WO2022237091A1 - 复合负极材料及其制备方法、负极材料及锂离子电池 - Google Patents

复合负极材料及其制备方法、负极材料及锂离子电池 Download PDF

Info

Publication number
WO2022237091A1
WO2022237091A1 PCT/CN2021/127974 CN2021127974W WO2022237091A1 WO 2022237091 A1 WO2022237091 A1 WO 2022237091A1 CN 2021127974 W CN2021127974 W CN 2021127974W WO 2022237091 A1 WO2022237091 A1 WO 2022237091A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode material
defect
transition metal
composite negative
Prior art date
Application number
PCT/CN2021/127974
Other languages
English (en)
French (fr)
Inventor
许鑫培
江卫军
陈思贤
郑晓醒
王鹏飞
施泽涛
Original Assignee
蜂巢能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技股份有限公司 filed Critical 蜂巢能源科技股份有限公司
Priority to EP21941656.7A priority Critical patent/EP4203101A1/en
Priority to JP2022546389A priority patent/JP7416965B2/ja
Priority to US18/025,179 priority patent/US20240072250A1/en
Publication of WO2022237091A1 publication Critical patent/WO2022237091A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium-ion batteries, in particular to a composite negative electrode material, a preparation method thereof, a negative electrode material and a lithium-ion battery.
  • Lithium-ion batteries have high energy density and excellent cycle performance, and are widely used in automobiles, electronics industries and other fields.
  • lithium ions move back and forth between the positive electrode and the negative electrode.
  • an electric current is generated in the external circuit.
  • the positive electrode and the negative electrode play the role of intercalation and extraction of lithium ions. Therefore, the storage effect of the negative electrode on lithium ions determines the performance of the lithium ion battery.
  • the anode materials that have been commercialized are generally carbon materials (graphite, soft carbon, hard carbon, etc.).
  • graphite material as a common negative electrode material, has a theoretical capacity of only 372mAh/g, a low ability to accept lithium ions, and poor compatibility with organic solvents, so it is easy to react with the electrolyte and reduce the removal of lithium ions. embedded capability.
  • the theoretical capacity of silicon-based materials is as high as 4200mAh/g, but the volume expansion and contraction are relatively serious during the process of deintercalating lithium ions, which is easy to cause damage to the material structure and mechanical crushing, and then shows poor cycle performance.
  • transition metal oxides have the advantages of good theoretical capacity and abundant sources, there is also the problem of poor conductivity.
  • the main purpose of the present invention is to provide a composite negative electrode material and its preparation method, negative electrode material and lithium ion battery, to solve the poor capacity retention rate after cycle of lithium ion battery with transition metal oxide as negative electrode material in the prior art The problem.
  • a composite negative electrode material which includes defect-type transition metal oxide and lithium titanate, wherein lithium titanate is coated and/or doped
  • the defect-type transition metal oxide is compounded with a defect-type transition metal oxide, and the defect-type transition metal oxide is a secondary particle, and the transition metal element in the defect-type transition metal oxide is selected from any one of tungsten, yttrium, and tin.
  • the mass ratio of the defect-type transition metal oxide to lithium titanate is 1:0.005 ⁇ 1:0.03.
  • defect-type transition metal oxide is selected from any one of defect-type tungsten oxide, defect-type yttrium oxide, and defect-type tin oxide.
  • defect-type tungsten oxide is selected from any one or more of WO 2.72 , WO 2.9 , Y 2 O 3.12 , and SnO 2.14 .
  • the average particle size of the composite negative electrode material is 2.0-5.0 ⁇ m.
  • the specific surface area of the composite negative electrode material is 15.0 ⁇ 50.0 m 2 /g.
  • the average particle diameter of the secondary particles is 2.0-5.0 ⁇ m, and the secondary particles of the defect-type transition metal oxide are formed by agglomerating primary particles.
  • the average particle diameter of the primary particles is 200-500 nm.
  • the average particle diameter of the above-mentioned lithium titanate is 100-300 nm.
  • a method for preparing the above-mentioned composite negative electrode material includes: dry-mixing defect-type transition metal oxides and lithium titanate to obtain a composite negative-electrode material, wherein the defect-type transition metal oxide Metal oxides are secondary particles.
  • stirring is carried out during the above dry mixing process, and the stirring speed is 2000-3000 r/min.
  • stirring time is 10-20 minutes.
  • a negative electrode material which includes the composite negative electrode material mentioned above.
  • a lithium ion battery comprising a negative electrode sheet, and the negative electrode sheet includes the above-mentioned negative electrode material.
  • the electrical conductivity of the defect-type transition metal oxide is improved compared with the corresponding conventional transition metal oxide, but at the same time, it has higher chemical activity due to the crystal distortion of the defect-type transition metal oxide , so that it is prone to side reactions with the electrolyte and the electrical performance of the lithium-ion battery is affected.
  • the present application utilizes lithium titanate to coat and dope defect-type transition metal oxides to make the structure of defect-type transition metal oxides more stable, and the coated lithium titanate reduces the defect-type transition metal oxides in direct contact with the electrolyte.
  • the area of the transition metal oxide greatly reduces the probability of side reactions between the defective transition metal oxide and the electrolyte.
  • the "zero strain" of lithium titanate greatly slows down the volume expansion effect of the negative electrode of the battery during the process of deintercalating lithium ions, thereby further improving the stability of the composite negative electrode material, and thus making the composite negative electrode material including the Lithium-ion batteries have a high capacity retention rate after cycling.
  • Fig. 1 shows the SEM image of WO 2.72 provided by Example 1 of the present application
  • Fig. 2 shows the SEM figure of the composite negative electrode material that the embodiment 1 of the application provides
