WO2024108822A1 - 一种改性镍钴锰酸锂正极材料及其制备方法 - Google Patents

一种改性镍钴锰酸锂正极材料及其制备方法 Download PDF

Info

Publication number
WO2024108822A1
WO2024108822A1 PCT/CN2023/081400 CN2023081400W WO2024108822A1 WO 2024108822 A1 WO2024108822 A1 WO 2024108822A1 CN 2023081400 W CN2023081400 W CN 2023081400W WO 2024108822 A1 WO2024108822 A1 WO 2024108822A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified
nickel cobalt
manganese oxide
chitosan
preparation
Prior art date
Application number
PCT/CN2023/081400
Other languages
English (en)
French (fr)
Inventor
谢英豪
李爱霞
余海军
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024108822A1 publication Critical patent/WO2024108822A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of positive electrode materials, and in particular to a modified nickel cobalt lithium manganese oxide positive electrode material and a preparation method thereof.
  • Nickel cobalt manganese oxide lithium positive electrode materials currently face problems such as rapid cycle capacity decay under high voltage conditions, agglomerated particle pulverization, and poor structural stability.
  • the existing technology usually uses metal oxides, fluorides, phosphates, silicates and carbon materials for coating.
  • One of the purposes of the present invention is to provide a method for preparing a modified nickel cobalt manganese oxide positive electrode material to solve the above technical problems.
  • the second object of the present invention is to provide a modified coated nickel cobalt manganese oxide positive electrode material prepared by the above preparation method.
  • the present application provides a method for preparing a modified nickel cobalt lithium manganese oxide positive electrode material, comprising the following steps: mixing a modified mixed solution with a nickel cobalt lithium manganese oxide substrate to be coated to form a modified chitosan film on the surface of the nickel cobalt lithium manganese oxide substrate, and then freeze-drying the modified chitosan film to form a porous structure;
  • the modified mixed liquid is obtained by mixing a modified chitosan coating liquid and conductive particles modified by a silane coupling agent; the modified chitosan coating liquid is obtained by mixing modified chitosan and a solvent; the modified chitosan is obtained by modifying chitosan with an imidazole compound having a carboxyl group; and the silane coupling agent is a silane having an ethoxy group.
  • the modified mixed solution is sprayed onto the surface of the lithium nickel cobalt manganese oxide substrate to be coated and then freeze-dried.
  • the mass ratio of the modified chitosan coating liquid, the conductive particles modified by the silane coupling agent, and the nickel cobalt lithium manganese oxide matrix is 80-100:3-5:100.
  • each liter of modified chitosan coating liquid contains 30-50 g of modified chitosan.
  • the solvent is an aqueous acetic acid solution.
  • the volume concentration of acetic acid in the acetic acid aqueous solution is 0.5-1.5%.
  • the modified chitosan is obtained by acylation reaction of an imidazole compound having a carboxyl group with chitosan.
  • the imidazole compound having a carboxyl group includes at least one of imidazole-4-acetic acid and imidazole-1-carboxylic acid.
  • the molar ratio of the imidazole compound having a carboxyl group to chitosan is 1-3:2-5.
  • the mesh number of chitosan is 40-80 mesh, and the deacetylation degree of chitosan is 85-95%.
  • the silane coupling agent is an epoxy silane having an ethoxy group.
  • the silane coupling agent is an alicyclic epoxy silane having an ethoxy group.
  • the epoxysilane is triethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane.
  • the conductive particles include at least one of zinc oxide and carbon nanotubes.
  • the nickel cobalt manganese oxide lithium matrix is formed by mixing and sintering a nickel cobalt manganese precursor with a lithium source.
  • the nickel-cobalt-manganese precursor is nickel-cobalt-manganese hydroxide.
  • the lithium source comprises lithium carbonate.
  • the preparation of the lithium nickel cobalt manganese oxide matrix further includes: crushing the sintered material to obtain the lithium nickel cobalt manganese oxide powder.
  • the median particle size of the lithium nickel cobalt manganese oxide powder is 10-20 ⁇ m.
  • freeze drying is vacuum drying under a freezing environment.
  • the method further comprises: washing the lithium nickel cobalt manganese oxide substrate with the porous modified chitosan film coated on the surface to remove the residual solvent, then separating the solid from the liquid, and drying the solid phase.
  • the present application provides a modified nickel cobalt lithium manganese oxide positive electrode material prepared by the preparation method of any one of the aforementioned embodiments.
  • the present application forms a chemical bond by reacting the carboxyl group on the imidazole compound with the active amino group of chitosan, thereby obtaining a modified chitosan solution with an imidazole structure, which can effectively inhibit the dissolution of transition metals in the positive electrode material during the cycle process.
  • silane coupling agent with an ethoxy group, on the one hand, it can form an intermolecular force with the unreacted hydroxyl and amino groups on the chitosan (that is, the various positions of the membrane have good bonding strength), and on the other hand, it also has good bonding strength with the matrix, thereby simultaneously improving the bonding between the modified chitosan and the nickel cobalt manganese oxide matrix and the internal structure of the membrane. The bonding force between.
  • the porous modified chitosan film contains conductive particles, which can improve the conductivity of the positive electrode material.
  • the modified chitosan membrane forms a porous structure, which is beneficial to the migration and diffusion of lithium ions, thereby improving the rate and cycle performance of the corresponding material.
  • the corresponding modified nickel cobalt manganese oxide lithium positive electrode material has good cycle retention rate and rate performance.
  • FIG. 1 is a SEM image of the modified nickel cobalt lithium manganese oxide positive electrode material prepared in Example 1 of the present application.
  • the modified nickel cobalt lithium manganese oxide positive electrode material and the preparation method thereof provided in the present application are described in detail below.
  • the present application proposes a method for preparing a modified nickel cobalt lithium manganese oxide positive electrode material, comprising the following steps: mixing a modified mixed solution with a nickel cobalt lithium manganese oxide substrate to be coated to form a modified chitosan film on the surface of the nickel cobalt lithium manganese oxide substrate, and then freeze-drying the modified chitosan film to form a porous structure.
