WO2022203021A1 - 電極活物質層、電極、全固体電池 - Google Patents

電極活物質層、電極、全固体電池 Download PDF

Info

Publication number
WO2022203021A1
WO2022203021A1 PCT/JP2022/014148 JP2022014148W WO2022203021A1 WO 2022203021 A1 WO2022203021 A1 WO 2022203021A1 JP 2022014148 W JP2022014148 W JP 2022014148W WO 2022203021 A1 WO2022203021 A1 WO 2022203021A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
solid electrolyte
material layer
solid
Prior art date
Application number
PCT/JP2022/014148
Other languages
English (en)
French (fr)
Inventor
千映子 清水
長 鈴木
哲也 上野
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2022203021A1 publication Critical patent/WO2022203021A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to electrode active material layers, electrodes, and all-solid-state batteries. This application claims priority based on Japanese Patent Application No. 2021-053691 filed in Japan on March 26, 2021, the content of which is incorporated herein.
  • an all-solid-state battery when an inorganic solid electrolyte is used as the solid electrolyte and an organic substance is used as the electrode, there is no concern about leakage of the organic electrolyte or gas generation, and safety is high. Therefore, all-solid-state batteries are attracting more and more attention. In addition, reactions other than battery reactions are less likely to occur in all-solid-state batteries than in liquid-based batteries. Therefore, all-solid-state batteries are also expected to have a longer life.
  • Sintering and powder molding are examples of methods for manufacturing all-solid-state batteries.
  • a negative electrode, a solid electrolyte layer, and a positive electrode are laminated and then sintered to form an all-solid battery. It is known that the sintering method can satisfactorily bond the interfaces between the solid electrolyte layer and the positive electrode layer and between the solid electrolyte layer and the negative electrode layer.
  • the powder molding method after laminating a negative electrode, a solid electrolyte layer, and a positive electrode, pressure is applied to form an all-solid battery.
  • Patent Document 1 discloses an all-solid-state electric body manufactured using a sintering method.
  • the all-solid-state battery disclosed in Patent Document 1 one of the positive electrode layer and the negative electrode layer has a porosity of 5% to 50%.
  • the all-solid-state battery disclosed in Patent Literature 1 aims to reduce expansion and contraction of electrode active materials such as a positive electrode active material and a negative electrode active material during charging and discharging by using the above configuration.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an electrode active material layer that can achieve excellent cycle characteristics and rate characteristics when used in batteries.
  • the inventors have made extensive studies. As a result, they succeeded in producing an electrode active material layer containing a mesh-shaped solid electrolyte, and when such an electrode active material layer was used in an all-solid-state battery, excellent cycle characteristics and rate characteristics were obtained. I found That is, the present embodiment provides the following means.
  • the electrode active material layer according to the first aspect of the present invention is An electrode active material layer containing an active material and a solid electrolyte, At least part of the solid electrolyte is mesh.
  • the network solid electrolyte may be a solid electrolyte represented by the following formula (1) Li 2+a E 1-b G b D c X d .
  • E is at least one element selected from the group consisting of Al, Sc, Y, Zr, Hf, and lanthanides
  • G is Na, K, Rb, Cs, Mg, Ca, Sr, Ba, B, Si, Al, Ti, Cu, Sc, Y, Zr, Nb, Ag, In, Sn, Sb, Hf, Ta, W , Au
  • D is at least one group selected from the group consisting of CO 3 , SO 4 , BO 3 , PO 4 , NO 3 , SiO 3 , OH and O 2
  • X is the group consisting of F, Cl, Br and I At least one or more selected from 0 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇
  • the mesh portion of the solid electrolyte has a plurality of overlapping fibers, In an image obtained by observing a cross section perpendicular to the in-plane direction of the electrode active material layer with a scanning electron microscope, In each fiber of the plurality of fibers, when the maximum value of the length in the direction where the aspect ratio is small is the diameter of the fiber, Among the plurality of fibers, 10 fibers selected in descending order of diameter in the field of view may have an average diameter of 5 nm or more and 30 nm or less.
  • the mesh portion of the solid electrolyte has a plurality of overlapping fibers, In an image obtained by observing a cross section perpendicular to the in-plane direction of the electrode active material layer with a scanning electron microscope, The area of a mesh portion surrounded by the plurality of fibers or the plurality of fibers and the active material and/or the solid electrolyte is defined as a mesh portion area, An average area of 10 mesh portion areas selected in descending order of the mesh portion area may be 70 nm 2 or more and 8000 nm 2 or less.
  • An electrode according to a second aspect of the present invention comprises the electrode active material layer according to the aspect described above.
  • An all-solid-state battery according to a third aspect of the present invention includes the electrode according to the aspect described above.
  • FIG. 1 is a schematic cross-sectional view of an all-solid-state battery according to an embodiment of the present invention
  • FIG. It is a cross-sectional schematic diagram of the principal part of the electrode active material layer concerning one Embodiment of this invention.
  • the direction in which the positive electrode active material layer 1B and the negative electrode active material layer 2B, which will be described later, are stacked is defined as the stacking direction.
  • a direction in which a positive electrode active material layer 1B and a negative electrode active material layer 2B, which will be described later, extend is defined as an in-plane direction.
  • FIG. 1 is a schematic cross-sectional view enlarging a main part of an all-solid-state battery 100 according to this embodiment.
  • the all-solid-state battery 100 includes a power storage element 10 and an exterior body 20 .
  • the power storage element 10 is housed in the housing space K inside the exterior body 20 .
  • the storage element 10 has a laminate 4 and external terminals 12 and 14 .
  • the external terminals 12 and 14 electrically connect the laminate 4 to the outside.
  • the exterior body 20 preferably has a metal foil 22 and resin layers 24 laminated on both sides of the metal foil 22 .
  • the exterior body 20 is preferably a metal laminate film in which a metal foil is coated from both sides with polymer films (resin layers).
  • the metal foil 22 is, for example, aluminum foil.
  • the resin layer 24 is, for example, a polymer film such as polypropylene.
  • the resin layer 24 may be different inside and outside.
  • As the outer resin layer one or more polymers having a high melting point selected from polyethylene terephthalate (PET) and polyamide (PA) can be used, and as the inner resin layer, polyethylene (PE) and polypropylene ( PP) having high heat resistance, oxidation resistance and reduction resistance can be used.
  • the laminate 4 has at least one positive electrode layer 1 , at least one negative electrode layer 2 , and a solid electrolyte layer 3 between the positive electrode layer 1 and the negative electrode layer 2 .
  • the positive electrode layer 1 is an example of a first electrode layer
  • the negative electrode layer 2 is an example of a second electrode layer.
  • One of the first electrode layer and the second electrode layer functions as a positive electrode, and the other functions as a negative electrode.
  • One end of each of the positive electrode layer 1 and the negative electrode layer 2 is connected to external terminals 12 and 14 of corresponding polarities.
  • the all-solid-state battery 100 charges and discharges by transferring ions between the positive electrode layer 1 and the negative electrode layer 2 through the solid electrolyte layer 3 .
  • a laminated battery is shown, but a wound battery may also be used.
  • the all-solid-state battery 100 is used, for example, as a laminate battery, a prismatic battery, a cylindrical battery, a coin-shaped battery, a button-shaped battery, and the like.
  • the positive electrode layer 1 preferably has a positive electrode current collector 1A and a positive electrode active material layer 1B.
  • the positive electrode current collector 1A is, for example, a powder, foil, punched, or expanded current collector.
  • the positive electrode current collector 1A preferably has high electrical conductivity.
  • One or more metals selected from silver, palladium, gold, platinum, aluminum, copper, nickel, titanium, and stainless steel, alloys thereof, or conductive resins can be used for the positive electrode current collector 1A.
  • the positive electrode active material layer 1B is formed on one side or both sides of the positive electrode current collector 1A.
  • the positive electrode active material layer 1B is an example of the electrode active material layer according to this embodiment.
  • the positive electrode active material layer 1B contains a positive electrode active material and a solid electrolyte, and may further contain a conductive aid and a binder as necessary. At least a part of the solid electrolyte provided in the positive electrode active material layer 1B is a mesh solid electrolyte.
  • materials used for forming the positive electrode active material layer 1B may be collectively referred to as a positive electrode mixture.
  • the positive electrode active material is not particularly limited as a positive electrode active material as long as it can reversibly progress lithium ion release and absorption, and lithium ion desorption and insertion, and is used in known lithium ion secondary batteries. can be used.
  • LiV 2 O 5 Li 3 V 2 (PO 4 ) 3 , LiVOPO4
  • olivine-type LiMPO 4 where M is Co, Ni, Mn, Fe, Mg, V, represents one or more elements selected from Nb, Ti, Al, and Zr
  • lithium titanate Li4Ti5O12
  • LiNixCoyAlzO2 LiNixCoyAlzO2 ( 0.9 ⁇ x + y + z ⁇ 1.1 ) is one or more mixed metal oxides selected from
  • a positive electrode active material that does not contain lithium can also be used as the positive electrode active material.
  • These positive electrode active materials can be used by arranging a negative electrode active material doped with metallic lithium or lithium ions in the negative electrode layer in advance and starting the battery from discharging.
  • a negative electrode active material doped with metallic lithium or lithium ions in the negative electrode layer in advance and starting the battery from discharging.
  • non-lithium containing metal oxides MnO2 , V2O5 , etc.
  • MoS2, etc. non-lithium containing metal sulfides
  • FeF3 , VF3 , etc. non- lithium containing fluorides
  • FIG. 2 is an example of a cross-sectional view schematically showing an enlarged view of the inside of the positive electrode active material layer 1B.
  • the conductive aid is omitted.
  • the positive electrode active material layer 1B has a positive electrode active material AM1, a positive electrode active material AM2, a solid electrolyte SE1, and a solid electrolyte SE2 inside.
  • the solid electrolyte SE1 and the solid electrolyte SE2 are in contact with the positive electrode active material AM1 and the positive electrode active material AM2.
  • the solid electrolyte SE2 is a net-like solid electrolyte.
  • the solid electrolyte SE2 has a net-like cross-sectional shape taken perpendicularly to the in-plane direction of the positive electrode active material layer 1B.
  • the solid electrolyte SE2 may have a shape in which a plurality of fibrous solid electrolytes are overlapped. , the plurality of fibrous solid electrolytes are united to form a net shape. That is, the solid electrolyte SE2 has a plurality of fibrous portions P1.
  • Each fiber of the plurality of fibrous portions P1 may have a shape that branches and merges with adjacent fibers.
  • each of the plurality of fibrous portions P1 of the solid electrolyte SE2 branches and merges, so the solid electrolyte SE2 is surrounded by the plurality of fibrous portions P1. It has a closed mesh portion P2.
  • the net-like solid electrolyte has a nest-like structure.
  • the mesh portion P2 is surrounded by the plurality of fibrous portions P1, or the plurality of fibrous portions P1 and the positive electrode active material AM1, the positive electrode active material AM2 and/or the solid electrolyte SE1 in the cross section of the positive electrode active material layer 1B. It is a region closed by The mesh portion P2 is a region closed by being surrounded by a plurality of fibrous portions P1 in two-dimensional observation, but is closed by a plurality of fibrous portions P1 in three-dimensional observation. It doesn't have to be.
  • the brightness of the plurality of fibrous portions P1 shows a higher value than the brightness of the mesh-like portion P2.
  • the mesh portion P2 can be confirmed as a void, and the inside is considered to be filled with a substance (for example, vacuum) other than the solid electrolyte SE2.
  • the average diameter of each fiber in the plurality of fibrous portions P1 may be 5 nm or more and 30 nm or less, or may be 10 nm or more and 20 nm or less.
  • the average diameter of each fiber in the plurality of fibrous portions P1 is the average diameter of each fiber in a cross section perpendicular to the in-plane direction of the positive electrode active material layer 1B.
  • the average diameter of each fiber in the plurality of fibrous portions P1 can be measured by the following procedure.
  • a cross section perpendicular to the in-plane direction of the positive electrode active material layer 1B is observed with a scanning electron microscope.
  • the brightness of the net-like solid electrolyte SE2 is binarized and classified into a fibrous portion P1 having a brightness greater than or equal to the threshold and a mesh portion P2 having a brightness less than or equal to the threshold (hereinafter, an image after binarization is referred to as a binarized image).
  • the maximum value of the length in the direction where the aspect ratio of each fiber of the plurality of fibrous portions P1 is small is taken as the diameter of each fiber, and 10 fibers are selected in descending order of diameter.
  • the average diameter of the ten selected fibers is obtained and taken as the average diameter. More specifically, in a field of view of 1 ⁇ m ⁇ 1 ⁇ m, 10 fibers are selected in descending order of diameter, and the average diameter of the 10 selected fibers is obtained. This was repeated twice, and the average value was taken as the average diameter.
  • the average area of the mesh portion P2 may be 70 nm 2 or more and 8000 nm 2 or less, 70 nm 2 or more and 3000 nm 2 or less, or 500 nm 2 or more and 8000 nm 2 or less.
  • the average area of the mesh portion P2 is measured by the following procedure.
  • the cross-sectional portion of the positive electrode active material layer 1B having the mesh-like solid electrolyte SE2 is observed with an SEM to obtain a binarized image.
  • 10 mesh portions P2 in the field of view are selected in descending order of area, and the area of each is determined.
  • the average of the areas of the selected 10 mesh portions (the mesh portion area) is obtained, and this is taken as the average area of the mesh portions. More specifically, in a field of view of 1 ⁇ m ⁇ 1 ⁇ m, 10 mesh portions are selected in descending order of area, and the average area of the selected 10 mesh portions is obtained. This was repeated twice, and the average value was taken as the average area of the mesh portion.
  • the brightness of 100 can be used as a threshold.
  • the average diameter and the average area of the mesh portion are obtained, the selection of fibers with a large diameter and the selection of a mesh portion with a large area are selected from those in the same field of view.
  • the magnification of the SEM can be, for example, about 100,000 times.