  • Figure 3 shows the energy spectrum analysis diagram of WO 2.72 provided by Example 1 of the present application
  • Fig. 4 shows the energy spectrum analysis figure of the composite negative electrode material that the embodiment 1 of the present application provides
  • FIG. 5 shows the graph of capacity retention rate after cycle of the composite negative electrode material of Example 1 of the present application and the negative electrode material of Comparative Example 1.
  • the present invention provides a composite negative electrode material and Its preparation method, negative electrode material and lithium ion battery.
  • a composite negative electrode material in a typical embodiment of the present application, includes a defect-type transition metal oxide and lithium titanate, wherein the lithium titanate is coated and/or doped
  • the defect-type transition metal oxide is compounded with a defect-type transition metal oxide, and the defect-type transition metal oxide is a secondary particle, and the transition metal element in the defect-type transition metal oxide is selected from any one of tungsten, yttrium, and tin.
  • Defective transition metal oxides have improved electrical conductivity compared to corresponding conventional transition metal oxides, but at the same time, due to the crystal distortion of defect transition metal oxides, they have higher chemical activity, which leads to their easy and electrolytic
  • the electrical performance of the lithium-ion battery is affected by the side reaction of the liquid.
  • the present application utilizes lithium titanate to coat and dope defect-type transition metal oxides to make the structure of defect-type transition metal oxides more stable, and the coated lithium titanate reduces the defect-type transition metal oxides in direct contact with the electrolyte.
  • the area of the transition metal oxide greatly reduces the probability of side reactions between the defective transition metal oxide and the electrolyte.
  • the "zero strain" of lithium titanate greatly slows down the volume expansion effect of the negative electrode of the battery during the process of deintercalating lithium ions, thereby further improving the stability of the composite negative electrode material, and thus making the composite negative electrode material including the Lithium-ion batteries have a high capacity retention rate after cycling.
  • the mass ratio of the defect-type transition metal oxide to lithium titanate is 1:0.005 ⁇ 1:0.03.
  • the amount of lithium titanate added is too much, the conductivity of the composite negative electrode material is too poor, and if the amount of lithium titanate added is too small, the improvement of the electrical properties such as cycle stability of the composite negative electrode material is too small, and the defect type with the above ratio is preferred Transition metal oxides and lithium titanate, so that the two can have a more fully synergistic effect, so as to obtain a negative electrode material with optimized comprehensive performance.
  • the above-mentioned defect-type transition metal oxides are selected from defect-type tungsten oxide, defect-type yttrium oxide, defect-type Any one of the type tin oxide.
  • Each of the above defect-type transition metal oxides can be prepared by using the existing commercial defect-type transition metal oxides or the preparation method disclosed in the technical literature.
  • the defect-type transition metal oxides used The chemical formula of type tungsten oxide is selected from any one or more of WO 2.72 , WO 2.9 , Y 2 O 3.12 , and SnO 2.14 .
  • the preferred preparation method is: in a rotary kiln, the source of tungsten paratungstate (feeding speed is 50-100g/min) is used as the raw material, and the NH 3 (2-10L/min) at a temperature of 750-810°C (heating rate of 2-5°C/min) to generate H2 in order to reduce paratungsine at high temperature to produce defective purple tungsten oxide (WO 2.72 ), wherein the tungsten source is selected from any one of ammonium metatungstate, ammonium paratungstate, and ammonium tungstate, and the rotating speed of the furnace tube is 2 rpm.
  • the source of tungsten paratungstate feeding speed is 50-100g/min
  • the tungsten source is selected from any one of ammonium
  • the composite negative electrode material has an average particle size of 2.0-5.0 ⁇ m, and preferably the composite negative electrode material has a specific surface area of 15.0-50.0 m 2 /g.
  • the average particle size and specific surface area of the composite negative electrode material will affect the contact area between the composite negative electrode material and the electrolyte.
  • a range of composite negative electrode materials can make the composite negative electrode materials have more suitable reactivity.
  • the average particle size of lithium titanate In order to make the average particle size of lithium titanate better match the particle size of defect-type transition metal oxides, make it cover and dope defect-type transition metal oxides as much as possible, thereby improving the improvement of defect-type transition metal oxides.
  • the average particle size of the above-mentioned secondary particles is preferably 2.0-5.0 ⁇ m, and the secondary particles of defect-type transition metal oxides are formed by agglomeration of primary particles, and the average particle size of the primary particles is preferably 200-500 nm.
  • the average particle size of the lithium titanate is 100-300 nm.
  • Lithium titanate in the above-mentioned average particle size range is more favorable to interact with the defect-type transition metal oxide, so as to cover and dope the defect-type transition metal oxide to modify it.
  • a method for preparing a composite negative electrode material comprising: dry mixing a defective transition metal oxide and lithium titanate to obtain a composite negative electrode material, Among them, the defect-type transition metal oxide is a secondary particle.
  • Defective transition metal oxides have improved electrical conductivity compared to corresponding conventional transition metal oxides, but at the same time, due to the crystal distortion of defect transition metal oxides, they have higher chemical activity, which leads to their easy and electrolytic
  • the electrical performance of the lithium-ion battery is affected by the side reaction of the liquid.