  • the modified mixed liquid is obtained by mixing a modified chitosan coating liquid and conductive particles modified by a silane coupling agent; the modified chitosan coating liquid is obtained by mixing modified chitosan and a solvent; the modified chitosan is obtained by modifying chitosan with an imidazole compound having a carboxyl group; and the silane coupling agent is a silane having an ethoxy group.
  • the modified chitosan is obtained by acylation reaction of an imidazole compound having a carboxyl group with chitosan. Specifically, the carboxyl group on the imidazole compound reacts with the active amino group of chitosan to form a chemical bond, thereby obtaining a modified chitosan solution having an imidazole structure.
  • the modified chitosan solution can effectively inhibit the dissolution of transition metals in the positive electrode material during the cycle process.
  • the imidazole compound with a carboxyl group used in the present application preferably includes at least one of imidazole-4-acetic acid and imidazole-1-carboxylic acid. These two compounds can obtain positive electrode materials with higher cycle retention rate under the preparation conditions of the present application than other imidazole compounds with a carboxyl group.
  • the molar ratio of the imidazole compound having a carboxyl group to chitosan is 1-3:2-5, for example, it can be 1:2, 1:3, 1:4, 1:5, 2:2, 2:3, 2:4, 2:5, 3:2, 3:4 or 3:5, or any other ratio within the range of 1-3:2-5. value.
  • the chitosan used has a mesh size of 40-80 meshes and a deacetylation degree of 85-95% to ensure that the chitosan has high solubility.
  • each liter of modified chitosan coating liquid contains 30-50 g (such as 30 g, 35 g, 40 g, 45 g or 50 g, etc.) of modified chitosan.
  • the solvent used in the modified chitosan coating liquid is an acetic acid aqueous solution, and the volume concentration of acetic acid in the acetic acid aqueous solution is 0.5-1.5%, so as to ensure that the modified chitosan with an imidazole structure can be fully dissolved.
  • the silane coupling agent used in the present application has an ethoxy group, which can form an intermolecular force with the unreacted hydroxyl and amino groups on the chitosan (that is, it has good binding force between the various positions of the membrane), and on the other hand, it also has good binding force with the matrix, thereby simultaneously improving the binding force between the modified chitosan and the nickel cobalt manganese oxide lithium matrix and the internal structure of the membrane.
  • the porous modified chitosan membrane contains conductive particles, which can improve the conductivity of the positive electrode material.
  • the silane coupling agent is an epoxy silane having an ethoxy group. More preferably, the silane coupling agent is an alicyclic epoxy silane having an ethoxy group.
  • the epoxysilane is triethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane.
  • the molecular structure of the substance contains three hydrolyzable alkoxy (ethoxy) groups, and this dual reactivity enables it to improve the binding and compatibility between the nickel cobalt manganese oxide matrix and the modified chitosan through a two-way chemical reaction.
  • the conductive particles may include at least one of zinc oxide and carbon nanotubes, and may also be conductive graphite, conductive carbon black, graphene or carbon fiber.
  • the use of conductive particles can improve the conductivity of the positive electrode material.
  • the preparation method of the conductive particles modified by the silane coupling agent can be as follows: the conductive particles are added to an organic solvent (such as toluene) and ultrasonically dispersed to obtain a suspension, then the silane coupling agent is added and ultrasonically dispersed, the reaction is carried out at a constant temperature of 80-90° C. for 3-6 hours, and centrifugation is carried out at room temperature to obtain the conductive particles modified by the silane coupling agent.
  • an organic solvent such as toluene
  • the mass ratio of the silane coupling agent to the conductive particles can be 3-5:8-10, and the amount of the organic solvent to the conductive particles is 20-30 mL:0.8-1 g.
  • the mass ratio of the modified chitosan coating liquid, the conductive particles modified by the silane coupling agent, and the lithium nickel cobalt manganate matrix can be 80-100:3-5:100, such as 80:3:100, 80:3.5:100, 80:4:100, 80:4.5:100, 80:5:100, 85:3:100, 85:3.5:100, 85:4:100, 85:4.5:100, 85:5:100, 90:3:100, 90: 3.5:100, 90:4:100, 90:4.5:100, 90:5:100, 95:3:100, 95:3.5:100, 95:4:100, 95:4.5:100, 95:5:100, 100:3:100, 100:3.5:100, 100:4:100, 100:4.5:100 or 100:5:100, or any other value within the range of 80-100:3-5:100.
  • the above-mentioned nickel cobalt manganese oxide substrate can be prepared by mixing and sintering a nickel cobalt manganese precursor with a lithium source.
  • the nickel-cobalt-manganese precursor may be nickel-cobalt-manganese hydroxide
  • the lithium source may be lithium carbonate or lithium hydroxide
  • the preparation of the above-mentioned nickel cobalt manganese oxide matrix also includes: crushing the sintered material to obtain nickel cobalt manganese oxide powder.
  • the median particle size of the pulverized lithium nickel cobalt manganese oxide powder is 10-20 ⁇ m.
  • the lithium nickel cobalt manganese oxide powder of the above-mentioned particle size as the matrix, particle agglomeration can be avoided, and the modified mixed liquid can be evenly and effectively coated on it.
  • nickel cobalt manganese oxide matrix used in this application is a common nickel cobalt manganese oxide precursor in the art. This application does not impose too many restrictions on its chemical formula, preparation process and preparation conditions. For details, please refer to the relevant existing technology.
  • the coating of the lithium nickel cobalt manganese oxide substrate with the modified mixed liquid can be: spraying the modified mixed liquid on the surface of each lithium nickel cobalt manganese oxide substrate to be coated, and then mixing the substrates sprayed with the modified mixed liquid.
  • the dosage relationship of the modified mixed solution and the lithium nickel cobalt manganese oxide matrix can be 83-105:100, such as 83:100, 85:100, 90:100, 95:100, 100:100, 102:100 or 105:100, etc., or it can be any other value within the range of 83-105:100.
  • the mixing of the above substrates can be carried out at 50-60°C.
  • the above mixing process is carried out at 50-60°C, which can accelerate the adhesion reaction rate of the modified mixed solution and the lithium nickel cobalt manganese oxide substrate, and the coating bonding force is tighter.
  • freeze drying refers to vacuum drying in a freezing environment.
  • freeze drying refers to vacuum drying in a freezing environment.