  • the solid electrolyte SE1 and the solid electrolyte SE2 contained in the positive electrode active material layer 1B are preferably compounds represented by the following formula (1).
  • the solid electrolyte SE1 and the solid electrolyte SE2 may be made of the same material. Li 2+a E 1-b G b D c X d (1) (0 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 5.0, 0 ⁇ d ⁇ 6.1)
  • E is at least one element selected from the group consisting of Al, Sc, Y, Zr, Hf, and lanthanides.
  • Lanthanides are La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu.
  • E preferably contains Sc or Zr, particularly preferably Zr.
  • E contains Sc or Zr, the ionic conductivity of the solid electrolyte increases.
  • G is Na, K, Rb, Cs, Mg, Ca, Sr, Ba, B, Si, Al, Ti, Cu, Sc, Y, Zr, Nb, Ag, In, Sn , Sb, Hf, Ta, W, Au, and Bi.
  • the amount of lithium ions, which are carrier ions increases or decreases, increasing the ionic conductivity.
  • D is at least one group selected from the group consisting of CO3 , SO4 , BO3 , PO4, NO3 , SiO3, OH and O2 .
  • X is at least one element selected from the group consisting of F, Cl, Br, and I.
  • X has a large ionic radius per valence. Including X in the solid electrolyte increases the conductivity of lithium ions in the solid electrolyte.
  • X preferably contains Cl.
  • X preferably contains F in order to improve the balance between oxidation resistance and reduction resistance of the solid electrolyte.
  • X preferably contains I in order to increase the resistance to reduction of the solid electrolyte.
  • the positive electrode active material layer 1B containing the solid electrolyte, at least a portion of which is a mesh portion, can be obtained by mixing the positive electrode material mixture with the solid electrolyte and processing the mixture by a predetermined method.
  • the negative electrode layer 2 preferably has a negative electrode current collector 2A and a negative electrode active material layer 2B containing a negative electrode active material.
  • the negative electrode current collector 2A is, for example, a powder, foil, punched, or expanded current collector.
  • the negative electrode current collector 2A preferably has high conductivity.
  • One or more metals selected from silver, palladium, gold, platinum, aluminum, copper, nickel, stainless steel, and iron, alloys thereof, or conductive resin may be used for the negative electrode current collector 2A.
  • the negative electrode active material layer 2B is formed on one side or both sides of the negative electrode current collector 2A.
  • the negative electrode active material layer 2B contains a negative electrode active material and, if necessary, may further contain a conductive aid, a binder, and a solid electrolyte.
  • the solid electrolyte may contain a solid electrolyte similar to the solid electrolyte contained in the solid electrolyte layer.
  • materials used to form the negative electrode active material layer 2B may be collectively referred to as a negative electrode mixture.
  • the negative electrode active material contained in the negative electrode active material layer 2B may be any compound that can occlude and release mobile ions, and negative electrode active materials used in known lithium ion secondary batteries can be used.
  • the negative electrode active material includes carbon materials such as simple alkali metals, alkali metal alloys, graphite (natural graphite, artificial graphite), carbon nanotubes, non-graphitizable carbon, easily graphitizable carbon, low-temperature fired carbon, aluminum, silicon, tin, Metals that can combine with metals such as alkali metals such as germanium and its alloys, SiO x (0 ⁇ x ⁇ 2), oxides such as iron oxide, titanium oxide, tin dioxide, and lithium titanate (Li 4 Ti 5 O 12 ) or the like selected from lithium metal oxides.
  • the conductive aid is not particularly limited as long as it improves the electron conductivity in the positive electrode active material layer 1B and the negative electrode active material layer 2B, and known conductive aids can be used.
  • Conductive agents include, for example, carbon-based materials such as graphite, carbon black, graphene, and carbon nanotubes, metals such as gold, platinum, silver, palladium, aluminum, copper, nickel, stainless steel, and iron, and conductive materials such as ITO. one selected from organic oxides, or a mixture thereof.
  • the conductive aid may be in the form of powder or fiber.
  • the binder is the positive electrode current collector 1A and the positive electrode active material layer 1B, the positive electrode active material layer 1B and the solid electrolyte layer 3, the positive electrode active material layer 1B, the negative electrode current collector 2A, the negative electrode active material layer 2B, and the negative electrode active material layer 2B.
  • Various materials constituting the solid electrolyte layer 3 and the negative electrode active material layer 2B are joined.
  • the binder can be used within a range that does not impair the functions of the positive electrode active material layer 1B and the negative electrode active material layer 2B. A binder may not be included if unnecessary.
  • the binder content in the positive electrode active material layer 1B or the negative electrode active material layer 2B is 0.5 to 30% by volume of the positive electrode active material layer 1B or the negative electrode active material layer 2B. If the content of the binder is within this range, the resistance of the positive electrode active material layer 1B or the negative electrode active material layer 2B will be sufficiently low.
  • binder Any binder can be used as long as the above bonding can be achieved, and fluororesins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE) can be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • cellulose, styrene/butadiene rubber, ethylene/propylene rubber, polyimide resin, polyamideimide resin, or the like may be used as the binder.
  • a conductive polymer having electronic conductivity or an ion-conductive polymer having ionic conductivity may be used as the binder.
  • Polyacetylene etc. are mentioned as a conductive polymer which has electronic conductivity.
  • the binder since the binder also exhibits the function of the conductive additive particles, it is not necessary to add a conductive additive.
  • ion-conductive polymer having ion conductivity those that conduct lithium ions can be used, and polymer compounds (polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide, polyphosphazene, etc.) can be used. and a lithium salt such as LiClO 4 , LiBF 4 , or LiPF 6 or an alkali metal salt mainly containing lithium.
  • Polymerization initiators used for compositing include photopolymerization initiators and thermal polymerization initiators compatible with the above monomers. Properties required for the binder include oxidation/reduction resistance and good adhesiveness.
  • Solid electrolyte layer The solid electrolyte layer 3 is located between the positive electrode layer 1 and the negative electrode layer 2 .
  • Solid electrolyte layer 3 contains a solid electrolyte.
  • a solid electrolyte is a substance (eg, particles) in which ions can be moved by an externally applied electric field. For example, lithium ions move within a solid electrolyte due to an externally applied electric field.
  • a solid electrolyte is an insulator that inhibits the movement of electrons.
  • the solid electrolyte can contain lithium.
  • the solid electrolyte layer 3 can use the same material as the solid electrolyte contained in the positive electrode active material layer 1B.
  • the solid electrolyte contained in the solid electrolyte layer 3 may be a solid electrolyte different from the solid electrolyte contained in the positive electrode active material layer 1B.
  • the solid electrolyte may be a solid electrolyte in which a sulfide-based material is used.
  • the solid electrolyte may be any of perovskite-type compounds, lysicone-type compounds, garnet-type compounds, nasicon-type compounds, thiolysicone-type compounds, glass compounds, and phosphoric acid compounds.
  • La 0.5 Li 0.5 TiO 3 is an example of a perovskite-type compound.
  • Li 14 Zn(GeO 4 ) 4 is an example of a lysicone-type compound.
  • Li7La3Zr2O12 is an example of a garnet - type compound.
  • LiZr2 ( PO4 ) 3 Li1.3Al0.3Ti1.7 ( PO4 ) 3 , Li1.5Al0.5Ge1.5 ( PO4 ) 3 , Li1.55Al0 .2 Zr1.7Si0.25P9.75O12 , Li1.4Na0.1Zr1.5Al0.5 ( PO4 ) 3 , Li1.4Ca0.25Er0 . _ _ _ 3Zr1.7 ( PO4 ) 3.2 and Li1.4Ca0.25Yb0.3Zr1.7 ( PO4 ) 3.2 are examples of Nasicon -type compounds.
  • Li 3.25 Ge 0.25 P 0.75 S 4 and Li 3 PS 4 are examples of thiolysicone type compounds.
  • Li 2 SP 2 S 5 and Li 2 O—V 2 O 5 —SiO 2 are examples of glass compounds.
  • Li3PO4 , Li3.5Si0.5P0.5O4 , and Li2.9PO3.3N0.46 are examples of phosphoric acid compounds.
  • the solid electrolyte may contain one or more of these compounds.
  • the electrode active material contained in the electrode active material layer repeats expansion and contraction during charging and discharging processes.
  • the solid electrolyte and the electrode active material as well as the electrode active materials may separate from each other at the interface between the electrode layer and the solid electrolyte layer. rice field. That is, there are cases where spaces are generated between the solid electrolyte and the electrode active material and between the electrode active materials. Therefore, in the conventionally used all-solid-state battery, peeling and cracking of the electrode layer may occur. That is, there is a problem that the cycle characteristics tend to deteriorate. In addition, the lithium ion conduction path and the electron conduction path are blocked, the interfacial resistance increases, and the rate characteristic deteriorates in some cases.
  • the net-like solid electrolyte SE2 is the positive electrode active material. It absorbs stress due to expansion and contraction of AM1 and positive electrode active material AM2 and distortion due to volume change of the all-solid-state battery 100 . Therefore, it is possible to suppress the generation of spaces between the solid electrolyte SE1 and the solid electrolyte SE2 and the positive electrode active materials AM1 and AM2 and between the positive electrode active materials (AM1 and AM2). Therefore, peeling of the electrode layer and generation of cracks can be suppressed.
  • strain due to volume change of the all-solid-state battery 100 is borne by the mesh portion P2 of the mesh-like solid electrolyte SE2.
  • strain due to volume change of the all-solid-state battery 100 can be relaxed.
  • the net-like solid electrolyte SE2 can secure lithium ion conduction paths while securing voids for mitigating the volume change.
  • the all-solid-state battery including the electrode active material layer according to this embodiment is not limited to the above example.
  • the positive electrode active material layer 1B of the electrode active material layers includes at least a portion of the mesh-like solid electrolyte. may contain a solid electrolyte that is reticulated.
  • the solid electrolyte included in the negative electrode active material layer 2B include solid electrolytes similar to the solid electrolyte included in the positive electrode active material layer 1B.
  • the average diameter of the fibrous solid electrolyte in the negative electrode active material layer 2B, the average area of the mesh portion, and the method of obtaining them are the same as in the example described above for the positive electrode active material layer 1B.
  • the mesh-like solid electrolyte is similar to the case where only the positive electrode active material layer 1B contains at least a part of the mesh-like solid electrolyte.
  • the solid electrolyte absorbs the stress caused by the expansion and contraction of the negative electrode active material and the strain caused by the volume change of the all-solid-state battery, so excellent cycle characteristics and rate characteristics can be obtained.
  • the all-solid-state battery 100 having one positive electrode layer 1, one negative electrode layer 2, and one solid electrolyte layer 3, but the all-solid-state battery according to the present embodiment includes the positive electrode layer 1, the negative electrode It may have two or more layers 2 and solid electrolyte layers 3 . In that case, at least one positive electrode active material layer or negative electrode active material layer may contain a solid electrolyte, at least a part of which has a mesh shape.
  • An all-solid-state battery can be manufactured, for example, using a powder molding method.
  • a resin holder having a through hole in the center, a lower punch, and an upper punch are prepared.
  • the diameter of the through hole of the resin holder is 12 mm
  • the diameters of the lower punch and the upper punch are 11.99 mm.
  • the diameter of the through hole of the resin holder and the diameters of the lower punch and the upper punch are not limited to these.
  • a lower punch is inserted from below the through-hole of the resin holder, and powdered positive electrode mixture, solid electrolyte, and negative electrode mixture are charged from the opening side of the resin holder.
  • an upper punch is inserted onto the charged powdery material, placed on a press, and pressed.
  • the press pressure is, for example, 20 kPa.
  • a solid electrolyte that can be included in the positive electrode mixture and put in is Li 3 YCl 6 , Li 2 ZrCl 6 , or Li 2 ZrSO 4 Cl 6 .
  • the powdered material is pressed with an upper punch and a lower punch in a resin holder to form a molded body in which the positive electrode active material layer 1B, the solid electrolyte layer 3, and the negative electrode active material layer 2B are laminated.
  • the upper punch is once removed, and the positive electrode current collector 1A and the upper punch are inserted in this order onto the positive electrode active material layer 1B.
  • the lower punch is once removed, and the negative electrode current collector 2A and the lower punch are inserted in this order onto the negative electrode active material layer 2B.
  • the positive electrode current collector 1A and the negative electrode current collector 2A are, for example, aluminum foil or copper foil with a diameter of 12 mm.
  • the laminated body 4 is a stainless steel disk and a bakelite disk having four screw holes as required, and is composed of stainless steel disk/bakelite disk/upper punch/storage element 10/lower punch/bakelite.
  • the disc/stainless steel disc may be loaded in this order and the four screws may be tightened.
  • the terminals 12 and 14 are connected with lead wires or the like. After that, it is housed in the exterior body 20 .
  • the exterior body 20 improves the weather resistance of the all-solid-state battery 100 . After that, one opening of the exterior body 20 is left and the rest may be heat-sealed. After that, the remaining opening may be heat-sealed while vacuuming the interior of the exterior body 20 . An all-solid-state battery is thus manufactured.
  • the all-solid-state battery is charged and discharged while applying pressure, and then subjected to two cycles of aging treatment in which temperature and time are maintained.
  • Aging treatment can be performed under the following conditions.
  • Defective products can be removed by performing the aging treatment.
  • Pressure can be applied to the all-solid-state battery, for example, by holding the all-solid-state battery in a state of being sandwiched between hydraulic presses (manufactured by SHIMAZU, model: SSP-10A), and charging and discharging while applying pressure.
  • the charging of the all-solid-state battery in the aging process is, for example, 0.1 C, the potential of the positive electrode up to 4.3 V (vs Li/Li + ), and the potential of the negative electrode up to 0.1 V (vs Li/Li + ).
  • constant voltage charging is performed until a current density of 0.05C is reached. That is, the charging voltage of the positive electrode can be set to 4.3 V (vs Li/Li + ), and the charging voltage of the negative electrode can be set to 0.1 V (vs Li/Li + ).
  • Discharge of the all-solid-state battery in the aging treatment is performed by constant current discharge, for example, at 0.1 C until the potential of the positive electrode reaches 0.1 V (vs Li/Li + ).
