containing oxygen and a halogen element is generated along at least a part of the surface of the particle made of the lithium transition metal oxide represented by formula (1), and a particle 10 having a core-shell structure including a core portion 10a and a shell portion 10b is generated.
  • the all-solid-state secondary battery 100 can be manufactured.
  • the positive electrode active material layer 1B of this embodiment includes a positive electrode active material and a solid electrolyte 11.
  • the positive electrode active material includes a particle 10 having a core-shell structure including a core portion 10a made of a lithium transition metal oxide represented by formula (1) and a shell portion 10b made of a compound containing oxygen and at least one halogen element selected from the group consisting of F, Cl, Br, and I, and covering at least a part of the surface of the core portion 10a, and the solid electrolyte 11 includes a halide-based solid electrolyte represented by formula (2). Therefore, the shell portion 10b is disposed in a part between the core portion 10a of the particle 10 having a core-shell structure and the solid electrolyte 11.
  • the compound containing oxygen and a halogen element forming the shell portion 10b is electrochemically stable. For this reason, in the all-solid-state secondary battery 100 having the positive electrode layer 1 including the positive electrode active material layer 1B of this embodiment, the reaction between the core portion 10a and the solid electrolyte 11 is suppressed by the shell portion 10b, and side reactions are less likely to occur when the battery is left stationary in an open circuit state, resulting in excellent self-discharge characteristics.
  • Example 1 Preparation of Positive Electrode Mixture
  • a solid electrolyte powder shown in Table 1 a solid electrolyte powder shown in Table 1
  • graphite powder serving as a conductive additive were prepared, and were weighed and mixed to give a ratio of 50 mass %: 40 mass %: 10 mass % (lithium transition metal oxide: solid electrolyte: conductive additive), respectively.
  • negative electrode mixture As the negative electrode mixture, a powder of lithium titanate as the negative electrode active material, a powder of a solid electrolyte shown in Table 1, and a powder of graphite as a conductive additive were prepared, and were weighed and mixed to give a ratio of 40 mass %: 50 mass %: 10 mass % (negative electrode active material: solid electrolyte: conductive additive), respectively.
  • a resin holder with a through hole of 12 mm diameter in the center, and a lower punch and an upper punch of 11.99 mm diameter made of SKD11 were prepared.
  • the lower punch was inserted from the bottom of the through hole of the resin holder, and a powdered material, a positive electrode mixture, a solid electrolyte Li2ZrSO4Cl4 (LZSOC), and a negative electrode mixture were added in this order from the opening side of the resin holder.
  • an upper punch was inserted on top of the added powdered material, and a unit having the upper punch, a resin holder for containing the powdered material, and the lower punch was placed in a press and pressed at a pressure of 20 kPa to produce a molded body.
  • a positive electrode current collector made of aluminum foil with a diameter of 12 mm and a thickness of 15 ⁇ m was placed on the positive electrode active material.
  • the all-solid-state secondary battery structure thus formed was subjected to an initial charge and discharge by the method described below.
  • the all-solid-state secondary battery structure was placed in a thermostatic chamber at 60° C., and a charger/discharger SD8 (manufactured by Hokuto Denko Corporation) was used to perform constant current charging at 0.05 C until the battery voltage reached 2.80 V. Then, constant voltage charging at a battery voltage of 2.8 V was performed for 6.0 hours. The conditions for the initial charging are shown in Table 2. Thereafter, constant current discharging was performed at 0.05 C until the battery voltage reached 1.3 V. Through the above steps, the all-solid-state secondary battery 100 of Example 1 was obtained.
  • the lithium transition metal oxides shown in Table 1 are as follows: (LCO); LiCoO2 (NCM); LiNi1 / 3Mn1 / 3Co1 / 3O2 ( NCA ) ; LiNi0.85Co0.10Al0.05O2
  • the solid electrolytes shown in Table 1 are as follows: ( LZSOC ) ; Li2ZrSO4Cl4 (LZOC) ; Li2ZrCCl4 ( LZC ); Li2ZrCl6 (LZBr) ; Li2ZrBr6 ( LGPS ) ; Li10GeP2S12
  • Examples 2 to 4 The all-solid-state secondary batteries 100 of Examples 2 to 4 were obtained in the same manner as in Example 1, except that the upper limit battery voltage during the initial charge was 2.84 V in Example 2, 2.85 V in Example 3, and 2.79 V in Example 4, as shown in Table 2.
  • Example 5 and Example 6 The all-solid-state secondary batteries 100 of Examples 5 and 6 were obtained in the same manner as in Example 4, except that the positive electrode mixture was prepared using the solid electrolyte shown in Table 1.
  • Example 7 The all-solid-state secondary battery 100 of Example 7 was obtained in the same manner as in Example 4, except that a positive electrode mixture was prepared by mixing a lithium transition metal oxide powder (particles) serving as the core portion shown in Table 1 with sodium chloride to prepare a mixture, and then mixing the obtained mixture with a solid electrolyte powder and graphite powder serving as a conductive assistant shown in Table 1.
  • the ratio of each component in the positive electrode mixture was 50 mass %: 40 mass %: 10 mass % (lithium transition metal oxide: solid electrolyte: conductive assistant), and the ratio of sodium chloride was 2 mass parts per 100 mass parts of the total of the lithium transition metal oxide, solid electrolyte, and conductive assistant.
  • Example 8 The all-solid-state secondary battery 100 of Example 8 was obtained in the same manner as in Example 4, except that a positive electrode mixture was prepared by mixing a lithium transition metal oxide powder (particles) serving as the core portion shown in Table 1 with sodium bromide to prepare a mixture, and then mixing the obtained mixture with a solid electrolyte powder and a conductive additive graphite powder shown in Table 1.
  • the ratio of each component in the positive electrode mixture was 50 mass %: 40 mass %: 10 mass % (lithium transition metal oxide: solid electrolyte: conductive additive), and the ratio of sodium bromide was 2 mass parts per 100 mass parts of the total of the lithium transition metal oxide, solid electrolyte, and conductive additive.
  • Example 9 to 13 The all-solid-state secondary batteries 100 of Examples 9 to 13 were obtained in the same manner as in Example 8, except that the constant current charging conditions during the initial charging were 1.00 C for Example 9, 0.80 C for Example 10, 0.10 C for Example 11, 0.02 C for Example 12, and 0.01 C for Example 13, as shown in Table 2.
  • Examples 14 to 18 The all-solid-state secondary batteries 100 of Examples 14 to 18 were obtained in the same manner as in Example 8, except that the constant voltage charging time during the initial charging was 0.5 hours for Example 14, 1.0 hour for Example 15, 4.0 hours for Example 16, 7.0 hours for Example 17, and 8.0 hours for Example 18, as shown in Table 2.
  • Example 19 The constant current charging condition at the time of the initial charging was set to 2.00 C as shown in Table 2, and the constant voltage charging time at the time of the initial charging was set to 0.3 hours. Except for this, the all-solid-state secondary battery 100 of Example 19 was obtained in the same manner as in Example 8.
  • Example 20 An all-solid-state secondary battery 100 of Example 20 was obtained in the same manner as in Example 8, except that a positive electrode mixture was prepared using the solid electrolyte shown in Table 1.
  • Example 21 and Example 22 The all-solid-state secondary batteries 100 of Examples 21 and 22 were obtained in the same manner as in Example 8, except that the positive electrode mixture was prepared using the lithium transition metal oxide shown in Table 1.
  • Comparative Example 1 An all-solid-state secondary battery 100 of Comparative Example 1 was obtained in the same manner as in Example 1, except that the temperature during the initial charging was 20° C. as shown in Table 1.
  • Comparative Example 2 An all-solid-state secondary battery 100 of Comparative Example 2 was obtained in the same manner as in Example 7, except that a positive electrode mixture was prepared using the solid electrolyte shown in Table 1.
  • the cut surface of the positive electrode active material layer 1B was observed at a magnification of 30k times using a scanning electron microscope (SEM) (product name: SU3800; manufactured by Hitachi High-Tech Corporation).
  • SEM scanning electron microscope
  • imageJ image analysis software
  • the light-colored region (whitish region (average grayscale brightness 193 to 207)) was taken as the core portion 10a, and the dark-colored region (blackish region (average grayscale brightness 174 to 187)) was taken as the shell portion 10b.
  • the diameter of the core portion 10a was measured, and the average value was taken as the average particle size of the core portion 10a.
  • Halogen elements contained in the shell of particles having a core-shell structure For any particle 10 having a core-shell structure in the cut surface of the positive electrode active material layer 1B, a mapping analysis of halogen elements (measurement area of a square of 3 ⁇ m length and 3 ⁇ m width, measurement interval 0.1 ⁇ m) was performed using a scanning transmission electron microscope (STEM) energy dispersive X-ray spectroscopy (EDS) device (product name: HD-2700; manufactured by Hitachi High-Tech Corporation). As a result, the halogen elements in the shell portion 10b of the particle 10 having a core-shell structure were identified.
  • STEM scanning transmission electron microscope
  • EDS energy dispersive X-ray spectroscopy
  • the cut surface of the positive electrode active material layer 1B was observed at a magnification of 30k times using a scanning electron microscope (SEM) (product name: SU3800; manufactured by Hitachi High-Tech Corporation).
  • SEM scanning electron microscope
  • imageJ image analysis software
  • a 256-gradation grayscale image of the particle 10 having a core-shell structure was obtained.
  • the light-colored region whiletish region (average grayscale brightness 193 to 207)
  • the dark-colored region blackish region (average grayscale brightness 174 to 187)
  • the thickness of the shell portion 10b along the diameter direction of the particle 10 was measured at any five points, and the average value was taken as the average thickness of the shell portion 10b.