  • the solvent in the modified chitosan coating liquid is first frozen into a solid state at a relatively low temperature, and then the water therein is sublimated directly into a gaseous state without passing through a liquid state under vacuum, thereby dehydrating and drying the material. After sublimation, the position corresponding to the water in the original solid state forms a pore structure.
  • this process can also remove the water that may exist on the surface or inside of the precursor, thereby improving the pore structure of the lithium nickel cobalt manganese oxide matrix, which is conducive to the migration and diffusion of lithium ions, and thus can improve the rate and cycle performance of the corresponding material.
  • the lithium nickel cobalt manganese oxide substrate with the porous modified chitosan membrane coated on the surface is washed to remove the residual solvent, and then the solid-liquid separation is carried out, and the solid phase is dried.
  • the present application also provides a modified nickel cobalt lithium manganese oxide positive electrode material, which is prepared by the above preparation method.
  • the modified nickel cobalt manganese oxide lithium positive electrode material can alleviate the volume strain during the cycle, inhibit surface side reactions, and improve electronic conductivity, and has high coulombic efficiency, cycle stability and rate performance.
  • This embodiment provides a modified nickel cobalt lithium manganese oxide positive electrode material, which is prepared by the following method:
  • Step (1) spray the modified mixed solution at a ratio of 105 g:100 g onto the surface of a lithium nickel cobalt manganese oxide substrate (LiNi 0.9 Co 0.05 Mn 0.05 O 2 , with a median particle size of 15 ⁇ m).
  • a lithium nickel cobalt manganese oxide substrate LiNi 0.9 Co 0.05 Mn 0.05 O 2 , with a median particle size of 15 ⁇ m.
  • the modified mixture is obtained by mixing the modified chitosan coating liquid and the conductive particles modified by the silane coupling agent.
  • the modified chitosan coating liquid is obtained by mixing modified chitosan with 1vt% acetic acid aqueous solution at a ratio of 30g:1L, and the modified chitosan is obtained by acylation reaction of imidazole-4-acetic acid and chitosan at a molar ratio of 2:3.
  • the mesh number of chitosan is 60 meshes, and the deacetylation degree of chitosan is 90%.
  • the conductive particles modified by the silane coupling agent are prepared by the following method: zinc oxide is added to toluene for ultrasonic dispersion to obtain a suspension, triethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane is then added and ultrasonically dispersed, the mixture is reacted at 85°C for 5 hours, and centrifuged at room temperature to obtain conductive particles modified by the silane coupling agent.
  • the mass ratio of triethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane to zinc oxide is 3:8, and the amount of toluene to zinc oxide is 25mL:1g.
  • the mass ratio of the modified chitosan coating liquid, the conductive particles modified by the silane coupling agent and the lithium nickel cobalt manganese oxide matrix is 100:5:100.
  • Step (2) The nickel cobalt manganese oxide substrates attached with the modified mixed solution are mixed and reacted at 60° C. to form a modified chitosan film on the surface of the nickel cobalt manganese oxide substrate, and then cooled to room temperature.
  • Step (3) freeze-drying the material obtained in step (2) to form a porous structure of the modified chitosan membrane.
  • Step (4) washing the dried product with water to remove residual acetic acid, and then drying the water to obtain a modified nickel cobalt manganese oxide lithium positive electrode material.
  • each liter of modified chitosan coating liquid contains 40 g of modified chitosan.
  • each liter of modified chitosan coating liquid contains 50 g of modified chitosan.
  • the difference between this embodiment and embodiment 1 is that the mass ratio of the modified chitosan coating liquid, the conductive particles modified by the silane coupling agent and the nickel cobalt lithium manganese oxide matrix is 80:3:100.
  • the difference between this embodiment and embodiment 1 is that the mass ratio of the modified chitosan coating liquid, the conductive particles modified by the silane coupling agent and the nickel cobalt manganese oxide matrix is 90:4:100.
  • Example 1 The difference between this comparative example and Example 1 is that the modified mixture is obtained by mixing chitosan coating liquid and conductive particles modified by silane coupling agent, wherein the chitosan coating liquid is obtained by dissolving unmodified chitosan in acetic acid aqueous solution.
  • the chitosan in this comparative example was not modified by the imidazole compound having a carboxyl group.
  • Example 1 The difference between this comparative example and Example 1 is that the modified mixed solution does not contain modified chitosan, but only contains conductive particles modified by a silane coupling agent.
  • Example 1 The difference between this comparative example and Example 1 is that the modified mixed solution is obtained by mixing the modified chitosan coating solution and the conductive particles, and does not contain a silane coupling agent.
  • the conductive particles in this comparative example were not modified by a silane coupling agent.
  • Example 1 The difference between this comparative example and Example 1 is that the modified mixed liquid is obtained by mixing the modified chitosan coating liquid and the silane coupling agent, and does not contain conductive particles.
  • Imidazole compounds are:
  • Example 1 The difference between this comparative example and Example 1 is that the imidazole compound having a carboxyl group is imidazole-4,5-dicarboxylic acid.
  • Example 1 The difference between this comparative example and Example 1 is that the silane coupling agent is ⁇ -methacryloxypropyltrimethoxy.
  • silane coupling agent is 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and the molecular formula is C 11 H 22 O 4 Si.
  • Example 1 The difference between this comparative example and Example 1 is that the silane coupling agent is ethoxytrimethylsilane, and the molecular formula is C 5 H 14 OSi.
  • Example 1 Taking the positive electrode material prepared in Example 1 as an example, an electron microscope was performed on it, and its SEM image is shown in FIG1 .
  • the positive electrode active material was mixed with acetylene black and PVDF in a mass ratio of 9.2:0.5:0.3, coated on aluminum foil, dried at 80°C for 8 hours, and then vacuum dried at 120°C for 12 hours.
  • the battery was assembled in an argon-protected glove box, the negative electrode was a metal lithium sheet, the diaphragm was a polypropylene film, the electrolyte was 1M LiPF 6 -EC/DMC (1:1, v/v), and a 2032-type button battery shell was used to assemble a button battery in an argon-protected glove box, and then the electrochemical performance test was carried out at 25°C at 3.0-4.5V. The results are shown in Table 1 below.