  • the pressure applied to the all-solid-state battery can be, for example, 5 kPa or more and 10 kPa or less.
  • aging treatment is performed by controlling the pressure, temperature, and time.
  • the pressure applied to the all-solid-state battery during charging can be maintained during the aging process.
  • the temperature of the aging treatment can be, for example, 70 degrees or more and 85 degrees or less.
  • the aging treatment time can be, for example, 30 minutes or more and 90 minutes or less.
  • the aging treatment conditions may be changed as appropriate as long as an all-solid-state battery comprising an electrode active material layer at least partially containing a mesh-like solid electrolyte can be produced.
  • an all-solid-state battery 100 including a net-like solid electrolyte in at least a portion of the positive electrode active material layer 1B is manufactured.
  • the charging voltage of the positive electrode is 4.2 V (vs Li/Li + ), and the charging voltage of the negative electrode is 0.
  • the charging condition should be changed to 0.05 V (vs Li/Li + ).
  • the charging voltage of the positive electrode is set to 4.3 V (vs Li /Li + ) and the charging voltage of the negative electrode to 0.05 V (vs Li/Li + ).
  • the manufacturing method of the all-solid-state battery according to the present embodiment can manufacture the all-solid-state battery according to the above embodiment through the above steps.
  • the all-solid-state battery according to the above embodiment cannot be manufactured under manufacturing conditions in which the charging voltage is low in the manufacturing process or under conditions in which pressure is not applied during charging.
  • Example 1 The all-solid-state battery of Example 1 was produced by the following procedure.
  • a positive electrode active material, a conductive aid, and a solid electrolyte were prepared as a positive electrode mixture.
  • the positive electrode active material, the conductive aid, and the solid electrolyte were weighed to be 60 wt %: 5 wt %: 40 wt %, respectively.
  • Lithium cobaltate (LiCoO 2 ) was used as the positive electrode active material.
  • Acetylene black was used as the conductive aid.
  • Li 2 ZrCl 6 was used as the solid electrolyte.
  • a negative electrode active material As a negative electrode mixture, a negative electrode active material, a conductive aid, and a solid electrolyte were prepared. The negative electrode active material, the conductive aid, and the solid electrolyte were weighed so as to be 60 wt %: 5 wt %: 40 wt %, respectively. Lithium cobalt oxide (LiCoO 2 ) was used as the negative electrode active material. Acetylene black was used as the conductive aid. Li 2 ZrCl 6 was used as the solid electrolyte.
  • LiCoO 2 Lithium cobalt oxide
  • Acetylene black was used as the conductive aid.
  • Li 2 ZrCl 6 was used as the solid electrolyte.
  • a resin holder having a through hole with a diameter of 12 mm in the center, a lower punch with a diameter of 11.99 mm made of SKD11 material, and an upper punch were prepared.
  • a lower punch was inserted from below the through hole of the resin holder, and the negative electrode mixture was charged from the opening side of the resin holder.
  • the negative electrode active material in the negative electrode mixture was positioned on the lower punch side, and the solid electrolyte was positioned on the opening side.
  • a positive electrode mixture was introduced. At this time, the solid electrolyte in the positive electrode mixture was positioned on the lower punch side, and the positive electrode active material was positioned on the opening side.
  • an upper punch was inserted, and a unit having an upper punch, a resin holder containing the positive electrode mixture and the negative electrode mixture, and a lower punch was placed in a press and pressed at 20 kPa to produce a compact.
  • the upper punch was once removed, and the positive electrode current collector (aluminum foil, diameter 12 mm, thickness 15 ⁇ m) and the upper punch were sequentially inserted on the positive electrode active material.
  • the lower punch was once removed, and a negative electrode current collector (copper foil, diameter 12 mm, thickness 9 ⁇ m) and the lower punch were inserted in this order onto the negative electrode active material layer to obtain a fourth unit.
  • a 50 mm, 5 mm thick stainless steel disk and a Bakelite disk having four screw holes were prepared, and the battery elements were set as follows.
  • the stainless steel disc/Bakelite disc/fourth unit/bakelite disc/stainless steel disc were stacked in this order, and screws were tightened at four locations to produce a fifth unit. Screws for connecting external terminals were inserted into the screw holes on the sides of the upper and lower punches.
  • An A4 size aluminum laminate bag was prepared as the package.
  • An aluminum foil (width 4 mm, length 40 mm, thickness 100 ⁇ m) wrapped with maleic anhydride graphed polypropylene (PP) and a nickel foil (width 4 mm, length 40 mm) were used as external terminals on one piece of the opening of the aluminum laminate. , thickness 100 ⁇ m) were thermally bonded with a space therebetween so as not to cause a short circuit.
  • the all-solid-state battery was charged while applying pressure using a device name: charger/discharger SD8 (manufactured by Hokuto Denko Co., Ltd.).
  • the pressure applied to the all-solid-state battery was set to 5 kPa.
  • the all-solid-state battery is charged at 0.1 C, and constant current charging is performed until the potential of the positive electrode is 4.3 V (vs Li / Li +) and the potential of the negative electrode is 0.1 V (vs Li / Li +), and then the current density is Constant voltage charging was performed until the battery reached 0.05C.
  • the positive electrode active material layer and the negative electrode active material layer of the produced all-solid-state battery were observed by SEM (SEM observation conditions (accelerating voltage: 1 kV, emission current value: 2 ⁇ A, WD (specimen stage height): 2 mm)). Subsequently, the obtained image was converted to an 8-bit (256 gradation) black-and-white image using an image analysis software, imageJ, to obtain a binarized image. At this time, a brightness of 100 was used as a threshold.
  • the observed cross sections of the positive electrode active material layer and the negative electrode active material layer are cross sections perpendicular to their in-plane directions.
  • each of the positive electrode active material layer and the negative electrode active material layer was observed for the presence or absence of a net-like solid electrolyte.
  • the results are shown in Table 2, with A indicating that a mesh-like solid electrolyte was observed and B indicating that no mesh-like solid electrolyte was observed.
  • A indicating that a mesh-like solid electrolyte was observed
  • B indicating that no mesh-like solid electrolyte was observed.
  • the average diameter of a plurality of fibrous portions and the average area of the mesh portions were calculated based on the binarized image, and the results are shown in Table 2.
  • the maximum length of each fiber in the direction of the small aspect ratio of each fiber of the plurality of fibrous portions P1 is the diameter of each fiber, and 10 fibers with a large diameter are selected, It was calculated by determining the respective diameters and averaging them. That is, in a field of view of 1 ⁇ m ⁇ 1 ⁇ m, 10 fibers are selected in descending order of diameter, and the average diameter of the 10 selected fibers is obtained. This was repeated twice, and the average value was taken as the average diameter.
  • the average area of the mesh portion was calculated by selecting 10 mesh portions P2 in the visual field in descending order of area, determining the area of each, and determining the average area. That is, in a field of view of 1 ⁇ m ⁇ 1 ⁇ m, 10 mesh portions are selected in descending order of area, and the average area of the selected 10 mesh portions is obtained. This was repeated twice, and the average value was taken as the average area of the mesh portion.
  • the cycle characteristics were evaluated as a capacity retention rate (%).
  • the capacity retention rate (%) is the ratio of the discharge capacity after 100 cycles to the initial discharge capacity, with the discharge capacity at the 1st cycle as the initial discharge capacity.
  • Discharge Rate Characteristics are 2C (constant at 25°C) when the discharge capacity is 100% when the discharge rate is 2C (current value at which discharge ends in 1 hour when performing constant current discharge at 25°C). The ratio (%) of the discharge capacity at the current value at which discharge ends in 30 minutes when current discharge was performed was determined as the discharge rate characteristic.
  • the fabricated cell As a condition for evaluating discharge rate characteristics, the fabricated cell was charged and discharged for the first time, and the actual capacity of the fabricated cell was measured. Based on the actual capacities obtained, current densities at discharge rates of 1C and 2C were determined.
  • constant current charging was performed at 0.2C to 4.2V, and then constant voltage charging was performed until the current density reached 0.05C.
  • constant current discharge was performed at 1 C to 0.1 V, the discharge capacity at 1 C was measured, and a rest period of 5 minutes was inserted after the measurement.
  • Example 2 is different from Example 1 in that the time for aging treatment is set to 45 minutes.
  • Example 3 is different from Example 1 in that constant current charging of the all-solid-state battery was performed until the potential of the positive electrode reached 4.2 V (vs Li/Li+) and the potential of the negative electrode reached 0.05 V (vs Li/Li+). different from That is, the charging voltage of the positive electrode was set to 4.2 V (vs Li/Li+), and the charging voltage of the negative electrode was set to 0.05 V (vs Li/Li+).
  • Example 4 differs from Example 1 in that the positive and negative electrode charge voltages are set to 4.2 V (vs Li/Li+) and 0.05 V (vs Li/Li+), respectively, and the aging treatment time is set to 45 minutes. different.
  • the positive and negative electrode charge voltages are set to 4.2 V (vs Li/Li+) and 0.05 V (vs Li/Li+), respectively, and the aging treatment time is set to 45 minutes. different.
  • all-solid-state batteries were manufactured under the same conditions as in Example 1, and the same measurements as in Example 1 were performed.
  • Example 5 differs from Example 1 in that the pressure when charging the all-solid-state battery was set to 10 kPa.
  • Example 6 the pressure when charging the all-solid-state battery was set to 10 kPa, and the positive electrode and negative electrode charging voltages were set to 4.2 V (vs Li/Li+) and 0.05 V (vs Li/Li+), respectively. It differs from Example 1.
  • Example 7 differs from Example 1 in that the pressure for charging the all-solid-state battery was set to 10 kPa and the aging treatment time was set to 45 minutes.
  • Example 8 the pressure when charging the all-solid-state battery was set to 10 kPa, the charging voltage of the positive electrode and the negative electrode was set to 4.2 V (vs Li / Li +) and 0.05 V (vs Li / Li +), respectively, and This example differs from Example 1 in that the time for the aging treatment is set to 45 minutes.
  • Example 9 differs from Example 1 in that the pressure for charging the all-solid-state battery was set to 10 kPa and the aging treatment time was set to 60 minutes.
  • Example 10 the pressure when charging the all-solid-state battery was set to 10 kPa, the charging voltage of the positive electrode and the negative electrode was set to 4.2 V (vs Li / Li +) and 0.05 V (vs Li / Li +), respectively, and This example differs from Example 1 in that the aging process time is set to 60 minutes.
  • all-solid-state batteries were manufactured under the same conditions as in Example 1, and the same measurements as in Example 1 were performed.
  • Example 11 differs from Example 1 in that the pressure for charging the all-solid-state battery was set to 10 kPa, the temperature for the aging treatment was set to 80 degrees, and the time for the aging treatment was set to 60 minutes. Other conditions were the same as in Example 1 to manufacture an all solid state battery.
  • Example 12 is different from Example 11 in that the aging treatment time is set to 15 minutes.
  • the thirteenth embodiment differs from the eleventh embodiment in that the aging process is performed for 30 minutes.
  • Example 14 is different from Example 11 in that the aging treatment time is set to 90 minutes.
  • Example 15 differs from Example 11 in that the time for the aging process is set to 120 minutes.
  • all-solid-state batteries were produced in the same manner as in Example 11 except for the above points. Further, the same measurements as in Example 1 were performed on the all-solid-state batteries of Examples 11 to 15.
  • Example 16 the pressure when charging the all-solid-state battery was set to 10 kPa, the charging voltage of the positive electrode and the negative electrode was set to 4.2 V (vs Li / Li +) and 0.05 V (vs Li / Li +), respectively, and
  • This example differs from Example 1 in that the aging treatment temperature was 80 degrees and the aging treatment time was 60 minutes. Other conditions were the same as in Example 1 to manufacture an all solid state battery.
  • Example 17 differs from Example 16 in that the aging treatment temperature was 80 degrees and the aging treatment time was 15 minutes.
  • Example 18 differs from Example 16 in that the aging treatment time is set to 30 minutes.
  • Example 19 differs from Example 16 in that the aging treatment time is set to 90 minutes.
  • Example 20 differs from Example 16 in that the aging treatment time is set to 120 minutes.
  • all-solid-state batteries were manufactured in the same manner as in Example 16 except for the other conditions. Further, the same measurements as in Example 1 were performed on the all-solid-state batteries of Examples 16 to 20.
  • Example 21 In Example 21, the pressure when charging the all-solid-state battery was set to 10 kPa, and the charging voltage of the positive electrode and the negative electrode was set to 4.3 V (vs Li / Li +) and 0.05 V (vs Li / Li +), respectively. Also, it differs from Example 1 in that the aging treatment temperature was set to 85° C. and the aging treatment time was set to 60 minutes. Other conditions were the same as in Example 1 to manufacture an all solid state battery. Example 22 differs from Example 21 in that the aging treatment time is set to 90 minutes. Other conditions were the same as in Example 21 to manufacture an all-solid battery. The same measurements as in Example 1 were performed on the all-solid-state batteries of Examples 21 and 22.
  • Comparative Example 1 In Comparative Example 1, no pressure was applied when charging the all-solid-state battery, and the charging voltages of the positive electrode and the negative electrode were set to 4.0 V (vs Li/Li+) and 0.5 V (vs Li/Li+), respectively. It differs from Example 1. Other conditions were the same as in Example 1 to manufacture an all-solid-state battery, and the same measurements as in Example 1 were performed.
  • Examples 1 to 22 had excellent cycle characteristics and rate characteristics compared to Comparative Example 1.
  • particularly high cycle characteristics and rate characteristics were obtained in Examples 5 to 22 in which the average diameter of a plurality of fibers of the net-like solid electrolyte contained in the electrode active material layer was in the range of 5 nm or more and 30 nm or less.
  • Particularly high cycle characteristics and rate characteristics were obtained in Examples 11 to 22 in which the average area of the mesh portion included in the electrode active material layer was 70 nm 2 or more and 200 nm 2 or less.
  • Examples 21 and 22 in which at least a portion of the mesh-like solid electrolyte is present in both the positive electrode active material layer and the negative electrode active material layer, particularly high cycle characteristics and rate characteristics were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