  • the ratio of the shell area to the cross-sectional area of a particle having a core-shell structure In the same manner as in the case of measuring the average thickness of the shell portion 10b, a grayscale image of 256 gradations of the particles 10 having a core-shell structure was obtained. In the same manner as in the case of measuring the average thickness of the shell portion 10b, the light-colored regions of the particles 10 having a core-shell structure in the obtained image were designated as the core portion 10a, and the dark-colored regions were designated as the shell portion 10b. Then, for any five particles 10 having a core-shell structure in the field of view, the areas of the core portion 10a and the shell portion 10b were obtained.
  • the ratio of the shell portion 10b to the cross-sectional area of the particles 10 having a core-shell structure ( ⁇ area of the shell portion 10b/(area of the core portion 10a+area of the shell portion 10b) ⁇ 100(%)) was calculated for each of the five particles 10 having a core-shell structure, and the average value was taken as the ratio of the area of the shell portion 10b to the cross-sectional area of the particles 10 having a core-shell structure.
  • the measured value closest to the interface with the core portion 10a in the thickest shell portion 10b along the diameter direction of the particle 10 and the measured value closest to the interface with the solid electrolyte 11 were used to calculate the ratio of the content of halogen elements (interface between the shell portion 10b and the core portion 10a/interface between the shell portion 10b and the solid electrolyte 11), and the average value was calculated.
  • the all-solid-state secondary batteries of Examples 1 to 22 had suppressed self-discharge compared to the all-solid-state secondary batteries of Comparative Example 1 and Comparative Example 2.
  • the all-solid-state secondary batteries of Examples 1 and 2 in which the ratio of the halogen element content at the interface was 0.6 or more and less than 1.0, had significantly suppressed self-discharge compared to Example 3, in which the ratio of the halogen element content at the interface was 0.5, and Examples 4 to 22, in which the ratio of the halogen element content at the interface was 1.0.
  • Example 4 in which the halogen element contained in the shell portion 10b was Cl, self-discharge was significantly suppressed compared to Example 8 in which the halogen element contained in the shell portion 10b was Br. Furthermore, in Example 6, in which the halogen element in shell portion 10b was the same as the halogen element contained in solid electrolyte 11 of positive electrode active material layer 1B, self-discharge was significantly suppressed compared to Example 7, in which the halogen element in shell portion 10b was different from the halogen element contained in solid electrolyte 11 of positive electrode active material layer 1B.
  • Example 10 to 12 in which the area ratio of the shell portion 10b to the cross-sectional area of the particles having a core-shell structure was 1% to 40%, self-discharge was suppressed compared to Example 9, in which the area ratio of the shell portion 10b was less than 1%, and Example 13, in which the area ratio was more than 40%. Furthermore, in Examples 15 to 17 in which the thickness of the shell portion 10b was 0.1 ⁇ m to 1.0 ⁇ m, self-discharge was suppressed compared to Example 14 in which the thickness of the shell portion 10b was less than 0.1 ⁇ m and Example 18 in which the thickness of the shell portion 10b was more than 1.0 ⁇ m.
  • the present invention provides a positive electrode active material layer capable of forming a positive electrode of an all-solid-state secondary battery with suppressed self-discharge, a positive electrode including the positive electrode, and an all-solid-state secondary battery.

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の正極活物質層(1B)は、正極活物質と、固体電解質(11)とを含み、正極活物質は、コア部(10a)と、コア部(10a)の表面の少なくとも一部を覆うシェル部(10b)とを備えるコアシェル構造を有する粒子(10)を含み、コア部(10a)は、リチウム遷移金属酸化物からなり、シェル部(10b)は、酸素と、F、Cl、Br、Iからなる群から選択される少なくとも1種のハロゲン元素とを含む化合物からなり、固体電解質(11)は、ハライド系固体電解質を含む。

Description

正極活物質層、正極および全固体二次電池
 本発明は、正極活物質層、正極および全固体二次電池に関する。
 本願は、2022年12月22日に、日本に出願された特願2022-205482号に基づき優先権を主張し、その内容をここに援用する。
 近年、エレクトロニクス技術の発達はめざましく、携帯電子機器の小型軽量化、薄型化、多機能化が図られている。それに伴い、電子機器の電源となる電池に対し、小型軽量化、薄型化、信頼性の向上が強く望まれている。そこで、電解質として固体電解質を用いる全固体二次電池が注目されている。従来、全固体二次電池の固体電解質として、酸化物系固体電解質、硫化物系固体電解質、錯体水素化物系固体電解質、ハライド系固体電解質などが知られている。
 全固体電池用負極活物質としては、炭素材料を含むコア部と、上記コア部の表面を少なくとも一部被覆するシェル部とを含むものが提案されている(特許文献1参照)。特許文献1には、シェル部が金属酸化物を含むことが記載されている。
日本国特許第7038951号公報(B)
 しかしながら、従来の全固体二次電池は、自己放電特性が不十分であり、開回路状態で容量が劣化することが問題となっていた。
 特に、固体電解質としてハライド系固体電解質を用いた全固体二次電池では、開回路状態で静置したときのセル電圧降下が顕著であり、自己放電特性を改善することが要求されていた。
 本発明は、上記課題に鑑みてなされたものであり、自己放電の抑制された全固体二次電池の正極を形成できる正極活物質層、これを備える正極および全固体二次電池を提供することを目的とする。
 上記課題を解決するため、以下の手段を提供する。
 本発明の一態様に係る正極活物質層は、正極活物質と、固体電解質とを含み、
 前記正極活物質は、コア部と、前記コア部の表面の少なくとも一部を覆うシェル部とを備えるコアシェル構造を有する粒子を含み、