  • the modified nickel cobalt lithium manganese oxide positive electrode material prepared by the preparation method provided in the present application has a good cycle retention rate.
  • the scheme provided in the present application can effectively improve the bonding force between the modified chitosan and the matrix; during the freeze-drying process, the solvent in the modified chitosan coating liquid first forms an ice crystal structure, and then directly sublimates and evaporates to be removed, leaving a pore structure, thereby improving the pore structure of the lithium nickel cobalt manganese oxide matrix, which is beneficial to the migration and diffusion of lithium ions, and can improve the rate and cycle performance of the corresponding material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种改性镍钴锰酸锂正极材料及其制备方法,属于正极材料技术领域。该制备方法包括:将改性混合液与待包覆的镍钴锰酸锂基体混合反应,冷冻干燥;改性混合液由改性壳聚糖包覆液以及硅烷偶联剂改性的导电粒子混合而得;改性壳聚糖包覆液经由具有羧基的咪唑化合物对壳聚糖改性而得的改性壳聚糖与溶剂混合而得,硅烷偶联剂为具有乙氧基的硅烷。上述方法可有效提高改性壳聚糖与基体之间的结合力;在冷冻干燥过程中,改性壳聚糖包覆液中的溶剂先形成冰晶结构,随后直接升华挥发除去,留下孔洞结构,从而提高镍钴锰酸锂基体的孔隙结构,有利于锂离子的迁移扩散,可提高相应材料的倍率和循环性能。

Description

一种改性镍钴锰酸锂正极材料及其制备方法 技术领域
本发明涉及正极材料技术领域,具体而言,涉及一种改性镍钴锰酸锂正极材料及其制备方法。
背景技术
镍钴锰酸锂正极材料目前面临着高电压条件下循环容量衰减快、团聚颗粒粉化、结构稳定性差等问题,为缓解上述问题,现有技术中通常采用金属氧化物、氟化物、磷酸盐、硅酸盐以及碳材料进行包覆的方式。
现有的包覆方式虽能在一定程度上缓解高电压条件下团聚颗粒粉化、结构稳定性差的问题,但在改善材料循环保持率方面还有待进一步提高。
鉴于此,特提出本发明。
发明内容
本发明的目的之一在于提供一种改性镍钴锰酸锂正极材料的制备方法以解决上述技术问题。
本发明的目的之二在于提供一种由上述制备方法制备而得的改性包覆型镍钴锰酸锂正极材料。
本申请可这样实现:
第一方面,本申请提供一种改性镍钴锰酸锂正极材料的制备方法,包括以下步骤:将改性混合液与待包覆的镍钴锰酸锂基体混合反应以在镍钴锰酸锂基体的表面形成改性壳聚糖膜,随后冷冻干燥以使改性壳聚糖膜形成多孔结构;
其中,改性混合液由改性壳聚糖包覆液以及硅烷偶联剂改性的导电粒子混合而得;改性壳聚糖包覆液经改性壳聚糖与溶剂混合而得;改性壳聚糖由具有羧基的咪唑化合物对壳聚糖改性而得;硅烷偶联剂为具有乙氧基的硅烷。
在可选的实施方式中,将改性混合液喷附于待包覆的镍钴锰酸锂基体表面,随后冷冻干燥。
在可选的实施方式中,改性壳聚糖包覆液、硅烷偶联剂改性的导电粒子以及镍钴锰酸锂基体的质量比为80-100:3-5:100。
在可选的实施方式中,每升改性壳聚糖包覆液中含有30-50g的改性壳聚糖。
在可选的实施方式中,溶剂为醋酸水溶液。
在可选的实施方式中,醋酸水溶液中醋酸的体积浓度为0.5-1.5%。
在可选的实施方式中,改性壳聚糖是由具有羧基的咪唑化合物与壳聚糖进行酰化反应后得到。
在可选的实施方式中,具有羧基的咪唑化合物包括咪唑-4-乙酸和咪唑-1-羧酸中的至少一种。
在可选的实施方式中,具有羧基的咪唑化合物与壳聚糖的摩尔比为1-3:2-5。
在可选的实施方式中,壳聚糖的目数为40-80目,壳聚糖的脱乙酰度为85-95%。
在可选的实施方式中,硅烷偶联剂为具有乙氧基的环氧硅烷。
在可选的实施方式中,硅烷偶联剂为具有乙氧基的脂环族环氧基硅烷。
在可选的实施方式中,环氧基硅烷为三乙氧基[2-(7-氧杂二环[4.1.0]庚-3-基)乙基]硅烷。
在可选的实施方式中,导电粒子包括氧化锌和碳纳米管中的至少一种。
在可选的实施方式中,镍钴锰酸锂基体经镍钴锰前驱体与锂源混合烧结而成。
在可选的实施方式中,镍钴锰前驱体为镍钴锰氢氧化物。
在可选的实施方式中,锂源包括碳酸锂。
在可选的实施方式中,镍钴锰酸锂基体的制备还包括:将烧结后的物料进行粉碎得到镍钴锰酸锂粉体。
在可选的实施方式中,镍钴锰酸锂粉体的中值粒径为10-20μm。
在可选的实施方式中,冷冻干燥是于冷冻环境下真空干燥。
在可选的实施方式中,还包括:将表面包覆多孔改性壳聚糖膜的镍钴锰酸锂基体进行洗涤以去除残留的溶剂,随后固液分离,将固相物进行干燥。
第二方面,本申请提供一种改性镍钴锰酸锂正极材料,经前述实施方式任一项的制备方法制备得到。
本申请的有益效果包括:
本申请通过咪唑化合物上的羧基与壳聚糖的活性氨基反应形成化学键合,从而得到具有咪唑结构的改性壳聚糖溶液,可有效抑制正极材料在循环过程中过渡金属的溶出。
通过使用具有乙氧的硅烷偶联剂基,一方面其可以与壳聚糖上未反应完的羟基和氨基之间形成分子间作用力(也即使膜的各位置之间具有良好的结合力),另一方面,其与基体之间也具有良好的结合力,从而同时提高改性壳聚糖与镍钴锰酸锂基体之间以及膜内部结构之 间的结合力。
多孔改性壳聚糖膜中含有导电粒子,可提高正极材料的导电性。