  • the lithium titanate is coated and doped in the defect-type transition metal oxide through dry mixing, so that the defect-type transition metal oxide is coated and doped with lithium titanate on the one hand to make the defect-type transition metal oxide
  • the structure is more stable, and the coated lithium titanate reduces the area of the defective transition metal oxide in direct contact with the electrolyte, thereby greatly reducing the probability of side reactions between the defective transition metal oxide and the electrolyte.
  • the "zero strain" of lithium titanate greatly slows down the volume expansion effect of the negative electrode of the battery during the process of deintercalating lithium ions, thereby further improving the stability of the composite negative electrode material, and thus making the composite negative electrode material including the Lithium-ion batteries have a high capacity retention rate after cycling.
  • the stirring speed is 2000-3000r/min, and the stirring time is preferably 10-20min.
  • a negative electrode material is provided, and the negative electrode material includes the above-mentioned composite negative electrode material.
  • the battery have better electrical performance.
  • a lithium-ion battery including a negative electrode sheet, and the negative electrode sheet includes the above-mentioned negative electrode material.
  • a lithium ion battery comprising the above-mentioned negative electrode material has better electrical properties.
  • defect-type purple tungsten oxide WO 2.72 (secondary particles) and Li 4 Ti 5 O 12 were mixed in a high-speed mixer at a rotational speed of 3000r/min to finally obtain a composite negative electrode material.
  • defect-type purple tungsten oxide WO 2.72 (secondary particle) and Li 4 Ti 5 O 12 were mixed in a high-speed mixer at a speed of 2500r/min, and finally a composite negative electrode material was obtained.
  • defect-type purple tungsten oxide WO 2.72 (secondary particles) and Li 4 Ti 5 O 12 were mixed in a high-speed mixer at a rotation speed of 1000r/min to finally obtain a composite negative electrode material.
  • the average particle size of the primary particles is 300nm, and the average particle size of the defect-type purple tungsten oxide WO 2.72 is 3.5 ⁇ m, and finally a composite negative electrode material is obtained.
  • the average particle size of the primary particles is 500nm, and the average particle size of the defect-type purple tungsten oxide WO 2.72 is 5 ⁇ m, and finally a composite negative electrode material is obtained.
  • the average particle size of the primary particles is 100nm, and the average particle size of the defect-type purple tungsten oxide WO 2.72 is 0.1 ⁇ m, and finally a composite negative electrode material is obtained.
  • the average particle size of the lithium titanate is 200nm, and finally a composite negative electrode material is obtained.
  • the average particle size of the lithium titanate is 300nm, and finally a composite negative electrode material is obtained.
  • the average particle size of the lithium titanate is 400nm, and finally a composite negative electrode material is obtained.
  • the stirring time was 20 min, and finally a composite negative electrode material was obtained.
  • the stirring time was 8 minutes, and finally a composite negative electrode material was obtained.
  • the mass ratio of defect-type purple tungsten oxide WO 2.72 to lithium titanate is 1:0.005, and finally a composite negative electrode material is obtained.
  • the mass ratio of defect-type purple tungsten oxide WO 2.72 to lithium titanate is 1:0.03, and finally a composite negative electrode material is obtained.
  • the mass ratio of defect-type purple tungsten oxide WO 2.72 to lithium titanate is 1:0.004, and finally a composite negative electrode material is obtained.
  • the mass ratio of defect-type purple tungsten oxide WO 2.72 to lithium titanate is 1:0.035, and finally a composite negative electrode material is obtained.
  • Y 2 O 3.12 (the average particle size of the secondary particles is 2.0 ⁇ m) is used to replace the defect-type purple tungsten oxide WO 2.72 , and finally a composite negative electrode material is obtained.
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is that defect-type purple tungsten oxide WO 2.72 is directly used as the negative electrode material, and the capacity retention rate diagram of the negative electrode material after cycles is shown in FIG. 5 .
  • the negative electrode material 10.0g that comparative example 1 obtains and 0.1579g SP (acetylene black) and stir and mix 3min with the stirring speed of 800r/min in defoamer; Then add 15.79g of CMC glue with a solid content of 1% was mixed for 10 minutes at 2000r/min; 0.4386g of SN307 binder emulsion was added, and stirred and mixed for 3 minutes at a stirring speed of 2000r/min in a defoamer. The finally obtained slurry was evenly coated on the copper foil, and dried at 80°C.
  • SP acetylene black
  • Defective transition metal oxides have improved electrical conductivity compared to corresponding conventional transition metal oxides, but at the same time, due to the crystal distortion of defect transition metal oxides, they have higher chemical activity, which leads to their easy and electrolytic
  • the electrical performance of the lithium-ion battery is affected by the side reaction of the liquid.
  • the present application utilizes lithium titanate to coat and dope defect-type transition metal oxides to make the structure of defect-type transition metal oxides more stable, and the coated lithium titanate reduces the defect-type transition metal oxides in direct contact with the electrolyte.
  • the area of the transition metal oxide greatly reduces the probability of side reactions between the defective transition metal oxide and the electrolyte.
  • the "zero strain" of lithium titanate greatly slows down the volume expansion effect of the negative electrode of the battery during the process of deintercalating lithium ions, thereby further improving the stability of the composite negative electrode material, and thus making the composite negative electrode material including the Lithium-ion batteries have a high capacity retention rate after cycling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种复合负极材料及其制备方法、负极材料及锂离子电池。复合负极材料包括缺陷型过渡金属氧化物和钛酸锂,其中,钛酸锂以包覆和/或掺杂的方式与缺陷型过渡金属氧化物复合,缺陷型过渡金属氧化物为二次颗粒,缺陷型过渡金属氧化物中的过渡金属元素选自钨、钇、锡中的任意一种。