 前記コア部は、下記式(1)で表されるリチウム遷移金属酸化物からなり、
 前記シェル部は、酸素と、F、Cl、Br、Iからなる群から選択される少なくとも1種のハロゲン元素とを含む化合物からなり、
 前記固体電解質は、下記式(2)で表されるハライド系固体電解質を含む。
 LiMO・・・(1)
(式(1)において、Mは1種以上の遷移金属である。0.1<x<1.1、1.8<y<2.2)
 A・・・(2)
(式(2)において、AはLiとCsから選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。GはOH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、O、SO、SO、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOBからなる群から選択される少なくとも1つの基である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0≦c≦6、0<d≦6.1)
 本発明の正極活物質層は、正極活物質と固体電解質とを含み、正極活物質が、式(1)で表されるリチウム遷移金属酸化物からなるコア部と、酸素とハロゲン元素とを含む化合物からなり、前記コア部の表面の少なくとも一部を覆うシェル部とを備えるコアシェル構造を有する粒子を含み、固体電解質が、式(2)で表されるハライド系固体電解質を含む。したがって、コアシェル構造を有する粒子のコア部と固体電解質との間の一部には、酸素とハロゲン元素とを含む化合物からなるシェル部が配置されている。ハロゲン元素は、電気陰性度の大きい元素である。このため、シェル部を形成している酸素とハロゲン元素とを含む化合物中の酸素とハロゲン元素とは、強固な共有結合を形成している。したがって、シェル部を形成している酸素とハロゲン元素とを含む化合物は、電気化学的に安定である。このことから、本発明の正極活物質層を備える正極を有する全固体二次電池では、シェル部によってコア部と固体電解質との反応が抑制される。その結果、この全固体二次電池は、開回路状態で静置したときの副反応によるセル電圧降下が生じにくく、自己放電特性に優れるものとなる。
第1実施形態にかかる全固体二次電池を示した断面模式図である。 図1に示す全固体二次電池100の正極活物質層1Bの一部を拡大して示した断面模式図である。 図2Aの一部を拡大して示した断面模式図である。
 本発明者は、上記課題を解決するために、ハロゲン元素を含む固体電解質を含む正極活物質層における、正極活物質と固体電解質との反応に着目し、鋭意検討を重ねた。
 その結果、特定のリチウム遷移金属酸化物からなる正極活物質と、特定のハライド系固体電解質を含む固体電解質とを含む正極活物質層を有する全固体二次電池構造を形成し、60℃~85℃の高温で初回の充放電を行うことによって、正極活物質層中で正極活物質と固体電解質とを反応させて、正極活物質の粒子の表面の少なくとも一部に沿って、酸素とハロゲン元素とを含む化合物を生成させればよいことを見出した。
 正極活物質の粒子の表面の少なくとも一部に沿って生成した、酸素とハロゲン元素とを含む化合物は、全固体二次電池を60℃~85℃の高温で充放電させることによって、正極活物質から離脱した酸素と、固体電解質から拡散したハロゲン元素とが反応して生成するものと推定される。酸素とハロゲン元素とを含む化合物は、電気陰性度の大きいハロゲン元素と酸素との強固な共有結合を有しているため、電気化学的に安定である。このため、正極活物質の粒子の表面の少なくとも一部に沿って生成した、酸素とハロゲン元素とを含む化合物は、分解しにくく、正極活物質と固体電解質との接触面積を削減し、開回路状態で静置したときの正極活物質と固体電解質との反応を抑制する。
 上記知見に基づいて、本発明者は、さらに検討を重ねた。その結果、特定のリチウム遷移金属酸化物からなる正極活物質と、特定のハライド系固体電解質を含む固体電解質と、固体電解質に含まれるハロゲン元素とは異なるハロゲン元素を含む化合物とを含む正極活物質層を有する全固体二次電池構造を形成し、60℃~85℃の高温で初回の充放電を行うことによって、正極活物質層中で正極活物質とハロゲン元素を含む化合物とを反応させて、正極活物質の粒子の表面の少なくとも一部に沿って、酸素とハロゲン元素とを含む化合物を生成させてもよいことを見出した。
 このようにして正極活物質の粒子の表面の少なくとも一部に沿って生成した、酸素とハロゲン元素とを含む化合物も、電気化学的に安定であるため分解しにくく、正極活物質と固体電解質との接触面積を削減し、開回路状態で静置したときの正極活物質と固体電解質との反応を抑制する。
 これらのことから、特定のリチウム遷移金属酸化物からなる正極活物質と、特定のハライド系固体電解質を含む固体電解質とを含み、正極活物質の粒子の表面の少なくとも一部が、酸素とハロゲン元素とを含む化合物で被覆された正極活物質層を備える正極は、これを有する全固体二次電池を開回路状態で静置したときの副反応によるセル電圧降下が生じにくく、自己放電特性に優れるものになるものと推定される。
 本発明は以下の態様を含む。
[1] 正極活物質と、固体電解質とを含み、
 前記正極活物質は、コア部と、前記コア部の表面の少なくとも一部を覆うシェル部とを備えるコアシェル構造を有する粒子を含み、
 前記コア部は、下記式(1)で表されるリチウム遷移金属酸化物からなり、
 前記シェル部は、酸素と、F、Cl、Br、Iからなる群から選択される少なくとも1種のハロゲン元素とを含む化合物からなり、
 前記固体電解質は、下記式(2)で表されるハライド系固体電解質を含む、正極活物質層。
 LiMO・・・(1)
(式(1)において、Mは1種以上の遷移金属である。0.1<x<1.1、1.8<y<2.2)
 A・・・(2)
(式(2)において、AはLiとCsから選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。GはOH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、O、SO、SO、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOBからなる群から選択される少なくとも1つの基である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0≦c≦6、0<d≦6.1)
[2] 前記シェル部の平均厚みが0.1μm~1.0μmである、[1]に記載の正極活物質層。
[3] 前記コアシェル構造を有する粒子の断面積に占める前記シェル部の面積の割合が1%~40%である、[1]または[2]に記載の正極活物質層。
[4] 前記シェル部に含まれるハロゲン元素と、前記固体電解質に含まれるハロゲン元素とが同一元素である、[1]~[3]のいずれかに記載の正極活物質層。
[5] 前記シェル部と前記固体電解質との界面と、前記シェル部と前記コア部との界面とにおけるハロゲン元素の含有量の比が、0.6以上1.0未満である、[1]~[4]のいずれかに記載の正極活物質層。
[6] [1]~[5]のいずれかに記載の正極活物質層を含む、正極。
[7] [6]に記載の正極と、負極と、固体電解質層とを備える、全固体二次電池。
[8] 前記固体電解質層が、下記式(2)で表されるハライド系固体電解質を含む、[7]に記載の全固体二次電池。
 A・・・(2)
(式(2)において、AはLiとCsから選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。GはOH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、O、SO、SO、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOBからなる群から選択される少なくとも1つの基である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0≦c≦6、0<d≦6.1)
[9] 前記固体電解質層が、LiZrSOClを含む、[8]に記載の全固体二次電池。
 以下、本実施形態の正極活物質層、正極および全固体二次電池について、図面を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合がある。したがって、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であり、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
[全固体二次電池]
 図1は、本実施形態の全固体二次電池100を示した断面模式図である。全固体二次電池100は、例えば、ラミネート電池、角型電池、円筒型電池、コイン型電池、ボタン型電池等に用いられる。
 図1に示すように、全固体二次電池100は、積層体4を有する。積層体4は、正極層1(正極)と、負極層2(負極)と、正極層1と負極層2との間に挟持された固体電解質層3とを有する。積層体4に含まれる正極層1および負極層2の層数は、図1に示すように、それぞれ1層ずつであってもよいし、2層以上であってもよい。
 図1に示す正極層1は、一端が第1外部端子(不図示)に接続されている。負極層2は、一端が第2外部端子(不図示)と接続されている。第1外部端子および第2外部端子は、導電材料で形成され、それぞれ外部と電気的に接続されている。
 図1に示す全固体二次電池100は、正極層1と負極層2との間で、固体電解質層3を介したイオンの授受により充電又は放電する。
「正極層」
 図1に示すように、正極層1は、正極集電体1Aと、正極活物質層1Bとを有する。正極活物質層1Bは、図1に示すように、正極集電体1Aの片面にのみ形成されていてもよいし、正極集電体1Aの両面に形成されていてもよい。
(正極集電体)
 正極集電体1Aは、導電率に優れる。正極集電体1Aは、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケル、ステンレス、鉄等の金属およびそれらの合金からなる。正極集電体1Aは、例えば、リチウムバナジウム化合物(LiV、Li(PO、LiVOPO)などの正極活物質を含んでいてもよい。
(正極活物質層)
 図2Aは、図1に示す全固体二次電池100の正極活物質層1Bの一部を拡大して示した断面模式図である。図2Bは、図2Aの一部を拡大して示した断面模式図である。図2Aおよび図2Bに示すように、正極活物質層1Bは、正極活物質であるコアシェル構造を有する粒子10と、固体電解質11とを含む。本実施形態の正極活物質層1Bは、図2Aおよび図2Bに示すように、導電助剤12を含んでいてもよい。
(正極活物質)
 正極活物質は、イオン(例えば、リチウムイオン)の放出及び吸蔵、イオンの脱離及び挿入を可逆的に進行させる。
 正極活物質は、図2Bに示すように、粒子状のコア部10aと、コア部10aの少なくとも一部を覆うシェル部10bとを備えるコアシェル構造を有する粒子10を複数含む。シェル部10bは、図2Bに示すように、コア部10aの表面の一部のみを覆っていてもよいし、コア部10aの表面全体を覆っていてもよい。シェル部10b内には、リチウムイオンなどのイオンが拡散できる。したがって、正極活物質として、コア部10aの表面全体がシェル部10bで被覆されている粒子10を用いた場合であっても、これを含む正極活物質層1Bを有する全固体二次電池100は充放電可能である。