冷冻干燥后,改性壳聚糖膜形成多孔结构,有利于锂离子的迁移扩散,进而可提高相应材料的倍率和循环性能。
对应制得的改性镍钴锰酸锂正极材料具有良好的循环保持率和倍率性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例1制备得到的改性镍钴锰酸锂正极材料的SEM图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本申请提供的改性镍钴锰酸锂正极材料及其制备方法进行具体说明。
本申请提出一种改性镍钴锰酸锂正极材料的制备方法,包括以下步骤:将改性混合液与待包覆的镍钴锰酸锂基体混合反应以在镍钴锰酸锂基体的表面形成改性壳聚糖膜,随后冷冻干燥以使改性壳聚糖膜形成多孔结构。
其中,改性混合液由改性壳聚糖包覆液以及硅烷偶联剂改性的导电粒子混合而得;改性壳聚糖包覆液经改性壳聚糖与溶剂混合而得;改性壳聚糖由具有羧基的咪唑化合物对壳聚糖改性而得;硅烷偶联剂为具有乙氧基的硅烷。
上述改性壳聚糖是由具有羧基的咪唑化合物与壳聚糖进行酰化反应后得到。具体的,咪唑化合物上的羧基与壳聚糖的活性氨基反应形成化学键合,从而得到具有咪唑结构的改性壳聚糖溶液。该改性壳聚糖溶液能够有效抑制正极材料在循环过程中过渡金属的溶出。
较佳地,本申请所用的具有羧基的咪唑化合物优选包括咪唑-4-乙酸和咪唑-1-羧酸中的至少一种。该两种化合物较其它具有羧基的咪唑化合物在本申请的制备条件下能够获得循环保持率更高的正极材料。
在制备过程中,具有羧基的咪唑化合物与壳聚糖的摩尔比为1-3:2-5,例如可以为1:2、1:3、1:4、1:5、2:2、2:3、2:4、2:5、3:2、3:4或3:5等,也可以为1-3:2-5范围内的其它任意 值。
可参考地,所用的壳聚糖的目数为40-80目,脱乙酰度为85-95%,以确保该壳聚糖具有较高的溶解性。
本申请中,每升改性壳聚糖包覆液中含有30-50g(如30g、35g、40g、45g或50g等)的改性壳聚糖。
改性壳聚糖包覆液中所用的溶剂为醋酸水溶液,该醋酸水溶液中醋酸的体积浓度为0.5-1.5%,从而确保具有咪唑结构的改性壳聚糖能够充分溶解。
本申请所使用的硅烷偶联剂具有乙氧基,一方面其可以与壳聚糖上未反应完的羟基和氨基之间形成分子间作用力(也即使膜的各位置之间具有良好的结合力),另一方面,其与基体之间也具有良好的结合力,从而同时提高改性壳聚糖与镍钴锰酸锂基体之间以及膜内部结构之间的结合力。多孔改性壳聚糖膜中含有导电粒子,可提高正极材料的导电性。
较佳地,上述硅烷偶联剂为具有乙氧基的环氧硅烷。更佳地,上述硅烷偶联剂为具有乙氧基的脂环族环氧基硅烷。
在一些具体的实施方式中,环氧基硅烷为三乙氧基[2-(7-氧杂二环[4.1.0]庚-3-基)乙基]硅烷。该物质的分子结构中含有三个可水解的烷氧基(乙氧基),此双重反应活性使其可通过与镍钴锰酸锂基体和改性壳聚糖的双向化学反应而提高两者之间的结合及相容程度。
在其它的实施方式中,也不排除可采用其它具有乙氧基的脂环族环氧基硅烷物质。
作为列举地,导电粒子可包括氧化锌和碳纳米管中的至少一种。此外,还可为导电石墨、导电炭黑、石墨烯或碳纤维等。
通过导电粒子的使用,可提高正极材料的导电性。
硅烷偶联剂改性的导电粒子的制法可以为将导电粒子加入有机溶剂(如甲苯)中超声分散得到悬浮液,之后加入硅烷偶联剂并超声分散,在80-90℃恒温反应3-6小时,在常温下离心分离,得到硅烷偶联剂改性的导电粒子。
其中,硅烷偶联剂与导电粒子的质量比可以为3-5:8-10,有机溶剂与导电粒子的用量为20-30mL:0.8-1g。
本申请中,改性壳聚糖包覆液、硅烷偶联剂改性的导电粒子以及镍钴锰酸锂基体的质量比可以为80-100:3-5:100,如80:3:100、80:3.5:100、80:4:100、80:4.5:100、80:5:100、85:3:100、85:3.5:100、85:4:100、85:4.5:100、85:5:100、90:3:100、90:3.5:100、90:4:100、90:4.5:100、90:5:100、95:3:100、95:3.5:100、95:4:100、95:4.5:100、95:5:100、100:3:100、100:3.5:100、100:4:100、100:4.5:100或100:5:100等,也可以为80-100:3-5:100范围内的其它任意值。
需说明的是,若改性壳聚糖包覆液或者硅烷偶联剂改性的导电粒子的用量过少,会使基体与改性壳聚糖膜的结合力欠佳。若改性壳聚糖包覆液用量过多,会或者硅烷偶联剂改性的导电粒子用量过多,容易导致镍钴锰酸锂基体表面的附着物过多影响基体本身性能如锂离子脱嵌能力降低。
作为列举的,上述镍钴锰酸锂基体可经镍钴锰前驱体与锂源混合烧结而成。
其中,镍钴锰前驱体可以为镍钴锰氢氧化物,锂源可以为碳酸锂或氢氧化锂等。
进一步地,上述镍钴锰酸锂基体的制备还包括:将烧结后的物料进行粉碎得到镍钴锰酸锂粉体。
较佳地,粉碎后的镍钴锰酸锂粉体的中值粒径为10-20μm。
通过以上述粒径的镍钴锰酸锂粉体作为基体,能够避免颗粒团聚,实现改性混合液对其均匀有效地包覆。
需说明的是,本申请所用的镍钴锰酸锂基体为本领域常见的镍钴锰酸锂前驱体,本申请不对其化学式以及制备过程和制备条件进行过多限定,具体可参照相关的现有技术。
本申请中,改性混合液对镍钴锰酸锂基体的包覆可以是:将改性混合液喷附于各待包覆的镍钴锰酸锂基体表面,随后再将喷附有改性混合液的各基体混合。
上述过程中,改性混合液与镍钴锰酸锂基体的用量关系可以为83-105:100,如83:100、85:100、90:100、95:100、100:100、102:100或105:100等等,也可以为83-105:100范围内的其它任意值。
上述各基体的混合可在50-60℃的条件下进行。
需说明的是,上述混合过程在50-60℃条件下进行,可加快改性混合液与镍钴锰酸锂基体的附着反应速率,包覆的结合力更为紧密。
本申请中,冷冻干燥是于冷冻环境下真空干燥,具体可参照相关的现有技术,在此不做过多赘述。
在上述冷冻干燥过程中,改性壳聚糖包覆液中的溶剂先在较低的温度下冻结成固态,随后在真空下使其中的水分不经液态直接升华成气态,从而使物料脱水干燥。升华后,原固态中水分所对应的位置则形成孔洞结构,同时该过程也可去除前驱体表面或内部可能存在的水分,提高了镍钴锰酸锂基体的孔隙结构,有利于锂离子的迁移扩散,进而可提高相应材料的倍率和循环性能。