この電極活物質層は、活物質と固体電解質とを含む電極活物質層であって、前記固体電解質の少なくとも一部は、網状である。

Description

電極活物質層、電極、全固体電池
 本発明は、電極活物質層、電極、全固体電池に関する。
 本願は、2021年3月26日に、日本に出願された特願2021-053691号に基づき優先権を主張し、その内容をここに援用する。
 近年、エレクトロニクス技術の発達はめざましく、携帯電子機器の小型軽量化、薄型化、多機能化が図られている。それに伴い、電子機器の電源となる電池は、小型軽量化、薄型化、信頼性の向上が強く望まれており、電解質として固体電解質を用いる全固体電池が注目されている。
 全固体電池において、固体電解質として無機固体電解質を使用し、電極として有機物を使用した場合、有機電解液の漏液やガス発生の心配がなく安全性が高い。そのため、全固体電池は一層注目されている。また、全固体電池は液系の電池と比較して、電池反応以外の反応が生じることが少ない。そのため、全固体電池は長寿命化の観点でも期待されている。
 全固体電池の作製方法の一例として、焼結法と粉末成形法とがある。焼結法は、負極と固体電解質層と正極とを積層後、焼結して全固体電池を形成する。焼結法では、固体電解質層と正極層及び固体電解質層と負極層の界面を良好に接合することができると知られている。粉末成形法は、負極と固体電解質層と正極とを積層後、圧力を加えて全固体電池を形成する。
 特許文献1には、焼結法を用いて製造された全固体電体が開示されている。特許文献1に開示された全固体電池は、正極層及び負極層のどちらか一方の気孔率が5%~50%であると開示されている。特許文献1に開示された全固体電池は、上記構成にすることで、充放電の際、正極活物質、負極活物質といった電極活物質の膨張収縮を緩和することを目的としている。
特開2012-99225号公報
 しかしながら、特許文献1に開示された電極活物質層を備える電池では、十分なサイクル特性を得られなかった。
 本発明は、上記問題に鑑みてなされたものであり、電池に用いた際、優れたサイクル特性およびレート特性を実現できる電極活物質層を提供することを目的とする。
 本発明者は、上記課題を解決するために、鋭意検討を重ねた。その結果、網目形状を有する固体電解質を含む電極活物質層を製造することに成功し、このような電極活物質層を全固体電池に用いた際、優れたサイクル特性およびレート特性を得られることを見出した。すなわち、本実施形態では、以下の手段を提供する。
(1)本発明の第一の態様にかかる電極活物質層は、
 活物質と固体電解質とを含む電極活物質層であって、
 前記固体電解質の少なくとも一部は、網状である。
(2)上記態様に係る電極活物質層において、前記網状の固体電解質は、以下の式(1)で表される固体電解質であってもよい
Li2+a1-b・・・(1)
(式(1)において、
EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1つの元素であり、
Gは、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、B、Si、Al、Ti、Cu、Sc、Y、Zr、Nb、Ag、In、Sn、Sb、Hf、Ta、W、Au、Biからなる群から選択される少なくとも1つの元素であり、
DはCO、SO、BO、PO、NO、SiO、OH、O、からなる群から選択される少なくとも一つの基であり
XはF、Cl、Br、Iからなる群から選択される少なくとも1種以上であり、
0≦a<1.5、0≦b<0.5、0≦c≦5.0、0<d≦6.1である)。
(3)上記態様に係る電極活物質層において、
 前記固体電解質のうち網状の部分は、複数の繊維が重なり合っており、
 前記電極活物質層の面内方向に垂直な断面を走査電子顕微鏡で観察した画像において、
 前記複数の繊維のそれぞれの繊維において、アスペクト比が小さい方向における長さの最大値を前記繊維の直径とした際、
 前記複数の繊維のうち、視野中における直径が大きいものから順に選択した10本の繊維の平均直径が5nm以上30nm以下であってもよい。
(4)上記態様に係る電極活物質層において、
 前記固体電解質のうちの網状の部分は、複数の繊維が重なり合っており、
 前記電極活物質層の面内方向に垂直な断面を走査電子顕微鏡で観察した画像において、
 前記複数の繊維、または前記複数の繊維と前記活物質及び/又は前記固体電解質とで囲まれた網目部分の面積を網目部分面積とし、
 前記網目部分面積が大きいものから順に選択した10つの網目部分面積の平均面積が70nm以上8000nm以下であってもよい。
(5)本発明の第二の態様に係る電極は、上記態様にかかる電極活物質層を備える。
(6)本発明の第三の態様に係る全固体電池は、上記態様に係る電極を備える。
 本実施形態にかかる電極活物質層を電池に用いると、優れたサイクル特性およびレート特性を得られる。
本発明の一実施形態にかかる全固体電池の断面模式図である。 本発明の一実施形態にかかる電極活物質層の要部の断面模式図である。
 以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率、数、配置などは実際とは異なっていることがある。以下の説明において例示される材料、寸法、数、数値、配置等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
 まず方向について定義する。後述する正極活物質層1B及び負極活物質層2Bが積層されている方向を積層方向とする。また後述する正極活物質層1B及び負極活物質層2Bが広がる方向を面内方向とする。
[全固体電池]
 図1は、本実施形態にかかる全固体電池100の要部を拡大した断面模式図である。全固体電池100は、蓄電素子10と外装体20とを備える。蓄電素子10は、外装体20内の収容空間Kに収容される。蓄電素子10は、積層体4と、外部端子12,14とを有する。外部端子12,14は、積層体4を外部と電気的に接続する。
 外装体20は、金属箔22と、金属箔22の両面に積層された樹脂層24と、を有するとよい。外装体20は、金属箔を高分子膜(樹脂層)で両側からコーティングした金属ラミネートフィルムであるとよい。金属箔22は、例えばアルミ箔である。樹脂層24は、例えば、ポリプロピレン等の高分子膜である。樹脂層24は、内側と外側とで異なっていてもよい。外側の樹脂層として、ポリエチレンテレフタレート(PET)、及びポリアミド(PA)から選択される1種以上の融点の高い高分子を用いることができ、内側の樹脂層として、ポリエチレン(PE)、及びポリプロピレン(PP)から選択される1種以上の、耐熱性、耐酸化性、耐還元性の高いものを用いることができる。
 積層体4は、少なくとも一つの正極層1と、少なくとも一つの負極層2と、正極層1と負極層2との間にある固体電解質層3とを有する。正極層1は、第1電極層の一例であり、負極層2は、第2電極層の一例である。第1電極層と第2電極層は、いずれか一方が正極として機能し、他方が負極として機能する。正極層1及び負極層2のそれぞれの一端は、対応する極性の外部端子12,14に接続されている。
 全固体電池100は、正極層1と負極層2との間で固体電解質層3を介したイオンの授受により充放電する。図1では、積層型の電池を示したが、巻回型の電池でもよい。全固体電池100は、例えばラミネート電池、角型電池、円筒型電池、コイン型電池、ボタン型電池等に用いられる。
「正極層」
 図1に示すように、正極層1は、正極集電体1Aと正極活物質層1Bとを有するとよい。
(正極集電体)
 正極集電体1Aは、例えば粉体、箔、パンチング、或いはエクスパンの集電体である。正極集電体1Aは、導電率が高いことが好ましい。正極集電体1Aには、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケル、チタン、及びステンレスから選択される1種以上の金属およびそれらの合金、または導電性樹脂を用いることができる。
(正極活物質層)
 正極活物質層1Bは、正極集電体1Aの片面又は両面に形成される。正極活物質層1Bは、本実施形態にかかる電極活物質層の一例である。正極活物質層1Bは、正極活物質と、固体電解質とを含み、さらに必要に応じて、導電助剤、バインダーを含んでいてもよい。正極活物質層1Bに備えられる固体電解質は、少なくとも一部が網状の固体電解質である。本実施形態においては、正極活物質層1Bを形成するために用いる材料を総称して、正極合剤という場合がある。
 正極活物質は、リチウムイオンの放出及び吸蔵、リチウムイオンの脱離及び挿入を可逆的に進行させることが可能であれば、正極活物質として特に限定されず、公知のリチウムイオン二次電池に用いられている正極活物質を使用できる。正極活物質は、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、一般式:LiNiCoMn(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV、Li(PO、LiVOPO4)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、V、Nb、Ti、Al、Zrより選ばれる1種類以上の元素を示す)、チタン酸リチウム(LiTi12)、及びLiNiCoAl(0.9<x+y+z<1.1)から選択される1種以上の複合金属酸化物である。
 また正極活物質として、リチウムを含有していない正極活物質も使用できる。これらの正極活物質は、あらかじめ負極層に金属リチウムやリチウムイオンをドープした負極活物質を配置しておき、電池を放電から開始することで使用できる。例えば、リチウム非含有金属酸化物(MnO、Vなど)、リチウム非含有金属硫化物(MoSなど)、リチウム非含有フッ化物(FeF、VFなど)などは、これらの正極活物質の一例である。
 図2は、正極活物質層1Bの内部を拡大し、模式的に示した断面図の一例である。図2では、導電助剤を省略している。
 正極活物質層1Bは、内部に正極活物質AM1、及び正極活物質AM2と、固体電解質SE1、及び固体電解質SE2を有する。図2において、固体電解質SE1、及び固体電解質SE2は、正極活物質AM1と正極活物質AM2と接している。
 固体電解質SE2は、網状の固体電解質である。固体電解質SE2は、正極活物質層1Bの面内方向に垂直に切断した断面視形状が網状である。固体電解質SE2は、複数の繊維状の固体電解質が重なり合った形状であってよい。、複数の繊維状の固体電解質は、一体となり、網形状を構成している。すなわち、固体電解質SE2は、複数の繊維状の部分P1を有する。複数の繊維状の部分P1のそれぞれの繊維は、分岐し、隣り合う繊維と合流する形状であってもよい。このように、本実施形態にかかる正極活物質層1Bでは、固体電解質SE2の複数の繊維状の部分P1のそれぞれが分岐及び合流するため、固体電解質SE2は、複数の繊維状の部分P1に囲まれた網目部分P2を有する。網状の固体電解質は、巣のような構造をしている。
 網目部分P2は、正極活物質層1Bの断面において、複数の繊維状の部分P1、或いは複数の繊維状の部分P1と正極活物質AM1,正極活物質AM2及び/又は固体電解質SE1に囲まれることで閉ざされた領域である。尚、網目部分P2は、二次元での観察で複数の繊維状の部分P1により囲まれることで閉ざされた領域であるが、三次元での観察では複数の繊維状の部分P1により閉ざされていなくてもよい。