 正極活物質中に含まれる複数の粒子10は、図2Aに示すように、シェル部10bによってコア部10aの表面の一部が覆われているもののみであってもよいし、シェル部10bによってコア部10aの表面全体が覆われているもののみであってもよいし、両方が任意の割合で混在していてもよい。
 正極活物質に含まれるコアシェル構造を有する粒子10は、1種のみであってもよいし、コア部10aおよび/またはシェル部10bを形成している材料の異なる2種以上のものを含んでいてもよい。
 コア部10aは、下記式(1)で表されるリチウム遷移金属酸化物からなる。
 LiMO・・・(1)
(式(1)において、Mは1種以上の遷移金属である。0.1<x<1.1、1.8<y<2.2)
 式(1)におけるMは、1種以上の遷移金属である。Mは、Co、Ni、Mn、Fe、Mg、V、Ti、Al、Nb、Ti、Cu、Crから選ばれる1種以上を含むことが好ましく、Co、Ni、Mn、Alから選ばれる1種以上を含むことがより好ましい。60℃~85℃の高温で初回の充放電を行う方法を用いて、コア部10aと正極活物質層に含まれるハロゲン元素を含む化合物中のハロゲン元素(固体電解質11に含まれるハロゲン元素、および/または固体電解質11に含まれるハロゲン元素とは異なるハロゲン元素を含む化合物に含まれるハロゲン元素)とを反応させることにより、十分な厚みを有し、粒子10の断面積に占める面積の割合が十分に高いシェル部10bが形成されやすいためである。
 式(1)におけるxは、少なくとも0.1<x<1.1を満たしており、さらに0.2<x<0.6を満たすことが好ましい。コア部10aを形成している式(1)で表されるリチウム遷移金属酸化物が、安定した結晶構造を有するものとなるためである。
 式(1)におけるyは、少なくとも1.8<y<2.2を満たしており、さらに1.9<y<2.1を満たすことが好ましい。コア部10aを形成している式(1)で表されるリチウム遷移金属酸化物が、安定した結晶構造を有するものとなるためである。
 式(1)で表されるリチウム遷移金属酸化物としては、具体的には、コバルト酸リチウム(LiCoO(LCO))、ニッケル酸リチウム(LiNiO)、LiNiCoMn(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物などが挙げられる。これらのリチウム遷移金属酸化物の中でも、LiCoO(LCO)、LiNi1/3Mn1/3Co1/3(NCM)、LiNi0.85Co0.10Al0.05(NCA)から選ばれるいずれかを含むことが好ましく、LiCoO(LCO)であることが最も好ましい。コア部10aがLiCoO(LCO)、LiNi1/3Mn1/3Co1/3(NCM)、LiNi0.85Co0.10Al0.05(NCA)から選ばれるいずれかであると、開回路状態で静置したときの副反応がより一層生じにくく、より一層自己放電特性に優れる全固体二次電池100を形成できるコアシェル構造を有する粒子10となるためである。
 コア部10aは、図2Aおよび図2Bに示すように、粒子状である。コア部10aの粒径は、例えば、5μm~30μmとすることができ、10μm~25μmであることが好ましい。コア部10aの粒径が上記範囲内であると、60℃~85℃の高温で初回の充放電を行う方法を用いて、コア部10aと正極活物質層に含まれるハロゲン元素を含む化合物中のハロゲン元素とを反応させることにより、十分な厚みを有し、粒子10の断面積に占める面積の割合が適正であるシェル部10bが形成されやすいためである。
 シェル部10bは、酸素と、F、Cl、Br、Iからなる群から選択される少なくとも1種のハロゲン元素とを含む化合物からなる。
 シェル部10bに含まれるハロゲン元素は、F、Cl、Br、Iからなる群から選択される少なくとも1種であり、Brおよび/またはCl、すなわち、BrとClのうち少なくとも一方を含むことが好ましい。これは、酸素との共有結合力が適正な化合物からなるシェル部10bとなり、開回路状態で静置したときの副反応を効果的に抑制できる粒子10となるためである。すなわち、上記の通りハロゲン元素を選択する場合、シェル部10bが、酸素との共有結合力が強い化合物からなるため、このシェル部10bを備えた全固体二次電池では、開回路状態で静置したときの副反応を効果的に抑制することができる。
 シェル部10bに含まれるハロゲン元素は、正極活物質層1Bの固体電解質に含まれるハロゲン元素と同一元素であってもよいし、異なっていてもよい。コアシェル構造を有する粒子10が、複数の種類のコアシェル構造を有する粒子10を含む場合、シェル部10bに含まれるハロゲン元素が、正極活物質層1Bの固体電解質に含まれるハロゲン元素と同一元素である粒子と、異なる粒子とが、任意の割合で混在していてもよい。すなわち、正極活物質層1Bに含まれるハロゲン元素と同じハロゲン元素からなる粒子と、正極活物質層1Bに含まれるハロゲン元素と異なるハロゲン元素からなる粒子とが、シェル部10b内に任意の割合で混在してもよい。
 本実施形態においては、コアシェル構造を有する粒子10の全てが、シェル部10bに含まれるハロゲン元素が、正極活物質層1Bの固体電解質に含まれるハロゲン元素と同一元素であることが好ましい。開回路状態で静置したときの副反応がより一層生じにくく、より一層自己放電特性に優れる全固体二次電池100を形成できる正極活物質層1Bとなるためである。また、シェル部10bに含まれるハロゲン元素と、正極活物質層1Bの固体電解質に含まれるハロゲン元素とが同一元素であると、固体電解質11に含まれるハロゲン元素とは異なるハロゲン元素を含む化合物を用いることなく、60℃~85℃の高温で初回の充放電を行う方法を用いることにより、コア部10aとシェル部10bとを備えるコアシェル構造を有する粒子10を含む正極活物質と、固体電解質11とを含む正極活物質層1Bを容易に製造できる。
 シェル部10bは、酸素と、F、Cl、Br、Iからなる群から選択される少なくとも1種のハロゲン元素と、Liと、コア部10aを形成している式(1)におけるM(1種以上の遷移金属)とからなることが好ましい。固体電解質11に含まれるハロゲン元素とは異なるハロゲン元素を含む化合物を用いることなく、60℃~85℃の高温で初回の充放電を行う方法を用いることにより、コア部10aとシェル部10bとを備えるコアシェル構造を有する粒子10を含む正極活物質と、固体電解質11とを含む正極活物質層1Bを、容易に製造できるためである。
 シェル部10bは、平均厚みが0.1μm~1.0μmであることが好ましく、0.3μm~0.8μmであることがより好ましい。シェル部10bの平均厚みが0.1μm以上であると、正極活物質層1Bを備える正極層1を有する全固体二次電池100において、コア部10aからの酸素の脱離を効果的に抑制できるものとなる。このことにより、コア部10aと固体電解質11との反応を、より効果的に抑制できる。その結果、本実施形態の正極活物質層1Bを備える正極層1を有する全固体二次電池100は、開回路状態で静置したときの副反応がより一層生じにくく、より一層自己放電特性に優れるものとなる。シェル部10bの平均厚みが1.0μm以下であると、60℃~85℃の高温で初回の充放電を行う方法を用いることにより、コア部10aとシェル部10bとを備えるコアシェル構造を有する粒子10を含む正極活物質と、固体電解質11とを含む正極活物質層1Bを、容易に製造できる。
(シェル部10bの平均厚み)
 本実施形態におけるシェル部10bの平均厚みは、以下に示す方法により測定した値である。
 正極活物質層1Bの切断面を、走査電子顕微鏡(SEM)を用いて倍率30k倍で観察し、コアシェル構造を有する粒子10の256諧調のグレースケールの画像を得る。得られた画像のコアシェル構造を有する粒子10について、色の薄い領域(白っぽい領域(グレースケールの平均明度193~207))をコア部10aとし、色の濃い領域(黒っぽい領域(グレースケールの平均明度174~187))をシェル部10bとする。視野中の任意の1つのコアシェル構造を有する粒子10について、粒子10の直径方向に沿うシェル部10bの厚みを任意の5カ所測定し、その平均値をシェル部10bの平均厚みとする。
 コアシェル構造を有する粒子10の断面積に占めるシェル部10bの面積の割合は、1%~40%であることが好ましく、15%~30%であることがより好ましい。シェル部10bの面積の割合が1%以上であると、シェル部10bによって、コア部10aと固体電解質11との接触面積を効果的に削減できる。その結果、全固体二次電池100のコア部10aから固体電解質11への酸素の脱離が抑制され、コア部10aと固体電解質11との反応が、より効果的に抑制される。このことにより、開回路状態で静置したときの副反応がより一層生じにくく、より一層自己放電特性に優れる全固体二次電池100を形成できる。
 コアシェル構造を有する粒子10の断面積に占めるシェル部10bの面積の割合が40%以下であると、シェル部10bの面積の割合が高すぎることによって、粒子10内におけるリチウムイオンなどのイオンの拡散に支障をきたすことがない。また、シェル部10bの面積の割合が40%以下であると、60℃~85℃の高温で初回の充放電を行う方法を用いることにより、コア部10aとシェル部10bとを備えるコアシェル構造を有する粒子10を含む正極活物質と、固体電解質11とを含む正極活物質層1Bを、容易に製造できる。
(コアシェル構造を有する粒子10の断面積に占めるシェル部10bの面積の割合)
 本実施形態におけるコアシェル構造を有する粒子10の断面積に占めるシェル部10bの面積の割合は、以下に示す方法により測定した値である。
 シェル部10bの平均厚みを測定した場合と同様にして、コアシェル構造を有する粒子10の256諧調のグレースケールの画像を得る。得られた画像のコアシェル構造を有する粒子10について、シェル部10bの平均厚みを測定した場合と同様にして、色の薄い領域をコア部10aとし、色の濃い領域をシェル部10bとする。そして、視野内の任意の5つのコアシェル構造を有する粒子10について、それぞれコア部10aの面積とシェル部10bの面積を求める。得られた値を用いて、5つのコアシェル構造を有する粒子10について、それぞれコアシェル構造を有する粒子10の断面積に占めるシェル部10bの面積の割合({シェル部10bの面積/(コア部10aの面積+シェル部10bの面積)}×100(%))を算出し、その平均値を、コアシェル構造を有する粒子10の断面積に占めるシェル部10bの面積の割合とする。
 図2Bに示すコアシェル構造を有する粒子10におけるシェル部10bと固体電解質11との界面14と、シェル部10bとコア部10aとの界面13とにおけるハロゲン元素の含有量の比(シェル部10bとコア部10aとの界面/シェル部10bと固体電解質11との界面)は、0.6以上1.0未満であることが好ましく、0.6~0.9であることがより好ましい。60℃~85℃の高温で初回の充放電を行う方法を用いることにより、コアシェル構造を有する粒子10を生成させた場合、シェル部10b内の固体電解質11との界面14に近い部分ほど、正極活物質層に含まれるハロゲン元素を含む化合物から拡散したハロゲン元素の含有量が多いものとなる。一方、シェル部10b内のコア部10aとの界面13に近い部分ほど、ハロゲン元素の含有量が少ないものとなる。