进一步地,在冷冻干燥后,将表面包覆多孔改性壳聚糖膜的镍钴锰酸锂基体进行洗涤以去除残留的溶剂,随后固液分离,将固相物进行干燥。
相应地,本申请还提供了一种改性镍钴锰酸锂正极材料,其经上述制备方法制备得到。
该改性镍钴锰酸锂正极材料能够缓解循环过程中的体积应变、抑制表面副反应、提升电子电导率,具有较高的库伦效率、循环稳定性和倍率性能。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本实施例提供一种改性镍钴锰酸锂正极材料,其经以下方式制备得到:
步骤(1):将改性混合液按105g:100g的比例喷附于镍钴锰酸锂基体(LiNi0.9Co0.05Mn0.05O2,中值粒径为15μm)的表面。
上述改性混合由改性壳聚糖包覆液以及硅烷偶联剂改性的导电粒子混合而得。
其中,改性壳聚糖包覆液经改性壳聚糖与1vt%的醋酸水溶液按30g:1L的比例混合而得,改性壳聚糖由咪唑-4-乙酸与壳聚糖按摩尔比为2:3进行酰化反应后得到,壳聚糖的目数为60目,壳聚糖的脱乙酰度为90%。
硅烷偶联剂改性的导电粒子经以下方法制备而得:将氧化锌加入如甲苯中超声分散得到悬浮液,之后加入三乙氧基[2-(7-氧杂二环[4.1.0]庚-3-基)乙基]硅烷并超声分散,在85℃恒温反应5小时,在常温下离心分离,得到硅烷偶联剂改性的导电粒子。其中,三乙氧基[2-(7-氧杂二环[4.1.0]庚-3-基)乙基]硅烷与氧化锌按的质量比为3:8,甲苯与氧化锌的用量为25mL:1g。
改性壳聚糖包覆液、硅烷偶联剂改性的导电粒子以及镍钴锰酸锂基体的质量比为100:5:100。
步骤(2):将附着有改性混合液的各镍钴锰酸锂基体于60℃的条件下混合并反应,以在镍钴锰酸锂基体的表面形成改性壳聚糖膜,随后冷却至室温。
步骤(3):将步骤(2)所得的物料冷冻干燥以使改性壳聚糖膜形成多孔结构。
步骤(4):将干燥后的干燥物进行水洗,去除残留的醋酸,随后烘干水分,即得到改性镍钴锰酸锂正极材料。
实施例2
本实施例与实施例1的区别在于:以咪唑-1-羧酸代替咪唑-4-乙酸。
实施例3
本实施例与实施例1的区别在于:每升改性壳聚糖包覆液中含有40g的改性壳聚糖。
实施例4
本实施例与实施例1的区别在于:每升改性壳聚糖包覆液中含有50g的改性壳聚糖。
实施例5
本实施例与实施例1的区别在于:改性壳聚糖包覆液、硅烷偶联剂改性的导电粒子以及镍钴锰酸锂基体的质量比为80:3:100。
实施例6
本实施例与实施例1的区别在于:改性壳聚糖包覆液、硅烷偶联剂改性的导电粒子以及镍钴锰酸锂基体的质量比为90:4:100。
实施例7
本实施例与实施例1的区别在于:咪唑-4-乙酸与壳聚糖的摩尔比为1:2。
实施例8
本实施例与实施例1的区别在于:咪唑-4-乙酸与壳聚糖的摩尔比为3:5。
对比例1
本对比例与实施例1的区别在于:改性混合由壳聚糖包覆液以及硅烷偶联剂改性的导电粒子混合而得。其中,壳聚糖包覆液由未被改性的壳聚糖溶于醋酸水溶液而得。
也即,本对比例中壳聚糖未经具有羧基的咪唑化合物进行改性。
对比例2
本对比例与实施例1的区别在于:改性混合液中不含改性壳聚糖,仅含硅烷偶联剂改性的导电粒子。
对比例3
本对比例与实施例1的区别在于:改性混合液由改性壳聚糖包覆液以及导电粒子混合而得,不含硅烷偶联剂。
也即,本对比例中导电粒子未经硅烷偶联剂改性。
对比例4
本对比例与实施例1的区别在于:改性混合液由改性壳聚糖包覆液以及硅烷偶联剂混合而得,不含导电粒子。
对比例5
本对比例与实施例1的区别在于:
咪唑化合物为:
其中Y为BF4-
对比例6
本对比例与实施例1的区别在于:具有羧基的咪唑化合物为咪唑-4,5-二羧酸。
对比例7
本对比例与实施例1的区别在于:硅烷偶联剂为γ-甲基丙烯酰氧基丙基三甲氧基。
对比例8
本对比例与实施例1的区别在于:硅烷偶联剂为2-(3,4-环氧环己烷基)乙基三甲氧基硅烷,分子式为C11H22O4Si。
对比例9
本对比例与实施例1的区别在于:硅烷偶联剂乙氧基三甲基硅烷,分子式为C5H14OSi。
试验例
①、以实施例1制备得到的正极材料为例,对其进行电镜扫描,其SEM图如图1所示。
②、将实施例1-8以及对比例1-9所得的正极材料分别按以下方式配成扣式电池进行锂离子电池电化学性能测试:
以N-甲基吡咯烷酮为溶剂,按照质量比9.2:0.5:0.3的比例将正极活性物质与乙炔黑、PVDF混合均匀,涂覆于铝箔上,经80℃鼓风干燥8h后,于120℃真空干燥12h。在氩气保护的手套箱中装配电池,负极为金属锂片,隔膜为聚丙烯膜,电解液为1M LiPF6-EC/DMC(1:1,v/v),采用2032型扣式电池壳在氩气保护的手套箱中组装成扣式电池,然后在25℃下3.0-4.5V进行电化学性能测试,其结果如下表1所示。
表1测试结果

由表1可以看出:本申请提供的制备方法制备得到的改性镍钴锰酸锂正极材料具有良好的循环保持率。
综上,本申请提供的方案可有效提高改性壳聚糖与基体之间的结合力;在冷冻干燥过程中,改性壳聚糖包覆液中的溶剂先形成冰晶结构,随后直接升华挥发除去,留下孔洞结构,从而提高镍钴锰酸锂基体的孔隙结构,有利于锂离子的迁移扩散,可提高相应材料的倍率和循环性能。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种改性镍钴锰酸锂正极材料的制备方法,其特征在于,包括以下步骤:将改性混合液与待包覆的镍钴锰酸锂基体混合反应以在所述镍钴锰酸锂基体的表面形成改性壳聚糖膜,随后冷冻干燥以使所述改性壳聚糖膜形成多孔结构;
    其中,所述改性混合液由改性壳聚糖包覆液以及硅烷偶联剂改性的导电粒子混合而得;所述改性壳聚糖包覆液经改性壳聚糖与溶剂混合而得;所述改性壳聚糖由具有羧基的咪唑化合物对壳聚糖改性而得;所述硅烷偶联剂为具有乙氧基的硅烷。
  2. 根据权利要求1所述的制备方法,其特征在于,将所述改性混合液喷附于待包覆的所述镍钴锰酸锂基体表面,随后冷冻干燥;
    优选地,所述改性壳聚糖包覆液、所述硅烷偶联剂改性的导电粒子以及所述镍钴锰酸锂基体的质量比为80-100:3-5:100。