 走査電子顕微鏡(SEM:Scanning Electron Microscope)を用いて固体電解質SE2を観察すると、複数の繊維状の部分P1の明度は、網目状の部分P2の明度よりも高い値を示す。SEMの断面画像において、網目部分P2は空隙として確認でき、内部は固体電解質SE2以外の物質(例えば、真空)で充填されていると考えられる。
 複数の繊維状の部分P1における各繊維の平均直径は、5nm以上30nm以下であってもよく、10nm以上や20nm以下であってもよい。ここで、複数の繊維状の部分P1における各繊維の平均直径は、正極活物質層1Bの面内方向に垂直な断面における各繊維の平均直径である。複数の繊維状の部分P1における各繊維の平均直径は、以下の手順で測定できる。
 先ず、正極活物質層1Bの面内方向に垂直な断面を走査電子顕微鏡で観察する。次いで、網状の固体電解質SE2の明度を二値化し、明度が閾値以上である繊維状の部分P1と、明度が閾値以下である網目部分P2とに分類する(以下、二値化後の画像を二値化画像と称する)。次いで、複数の繊維状の部分P1の各繊維のアスペクト比の小さい方向における長さの最大値を各繊維の直径とし、直径が大きい繊維から順に10本選択する。次いで、選択した10本の繊維の直径の平均を求め、これを平均直径とする。
 より具体的には、1μm×1μmの視野において、直径が大きい繊維から順に10本選択し、選択した10本の繊維の直径の平均を求める。これを2回繰り返し、その平均値を平均直径とした。
 網目部分P2の平均面積は、70nm以上8000nm以下であってもよく、70nm以上3000nm以下であってもよく、500nm以上8000nm以下であってもよい。ここで、網目部分P2の平均面積は、以下の手順で測定される。
 先ず、正極活物質層1B内の断面の網状の固体電解質SE2を有する部分をSEMで観察し、二値化画像を得る。次いで、視野中の網目部分P2を、面積が大きいものから順に10つ選択し、それぞれの面積を求める。次いで、選択した10つの網目部分の面積(網目部分面積)の平均を求め、これを網目部分の平均面積とする。
 より具体的には、1μm×1μmの視野において、面積が大きいものから順に10つ選択し、選択した10つの網目部分の面積の平均を求める。これを2回繰り返し、その平均値を網目部分の平均面積とした。
 尚、走査電子顕微鏡像における網状の固体電解質SE2の明度を二値化する際、例えば8bit(256階調)の白黒像で表したとき、における明度100を閾値とすることができる。また、上記平均直径および網目部分の平均面積を求める際、直径の大きい繊維の選択および面積の大きい網目部分の選択は、同一視野中のものから選択する。この際、SEMの倍率は、例えば100,000倍程度にすることができる。
 正極活物質層1Bに含まれる固体電解質SE1,及び固体電解質SE2は、以下の式(1)で表される化合物であるとよい。固体電解質SE1と固体電解質SE2とは、同じ材料からなってよい。
Li2+a1-b・・・(1)
(0≦a<1.5、0≦b<0.5、0≦c≦5.0、0<d≦6.1)
 上記の式(1)において、EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1種の元素である。ランタノイドは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luである。固体電解質がEの元素を含むと、固体電解質の電位窓が広がる。Eは、ScまたはZrを含むことが好ましく、Zrであることが特に好ましい。EがScまたはZrを含むと、固体電解質のイオン電導度が高まる。
 上記の式(1)において、Gは、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、B、Si、Al、Ti、Cu、Sc、Y、Zr、Nb、Ag、In、Sn、Sb、Hf、Ta、W、Au、Biからなる群から選択される少なくとも1種の元素である。固体電解質がGの元素を含むと、キャリアイオンであるリチウムイオン量が増減してイオン伝導度が高くなる。
 上記の式(1)において、DはCO、SO、BO、PO、NO、SiO、OH、O、からなる群から選択される少なくとも一つの基である。DとEとの間の共有結合性が強いと、EとXとの間のイオン結合も強くなる。このため、化合物中のEが還元されにくく、還元側の電位窓が広い化合物になるものと推定される。
 上記の式(1)において、XはF、Cl、Br、Iからなる群から選択される少なくとも1種の元素である。Xは、価数当たりのイオン半径が大きい。固体電解質がXを含むことにより、固体電解質内におけるリチウムイオンの電導度が高まる。固体電解質のイオン電導度を高めるためには、XはClを含むことが好ましい。固体電解質の耐酸化性および耐還元性のバランスを高めるためには、XはFを含むことが好ましい。固体電解質の還元耐性を高めるためにはXはIを含むことが好ましい。固体電解質がDを含むと、固体電解質の還元側の電位窓が広いものとなる。
 本実施形態では、正極合剤に固体電解質を混合し、所定の方法で加工することで、少なくとも一部が網目部分である固体電解質を含む正極活物質層1Bを得られる。
「負極」
 図1に示すように、負極層2は、負極集電体2Aと、負極活物質を含む負極活物質層2Bとを有するとよい。
(負極集電体)
 負極集電体2Aは、例えば粉体、箔、パンチング、或いはエクスパンの集電体である。負極集電体2Aは、導電率が高いことが好ましい。負極集電体2Aには、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケル、ステンレス、及び鉄から選択される1種以上の金属およびそれらの合金、または導電性樹脂を用いてもよい。
(負極活物質層)
 負極活物質層2Bは、負極集電体2Aの片面又は両面に形成される。負極活物質層2Bは、負極活物質を含み、さらに必要に応じて、導電助剤、バインダー、固体電解質を含んでいてもよい。固体電解質としては、固体電解質層が含む固体電解質と同様の固体電解質を含んでいてもよい。本実施形態においては、負極活物質層2Bを形成するために用いる材料を総称して、負極合剤という場合がある。
 負極活物質層2Bに含まれる負極活物質は、可動イオンを吸蔵・放出可能な化合物であればよく、公知のリチウムイオン二次電池に用いられる負極活物質を使用できる。負極活物質は、アルカリ金属単体、アルカリ金属合金、黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、アルミニウム、シリコン、スズ、ゲルマニウムおよびその合金等のアルカリ金属等の金属と化合することのできる金属、SiO(0<x<2)、酸化鉄、酸化チタン、二酸化スズ等の酸化物、及びチタン酸リチウム(LiTi12)等のリチウム金属酸化物から選択される1種以上である。
(導電助剤)
 導電助剤は、正極活物質層1B、負極活物質層2B内の電子伝導性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。導電助剤は、例えば、黒鉛、カーボンブラック、グラフェン、及びカーボンナノチューブ等の炭素系材料、金、白金、銀、パラジウム、アルミニウム、銅、ニッケル、ステンレス、及び鉄等の金属、並びにITOなどの伝導性酸化物から選択される1種、またはこれらの混合物が挙げられる。導電助剤は、粉体、繊維の各形態であってもよい。
(バインダー)
 バインダーは、正極集電体1Aと正極活物質層1B、正極活物質層1Bと固体電解質層3,正極活物質層1B並びに負極集電体2Aと負極活物質層2B、負極活物質層2Bと固体電解質層3,負極活物質層2Bを構成する各種材料を接合する。
 バインダーは、正極活物質層1B、負極活物質層2Bの機能を失わない範囲内で用いることができる。バインダーは、不要であれば含有させなくてもよい。正極活物質層1B、又は負極活物質層2B中のバインダーの含有量は、正極活物質層1B、又は負極活物質層2Bの0.5~30体積%である。バインダーの含有量が当該範囲内であれば、正極活物質層1B、又は負極活物質層2Bの抵抗が十分低くなる。
 バインダーは、上述の接合が可能なものであればよく、ポリフッ化ビニリデン(PVDF)、又はポリテトラフルオロエチレン(PTFE)等のフッ素樹脂が挙げられる。更に、上記の他に、バインダーとして、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、又はポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性を有する導電性高分子や、イオン伝導性を有するイオン導電性高分子を用いてもよい。電子伝導性を有する導電性高分子としては、ポリアセチレン等が挙げられる。この場合は、バインダーが導電助剤粒子の機能も発揮するので導電助剤を添加しなくてもよい。イオン伝導性を有するイオン導電性高分子としては、リチウムイオン等を伝導するものを使用することができ、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリフォスファゼン等)のモノマーと、LiClO、LiBF、LiPF等のリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、上記のモノマーに適合する光重合開始剤または熱重合開始剤などが挙げられる。バインダーに要求される特性としては、酸化・還元耐性があること、接着性が良いことが挙げられる。
「固体電解質層」
 固体電解質層3は、正極層1と負極層2との間に位置する。固体電解質層3は、固体電解質を含む。固体電解質は、外部から印加された電場によってイオンを移動させることができる物質(例えば、粒子)である。例えば、リチウムイオンは、外部から印加された電場によって固体電解質内を移動する。また固体電解質は、電子の移動を阻害する絶縁体である。
 固体電解質は、リチウムを含むことができる。固体電解質層3は、正極活物質層1Bに含まれる固体電解質と同様の材料を用いることができる。また固体電解質層3に含まれる固体電解質は、正極活物質層1Bに含まれる固体電解質とは異なる固体電解質であってもよい。
 固体電解質は、硫化物系材料が用いられる固体電解質であってよい。固体電解質は、ペロブスカイト型化合物、リシコン型化合物、ガーネット型化合物、ナシコン型化合物、チオリシコン型化合物、ガラス化合物、及びリン酸化合物のいずれでもよい。La0.5Li0.5TiOは、ペロブスカイト型化合物の一例である。Li14Zn(GeOは、リシコン型化合物の一例である。Li7LaZr12はガーネット型化合物の一例である。LiZr(PO、Li1.3Al0.3Ti1.7(PO3、Li1.5Al0.5Ge1.5(PO、Li1.55Al0.2Zr1.7Si0.259.7512、Li1.4Na0.1Zr1.5Al0.5(PO、Li1.4Ca0.25Er0.3Zr1.7(PO3.2、Li1.4Ca0.25Yb0.3Zr1.7(PO3.2は、ナシコン型化合物の一例である。Li3.25Ge0.250.754、LiPSは、チオリシコン型化合物の一例である。LiS-P5、LiO-V-SiOは、ガラス化合物の一例である。LiPO、Li3.5Si0.50.5、Li2.9PO3.30.46はリン酸化合物の一例である。固体電解質は、これらの化合物を1種以上含んでもよい。
(作用)