 上記の界面14と上記界面13とにおけるハロゲン元素の含有量の比が0.6以上である場合、シェル部10b内全体にハロゲン元素が十分に含まれている。したがって、シェル部10b中には、ハロゲン元素と酸素との強固な共有結合が十分に形成されている。よって、電気化学的により安定なシェル部10bを備える正極活物質層1Bとなる。その結果、開回路状態で静置したときの副反応がより一層生じにくく、より一層自己放電特性に優れる全固体二次電池100を形成できるコアシェル構造を有する粒子10となる。また、上記界面の比が1.0未満であると、60℃~85℃の高温で初回の充放電を行う方法を用いることにより、コア部10aの一部を覆うシェル部10bを備えるコアシェル構造を有する粒子10を含む正極活物質層1Bを容易に製造できる。また、上記界面の比が1.0未満であると、シェル部10b内のコア部10aとの界面13において、ハロゲン元素と酸素との過剰な共有結合が抑制された粒子10となり、コア部10aの結晶構造が安定なものとなる。その結果、より一層自己放電特性に優れる全固体二次電池100を形成できる粒子10となる。
(ハロゲン元素の含有量の比)
 本実施形態におけるコアシェル構造を有する粒子10におけるシェル部10bと固体電解質11との界面14と、シェル部10bとコア部10aとの界面13とにおけるハロゲン元素の含有量の比は、以下に示す方法により測定した値である。
 正極活物質層1Bの切断面における任意の5つのコアシェル構造を有する粒子10について、走査透過型電子顕微鏡(STEM)エネルギー分散型X線分光(EDS)装置を用いて、縦3μm、横3μmの正方形の測定範囲(測定間隔0.1μm)についてハロゲン元素のマッピング分析を行う。そして、視野内の任意の5つのコアシェル構造を有する粒子10それぞれについて、粒子10の直径方向に沿う最も厚みの厚いシェル部10bにおけるコア部10aとの界面に最も近接する測定値、および固体電解質11との界面に最も近接する測定値を用いて、上記のハロゲン元素の含有量の比(シェル部10bとコア部10aとの界面13/シェル部10bと固体電解質11との界面14)を算出し、その平均値を算出する。
 本実施形態の正極活物質層1Bに含まれる正極活物質は、図2Aに示すように、コアシェル構造を有する粒子10のみであってもよいし、コアシェル構造を有する粒子10とともに、本願の効果が得られる範囲で、公知の全固体二次電池に用いられている正極活物質を含んでいてもよい。コアシェル構造を有する粒子10とともに含有されていてもよい正極活物質としては、例えば、シェル部10bで被覆されていないコア部10aからなる粒子などが挙げられる。
(固体電解質)
 正極活物質層1Bに含まれる固体電解質11は、正極活物質層1B内のイオン伝導度を良好にする。
 正極活物質層1Bに含まれる固体電解質11は、下記式(2)で表されるハライド系固体電解質を含む。
 A・・・(2)
(式(2)において、AはLiとCsから選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。GはOH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、O、SO、SO、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOBからなる群から選択される少なくとも1つの基である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0≦c≦6、0<d≦6.1)
 式(2)におけるAは、必須の成分であり、LiとCsから選択される少なくとも1種の元素であり、Li、またはLiとCsの両方であることが好ましく、Liであることがより好ましい。
 式(2)におけるaは、0.5≦a<6を満たし、好ましくは2.0≦a≦4.0を満たし、より好ましくは2.5≦a≦3.5を満たす。aが0.5≦a<6であると、式(2)で表されるハライド系固体電解質中に含まれるAの含有量が適正となり、固体電解質11のイオン伝導度が十分に高いものとなる。
 式(2)におけるEは、固体電解質11のイオン電導度を向上させる必須の成分である。式(2)におけるEは、Al、Sc、Y、Zr、Hf、ランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)からなる群から選択される少なくとも1種の元素である。Eは、Al、Sc、Y、Zr、Hf、Laからなる群から選択される少なくとも1種の元素であることが好ましく、Alおよび/またはZrを含むことがより好ましく、Zrであることが最も好ましい。
 式(2)におけるbは0<b<2である。bは、Eを含むことによる固体電解質11のイオン電導度を向上させる効果がより顕著となるため、0.6≦b≦1であることが好ましい。
 式(2)におけるGは、OH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、O、SO、SO、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOBからなる群から選択される少なくとも1つの基である。Gは、O、SO、SO、SO、SOからなる群から選択される少なくとも1つの基であることが好ましく、特に、Oおよび/またはSOであることが好ましい。
 式(2)におけるcは0≦c≦6を満たす。式(2)で表されるハライド系固体電解質がGを含む(0<c)ものであると、固体電解質11の還元側の電位窓が広くなり、還元されにくくなる。cは、Gを含むことによる還元側の電位窓が広くなる効果がより顕著となるため、0.5≦cであることが好ましい。cは、Gの含有量が多すぎることに起因する固体電解質のイオン伝導度の低下が生じないように、c≦3であることが好ましい。
 式(2)におけるXは、固体電解質11のイオン電導度を向上させる必須の成分である。式(2)におけるXは、F、Cl、Br、Iからなる群から選択される少なくとも1種であり、正極活物質層1Bがコアシェル構造を有する粒子10を含むことによる効果が顕著となるため、Brおよび/またはClを含むことが好ましい。
 式(2)におけるdは、0<d≦6.1を満たす。dは1≦dであることが好ましい。dが1≦dであると、固体電解質11のイオン伝導度がより高くなる。また、dは、Xの含有量が多すぎることによって、固体電解質11の電位窓が狭くならないように、d≦5であることが好ましい。
 式(2)で表されるハライド系固体電解質は、具体的には例えば、LiZrSOCl(LZSOC)、LiZrCCl(LZOC)、LiZrCl(LZC)、LiZrBr(LZBr)、LiZrBOCl、LiZrBFCl、LiYSOCl、LiYCOCl、LiYBOCl、LiYBFClなどが挙げられる。これらのハライド系固体電解質の中でも、LiZrSOCl(LZSOC)、LiZrCCl(LZOC)、LiZrCl(LZC)、LiZrBr(LZBr)から選ばれるいずれかであることが好ましく、LiZrSOCl(LZSOC)であることが最も好ましい。ハライド系固体電解質が、LiZrSOCl(LZSOC)、LiZrCCl(LZOC)、LiZrCl(LZC)、LiZrBr(LZBr)から選ばれるいずれかであると、開回路状態で静置したときの副反応がより一層生じにくく、より一層自己放電特性に優れる全固体二次電池100を形成できる正極活物質層1Bとなる。
 本実施形態の正極活物質層1Bに含まれる固体電解質11は、1種のみであってもよいし、組成の異なる2種以上の固体電解質を含んでいてもよい。固体電解質11が組成の異なる2種以上の固体電解質を含む場合、全て式(2)で表されるハライド系固体電解質であってもよいし、式(2)で表されるハライド系固体電解質とともに、本願の効果が得られる範囲で、公知の全固体二次電池に用いられている固体電解質を含んでいてもよい。本実施形態の正極活物質層1Bに含まれる固体電解質11は、後述する固体電解質層3に含まれる固体電解質と同じものであってもよい。
(導電助剤)
 導電助剤12は、正極活物質層1B内の電子伝導性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。導電助剤12は、粉体、繊維の各形態であっても良い。導電助剤12としては、例えば、黒鉛、カーボンブラック、グラフェン、カーボンナノチューブ等の炭素系材料、金、白金、銀、パラジウム、アルミニウム、銅、ニッケル、ステンレス、鉄等の金属、ITO(酸化インジウムスズ)などの伝導性酸化物、またはこれらの混合物などが挙げられる。これらの中でも導電助剤12は、正極活物質層1Bの物理的強度を向上させることができるため、カーボンナノチューブ等の炭素系材料であることが好ましい。
 正極活物質層1B中に導電助剤12が十分に含まれている場合、正極活物質層1B内の電子伝導性が良好になる。また、60℃~85℃の高温で初回の充放電を行うことにより、コアシェル構造を有する粒子10を生成させる際に、式(1)で表されるリチウム遷移金属酸化物からなる粒子状の材料の表面の少なくとも一部を導電助剤12が被覆して、固体電解質11から式(1)で表されるリチウム遷移金属酸化物中にハロゲン元素が拡散するのを妨げる。その結果、過剰なシェル部10bの生成が抑制され、コアシェル構造を有する粒子10の断面積に占めるシェル部10bの面積の割合が適正となる。
 本実施形態において、正極活物質層1B中にコアシェル構造を有する粒子10が十分に含まれている場合、イオン(例えば、リチウムイオン)の放出及び吸蔵、イオンの脱離及び挿入を十分に行うことができる。
 また、正極活物質層1B中に式(2)で表されるハライド系固体電解質からなる固体電解質11が十分に含まれている場合、正極活物質層1B内のイオン伝導度が良好になる。また、60℃~85℃の高温で初回の充放電を行うことにより、コアシェル構造を有する粒子10を生成させる際に、固体電解質11から拡散するハロゲン元素量が十分多くなり、シェル部10bが十分に生成される。
 本実施形態の正極活物質層1Bは、コアシェル構造を有する粒子10と、固体電解質11と、必要に応じて含有していてもよい導電助剤12の他に、コアシェル構造を有する粒子10のシェル部10bに含まれるハロゲン元素と同じハロゲン元素を含む化合物を含んでいてもよい。ハロゲン元素を含む化合物としては、例えば、塩化ナトリウム、臭化ナトリウムなどが挙げられる。
「負極層」
 図1に示すように、負極層2は、負極集電体2Aと、負極活物質層2Bとを有する。負極活物質層2Bは、図1に示すように、負極集電体2Aの片面にのみ形成されていてもよいし、負極集電体2Aの両面に形成されていてもよい。
(負極集電体)
 負極集電体2Aは、正極集電体1Aと同様である。
(負極活物質層)
 負極活物質層2Bは、負極活物質を含む。負極活物質層2Bは、導電助剤、固体電解質を含んでもよい。
(負極活物質)
 負極活物質は、イオンを吸蔵・放出可能な化合物である。負極活物質は、正極活物質より卑な電位を示す化合物である。負極活物質としては、公知のものを用いることができ、正極活物質と同様の材料を用いてもよい。負極活物質の電位と正極活物質の電位とを考慮して、全固体二次電池100に用いる負極活物質及び正極活物質が決定される。
(導電助剤)
 導電助剤は、負極活物質層2Bの電子伝導性を良好にする。導電助剤としては、正極活物質層1Bに用いることができる材料と、同様の材料を用いることができる。