  3. 根据权利要求1所述的制备方法,其特征在于,每升所述改性壳聚糖包覆液中含有30-50g的所述改性壳聚糖;
    优选地,所述溶剂为醋酸水溶液;
    优选地,所述醋酸水溶液中醋酸的体积浓度为0.5-1.5%。
  4. 根据权利要求3所述的制备方法,其特征在于,所述改性壳聚糖是由具有羧基的咪唑化合物与壳聚糖进行酰化反应后得到;
    优选地,所述具有羧基的咪唑化合物包括咪唑-4-乙酸和咪唑-1-羧酸中的至少一种;
    优选地,所述具有羧基的咪唑化合物与所述壳聚糖的摩尔比为1-3:2-5;
    优选地,所述壳聚糖的目数为40-80目,所述壳聚糖的脱乙酰度为85-95%。
  5. 根据权利要求1所述的制备方法,其特征在于,所述硅烷偶联剂为具有乙氧基的环氧硅烷;
    优选地,所述硅烷偶联剂为具有乙氧基的脂环族环氧基硅烷;
    更优地,所述环氧基硅烷为三乙氧基[2-(7-氧杂二环[4.1.0]庚-3-基)乙基]硅烷。
  6. 根据权利要求1所述的制备方法,其特征在于,所述导电粒子包括氧化锌和碳纳米管中的至少一种。
  7. 根据权利要求1所述的制备方法,其特征在于,所述镍钴锰酸锂基体经镍钴锰前驱体与锂源混合烧结而成;
    优选地,所述镍钴锰前驱体为镍钴锰氢氧化物;
    优选地,所述锂源包括碳酸锂;
    优选地,所述镍钴锰酸锂基体的制备还包括:将烧结后的物料进行粉碎得到镍钴锰酸锂粉体;
    优选地,所述镍钴锰酸锂粉体的中值粒径为10-20μm。
  8. 根据权利要求1所述的制备方法,其特征在于,冷冻干燥是于冷冻环境下真空干燥。
  9. 根据权利要求1所述的制备方法,其特征在于,还包括:将表面包覆多孔改性壳聚糖膜的镍钴锰酸锂基体进行洗涤以去除残留的溶剂,随后固液分离,将固相物进行干燥。
  10. 一种改性镍钴锰酸锂正极材料,其特征在于,经权利要求1-9任一项所述的制备方法制备得到。
PCT/CN2023/081400 2022-11-23 2023-03-14 一种改性镍钴锰酸锂正极材料及其制备方法 WO2024108822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211472079.9 2022-11-23
CN202211472079.9A CN115784321B (zh) 2022-11-23 2022-11-23 一种改性镍钴锰酸锂正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2024108822A1 true WO2024108822A1 (zh) 2024-05-30

Family

ID=85440387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081400 WO2024108822A1 (zh) 2022-11-23 2023-03-14 一种改性镍钴锰酸锂正极材料及其制备方法

Country Status (3)

Country Link
CN (1) CN115784321B (zh)
FR (1) FR3142297A1 (zh)
WO (1) WO2024108822A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198501A (ja) * 2010-03-17 2011-10-06 Toppan Printing Co Ltd 固体高分子形燃料電池、膜・電極接合体、電極触媒層、及びその製造方法
CN103219506A (zh) * 2012-01-18 2013-07-24 比亚迪股份有限公司 一种锂离子电池正极材料及其制备方法和一种锂离子电池
CN105914340A (zh) * 2016-06-22 2016-08-31 宁德新能源科技有限公司 一种正极极片,其制备方法及含有该极片的锂离子电池
CN106159233A (zh) * 2016-08-24 2016-11-23 中南大学 一种锂离子电池正极材料的表面改性方法
CN107474159A (zh) * 2017-07-20 2017-12-15 莆田学院 一种咪唑‑4,5‑二羧酸改性壳聚糖材料的制备方法
CN109713245A (zh) * 2017-10-26 2019-05-03 荆门市格林美新材料有限公司 离子掺杂、包覆的镍钴锰酸锂正极材料及其制备方法
CN111092219A (zh) * 2019-12-20 2020-05-01 上海纳米技术及应用国家工程研究中心有限公司 一种应用于锂离子电池的改性钛酸锂负极材料的制备方法
CN111916711A (zh) * 2020-08-18 2020-11-10 成都巴莫科技有限责任公司 一种双核壳结构三元正极材料及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2331602C (en) * 1992-11-30 2002-09-10 Canon Kabushiki Kaisha Method of manufacturing a positive electrode active material of a secondary battery
JP4866173B2 (ja) * 2006-01-25 2012-02-01 大日精化工業株式会社 ヒドロキシアルキル化キトサン溶液
SG176268A1 (en) * 2009-06-26 2012-01-30 Univ Nanyang Tech Energy charge storage device using a printable polyelectrolyte as electrolyte material
EP2679625B1 (en) * 2011-02-23 2017-01-25 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous liquid composition, aqueous coating, functional coating film, and composite material