 全固体電池において、電極活物質層に含まれる電極活物質は、充放電過程で膨張収縮を繰り返す。従来用いられている全固体電池では、電極活物質が膨張収縮を繰り返すと、電極層と固体電解質層との界面において、固体電解質および電極活物質、並びに電極活物質同士が、離間する場合があった。すなわち、固体電解質と電極活物質との間、および電極活物質同士の間に空間が生じる場合があった。そのため、従来用いられている全固体電池では、電極層の剥離やクラックの発生が生じる場合があった。すなわち、サイクル特性が劣化しやすいという課題があった。また、リチウムイオン伝導経路や電子伝導経路が遮断され、界面抵抗が増加し、レート特性が低下する場合があった。
 本実施形態にかかる正極活物質層1Bを備える全固体電池100では、正極活物質AM1,及び正極活物質AM2が膨張収縮を繰り返した場合であっても、網状の固体電解質SE2が、正極活物質AM1,及び正極活物質AM2の膨張収縮に伴う応力や全固体電池100の体積変化による歪みを吸収する。そのため、固体電解質SE1,及び固体電解質SE2と正極活物質AM1,及び正極活物質AM2との間、および正極活物質(AM1,及びAM2)同士の間に空間が生じることを抑制できる。従って、電極層の剥離やクラックの発生を抑制できる。また、リチウムイオン伝導経路や電子伝導経路が遮断され、界面抵抗が増加すること及びレート特性が低下することを抑制できる。すなわち、本実施形態にかかる電極活物質層を用いることで、優れたサイクル特性およびレート特性を得られる。
 また本実施形態にかかる正極活物質層1Bは、全固体電池100の体積変化による歪みを網状の固体電解質SE2の網目部分P2が担っている。固体電解質と活物質との間の空隙を増やすことで全固体電池100の体積変化による歪みを緩和することもできる。しかしながらこの場合、空隙の存在比率が増えるほど、リチウムイオン伝導経路や電子伝導経路が少なくなり、全固体電池100の容量は小さくなる。これに対し、網状の固体電解質SE2は、体積変化を緩和する空隙を確保しつつ、リチウムイオン伝導経路を確保できる。
 尚、本実施形態にかかる電極活物質層を備える全固体電池は、上記例に限定されない。上記例では、電極活物質層のうち正極活物質層1Bが、少なくとも一部が網状である固体電解質を含む例を示したが、電極活物質層のうち負極活物質層2Bが、少なくとも一部が網状である固体電解質を含んでいてもよい。負極活物質層2Bが含む固体電解質としては、例えば正極活物質層1Bが含む固体電解質と同様の固体電解質が挙げられる。負極活物質層2Bにおける繊維状の固体電解質の平均直径、網目部分の平均面積、ならびにそれらの求め方は、正極活物質層1Bについて上述した例と同様である。
 負極活物質層2Bのみに少なくとも一部が網状である固体電解質が含まれる場合であっても、正極活物質層1Bのみに少なくとも一部が網状である固体電解質が含まれる場合と同様に、網状の固体電解質が負極活物質の膨張収縮に伴う応力や全固体電池の体積変化による歪みを吸収するため、優れたサイクル特性およびレート特性を得られる。
 正極活物質層1Bと負極活物質層2Bとのいずれの層にも、少なくとも一部が網状である固体電解質が含まれている全固体電池では、特に優れたサイクル特性およびレート特性を得られる。尚、負極活物質層2Bに、少なくとも一部が網状である固体電解質が含まれる場合、固体電解質の構成は、上述の正極活物質層1Bに含まれる固体電解質と同様の構成であってもよい。
 また、図1においては、正極層1、負極層2、及び固体電解質層3をそれぞれ一つずつ有する全固体電池100を例示したが、本実施形態にかかる全固体電池は、正極層1、負極層2、及び固体電解質層3を二つ以上有していてもよい。その場合、少なくとも一つの正極活物質層または負極活物質層が、少なくとも一部が網状である固体電解質を含んでいればよい。
[全固体電池の製造方法]
 次に、本実施形態にかかる全固体電池の製造方法について説明する。全固体電池は、例えば粉末成形法を用いて製造できる。まず、中央に貫通穴を有する樹脂ホルダーと下パンチと、上パンチとを用意する。本実施形態では、樹脂ホルダーの貫通穴の直径は、12mmとし、下パンチ及び上パンチの直径は11.99mmとする。樹脂ホルダーの貫通穴の直径及び、下パンチ及び上パンチの直径はこれに限定されるものでは無い。
 樹脂ホルダーの貫通穴の下から下パンチを挿入し、樹脂ホルダーの開口側から、粉末状の正極合剤、固体電解質、負極合剤を投入する。次いで、投入した粉末状の材料の上に上パンチを挿入し、プレス機に載置し、プレスする。プレスの圧力は、例えば20kPaとする。
 尚、固体電解質層を、正極合剤及び/又は負極合剤に含まれる固体電解質のみで形成する場合、正極合剤、負極合剤とは別に固体電解質を投入しなくてもよい。
 正極合剤に含めて投入することのできる固体電解質は、Li3YCl、LiZrCl、又はLiZrSOClである。
 粉末状の材料は、樹脂ホルダー内で上パンチンと下パンチとでプレスされることで、正極活物質層1Bと固体電解質層3と負極活物質層2Bとが積層した成形体となる。
 次いで、上パンチを一度取り外し、正極活物質層1Bの上に正極集電体1A、上パンチの順に挿入する。また下パンチを一度取り外し、負極活物質層2Bの上に負極集電体2A、下パンチの順に挿入する。正極集電体1A、負極集電体2Aは例えば直径12mmのアルミニウム箔や銅箔とする。上記手順を経て、正極集電体1A/正極活物質層1B/固体電解質層3/負極活物質層2B/負極集電体2Aが順に積層された積層体4が得られる。
 積層体4は、必要に応じて4か所にねじ穴を有するステンレス製円板およびベークライト製円板で、ステンレス製円板/ベークライト製円板/上パンチ/蓄電素子10/下パンチ/ベークライト製円板/ステンレス製円板の順序で積載し、4か所のネジを締めしてもよい。当該構成とすると、上パンチと正極集電体1A、正極集電体1Aと正極活物質1B、下パンチと負極集電体2A、負極集電体2Aと負極活物質2B、との間のそれぞれの接合性が向上する。蓄電素子10は、保形機能を有する類似した機構であってもよい。
 次いで、上パンチ、下パンチそれぞれの側面に設けたネジ穴にネジを差し込み、外部端子12、14を取り付けた外装体の中に挿入し、上パンチ、下パンチ側面に取り付けたそれぞれのネジと外部端子12、14とをリード線等で接続する。その後、外装体20内に収容する。外装体20により全固体電池100の耐候性が向上する。その後、外装体20の開口部を一つ残しそれ以外はヒートシールしてもよい。また、その後、残った開口部を外装体20の内部を真空引きしながらヒートシールしてもよい。このようにして全固体電池は製造される。
 次いで全固体電池に対し、圧力を印加しながら充放電を行い、その後温度および時間を保持する、エージング処理を2サイクル行う。エージング処理は、以下の条件で行うことができる。エージング処理を行うことにより、不良品を除くことができる。
 全固体電池への圧力の印加は、例えば油圧プレス機(SHIMAZU製作所 型式:SSP-10A)に全固体電池を挟んだ状態で保持し、圧力を印加させながら充放電を行うことができる。
 エージング処理での全固体電池への充電は、例えば0.1Cで、正極の電位が4.3V(vsLi/Li)まで、負極の電位が0.1V(vsLi/Li)まで定電圧充電を行った後、0.05Cの電流密度となるまで定電圧充電を行う。すなわち、正極の充電電圧を4.3V(vsLi/Li)、負極の充電電圧を0.1V(vsLi/Li)にすることができる。エージング処理での全固体電池の放電は、例えば0.1Cで正極の電位が0.1V(vsLi/Li)まで定電流放電を行う。この際、全固体電池に対して印加する圧力は、例えば、5kPa以上10kPa以下とすることができる。
 次いで、圧力、温度、時間をコントロールすることで、エージング処理を行う。エージング処理の際の圧力は、充電の際、全固体電池に加えた圧力を保持することができる。エージング処理の温度は、例えば、70度以上85度以下とすることができる。エージング処理の時間は、例えば、30分間以上90分間以下とすることができる。エージング処理の条件は、少なくとも一部が網状の固体電解質を含む電極活物質層を備える全固体電池を製造できる限り、適宜変更してもよい。
 上記工程を経て、正極活物質層1Bの少なくとも一部に網状の固体電解質を含む全固体電池100が製造される。
 尚、負極活物質層2Bの少なくとも一部に網状の固体電解質を含む全固体電池を得るためには、例えば、正極の充電電圧を4.2V(vsLi/Li)、負極の充電電圧を0.05V(vsLi/Li)に、充電の条件を変更すればよい。また、正極活物質層1B及び負極活物質層2Bのいずれにも、少なくとも一部が網状の固体電解質を含む全固体電池を製造するためには、例えば、正極の充電電圧を4.3V(vsLi/Li)、負極の充電電圧を0.05V(vsLi/Li)に、充電の条件を変更すればよい。
 本実施形態にかかる全固体電池の製造方法は、上記工程により上記実施形態にかかる全固体電池を製造できる。上記実施形態にかかる全固体電池は、その製造過程における充電電圧が低い製造条件や、充電の際に圧力を印加しない条件では、製造できない。
 以上、本発明の一実施形態について、図面を参照して詳述したが、上記実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の主旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
「実施例1」
 実施例1の全固体電池は、以下の手順で作製された。
(正極合剤の作製)
 正極合剤として、正極活物質と導電助剤と固体電解質とを準備した。正極活物質と導電助剤と固体電解質とは、それぞれ60wt%:5wt%:40wt%となるように秤量した。正極活物質としては、コバルト酸リチウム(LiCoO)を用いた。導電助剤としては、アセチレンブラックを用いた。固体電解質としては、LiZrClを用いた。
(負極合剤の作製)
 負極合剤として、負極活物質と導電助剤と固体電解質とを準備した。負極活物質と導電助剤と固体電解質とは、それぞれ60wt%:5wt%:40wt%となるように秤量した。負極活物質としては、コバルト酸リチウム(LiCoO)を用いた。導電助剤としては、アセチレンブラックを用いた。固体電解質としては、LiZrClを用いた。
(成形体の作製)
 まず、中央に直径12mmの貫通穴を有する樹脂ホルダーと、SKD11材製の直径11.99mmの下パンチと、上パンチとを用意した。樹脂ホルダーの貫通穴の下から下パンチを挿入し、樹脂ホルダーの開口側から負極合剤を投入した。この際、負極合剤中の負極活物質が下パンチ側、固体電解質が開口側に位置するようにした。次いで、正極合剤を投入した。この際、正極合剤中の固体電解質が下パンチ側、正極活物質が開口側に位置するようにした。
 次いで、上パンチを挿入し、上パンチと正極合剤および負極合剤を収容する樹脂ホルダーと下パンチとを有するユニットをプレス機に静置し、20kPaでプレスし、成形体を作製した。
 次いで、上パンチを一度取り外し、正極活物質の上に正極集電体(アルミニウム箔、直径12mm、厚さ15μm)、上パンチの順に挿入した。また下パンチを一度取り外し、負極活物質層の上に負極集電体(銅箔、直径12mm、厚さ9μm)、下パンチの順に挿入し第4ユニットを得た。
 その後、4か所にねじ穴を有する50mm、厚み5mmのステンレス製円板およびベークライト製円板を用意し、次のように電池要素をセットした。ステンレス円板/ベークライト円板/第4ユニット/ベークライト円板/ステンレス円板の順序で積載し、4か所のネジを締め第5ユニットを作製した。なお、上パンチ、下パンチの側面のネジ穴には、外部端子接続用のネジを差し込んだ。