Description

复合负极材料及其制备方法、负极材料及锂离子电池 技术领域
本发明涉及锂离子电池技术领域,具体而言,涉及一种复合负极材料及其制备方法、负极材料及锂离子电池。
背景技术
锂离子电池能量密度高、循环性能优良,被广泛应用于汽车、电子产业等领域。在锂离子电池工作中通过锂离子在正极和负极之间来回移动,为了达到电化学平衡,在外部电路产生电流。其中,正极和负极起到锂离子的嵌入和脱出作用,因此,负极对锂离子的容纳效果决定了锂离子电池的性能。
目前,已经实现商业化的负极材料一般是碳素材料(石墨、软碳、硬碳等)。但石墨材料作为常见的负极材料,其理论容量仅为372mAh/g、对锂离子的接纳能力较低、且与有机溶剂相容能力较差,从而易于和电解液发生反应而降低锂离子的脱嵌能力。硅基材料理论容量高达4200mAh/g,但是在脱嵌锂离子过程中的体积膨胀和收缩比较严重,从而容易造成材料结构的破坏和机械粉碎,进而表现出较差的循环性能。虽然过渡金属氧化物具有较好的理论容量和来源丰富的优势,但是也存在导电性较差的问题,现有技术中虽然有采用缺陷性过渡金属氧化物来提高过渡金属氧化物的导电性,但是导电性的改进有限,且由于缺陷性过渡金属氧化物的活性提高,使其易于在电解液中发生别的一些副反应,从而导致锂离子电池整体电学性能较差。
发明内容
本发明的主要目的在于提供一种复合负极材料及其制备方法、负极材料及锂离子电池,以解决现有技术中以过渡金属氧化物为负极材料的锂离子电池的循环后容量保持率较差的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种复合负极材料,该复合负极材料包括缺陷型过渡金属氧化物和钛酸锂,其中,钛酸锂以包覆和/或掺杂的方式与缺陷型过渡金属氧化物复合,缺陷型过渡金属氧化物为二次颗粒,缺陷型过渡金属氧化物中的过渡金属元素选自钨、钇、锡中的任意一种。
进一步地,上述缺陷型过渡金属氧化物和钛酸锂的质量比为1:0.005~1:0.03。
进一步地,上述缺陷型过渡金属氧化物选自缺陷型氧化钨、缺陷型氧化钇、缺陷型氧化锡中的任意一种。
进一步地,缺陷型氧化钨的化学式选自WO 2.72、WO 2.9、Y 2O 3.12、SnO 2.14中的任意一种或多种。
进一步地,上述复合负极材料的平均粒径为2.0~5.0μm。
进一步地,复合负极材料的比表面积为15.0~50.0m 2/g。
进一步地,上述二次颗粒的平均粒径为2.0~5.0μm,缺陷型过渡金属氧化物的二次颗粒由一次颗粒团聚而成。
进一步地,一次颗粒的平均粒径为200~500nm。
进一步地,上述钛酸锂的平均粒径为100~300nm。
根据本发明的一个方面,提供了一种上述复合负极材料的制备方法,该制备方法包括:将缺陷型过渡金属氧化物和钛酸锂进行干法混合,得到复合负极材料,其中,缺陷型过渡金属氧化物为二次颗粒。
进一步地,上述干法混合的过程中进行搅拌,搅拌的转速为2000~3000r/min。
进一步地,搅拌的时间为10~20min。
根据本发明的另一个方面,提供了一种负极材料,该负极材料包括上述的复合负极材料。
根据本发明的又一个方面,提供了一种锂离子电池,包括负极片,该负极片包括上述的负极材料。
应用本发明的技术方案,缺陷型过渡金属氧化物比相应的常规过渡金属氧化物的导电性有所提高,但同时也因缺陷型过渡金属氧化物的晶体畸变而使其具有较高的化学活性,从而导致其易于和电解液进行副反应而使得锂离子电池的电学性能受到影响。本申请一方面利用钛酸锂包覆和掺杂于缺陷型过渡金属氧化物使得缺陷型过渡金属氧化物的结构更加稳定,且包覆的钛酸锂减小了与电解液直接接触的缺陷型过渡金属氧化物的面积,从而极大地降低了缺陷型过渡金属氧化物与电解液副反应的几率。另一方面钛酸锂的“零应变性”极大地缓减了电池负极在脱嵌锂离子过程中的体积膨胀效应,从而进一步提高了该复合负极材料的稳定性,进而使得包括该复合负极材料的锂离子电池具有较高的循环后容量保持率。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本申请的实施例1提供的WO 2.72的SEM图;
图2示出了本申请的实施例1提供的复合负极材料的SEM图;
图3示出了本申请的实施例1提供的WO 2.72的能谱分析图;
图4示出了本申请的实施例1提供的复合负极材料的能谱分析图;
图5示出了本申请的实施例1复合负极材料、对比例1提供的负极材料的循环后容量保持率图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如背景技术所分析的,现有技术中存在以过渡金属氧化物为负极材料的锂离子电池的循环后容量保持率较差的问题,为解决该问题,本发明提供了一种复合负极材料及其制备方法、负极材料及锂离子电池。