JP2013191297A (ja) * 2012-03-12 2013-09-26 Nippon Electric Glass Co Ltd 蓄電デバイス用正極材料
CN108155363B (zh) * 2017-12-26 2020-11-03 深圳先进技术研究院 高分子涂层在铝负极中的应用、铝负极、其制备方法及二次电池
CN109092354A (zh) * 2018-07-19 2018-12-28 常州大学 一种硅烷化壳聚糖固载酸性离子液体催化剂及其制备方法
CN109004230B (zh) * 2018-08-09 2020-11-20 义乌市君胜科技有限公司 一种锂离子电池正极浆料及其制备方法
CN109546118A (zh) * 2018-11-20 2019-03-29 成都新柯力化工科技有限公司 一种二维层状磷酸镍锂正极材料及制备方法
CN112349885B (zh) * 2019-08-06 2022-05-03 巴斯夫杉杉电池材料有限公司 一种改性锂离子电池正极材料及其制备方法
US11658302B2 (en) * 2019-11-15 2023-05-23 Arakawa Chemical Industries, Ltd. Conductive carbon material dispersing agent for lithium ion battery, slurry for lithium ion battery electrode, electrode for lithium ion battery, and lithium ion battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198501A (ja) * 2010-03-17 2011-10-06 Toppan Printing Co Ltd 固体高分子形燃料電池、膜・電極接合体、電極触媒層、及びその製造方法
CN103219506A (zh) * 2012-01-18 2013-07-24 比亚迪股份有限公司 一种锂离子电池正极材料及其制备方法和一种锂离子电池
CN105914340A (zh) * 2016-06-22 2016-08-31 宁德新能源科技有限公司 一种正极极片,其制备方法及含有该极片的锂离子电池
CN106159233A (zh) * 2016-08-24 2016-11-23 中南大学 一种锂离子电池正极材料的表面改性方法
CN107474159A (zh) * 2017-07-20 2017-12-15 莆田学院 一种咪唑‑4,5‑二羧酸改性壳聚糖材料的制备方法
CN109713245A (zh) * 2017-10-26 2019-05-03 荆门市格林美新材料有限公司 离子掺杂、包覆的镍钴锰酸锂正极材料及其制备方法
CN111092219A (zh) * 2019-12-20 2020-05-01 上海纳米技术及应用国家工程研究中心有限公司 一种应用于锂离子电池的改性钛酸锂负极材料的制备方法
CN111916711A (zh) * 2020-08-18 2020-11-10 成都巴莫科技有限责任公司 一种双核壳结构三元正极材料及其制备方法

Also Published As

Publication number Publication date
CN115784321B (zh) 2024-02-09
FR3142297A1 (fr) 2024-05-24
CN115784321A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2016188477A2 (zh) 碳包覆三元正极材料及其制备方法、锂离子电池
CN108172804B (zh) 一种石墨烯/二氧化钛包覆正极材料及其制备和应用
WO2022011939A1 (zh) 无钴正极材料及其制备方法以及锂离子电池正极和锂电池
WO2010079958A2 (ko) 리튬 이차전지용 양극 활물질
WO2010079962A2 (ko) 리튬 이차전지용 양극 활물질
WO2010079965A2 (ko) 리튬 이차전지용 양극 활물질
WO2021073545A1 (zh) 电池隔膜涂覆材料及其制备方法与应用
WO2010079949A2 (ko) 리튬 이차전지용 양극 활물질
WO2022016951A1 (zh) 硅基负极材料、负极和锂离子电池及其制备方法
WO2021143374A1 (zh) 无钴层状正极材料及其制备方法、正极片和锂离子电池
WO2021120155A1 (zh) 一种纳米锡硅复合负极材料及其制备方法和应用
CN110085847B (zh) 锂离子电池锗/碳复合负极材料及其制备方法和应用
CN110112408A (zh) 一种石墨烯-硅复合材料及其制备方法、电极材料及电池
CN110739455A (zh) 硅碳负极材料及制备方法、锂离子电池
JP5804422B2 (ja) 二次電池正極活物質の製造方法
CN103137976A (zh) 纳米复合材料及其制备方法和正极材料与电池
CN111498829B (zh) 石墨烯基硅碳复合材料及其制备方法和用途及电池
CN111342020B (zh) 一种硅基负极材料及其制备方法以及一种锂离子电池
CN114497549B (zh) 电化学制备正极补锂材料的方法和补锂材料及补锂浆料
CN113422037A (zh) 原位转化构筑含磷酸锂包覆层的硅基复合材料及制备方法
CN116230908A (zh) 补锂剂、正极极片、电化学装置及补锂剂的制备方法
CN114520320B (zh) 一种基于碱金属还原法的氧化锂复合正极材料
WO2022237091A1 (zh) 复合负极材料及其制备方法、负极材料及锂离子电池
CN108899520B (zh) 球花状Na3V2O2(PO4)2F-GO纳米复合材料及其制备方法和应用
CN117410463A (zh) 一种硫化物固态电池用复合正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23892932

Country of ref document: EP

Kind code of ref document: A1