 次いで、得られた蓄電素子を外装体内に収容した。外装体としては、A4サイズのアルミニウムラミネート袋を用意した。アルミラミネート開口部の一片に外部端子として、無水マレイン酸をグラフと化したポリプロピレン(PP)を巻き付けたアルミニウム箔(幅4mm、長さ40mm、厚み100μm)と、ニッケル箔(幅4mm、長さ40mm、厚み100μm)とを短絡が生じないように間隔をあけて熱接着した。外部端子を取り付けたアルミラミネート袋の中に、第4ユニットを挿入し、上パンチ側面のネジと外装体内部に伸びたアルミニウム端子、下パンチ側面のネジと外装体内部に伸びたニッケル端子とをリード線で接続した。
 次いで、装置名:充放電機SD8(北斗電工株式会社製)を用いて、圧力をかけながら全固体電池を充電した。全固体電池への圧力は5kPaとした。全固体電池の充電は、0.1Cで、正極の電位が4.3V(vsLi/Li+)、負極の電位が0.1V(vsLi/Li+)になるまで定電流充電を行い、次いで電流密度が0.05Cになるまで定電圧充電を行った。
 次いで、全固体電池への圧力を把持したまま温度、時間を調整することで、エージング処理を行った。この際の温度及び時間は、70度で45分間にした。エージング処理は2サイクル行った。このようにして、実施例1の全固体電池を準備した。
(断面測定)
 先ず、作成した全固体電池の正極活物質層および負極活物質層をSEM(SEM観察条件(加速電圧:1kV、エミッション電流値2μA、WD(試料ステージ高さ)2mm))で観察した。次いで、得られた像を画像解析ソフト、imageJで8bit(256階調)の白黒像で二値化画像を得た。この際、明度100を閾値とした。観察した正極活物質層および負極活物質層の断面は、それぞれの面内方向に垂直な断面である。
 次いで、正極活物質層および負極活物質層のそれぞれについて、網状の固体電解質の有無を観察した。網状の固体電解質が観察された場合をAとし、網状の固体電解質が観察されなかった場合をBとして、その結果を表2に示した。
 網状の固体電解質が確認された場合、二値化画像を基に複数の繊維状の部分の平均直径と、網目部分の平均面積を算出しその結果を表2に示した。
 複数の繊維状の部分の平均直径は、複数の繊維状の部分P1の各繊維のアスペクト比の小さい方向における長さの最大値を各繊維の直径とし、直径が大きい繊維を10本選択し、それぞれの直径を求め、それらの平均を求めることにより算出した。
 すなわち、1μm×1μmの視野において、直径が大きい繊維から順に10本選択し、選択した10本の繊維の直径の平均を求める。これを2回繰り返し、その平均値を平均直径とした。
 網目部分の平均面積は、視野中の網目部分P2を、面積の大きいものから順に10つ選択し、それぞれの面積を求め、その平均面積を求めることにより算出した。
 すなわち、1μm×1μmの視野において、面積が大きいものから順に10つ選択し、選択した10つの網目部分の面積の平均を求める。これを2回繰り返し、その平均値を網目部分の平均面積とした。
(電池の評価:サイクル特性)
 放電後、実施例1の全固体電池の初期容量及びサイクル特性を求めた。初期容量およびサイクル特性は、二次電池充放電試験装置を用いて行った。電圧範囲は、4.2Vから0.1Vまでとした。まずプレ処理として0.2C定電流充電にて行った。その後、サイクル特性を求めるための充放電を行った。充電は定電流充電で行った。充電は、0.1Cの電流値で充電し、4.2Vに到達後、0.1C電流値の50%になった時に終了した。放電は、0.1Cでの電流値で放電する条件で行った。
 尚、サイクル特性は、容量維持率(%)として評価した。容量維持率(%)は、1サイクル目の放電容量を初期放電容量とし、初期放電容量に対する100サイクル後の放電容量の割合である。容量維持率(%)は、以下の数式で表される。
 容量維持率(%)=(「100サイクル後における放電容量」/「1サイクル目の放電容量」)×100
(電池の評価:放電レート特性)
 また実施例1の全固体電池の放電レート特性を評価した。放電レート特性は、放電レートを2C(25℃で定電流放電を行ったときに1時間で放電終了となる電流値)とした場合の放電容量を100%とした場合の2C(25℃で定電流放電を行ったときに30分で放電終了となる電流値)での放電容量の比率(%)を放電レート特性として求めた。
 放電レート特性の評価条件として、作製したセルに対し、初回充放電を行い、作製したセルの実容量を測定した。得られた実容量に基づき、放電レート1Cおよび2Cの電流密度の決定を行った。
 初回充放電を行った後、0.2Cで4.2Vまで定電流充電を行った後、0.05Cの電流密度となるまで定電圧充電を行った。充電後、10分間の休止時間を挟んだ後、1Cで0.1Vまで定電流放電を行い、1Cにおける放電容量の測定を行い、測定後5分間の休止時間を挟んだ。
 その後、0.2Cで4.2Vまで定電流充電を行った後、0.05Cの電流密度となるまで定電圧充電を行った。充電後、10分間の休止時間を挟んだ後、2Cで0.1Vまで定電流放電を行い、2Cにおける放電容量の測定を行った。
「実施例2~4」
 実施例2は、エージング処理する時間を45分にした点が実施例1と異なる。
 実施例3は、全固体電池の充電の定電流充電を正極の電位が4.2V(vsLi/Li+)、負極の電位が0.05V(vsLi/Li+)になるまで行った点が実施例1と異なる。すなわち、正極の充電電圧を4.2V(vsLi/Li+)にして、負極の充電電圧を0.05V(vsLi/Li+)にした。
 実施例4は、正極、負極の充電電圧をそれぞれ4.2V(vsLi/Li+)、0.05V(vsLi/Li+)にした点、およびエージング処理の時間を45分にした点が実施例1と異なる。
 実施例2~4において、その他の条件は、実施例1と同様にして全固体電池を製造し、実施例1と同様の測定を行った。
「実施例5~10」
 実施例5は、全固体電池を充電する際の圧力を10kPaにした点が実施例1と異なる。
 実施例6は、全固体電池を充電する際の圧力を10kPaにした点、および正極、負極の充電電圧をそれぞれ4.2V(vsLi/Li+)、0.05V(vsLi/Li+)にした点が実施例1と異なる。
 実施例7は、全固体電池を充電する際の圧力を10kPaにした点、およびエージング処理の時間を45分にした点が実施例1と異なる。
 実施例8は、全固体電池を充電する際の圧力を10kPaにした点、正極、負極の充電電圧をそれぞれ4.2V(vsLi/Li+)、0.05V(vsLi/Li+)にした点、およびエージング処理の時間を45分にした点が実施例1と異なる。
 実施例9は、全固体電池を充電する際の圧力を10kPaにした点、およびエージング処理の時間を60分にした点が実施例1と異なる。
 実施例10は、全固体電池を充電する際の圧力を10kPaにした点、正極、負極の充電電圧をそれぞれ4.2V(vsLi/Li+)、0.05V(vsLi/Li+)にした点、およびエージング処理の時間を60分にした点が実施例1と異なる。
 実施例5~10において、その他の条件は、実施例1と同様にして全固体電池を製造し、実施例1と同様の測定を行った。
「実施例11~20」
 実施例11は、全固体電池を充電する際の圧力を10kPaにした点、およびエージング処理の温度を80度、エージング処理の時間を60分にした点が実施例1と異なる。その他の条件は、実施例1と同様にして全固体電池を製造した。
 実施例12は、エージング処理の時間を15分にした点が実施例11と異なる。
 実施例13は、エージング処理の時間を30分にした点が実施例11と異なる。
 実施例14は、エージング処理の時間を90分にした点が実施例11と異なる。
 実施例15は、エージング処理の時間を120分にした点が実施例11と異なる。
 実施例12~15において、その他の点は、実施例11と同様にして全固体電池を製造した。また実施例11~15の全固体電池に対し、実施例1と同様の測定を行った。
 実施例16は、全固体電池を充電する際の圧力を10kPaにした点、正極、負極の充電電圧をそれぞれ4.2V(vsLi/Li+)、0.05V(vsLi/Li+)にした点、およびエージング処理の温度を80度、エージング処理の時間を60分にした点が実施例1と異なる。その他の条件は、実施例1と同様にして全固体電池を製造した。
 実施例17は、エージング処理の温度を80度、エージング処理の時間を15分にした点が実施例16と異なる。
 実施例18は、エージング処理の時間を30分にした点が実施例16と異なる。
 実施例19は、エージング処理の時間を90分にした点が実施例16と異なる。
 実施例20は、エージング処理の時間を120分にした点が実施例16と異なる。
 実施例17~20において、その他の条件は、実施例16と同様にして全固体電池を製造した。また実施例16~20の全固体電池に対し、実施例1と同様の測定を行った。
「実施例21,22」
 実施例21は、全固体電池を充電する際の圧力を10kPaにした点、および正極、負極の充電電圧をそれぞれ4.3V(vsLi/Li+)、0.05V(vsLi/Li+)にした点、およびエージング処理の温度を85度、エージング処理の時間を60分にした点が実施例1と異なる。その他の条件は、実施例1と同様にして全固体電池を製造した。
 実施例22は、エージング処理の時間を90分にした点が実施例21と異なる。その他の条件は、実施例21と同様にして全固体電池を製造した。
 実施例21,22の全固体電池に対し、実施例1と同様の測定を行った。
「比較例1」
 比較例1は、全固体電池を充電する際に圧力を加えなかった点、および正極、負極の充電電圧をそれぞれ4.0V(vsLi/Li+)、0.5V(vsLi/Li+)にした点が実施例1と異なる。その他の条件は、実施例1と同様にして全固体電池を製造し、実施例1と同様の測定を行った。
 実施例1~22,および比較例1の条件は、以下の表1にまとめた。また実施例1~22、および比較例1の結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示される通り、実施例1,2,5,7,22~15の全固体電池は、正極活物質層内に少なくとも一部が網状である固体電解質が確認された。また実施例3,4,6,8,16~20の全固体電池は、負極活物質層内に少なくとも一部が網状である固体電解質が確認された。また実施例21,22の全固体電池は、正極活物質層内および負極活物質層内に少なくとも一部が網状である固体電解質が確認された。一方、比較例1では、正極活物質層内および負極活物質層内のいずれにも、少なくとも一部が網状である固体電解質は確認されなかった。
 実施例1~22は、比較例1と比して、優れたサイクル特性およびレート特性を有することが確認された。特に、電極活物質層内に含まれる網状の固体電解質の複数の繊維の平均直径が5nm以上30nm以下の範囲に含まれる実施例5~22では、特に高いサイクル特性およびレート特性が得られた。また、電極活物質層内に含まれる網目部分の平均面積が70nm以上200nm以下である実施例11~22では、特に高いサイクル特性およびレート特性を得られた。また、正極活物質層内および負極活物質層内のいずれにも少なくとも一部が網状の固体電解質を有する実施例21,22では、特に高いサイクル特性およびレート特性を得られた。
1  正極層
1A 正極集電体
1B 正極活物質層
2  負極層
2A 負極集電体
2B 負極活物質層
3  固体電解質層
4  積層体
10 蓄電素子
12,14 外部端子
20  外装体
100 全固体電池
SE1,SE2 固体電解質
AM1,AM2 正極活物質
P1 繊維状の部分
P2 網目部分