(固体電解質)
 負極活物質層2Bに含まれる固体電解質は、負極活物質層2B内のイオン伝導度を良好にする。固体電解質としては、公知のものを1種または2種以上混合して用いることができる。固体電解質としては、例えば、酸化物系固体電解質、硫化物系固体電解質、錯体水素化物系固体電解質、ハライド系固体電解質などが挙げられる。固体電解質として、上述した正極活物質層1Bに使用した固体電解質11と同様のものを用いてもよい。
「固体電解質層」
 固体電解質層3は、外部から印加された電場によって、イオンを移動させることができる。固体電解質層3を形成している固体電解質としては、公知のものを1種または2種以上混合して用いることができる。固体電解質としては、例えば、酸化物系固体電解質、硫化物系固体電解質、錯体水素化物系固体電解質、ハライド系固体電解質などが挙げられる。固体電解質層3は、正極活物質層1Bに含まれる固体電解質11と同様に、式(2)で表されるハライド系固体電解質を含むことが好ましく、LiZrSOClを含むことが好ましい。固体電解質層3が、LiZrSOClを含む場合、60℃~85℃の高温で初回の充放電を行うことにより、固体電解質層3と正極活物質層1Bとなる層の界面において、固体電解質層3と正極活物質層1Bとなる層との反応が進行しやすいものとなるためである。
(外装体)
 本実施形態の全固体二次電池100では、正極層1と固体電解質層3と負極層2とを有する積層体4は、外装体(不図示)に収納され、密封されていることが好ましい。外装体は、外部から内部への水分などの侵入を抑止できるものであればよく、公知のものを用いることができ、特に限定されない。
 例えば、外装体として、金属箔の両面を高分子フィルムでコーティングしてなる金属ラミネートフィルムを、袋状に形成したものを用いることができる。このような外装体は、開口部をヒートシールすることにより密閉される。
 金属ラミネートフィルムを形成している金属箔としては、例えば、アルミニウム箔、ステンレス箔などを用いることができる。外装体の外側に配置される高分子フィルムとしては、融点の高い高分子を用いることが好ましく、例えば、ポリエチレンテレフタレート(PET)、ポリアミドなどを用いることができる。外装体の内側に配置される高分子フィルムとしては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などを用いることができる。
[全固体二次電池の製造方法]
 次に、本実施形態の全固体二次電池100の製造方法について説明する。
 本実施形態では、コアシェル構造を有する粒子10として、正極活物質層1Bの固体電解質11に含まれるハロゲン元素と同じハロゲン元素を含むシェル部10bを備える粒子10を生成させる場合を例に挙げて説明する。
 本実施形態の全固体二次電池100は、例えば、粉末成形法を用いて製造できる。
 まず、中央に貫通穴を有する樹脂ホルダーと、下パンチと、上パンチとを用意する。 また、正極活物質層1Bの材料である粉末状の正極合剤と、負極活物質層2Bの材料である粉末状の負極合剤と、固体電解質層3の材料である粉末状の固体電解質とをそれぞれ用意する。
 本実施形態では、正極合剤として、式(1)で表されるリチウム遷移金属酸化物からなる粉末(粒子)と、式(2)で表されるハライド系固体電解質を含む固体電解質の粉末と、必要に応じて含有される導電助剤の粉末との混合粉末を用意する。式(1)で表されるリチウム遷移金属酸化物からなる粉末(粒子)の組成は、コア部10aの組成と対応する。式(2)で表されるハライド系固体電解質を含む固体電解質の粉末の組成は、固体電解質11の組成と対応する。
 そして、樹脂ホルダーの貫通穴の下から下パンチを挿入し、樹脂ホルダーの開口側から粉末状の材料である、正極合剤と、固体電解質と、負極合剤とをこの順に投入する。次いで、投入した粉末状の材料の上に上パンチを挿入し、プレス機に載置してプレスする。プレスの圧力は、例えば20kPaとする。
 樹脂ホルダーに投入した粉末状の材料は、樹脂ホルダー内で上パンチと下パンチとによってプレスされる。このことにより、正極活物質層1Bと固体電解質層3と負極活物質層2Bとが積層した成形体となる。
 次いで、公知の方法により、成形体の正極活物質層1Bの上に、正極集電体1Aを設置し、負極活物質層2Bの下に負極集電体2Aを設置する。上記手順を経て、正極集電体1A/正極活物質層1B/固体電解質層3/負極活物質層2B/負極集電体2Aが順に積層された積層体4が得られる。
 次に、積層体4を形成している正極層1の正極集電体1Aおよび負極層2の負極集電体2Aに、それぞれ公知の方法により外部端子を溶接し、正極集電体1Aまたは負極集電体2Aと外部端子とを電気的に接続する。その後、外部端子と接続された積層体4を外装体に収納する。そして、外装体の開口部をヒートシールすることにより密封し、全固体二次電池構造とする。
 本実施形態では、このようにして形成した全固体二次電池構造に対して、60℃~85℃の高温で初回の充放電を行う。初回の充放電における温度が60℃以上であると、式(1)で表されるリチウム遷移金属酸化物からなる粉末(粒子)と、式(2)で表されるハライド系固体電解質を含む固体電解質の粉末との界面で、リチウム遷移金属酸化物から離脱した酸素と、ハライド系固体電解質から拡散したハロゲン元素とが反応する。このことにより、コア部10aとシェル部10bとを備えるコアシェル構造を有する粒子10が生成する。
 初回の充放電における温度が60℃未満であると、コアシェル構造を有する粒子10が生成されない。初回の充放電における温度は、60℃以上であり、70℃以上であることが好ましく、充放電に要する時間などに応じて適宜決定できる。また、初回の充放電における温度が85℃以下であると、リチウム遷移金属酸化物から離脱した酸素と、ハライド系固体電解質から拡散したハロゲン元素とが過剰に反応することがなく、コア部10aの結晶構造が安定な粒子10が得られる。
 初回の充放電における充電時の温度と、放電時の温度との温度差は25℃以下であることが好ましい。
 なお、従来、全固体二次電池構造に対する充放電は、常温(20℃~30℃の範囲)で行われている。したがって、従来の製造方法では、全固体二次電池構造を加熱する操作は行われていなかった。また、初回の充放電を行うために、全固体二次電池構造を加熱する必要がないため、恒温槽などの全固体二次電池構造を加熱する装置は不要であった。なお、従来、全固体二次電池構造の充放電を行うことによって、全固体二次電池構造が発熱することがあった。しかし、全固体二次電池構造が発熱しても、初回の充放電時の全固体二次電池構造全体が60℃を超える温度となることはなかった。
 全固体二次電池構造に対する初回の充放電における電流電圧などの温度以外の条件は、公知の条件とすることができ、コアシェル構造を有する粒子10が生成する範囲内で、製造する全固体二次電池100の用途などに応じて適宜決定できる。
 全固体二次電池構造に対する初回の充放電としては、具体的には、以下に示す方法を用いることができる。
 全固体二次電池構造を60℃~85℃の恒温槽内に静置し、0.01C~2.00Cで電池電圧が2.75V~2.85Vになるまで定電流充電を行う。次いで、その電池電圧で定電圧充電を0.5時間~8.0時間行う。その後、0.05Cにて電池電圧が1.3Vになるまで定電流放電を行う。
 初回充電における定電流充電条件を変化させると、コアシェル構造を有する粒子10の断面積に占めるシェル部10bの面積の割合が変化する。具体的には、初回充電における定電流充電条件が0.02C以上であると、上記のシェル部10bの面積の割合が40%以下である粒子10が生成されやすくなり、0.04C以上であると、上記のシェル部10bの面積の割合が30%以下である粒子10が生成されやすくなる。初回充電における定電流充電条件が2.00C以下であると、上記のシェル部10bの面積の割合が1%以上である粒子10が生成されやすくなり、0.50C以下であると、上記のシェル部10bの面積の割合が15%以上である粒子10が生成されやすくなる。
 また、初回充電における上限の電池電圧を高くすると、コアシェル構造を有する粒子10におけるシェル部10bと固体電解質11との界面14と、シェル部10bとコア部10aとの界面13とにおけるハロゲン元素の含有量の比が小さくなる傾向がある。初回充電における上限の電池電圧を低くすると、上記のハロゲン元素の含有量の比が大きくなる傾向がある。初回充電における上限の電池電圧が、2.75V~2.84Vの範囲内であると、上記のハロゲン元素の含有量の比が0.6以上1.0未満である粒子10が生成されやすくなり、2.80V~2.84Vの範囲内であると、上記のハロゲン元素の含有量の比が0.6以上0.9以下である粒子10が生成されやすくなる。
 初回充電における定電圧充電時間を長くすると、シェル部10bの平均厚みが厚くなり、上記の定電圧充電時間を短くすると、シェル部10bの平均厚みが薄くなる。初回充電における定電圧充電時間が1.0時間以上であると、シェル部10bの平均厚みが0.1μm以上である粒子10が生成しやすくなり、3.0時間以上であると、シェル部10bの平均厚みが0.3μm以上である粒子10が生成しやすくなる。初回充電における定電圧充電時間が7.0時間以下であると、シェル部10bの平均厚みが1.0μm以下である粒子10が生成しやすくなり、6.0時間以下であると、シェル部10bの平均厚みが0.8μm以下である粒子10が生成しやすくなる。
 全固体二次電池構造に対して、上記のように高温で初回の充放電を行うと、正極活物質層1Bとなる層中で、式(1)で表されるリチウム遷移金属酸化物と式(2)で表されるハライド系固体電解質とが反応する。そして、式(1)で表されるリチウム遷移金属酸化物からなる粒子の表面の少なくとも一部に沿って、酸素とハロゲン元素とを含む化合物が生成し、コア部10aとシェル部10bとを備えるコアシェル構造を有する粒子10が生成する。
 以上の工程を経ることによって、全固体二次電池100を製造できる。
 次に、コアシェル構造を有する粒子10として、正極活物質層1Bの固体電解質11に含まれるハロゲン元素と異なるハロゲン元素を含むシェル部10bを備える粒子10を生成させる場合を例に挙げて説明する。
 この場合、正極合剤として、式(1)で表されるリチウム遷移金属酸化物からなる粉末(粒子)と、式(2)で表されるハライド系固体電解質を含む固体電解質の粉末と、シェル部10bに含有させたいハロゲン元素を含む化合物の粉末と、必要に応じて含有される導電助剤の粉末との混合粉末を用いること以外は、上述した製造方法と同様にして全固体二次電池100を製造できる。
 上記の正極合剤は、式(1)で表されるリチウム遷移金属酸化物からなる粉末(粒子)と、シェル部10bに含有させたいハロゲン元素を含む化合物とを混合して混合物とし、得られた混合物に対して、式(2)で表されるハライド系固体電解質を含む固体電解質の粉末と、必要に応じて含有される導電助剤の粉末とを混合する方法により製造することが好ましい。このような方法により製造した正極合剤では、リチウム遷移金属酸化物からなる粉末(粒子)と、シェル部10bに含有させたいハロゲン元素を含む化合物との接触面積が、上記のリチウム遷移金属酸化物からなる粉末(粒子)と、上記の固体電解質との接触面積と比較して、十分に大きくなるためである。その結果、この正極合剤を用いて製造した全固体二次電池構造に対して、上記のように高温で初回の充放電を行った場合、上記のリチウム遷移金属酸化物からなる粉末(粒子)と上記のハロゲン元素を含む化合物との反応が、上記のリチウム遷移金属酸化物からなる粉末(粒子)と上記の固体電解質との反応よりも優先される。