在本申请的一种典型的实施方式中,提供了一种复合负极材料,该复合负极材料包括缺陷型过渡金属氧化物和钛酸锂,其中,钛酸锂以包覆和/或掺杂的方式与缺陷型过渡金属氧化物复合,缺陷型过渡金属氧化物为二次颗粒,缺陷型过渡金属氧化物中的过渡金属元素选自钨、钇、锡中的任意一种。
缺陷型过渡金属氧化物比相应的常规过渡金属氧化物的导电性有所提高,但同时也因缺陷型过渡金属氧化物的晶体畸变而使其具有较高的化学活性,从而导致其易于和电解液进行副反应而使得锂离子电池的电学性能受到影响。本申请一方面利用钛酸锂包覆和掺杂于缺陷型过渡金属氧化物使得缺陷型过渡金属氧化物的结构更加稳定,且包覆的钛酸锂减小了与电解液直接接触的缺陷型过渡金属氧化物的面积,从而极大地降低了缺陷型过渡金属氧化物与电解液副反应的几率。另一方面钛酸锂的“零应变性”极大地缓减了电池负极在脱嵌锂离子过程中的体积膨胀效应,从而进一步提高了该复合负极材料的稳定性,进而使得包括该复合负极材料的锂离子电池具有较高的循环后容量保持率。
在本申请的一种实施例中,上述缺陷型过渡金属氧化物和钛酸锂的质量比为1:0.005~1:0.03。
钛酸锂的添加量过多,使得复合负极材料的导电性太差,钛酸锂的添加量过少,使得复合负极材料的循环稳定性等电学性能的提升太小,优选上述比例的缺陷型过渡金属氧化物和钛酸锂,以使二者进行更充分的协同作用,从而得到综合性能优化的负极材料。
为进一步地提高缺陷型过渡金属氧化物与钛酸锂的协同作用效果,并得到更加多样性的复合负极材料,优选上述缺陷型过渡金属氧化物选自缺陷型氧化钨、缺陷型氧化钇、缺陷型氧化锡中的任意一种。上述各缺陷型过渡金属氧化物均可以采用目前已有的商业化缺陷型过渡金属氧化物或者采用技术文献公开的制备方法制备各缺陷型过渡金属氧化物,本申请一些实施例中,采用的缺陷型氧化钨的化学式选自WO 2.72、WO 2.9、Y 2O 3.12、SnO 2.14中的任意一种或多种。
其中,为提高缺陷型氧化钨的WO 2.72的制备效率,优选其制备方法为:在回转炉内以仲钨氨酸钨源(给料速度为50~100g/min)为原料,通过通入NH 3(2~10L/min)在750~810℃(升温速率为2~5℃/min)的温度下产生H 2以便将仲钨氨酸在高温下经还原制成缺陷型紫色氧化钨(WO 2.72),其中,钨源选自偏钨酸铵、仲钨酸铵、钨酸铵中的任意一种,炉管的转速为2转/分钟。当然本领域技术人员也可以参照现有技术中其它的制备方法制备WO 2.72,在此不再赘述。
在本申请的一种实施例中,上述复合负极材料的平均粒径为2.0~5.0μm,优选复合负极材料的比表面积为15.0~50.0m 2/g。
复合负极材料的平均粒径和比表面积会影响复合负极材料与电解液的接触面积,复合负极材料的表面积越大,其反应活性越好。因此,复合负极材料的比表面积越大,可能引起的副反应的几率也增加,复合负极材料的比表面积越小,复合负极材料与电解液的离子交换又可能受到一定的影响,优选在上述参数范围的复合负极材料可以使得复合负极材料具备更适宜的反应活性。
为使钛酸锂的平均粒径更加匹配缺陷型过渡金属氧化物的粒径,使其尽可能地包覆和掺杂于缺陷型过渡金属氧化物,从而提高对缺陷型过渡金属氧化物的改性效果,优选上述二次颗粒的平均粒径为2.0~5.0μm,缺陷型过渡金属氧化物的二次颗粒由一次颗粒团聚而成,优选一次颗粒的平均粒径为200~500nm。
在本申请的一种实施例中,上述钛酸锂的平均粒径为100~300nm。
上述平均粒径范围的钛酸锂更有利于和缺陷型过渡金属氧化物进行作用,从而包覆和掺杂于缺陷型过渡金属氧化物,以对其进行改性。
在本申请的另一种典型的实施方式中,提供了一种复合负极材料的制备方法,该制备方法包括:将缺陷型过渡金属氧化物和钛酸锂进行干法混合,得到复合负极材料,其中,缺陷型过渡金属氧化物为二次颗粒。
缺陷型过渡金属氧化物比相应的常规过渡金属氧化物的导电性有所提高,但同时也因缺陷型过渡金属氧化物的晶体畸变而使其具有较高的化学活性,从而导致其易于和电解液进行副反应而使得锂离子电池的电学性能受到影响。本申请通过干法混合使得钛酸锂包覆和掺杂于缺陷型过渡金属氧化物,从而一方面利用钛酸锂包覆和掺杂于缺陷型过渡金属氧化物使得缺陷型过渡金属氧化物的结构更加稳定,且包覆的钛酸锂减小了与电解液直接接触的缺陷型过渡金属氧化物的面积,进而极大地降低了缺陷型过渡金属氧化物与电解液副反应的几率。另一方面钛酸锂的“零应变性”极大地缓减了电池负极在脱嵌锂离子过程中的体积膨胀效应,从而进一步提高了该复合负极材料的稳定性,进而使得包括该复合负极材料的锂离子电池具有较高的循环后容量保持率。
为使缺陷型过渡金属氧化物和钛酸锂混合的更加和均匀,优选上述干法混合的过程中进行搅拌,搅拌的转速为2000~3000r/min,优选搅拌的时间为10~20min。
在本申请的又一种典型的实施方式中,提供了一种负极材料,负极材料包括上述的复合负极材料。