Claims (6)

  1.  活物質と固体電解質とを含む電極活物質層であって、
     前記固体電解質の少なくとも一部は、網状である、電極活物質層。
  2.  前記固体電解質は、以下の式(1)で表される、
    Li2+a1-b・・・(1)
    (式(1)において、
    EはAl、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1つの元素であり、
    Gは、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、B、Si、Al、Ti、Cu、Sc、Y、Zr、Nb、Ag、In、Sn、Sb、Hf、Ta、W、Au、Biからなる群から選択される少なくとも1つの元素であり、
    DはCO、SO、BO、PO、NO、SiO、OH、O、からなる群から選択される少なくとも一つの基であり
    XはF、Cl、Br、Iからなる群から選択される少なくとも1種以上であり、
    0≦a<1.5、0≦b<0.5、0≦c≦5.0、0<d≦6.1である)
     請求項1に記載の電極活物質層。
  3.  前記固体電解質のうち網状の部分は、複数の繊維が重なり合っており、
     前記電極活物質層の面内方向に垂直な断面を走査電子顕微鏡で観察した画像において、
     前記複数の繊維のそれぞれの繊維において、アスペクト比が小さい方向における長さの最大値を前記繊維の直径とした際、
     前記複数の繊維のうち、視野中における直径が大きいものから順に選択した10本の繊維の平均直径が5nm以上30nm以下である、請求項1または2に記載の電極活物質層。
  4.  前記固体電解質のうちの網状の部分は、複数の繊維が重なり合っており、
     前記電極活物質層の面内方向に垂直な断面を走査電子顕微鏡で観察した画像において、
     前記複数の繊維、または前記複数の繊維と前記活物質及び/又は前記固体電解質とで囲まれた網目部分の面積を網目部分面積とし、
     前記網目部分面積が大きいものから順に選択した10つの網目部分面積の平均面積が70nm以上8000nm以下である、請求項1~3のいずれか一項に記載の電極活物質層。
  5.  請求項1~4のいずれか一項に記載の電極活物質層を備える電極。
  6.  請求項5に記載の電極を備える全固体電池。
PCT/JP2022/014148 2021-03-26 2022-03-24 電極活物質層、電極、全固体電池 WO2022203021A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-053691 2021-03-26
JP2021053691A JP2022150892A (ja) 2021-03-26 2021-03-26 電極活物質層、電極、全固体電池

Publications (1)

Publication Number Publication Date
WO2022203021A1 true WO2022203021A1 (ja) 2022-09-29

Family

ID=83397387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014148 WO2022203021A1 (ja) 2021-03-26 2022-03-24 電極活物質層、電極、全固体電池

Country Status (2)

Country Link
JP (1) JP2022150892A (ja)
WO (1) WO2022203021A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187911A (ja) * 2008-02-08 2009-08-20 Ohara Inc 固体電池およびその電極の製造方法
JP2020123488A (ja) * 2019-01-30 2020-08-13 パナソニックIpマネジメント株式会社 全固体電池およびその製造方法
JP2020158835A (ja) * 2019-03-27 2020-10-01 Tdk株式会社 ハロゲン化金属箔、これを用いた全固体電池及び非水系リチウムイオン電池
JP2020205180A (ja) * 2019-06-18 2020-12-24 トヨタ自動車株式会社 全固体電池用負極

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187911A (ja) * 2008-02-08 2009-08-20 Ohara Inc 固体電池およびその電極の製造方法
JP2020123488A (ja) * 2019-01-30 2020-08-13 パナソニックIpマネジメント株式会社 全固体電池およびその製造方法
JP2020158835A (ja) * 2019-03-27 2020-10-01 Tdk株式会社 ハロゲン化金属箔、これを用いた全固体電池及び非水系リチウムイオン電池
JP2020205180A (ja) * 2019-06-18 2020-12-24 トヨタ自動車株式会社 全固体電池用負極

Also Published As

Publication number Publication date
JP2022150892A (ja) 2022-10-07

Similar Documents

Publication Publication Date Title
US11489148B2 (en) Secondary battery
JP5333184B2 (ja) 全固体二次電池
KR102600726B1 (ko) 리튬 이온 전지용 전극 활물질 성형체의 제조 방법 및 리튬 이온 전지의 제조 방법
KR20190030176A (ko) 고체 전해질을 포함하는 전고체 전지용 전극
KR101886358B1 (ko) Latp 함유 양극 복합재를 갖는 전고체 전지 및 이의 제조 방법
KR20140132307A (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
KR20100071941A (ko) 고출력 리튬 이차 전지
US10923708B2 (en) Fiber-reinforced sintered electrode
CN112582621B (zh) 非水电解质二次电池
CN110265629B (zh) 负极及锂离子二次电池
WO2022186211A1 (ja) 電池及び電池の製造方法
JP2019140054A (ja) 正極及び非水電解液二次電池
KR20200119207A (ko) 비수전해질 이차 전지
JP6051038B2 (ja) リチウムイオン二次電池の正極集電体用箔とその製造方法、及び、リチウムイオン二次電池
CN107528043B (zh) 电池
JP6656370B2 (ja) リチウムイオン二次電池および組電池
KR101752373B1 (ko) 전극 복합체, 그를 포함하는 이차전지 및 케이블형 전지 이차전지
JP2022110517A (ja) 活物質層、負極及び全固体電池
WO2022203021A1 (ja) 電極活物質層、電極、全固体電池
CN111799441B (zh) 非水电解质二次电池
JP2022139663A (ja) 正極活物質、正極活物質層及び全固体電池
JP7136347B2 (ja) 二次電池
WO2020059874A1 (ja) 二次電池
KR102438492B1 (ko) 전극 구조체 및 이를 포함하는 이차 전지
JPH11283612A (ja) リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775802

Country of ref document: EP

Kind code of ref document: A1