 正極合剤に含有させるシェル部10bに含有させたいハロゲン元素を含む化合物としては、上述したシェル部10bに含まれるハロゲン元素と同じハロゲン元素を含む化合物を用いることができる。
 上記の正極合剤を用いて製造した全固体二次電池構造に対して、上記のように高温で初回の充放電を行うと、正極活物質層1Bとなる層中で、式(1)で表されるリチウム遷移金属酸化物とシェル部10bに含有させたいハロゲン元素を含む化合物とが、優先的に反応する。そして、式(1)で表されるリチウム遷移金属酸化物からなる粒子の表面の少なくとも一部に沿って、酸素とハロゲン元素とを含む化合物が生成し、コア部10aとシェル部10bとを備えるコアシェル構造を有する粒子10が生成する。
 以上の工程を経ることによって、全固体二次電池100を製造できる。
 本実施形態の正極活物質層1Bは、正極活物質と、固体電解質11とを含み、正極活物質は、式(1)で表されるリチウム遷移金属酸化物からなるコア部10aと、酸素と、F、Cl、Br、Iからなる群から選択される少なくとも1種のハロゲン元素とを含む化合物からなり、コア部10aの表面の少なくとも一部を覆うシェル部10bとを備えるコアシェル構造を有する粒子10を含み、固体電解質11は、式(2)で表されるハライド系固体電解質を含む。したがって、コアシェル構造を有する粒子10のコア部10aと固体電解質11との間の一部には、シェル部10bが配置されている。シェル部10bを形成している酸素とハロゲン元素とを含む化合物は、電気化学的に安定である。このことから、本実施形態の正極活物質層1Bを備える正極層1を有する全固体二次電池100では、シェル部10bによってコア部10aと固体電解質11との反応が抑制され、開回路状態で静置したときの副反応が生じにくく、自己放電特性に優れる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
「実施例1」
(正極合剤の作製)
 正極合剤として、表1に示すコア部となるリチウム遷移金属酸化物の粉末(粒子)と、表1に示す固体電解質の粉末と、導電助剤である黒鉛の粉末とを用意し、それぞれ50質量%:40質量%:10質量%(リチウム遷移金属酸化物:固体電解質:導電助剤)となるように秤量し、混合した。
(負極合剤の作製)
 負極合剤として、負極活物質であるチタン酸リチウムの粉末と、表1に示す固体電解質の粉末と、導電助剤である黒鉛の粉末とを用意し、それぞれ40質量%:50質量%:10質量%(負極活物質:固体電解質:導電助剤)となるように秤量し、混合した。
(成形体の作製)
 中央に直径12mmの貫通穴を有する樹脂ホルダーと、SKD11材製の直径11.99mmの下パンチおよび上パンチを用意した。樹脂ホルダーの貫通穴の下から下パンチを挿入し、樹脂ホルダーの開口側から粉末状の材料である、正極合剤と、固体電解質であるLiZrSOCl(LZSOC)と、負極合剤とをこの順に投入した。
 次いで、投入した粉末状の材料の上に上パンチを挿入し、上パンチと粉末状の材料を収容する樹脂ホルダーと下パンチとを有するユニットを、プレス機に静置し、圧力20kPaでプレスし、成形体を作製した。
 次いで、正極活物質の上に、アルミニウム箔からなる直径12mm、厚さ15μmの正極集電体を設置した。また、負極活物質層の下に、銅箔からなる直径12mm、厚さ9μmの負極集電体を設置した。上記手順を経て、正極集電体1A/正極活物質層1B/固体電解質層3/負極活物質層2B/負極集電体2Aが順に積層された積層体4を得た。
 次に、積層体4を形成している正極層1の正極集電体1Aおよび負極層2の負極集電体2Aに、それぞれ公知の方法により外部端子を溶接し、正極集電体1Aまたは負極集電体2Aと外部端子とを電気的に接続した。その後、外部端子と接続された積層体4を、アルミニウムラミネート材からなる外装体に収納した。そして、外装体の開口部をヒートシールすることにより密封し、全固体二次電池構造とした。
 次に、このようにして形成した全固体二次電池構造に対して、以下に示す方法により、初回の充放電を行った。
 全固体二次電池構造を、60℃の恒温槽内に静置し、充放電機SD8(北斗電工株式会社製)を用いて、0.05Cで電池電圧が2.80Vになるまで定電流充電を行った。次いで、電池電圧2.8Vの定電圧充電を6.0時間行った。初回充電時の条件を表2に示す。その後、0.05Cにて電池電圧が1.3Vになるまで定電流放電を行った。
 以上の工程を経ることによって、実施例1の全固体二次電池100を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示すリチウム遷移金属酸化物は、以下に示すものである。
(LCO);LiCoO
(NCM);LiNi1/3Mn1/3Co1/3
(NCA);LiNi0.85Co0.10Al0.05
 表1に示す固体電解質は、以下に示すものである。
(LZSOC);LiZrSOCl
(LZOC);LiZrCCl
(LZC);LiZrCl
(LZBr);LiZrBr
(LGPS);Li10GeP12
「実施例2~実施例4」
 初回充電時の上限の電池電圧を、表2に示すように、実施例2は2.84V、実施例3は2.85V、実施例4は2.79Vとしたこと以外は、実施例1と同様にして、実施例2~実施例4の全固体二次電池100を得た。
「実施例5、実施例6」
 表1に示す固体電解質を用いて正極合剤を作製したこと以外は、実施例4と同様にして、実施例5、実施例6の全固体二次電池100を得た。
「実施例7」
 表1に示すコア部となるリチウム遷移金属酸化物の粉末(粒子)と、塩化ナトリウムとを混合して混合物とし、得られた混合物に対して、表1に示す固体電解質の粉末と、導電助剤である黒鉛の粉末とを混合する方法により正極合剤を作製したこと以外は、実施例4と同様にして、実施例7の全固体二次電池100を得た。正極合剤中の各成分の割合は、50質量%:40質量%:10質量%(リチウム遷移金属酸化物:固体電解質:導電助剤)とし、塩化ナトリウムの割合をリチウム遷移金属酸化物と固体電解質と導電助剤との合計100質量部に対して2質量部とした。
「実施例8」
 表1に示すコア部となるリチウム遷移金属酸化物の粉末(粒子)と、臭化ナトリウムとを混合して混合物とし、得られた混合物に対して、表1に示す固体電解質の粉末と、導電助剤である黒鉛の粉末とを混合する方法により正極合剤を作製したこと以外は、実施例4と同様にして、実施例8の全固体二次電池100を得た。正極合剤中の各成分の割合は、50質量%:40質量%:10質量%(リチウム遷移金属酸化物:固体電解質:導電助剤)とし、臭化ナトリウムの割合をリチウム遷移金属酸化物と固体電解質と導電助剤との合計100質量部に対して2質量部とした。
「実施例9~実施例13」
 初回充電時の定電流充電条件を、表2に示すように、実施例9は1.00C、実施例10は0.80C、実施例11は0.10C、実施例12は0.02C、実施例13は0.01Cとしたこと以外は、実施例8と同様にして、実施例9~実施例13の全固体二次電池100を得た。
「実施例14~実施例18」
 初回充電時の定電圧充電時間を、表2に示すように、実施例14は0.5時間、実施例15は1.0時間、実施例16は4.0時間、実施例17は7.0時間、実施例18は8.0時間としたこと以外は、実施例8と同様にして、実施例14~実施例18の全固体二次電池100を得た。
「実施例19」
 初回充電時の定電流充電条件を、表2に示すように、2.00Cとし、初回充電時の定電圧充電時間を0.3時間としたこと以外は、実施例8と同様にして、実施例19の全固体二次電池100を得た。
「実施例20」
 表1に示す固体電解質を用いて正極合剤を作製したこと以外は、実施例8と同様にして、実施例20の全固体二次電池100を得た。
「実施例21、実施例22」
 表1に示すリチウム遷移金属酸化物を用いて正極合剤を作製したこと以外は、実施例8と同様にして、実施例21、実施例22の全固体二次電池100を得た。
「比較例1」
 初回充電時における温度を、表1に示すように、20℃としたこと以外は、実施例1と同様にして、比較例1の全固体二次電池100を得た。
「比較例2」
 表1に示す固体電解質を用いて正極合剤を作製したこと以外は、実施例7と同様にして、比較例2の全固体二次電池100を得た。
 このようにして得られた実施例1~実施例22、比較例1、比較例2の全固体二次電池について、それぞれ以下に示す方法により、「コア部の平均粒径」と、コアシェル構造を有する粒子のシェル部に含まれる「ハロゲン元素」と、「シェル部の平均厚み」と、コアシェル構造を有する粒子の断面積に占めるシェル部の「面積の割合」と、「シェル部と固体電解質との界面と、シェル部とコア部との界面とにおけるハロゲン元素の含有量の比(コア部との界面/固体電解質との界面)」と、「自己放電特性(自己放電)」とを測定した。その結果を表1に示す。
「コア部の平均粒径」
 正極活物質層1Bの切断面を、走査電子顕微鏡(SEM)(商品名;SU3800;日立ハイテク社製)を用いて倍率30k倍で観察した。得られた像を、画像解析ソフト(imageJ)を用いて8bit(256階調)の白黒像とし、コアシェル構造を有する粒子10の256諧調のグレースケールの画像を得た。得られた画像のコアシェル構造を有する粒子10について、色の薄い領域(白っぽい領域(グレースケールの平均明度193~207))をコア部10aとし、色の濃い領域(黒っぽい領域(グレースケールの平均明度174~187))をシェル部10bとした。視野中の縦100μm、横100μmの正方形の測定範囲に含まれる全てのコアシェル構造を有する粒子10について、コア部10aの直径を測定し、その平均値をコア部10aの平均粒径とした。
「コアシェル構造を有する粒子のシェル部に含まれるハロゲン元素」
 正極活物質層1Bの切断面における任意のコアシェル構造を有する粒子10について、走査透過型電子顕微鏡(STEM)エネルギー分散型X線分光(EDS)装置(商品名;HD-2700;日立ハイテク社製)を用いて、ハロゲン元素のマッピング分析(縦3μm、横3μmの正方形の測定範囲、測定間隔0.1μm)を行った。このことにより、コアシェル構造を有する粒子10のシェル部10bにおけるハロゲン元素を同定した。
「シェル部の平均厚み」
 正極活物質層1Bの切断面を、走査電子顕微鏡(SEM)(商品名;SU3800;日立ハイテク社製)を用いて倍率30k倍で観察した。得られた像を、画像解析ソフト(imageJ)を用いて8bit(256階調)の白黒像とし、コアシェル構造を有する粒子10の256諧調のグレースケールの画像を得た。得られた画像のコアシェル構造を有する粒子10について、色の薄い領域(白っぽい領域(グレースケールの平均明度193~207))をコア部10aとし、色の濃い領域(黒っぽい領域(グレースケールの平均明度174~187))をシェル部10bとした。視野中の任意の1つのコアシェル構造を有する粒子10について、粒子10の直径方向に沿うシェル部10bの厚みを任意の5カ所測定し、その平均値をシェル部10bの平均厚みとした。
「コアシェル構造を有する粒子の断面積に占めるシェル部の面積の割合」