采用上述复合负极材料作为电池的负极材料,使得电池具有更优良的电学性能。
在本申请的又一种典型的实施方式中,提供了一种锂离子电池,包括负极片,上述负极片包括上述的负极材料。
包括上述的负极材料的锂离子电池具有更优良的电学性能。
以下将结合具体实施例和对比例,对本申请的有益效果进行说明。
实施例1
在回转炉(炉管的转速为2转/分钟)内以5(NH 4) 2O·12WO 3·5H 2O(给料速度为50g/min)为原料,通过通入NH 3(5L/min)在800℃(升温速率为5℃/min)的温度下产生H 2以便将仲钨氨酸还原制成缺陷型紫色氧化钨(WO 2.72),将缺陷型紫色氧化钨进行过筛(筛网为100目),一次颗粒的平均粒径为200nm,得到缺陷型紫色氧化钨WO 2.72(二次颗粒)的平均粒径为2.0μm。
将缺陷型紫色氧化钨WO 2.72和Li 4Ti 5O 12在高速混合机中进行混合,转速为2000r/min,混合的时间为10min,最终得到钛酸锂(平均粒径为100nm)和紫钨的复合负极材料,其中,缺陷型紫色氧化钨WO 2.72与Li 4Ti 5O 12的质量比为1:0.01。其中,WO 2.72的SEM图如图1所示;复合负极材料的SEM图如图2所示;WO 2.72的能谱分析图如图3所示,复合负极材料的能谱分析图如图4所示,复合负极材料的循环后容量保持率图如图5所示。
实施例2
实施例2与实施例1的区别在于,
将缺陷型紫色氧化钨WO 2.72(二次颗粒)和Li 4Ti 5O 12在高速混合机中进行混合,转速为3000r/min,最终得到复合负极材料。
实施例3
实施例3与实施例1的区别在于,
将缺陷型紫色氧化钨WO 2.72(二次颗粒)和Li 4Ti 5O 12在高速混合机中进行混合,转速为2500r/min,最终得到复合负极材料。
实施例4
实施例4与实施例1的区别在于,
将缺陷型紫色氧化钨WO 2.72(二次颗粒)和Li 4Ti 5O 12在高速混合机中进行混合,转速为1000r/min,最终得到复合负极材料。
实施例5
实施例5与实施例1的区别在于,
一次颗粒的平均粒径为300nm,缺陷型紫色氧化钨WO 2.72的平均粒径为3.5μm,最终得到复合负极材料。
实施例6
实施例6与实施例1的区别在于,
一次颗粒的平均粒径为500nm,缺陷型紫色氧化钨WO 2.72的平均粒径为5μm,最终得到复合负极材料。
实施例7
实施例7与实施例1的区别在于,
一次颗粒的平均粒径为100nm,缺陷型紫色氧化钨WO 2.72的平均粒径为0.1μm,最终得到复合负极材料。
实施例8
实施例8与实施例1的区别在于,
钛酸锂的平均粒径为200nm,最终得到复合负极材料。
实施例9
实施例9与实施例1的区别在于,
钛酸锂的平均粒径为300nm,最终得到复合负极材料。
实施例10
实施例10与实施例1的区别在于,
钛酸锂的平均粒径为400nm,最终得到复合负极材料。
实施例11
实施例11与实施例1的区别在于,
搅拌的时间为20min,最终得到复合负极材料。
实施例12
实施例12与实施例1的区别在于,
搅拌的时间为8min,最终得到复合负极材料。
实施例13
实施例13与实施例1的区别在于,
缺陷型紫色氧化钨WO 2.72和钛酸锂的质量比为1:0.005,最终得到复合负极材料。
实施例14
实施例14与实施例1的区别在于,
缺陷型紫色氧化钨WO 2.72和钛酸锂的质量比为1:0.03,最终得到复合负极材料。
实施例15
实施例15与实施例1的区别在于,
缺陷型紫色氧化钨WO 2.72和钛酸锂的质量比为1:0.004,最终得到复合负极材料。
实施例16
实施例16与实施例1的区别在于,
缺陷型紫色氧化钨WO 2.72和钛酸锂的质量比为1:0.035,最终得到复合负极材料。
实施例17
实施例17与实施例1的区别在于,
采用Y 2O 3.12(二次颗粒的平均粒径为2.0μm)代替缺陷型紫色氧化钨WO 2.72,最终得到复合负极材料。
对比例1
对比例1与实施例1的区别在于,直接将缺陷型紫色氧化钨WO 2.72作为负极材料,该负极材料的循环后容量保持率图如图5所示。
请将实施例1至17复合负极材料、对比例1得到的负极材料的平均粒径和比表面积分别列于表1。
表1
Figure PCTCN2021127974-appb-000001
Figure PCTCN2021127974-appb-000002
分别称取实施例1至17制备得到的复合负极材料、对比例1得到的负极材料10.0g与0.1579g SP(乙炔黑)在脱泡机中以800r/min的搅拌速度搅拌混合3min;然后加入15.79g固含量为1%的CMC胶液,在2000r/min下混合10min;加入0.4386g型号为SN307的粘结剂乳液,在脱泡机中以2000r/min的搅拌速度搅拌混合3min。将最后得到的浆料均匀涂覆到铜箔上,80℃下烘干。将烘干的极片裁成直径为14mm的圆片,并锂片为负极,在手套箱中组装2032型号的纽扣电池,在2.0V下测试各扣电池在0.1C下的放电容量以及循环后容量保持率,并将测试结果列于表2。
表2
Figure PCTCN2021127974-appb-000003
Figure PCTCN2021127974-appb-000004
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
缺陷型过渡金属氧化物比相应的常规过渡金属氧化物的导电性有所提高,但同时也因缺陷型过渡金属氧化物的晶体畸变而使其具有较高的化学活性,从而导致其易于和电解液进行副反应而使得锂离子电池的电学性能受到影响。本申请一方面利用钛酸锂包覆和掺杂于缺陷型过渡金属氧化物使得缺陷型过渡金属氧化物的结构更加稳定,且包覆的钛酸锂减小了与电解液直接接触的缺陷型过渡金属氧化物的面积,从而极大地降低了缺陷型过渡金属氧化物与电解液副反应的几率。另一方面钛酸锂的“零应变性”极大地缓减了电池负极在脱嵌锂离子过程中的体积膨胀效应,从而进一步提高了该复合负极材料的稳定性,进而使得包括该复合负极材料的锂离子电池具有较高的循环后容量保持率。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种复合负极材料,其特征在于,所述复合负极材料包括缺陷型过渡金属氧化物和钛酸锂,其中,所述钛酸锂以包覆和/或掺杂的方式与所述缺陷型过渡金属氧化物复合,所述缺陷型过渡金属氧化物为二次颗粒,所述缺陷型过渡金属氧化物中的过渡金属元素选自钨、钇、锡中的任意一种。
  2. 根据权利要求1所述的复合负极材料,其特征在于,所述缺陷型过渡金属氧化物和所述钛酸锂的质量比为1:0.005~1:0.03。
  3. 根据权利要求1或2所述的复合负极材料,其特征在于,所述缺陷型过渡金属氧化物选自缺陷型氧化钨、缺陷型氧化钇、缺陷型氧化锡中的任意一种。
  4. 根据权利要求1或2所述的复合负极材料,其特征在于,所述复合负极材料的平均粒径为2.0~5.0μm,所述复合负极材料的比表面积为15.0~50.0m 2/g。
  5. 根据权利要求1所述的复合负极材料,其特征在于,所述二次颗粒的平均粒径为2.0~5.0μm,所述缺陷型过渡金属氧化物的二次颗粒由一次颗粒团聚而成,所述一次颗粒的平均粒径为200~500nm。
  6. 根据权利要求1所述的复合负极材料,其特征在于,所述钛酸锂的平均粒径为100~300nm。
  7. 一种权利要求1至6中任一项所述复合负极材料的制备方法,其特征在于,所述制备方法包括:将缺陷型过渡金属氧化物和钛酸锂进行干法混合,得到所述复合负极材料,其中,所述缺陷型过渡金属氧化物为二次颗粒。
  8. 根据权利要求7所述复合负极材料的制备方法,其特征在于,所述干法混合的过程中进行搅拌,所述搅拌的转速为2000~3000r/min,所述搅拌的时间为10~20min。
  9. 一种负极材料,其特征在于,所述负极材料包括权利要求1至6中任一项所述的复合负极材料。
  10. 一种锂离子电池,包括负极片,其特征在于,所述负极片包括权利要求9所述的负极材料。
PCT/CN2021/127974 2021-05-13 2021-11-01 复合负极材料及其制备方法、负极材料及锂离子电池 WO2022237091A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21941656.7A EP4203101A1 (en) 2021-05-13 2021-11-01 Composite negative electrode material and preparation method therefor, negative electrode material and lithium ion battery
JP2022546389A JP7416965B2 (ja) 2021-05-13 2021-11-01 複合負極材料およびその製造方法、負極材料およびリチウムイオン電池
US18/025,179 US20240072250A1 (en) 2021-05-13 2021-11-01 A composite anode electrode material and a preparation method thereof, an anode electrode material and a lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110520487.6 2021-05-13
CN202110520487.6A CN112952075B (zh) 2021-05-13 2021-05-13 复合负极材料及其制备方法、负极材料及锂离子电池