 シェル部10bの平均厚みを測定した場合と同様にして、コアシェル構造を有する粒子10の256諧調のグレースケールの画像を得た。得られた画像のコアシェル構造を有する粒子10について、シェル部10bの平均厚みを測定した場合と同様にして、色の薄い領域をコア部10aとし、色の濃い領域をシェル部10bとした。そして、視野内の任意の5つのコアシェル構造を有する粒子10について、それぞれコア部10aの面積とシェル部10bの面積を求めた。得られた値を用いて、5つのコアシェル構造を有する粒子10について、それぞれコアシェル構造を有する粒子10の断面積に占めるシェル部10bの割合({シェル部10bの面積/(コア部10aの面積+シェル部10bの面積)}×100(%))を算出し、その平均値を、コアシェル構造を有する粒子10の断面積に占めるシェル部10bの面積の割合とした。
「シェル部と固体電解質との界面と、シェル部とコア部との界面とにおけるハロゲン元素の含有量の比(コア部との界面/固体電解質との界面)」
 正極活物質層1Bの切断面における任意の5つのコアシェル構造を有する粒子10について、走査透過型電子顕微鏡(STEM)エネルギー分散型X線分光(EDS)装置(商品名;HD-2700;日立ハイテク社製)を用いて、ハロゲン元素のマッピング分析(縦3μm、横3μmの正方形の測定範囲、測定間隔0.1μm)を行った。そして、視野内の任意の5つのコアシェル構造を有する粒子10それぞれについて、粒子10の直径方向に沿う最も厚みの厚いシェル部10bにおけるコア部10aとの界面に最も近接する測定値、および固体電解質11との界面に最も近接する測定値を用いて、ハロゲン元素の含有量の比(シェル部10bとコア部10aとの界面/シェル部10bと固体電解質11との界面)を算出し、その平均値を算出した。
「自己放電特性(自己放電)」
 全固体二次電池について、二次電池充放電試験装置(北斗電工株式会社製)を用いて、充電レート1.0C(25℃で定電流充電を行ったときに1時間で充電終了となる電流値)の定電流充電で電池電圧が2.8Vとなるまで充電を行った。充電完了後、室温で24時間放置した後の電圧をV1とし、その後、40℃環境下にて5日間放置後の電圧をV2とした。得られたV1およびV2の値を用いて、以下の式(I)を用いて自己放電を求めた。
 自己放電(mV/day)=V1-V2     (I)
 表1に示すように、実施例1~実施例22の全固体二次電池は、比較例1、比較例2の全固体二次電池と比較して、自己放電の抑制されたものであった。
 特に、界面におけるハロゲン元素の含有量の比が0.6以上1.0未満である実施例1および実施例2の全固体二次電池は、界面におけるハロゲン元素の含有量の比が0.5である実施例3、界面におけるハロゲン元素の含有量の比が1.0である実施例4~22と比較して、自己放電が非常に抑制されたものであった。
 また、シェル部10bに含まれるハロゲン元素がClである実施例4は、シェル部10bに含まれるハロゲン元素がBrである実施例8と比較して、自己放電が非常に抑制されたものであった。
 また、シェル部10bのハロゲン元素が、正極活物質層1Bの固体電解質11に含まれるハロゲン元素と同じである実施例6は、正極活物質層1Bの固体電解質11に含まれるハロゲン元素と異なる実施例7と比較して、自己放電が非常に抑制されたものであった。
 また、コアシェル構造を有する粒子の断面積に占めるシェル部10bの面積の割合が1%~40%である実施例10~12では、シェル部10bの面積の割合が1%未満である実施例9および40%超である実施例13と比較して、自己放電が抑制されたものであった。
 また、シェル部10bの厚みが0.1μm~1.0μmである実施例15~17では、シェル部10bの厚みが0.1μm未満である実施例14、シェル部10bの厚みが1.0μm超である実施例18と比較して、自己放電が抑制されたものであった。
 本発明によれば、自己放電の抑制された全固体二次電池の正極を形成できる正極活物質層、これを備える正極、および、全固体二次電池を提供することができる。
 1  正極層
 1A  正極集電体
 1B  正極活物質層
 2  負極層
 2A  負極集電体
 2B  負極活物質層
 3  固体電解質層
 4  積層体
 10  コアシェル構造を有する粒子
 10a  コア部
 10b  シェル部
 11  固体電解質
 12  導電助剤
 100  全固体二次電池

Claims (9)

  1.  正極活物質と、固体電解質とを含み、
     前記正極活物質は、コア部と、前記コア部の表面の少なくとも一部を覆うシェル部とを備えるコアシェル構造を有する粒子を含み、
     前記コア部は、下記式(1)で表されるリチウム遷移金属酸化物からなり、
     前記シェル部は、酸素と、F、Cl、Br、Iからなる群から選択される少なくとも1種のハロゲン元素とを含む化合物からなり、
     前記固体電解質は、下記式(2)で表されるハライド系固体電解質を含む、正極活物質層。
     LiMO・・・(1)
    (式(1)において、Mは1種以上の遷移金属である。0.1<x<1.1、1.8<y<2.2)
     A・・・(2)
    (式(2)において、AはLiとCsから選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。GはOH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、O、SO、SO、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOBからなる群から選択される少なくとも1つの基である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0≦c≦6、0<d≦6.1)
  2.  前記シェル部の平均厚みが0.1μm~1.0μmである、請求項1に記載の正極活物質層。
  3.  前記コアシェル構造を有する粒子の断面積に占める前記シェル部の面積の割合が1%~40%である、請求項1に記載の正極活物質層。
  4.  前記シェル部に含まれるハロゲン元素と、前記固体電解質に含まれるハロゲン元素とが同一元素である、請求項1に記載の正極活物質層。
  5.  前記シェル部と前記固体電解質との界面と、前記シェル部と前記コア部との界面とにおけるハロゲン元素の含有量の比が、0.6以上1.0未満である、請求項1に記載の正極活物質層。
  6.  請求項1~請求項5のいずれか一項に記載の正極活物質層を含む、正極。
  7.  請求項6に記載の正極と、負極と、固体電解質層とを備える、全固体二次電池。
  8.  前記固体電解質層が、下記式(2)で表されるハライド系固体電解質を含む、請求項7に記載の全固体二次電池。
     A・・・(2)
    (式(2)において、AはLiとCsから選択される少なくとも1種の元素である。EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。GはOH、BO、BO、BO、B、B、CO、NO、AlO、SiO、SiO、Si、Si、Si11、Si18、PO、PO、P、P10、O、SO、SO、SO、SO、SO、S、S、S、S、S、S、BF、PF、BOBからなる群から選択される少なくとも1つの基である。XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。0.5≦a<6、0<b<2、0≦c≦6、0<d≦6.1)
  9.  前記固体電解質層が、LiZrSOClを含む、請求項8に記載の全固体二次電池。
PCT/JP2023/046248 2022-12-22 2023-12-22 正極活物質層、正極および全固体二次電池 WO2024135845A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-205482 2022-12-22
JP2022205482A JP2024089933A (ja) 2022-12-22 正極活物質層、正極および全固体二次電池

Publications (1)

Publication Number Publication Date
WO2024135845A1 true WO2024135845A1 (ja) 2024-06-27

Family

ID=91589058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/046248 WO2024135845A1 (ja) 2022-12-22 2023-12-22 正極活物質層、正極および全固体二次電池

Country Status (1)

Country Link
WO (1) WO2024135845A1 (ja)

Similar Documents

Publication Publication Date Title
WO2021024785A1 (ja) 固体電解質、固体電解質層および固体電解質電池
WO2018143022A1 (ja) 全固体電池およびその製造方法
US20230253614A1 (en) Solid electrolyte and solid electrolyte battery
US20220294007A1 (en) Solid electrolyte, solid electrolyte layer, and solid electrolyte battery
JP2009123464A (ja) リチウムイオン二次電池用正極活物質、正極、その製造方法及びリチウムイオン二次電池
WO2018139449A1 (ja) 全固体電池用電極の製造方法および全固体電池の製造方法
JP6947321B1 (ja) 電池及び電池の製造方法
JP7267163B2 (ja) 全固体電池用正極および全固体電池
WO2023127357A1 (ja) 固体電解質電池用負極及び固体電解質電池
JP2021163522A (ja) 固体電解質、固体電解質層および固体電解質電池
WO2022154112A1 (ja) 電池及びその製造方法
WO2024135845A1 (ja) 正極活物質層、正極および全固体二次電池
US20220200045A1 (en) All-solid-state battery and method for manufacturing same
WO2023026482A1 (ja) 電極、電池、及び電池パック
JP2023112393A (ja) 全固体電池
JP2024089933A (ja) 正極活物質層、正極および全固体二次電池
WO2017130674A1 (ja) 固定電解質および、固体電解質を用いた全固体リチウム電池
JP2023041247A (ja) 被覆負極活物質および全固体電池
CN114342118A (zh) 全固体电池用负极和全固体电池
JP7008420B2 (ja) 複合固体電解質、その製造方法、および全固体電池
JP2021068663A (ja) 正極材料の製造方法
WO2023153394A1 (ja) 固体電解質電池用負極及び固体電解質電池
WO2023171825A1 (ja) 固体電解質、固体電解質層及び固体電解質電池
WO2022203021A1 (ja) 電極活物質層、電極、全固体電池
WO2024071221A1 (ja) 全固体電池