Publications (1)

Publication Number Publication Date
WO2022237091A1 true WO2022237091A1 (zh) 2022-11-17

Family

ID=76233811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127974 WO2022237091A1 (zh) 2021-05-13 2021-11-01 复合负极材料及其制备方法、负极材料及锂离子电池

Country Status (5)

Country Link
US (1) US20240072250A1 (zh)
EP (1) EP4203101A1 (zh)
JP (1) JP7416965B2 (zh)
CN (1) CN112952075B (zh)
WO (1) WO2022237091A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115818796A (zh) * 2023-01-10 2023-03-21 东莞理工学院 一种Zr金属原子掺杂Ti4O7复合电极的制备及其使用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952075B (zh) * 2021-05-13 2021-10-12 蜂巢能源科技有限公司 复合负极材料及其制备方法、负极材料及锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569771A (zh) * 2012-03-12 2012-07-11 深圳华粤宝电池有限公司 一种SnO2-Li4Ti5O12复合电极材料及其制备方法
CN104425808A (zh) * 2013-08-26 2015-03-18 华为技术有限公司 一种锂离子电池复合型负极材料及其制备方法和锂离子电池
WO2015190696A1 (ko) * 2014-06-10 2015-12-17 동국대학교 산학협력단 리튬이차전지용 산화물계 이중구조 음극활물질 및 이를 포함하는 리튬이차전지
CN110510674A (zh) * 2013-03-15 2019-11-29 株式会社东芝 电池用电极材料及电池用基板、蓄电池、色素增感太阳能电池、电容器、Li离子二次电池
CN111557059A (zh) * 2018-02-26 2020-08-18 株式会社东芝 电极材料、使用了其的电极层以及蓄电设备及电极材料的制造方法
CN112952075A (zh) * 2021-05-13 2021-06-11 蜂巢能源科技有限公司 复合负极材料及其制备方法、负极材料及锂离子电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100530780C (zh) * 2006-12-29 2009-08-19 深圳市贝特瑞电子材料有限公司 复合钛酸锂电极材料及其制备方法
KR101761441B1 (ko) 2010-04-28 2017-07-25 이시하라 산교 가부시끼가이샤 신규 티탄산 리튬, 그 제조 방법, 상기 티탄산 리튬을 포함하는 전극 활물질, 및 상기 전극 활물질을 이용하는 축전 디바이스
US20130071754A1 (en) 2010-04-30 2013-03-21 Toyota Jidosha Kabushiki Kaisha Electrode body and secondary battery using same
CN102891303A (zh) * 2011-07-20 2013-01-23 上海纳米技术及应用国家工程研究中心有限公司 锂离子二次电池负极材料钇掺杂钛酸锂及制备方法和应用
CN103151510B (zh) * 2013-03-19 2016-04-13 上海电力学院 一种锂离子电池负极材料及其制备方法
JP6438249B2 (ja) 2014-09-16 2018-12-12 株式会社東芝 電極材料およびそれを用いた電極層、電池並びにエレクトロクロミック素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569771A (zh) * 2012-03-12 2012-07-11 深圳华粤宝电池有限公司 一种SnO2-Li4Ti5O12复合电极材料及其制备方法
CN110510674A (zh) * 2013-03-15 2019-11-29 株式会社东芝 电池用电极材料及电池用基板、蓄电池、色素增感太阳能电池、电容器、Li离子二次电池
CN104425808A (zh) * 2013-08-26 2015-03-18 华为技术有限公司 一种锂离子电池复合型负极材料及其制备方法和锂离子电池
WO2015190696A1 (ko) * 2014-06-10 2015-12-17 동국대학교 산학협력단 리튬이차전지용 산화물계 이중구조 음극활물질 및 이를 포함하는 리튬이차전지
CN111557059A (zh) * 2018-02-26 2020-08-18 株式会社东芝 电极材料、使用了其的电极层以及蓄电设备及电极材料的制造方法
CN112952075A (zh) * 2021-05-13 2021-06-11 蜂巢能源科技有限公司 复合负极材料及其制备方法、负极材料及锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI NA, DU KUI, LIU GANG, XIE YINGPENG, ZHOU GUANGMIN, ZHU JING, LI FENG, CHENG HUI-MING: "Effects of oxygen vacancies on the electrochemical performance of tin oxide", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 1, no. 5, 1 January 2013 (2013-01-01), GB , pages 1536 - 1539, XP093005312, ISSN: 2050-7488, DOI: 10.1039/C2TA01012G *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115818796A (zh) * 2023-01-10 2023-03-21 东莞理工学院 一种Zr金属原子掺杂Ti4O7复合电极的制备及其使用方法
CN115818796B (zh) * 2023-01-10 2024-05-24 东莞理工学院 一种Zr金属原子掺杂Ti4O7复合电极的制备及其使用方法

Also Published As

Publication number Publication date
US20240072250A1 (en) 2024-02-29
JP2023528708A (ja) 2023-07-06
EP4203101A1 (en) 2023-06-28
CN112952075B (zh) 2021-10-12
CN112952075A (zh) 2021-06-11
JP7416965B2 (ja) 2024-01-17

Similar Documents

Publication Publication Date Title
CN108172804B (zh) 一种石墨烯/二氧化钛包覆正极材料及其制备和应用
WO2022011939A1 (zh) 无钴正极材料及其制备方法以及锂离子电池正极和锂电池
WO2021129109A1 (zh) 一种锂离子电池的无钴正极材料及其制备方法和锂离子电池
WO2021142891A1 (zh) 无钴层状正极材料及制备方法、锂离子电池
WO2022237091A1 (zh) 复合负极材料及其制备方法、负极材料及锂离子电池
CN108899550B (zh) 复合包覆正极活性材料及其制备方法、锂离子电池正极材料和固态锂离子电池
WO2020134765A1 (zh) 一种降低锂离子电池阻抗的负极片及其制备方法
JPH05275077A (ja) リチウム二次電池用負極
CN112164776A (zh) 一种复合包覆的全固态电池正极材料及其制备方法和全固态电池
CN110112408A (zh) 一种石墨烯-硅复合材料及其制备方法、电极材料及电池
WO2024119936A1 (zh) 一种正极活性材料及其应用
WO2024178920A1 (zh) 三元正极材料及其制备方法和二次电池
WO2020108132A1 (zh) 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
CN114122402A (zh) 锂离子电池正极补锂添加剂、正极片、其制备方法和用途
WO2023124025A1 (zh) 一种石墨复合负极材料及其制备方法和应用
KR101630008B1 (ko) Si/C 복합체, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지용 음극 활물질
CN114497549B (zh) 电化学制备正极补锂材料的方法和补锂材料及补锂浆料
WO2013117080A1 (zh) 异质结纳米材料、锂离子电池负极极片及锂离子电池
WO2023185548A1 (zh) 一种改性磷酸锰铁锂正极材料及其制备方法和应用
CN108899499A (zh) 基于Sb/Sn磷酸盐的负极材料及其制备方法与在钠离子电池中的应用
CN113772718B (zh) 一种SnS-SnS2@GO异质结构复合材料及其制备方法和应用
WO2024153145A1 (zh) 一种正极材料及包含该正极材料的电池
WO2017139990A1 (zh) 一种氧化铝空心球锂硫电池正极材料的制备方法
WO2017139995A1 (zh) 石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法
CN114005984A (zh) 一种铌酸锂包覆与铌掺杂耦合改性的高镍三元正极材料及其制备方法与应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022546389

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18025179

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021941656

Country of ref document: EP

Effective date: 20230320

NENP Non-entry into the national phase

Ref country code: DE