WO2024095898A1 - 熱線反射基板 - Google Patents

熱線反射基板 Download PDF

Info

Publication number
WO2024095898A1
WO2024095898A1 PCT/JP2023/038792 JP2023038792W WO2024095898A1 WO 2024095898 A1 WO2024095898 A1 WO 2024095898A1 JP 2023038792 W JP2023038792 W JP 2023038792W WO 2024095898 A1 WO2024095898 A1 WO 2024095898A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat ray
ray reflective
film
substrate
layer
Prior art date
Application number
PCT/JP2023/038792
Other languages
English (en)
French (fr)
Inventor
章代 野上
さやか 金行
奈緒子 岡田
正文 秋田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024095898A1 publication Critical patent/WO2024095898A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal

Definitions

  • the present invention relates to a heat reflective substrate.
  • One method for imparting infrared reflectivity to windows and other objects is to form a thin film containing a metal with infrared reflectivity, such as silver, on a substrate such as glass.
  • Patent Document 1 discloses a glass laminate that includes a glass plate and a heat ray reflective film having a metal layer mainly composed of silver on one main surface side of the glass plate.
  • Methods for transmitting radio waves for communication, etc. include a method of cutting out the heat ray reflection coating to allow the radio waves to pass through, and a method of providing an FSS (Frequency Selective Surface) structure in which two slits perpendicular to each other are provided in the heat ray reflection film.
  • FSS Frequency Selective Surface
  • the silver contained in the heat ray reflective film is exposed at the end of the heat ray reflective film on the slit side, and comes into contact with oxygen and moisture in the air, causing the heat ray reflective substrate to deteriorate.
  • the present invention aims to provide a heat ray reflective substrate that has superior durability when a slit portion is formed compared to conventional substrates.
  • the inventors discovered that the above problem could be solved by forming a termination at the end of the heat ray reflecting film on the slit side so as not to expose the conductive layer, the main component of which is Ag, contained in the heat ray reflecting film, and thus achieved the present invention.
  • a heat ray reflecting film comprising a multilayer film including a conductive layer mainly composed of Ag on at least one main surface of the dielectric substrate, and a slit portion in which the conductive layer mainly composed of Ag is not present;
  • the energy absorption rate Ae of the heat ray reflective film is 8.5% or more,
  • a termination portion is formed at an end of the heat ray reflecting film,
  • a heat ray reflective substrate, wherein the thickness of the terminal portion is 10 nm or more and 200 nm or less.
  • the interval between the slit portions is 50 mm or less.
  • the heat ray reflective substrate according to [1].
  • the area of the heat ray reflective film is 70% or more relative to the area of the dielectric substrate.
  • the width of the slit portion is 250 ⁇ m or less.
  • the conductive layer containing Ag as a main component has a thickness of 1.5 nm or more and 50 nm or less, The thickness of the heat ray reflective film is 5 nm to 1500 nm.
  • a layer other than the conductive layer mainly composed of Ag is laminated on the dielectric substrate, a layer other than the conductive layer mainly composed of Ag is not in contact with the conductive layer mainly composed of Ag of the heat ray reflective film;
  • the layer other than the conductive layer mainly composed of Ag is located closer to the dielectric substrate than the conductive layer mainly composed of Ag that is closest to the dielectric substrate.
  • the dielectric substrate is exposed at the slit portion.
  • the present invention provides a heat ray reflective substrate with superior durability compared to conventional substrates.
  • FIG. 1 is a diagram showing one embodiment of a heat ray reflective substrate of the present invention, in which (A) in Fig. 1 is a diagram showing the top surface of the heat ray reflective substrate, and (B) in Fig. 1 is an enlarged view of a cross section along line X-X of a portion surrounded by a dotted line in the top view shown in (A).
  • FIG. 2 is a cross-sectional view showing one embodiment of a heat ray reflective substrate.
  • FIG. 3 is a cross-sectional view showing one embodiment of a heat ray reflective substrate.
  • FIG. 4 is a cross-sectional view showing one embodiment of a heat ray reflective substrate.
  • FIG. 5 is a diagram for explaining the thickness of the end portion.
  • FIG. 6 is a cross-sectional SEM image of an edge portion of the heat ray reflective film in the heat ray reflective substrate obtained in Example 2.
  • FIG. 7 is a cross-sectional SEM image of an edge portion of the heat ray reflective film in the heat ray reflective substrate obtained in Example 6.
  • the heat ray reflective substrate of this embodiment comprises a dielectric substrate, a heat ray reflective film consisting of a multilayer film including a conductive layer mainly composed of Ag on at least one main surface of the dielectric substrate, and a slit portion where the conductive layer mainly composed of Ag is not present, wherein the energy absorption rate Ae of the heat ray reflective film is 8.5% or more, a termination portion is formed at an end of the heat ray reflective film, and the thickness of the termination portion is 10 nm or more and 200 nm or less.
  • FIG. 1 is a diagram showing one embodiment of a heat ray reflective substrate of the present invention, in which (A) in FIG. 1 is a top view of the heat ray reflective substrate, and (B) in FIG. 1 is an enlarged view of a cross section along line X-X of a portion surrounded by a dotted line in the top view shown in (A).
  • the heat ray reflective substrate 10 in this embodiment includes a dielectric substrate 11, a heat ray reflective film 12 including a conductive layer 15 mainly composed of Ag on at least one main surface of the dielectric substrate 11, and a slit portion 13 where the conductive layer 15 mainly composed of Ag is not present.
  • a termination portion 14 is formed at an end portion of the heat ray reflective film 12 on the slit portion 13 side.
  • the end portion of the heat ray reflective film 12 on the slit portion 13 side is covered by the termination portion 14 so that the conductive layer 15 mainly composed of Ag is not exposed.
  • the heat ray reflective film 12 has a structure in which a conductive layer 15 mainly made of Ag is sandwiched between other films 21 and 22.
  • this structure is merely one embodiment, and the heat ray reflective film 12 may be any multilayer film including the conductive layer 15 mainly made of Ag.
  • the dielectric substrate in this embodiment is not particularly limited as long as it is a substrate made of a dielectric material, but is preferably a transparent dielectric substrate made of a transparent material.
  • the transparent dielectric substrate include a glass substrate and a resin substrate (resin substrate).
  • "transparent” means, for example, that the visible light transmittance is 70% or more.
  • the glass substrate may be, for example, a soda-lime glass substrate, an alkali-free glass substrate, a quartz glass substrate, or the like.
  • the glass substrate may be subjected to a physical strengthening treatment or a chemical strengthening treatment.
  • the glass substrate may be made of a single piece of glass, or may be made of a plurality of pieces of glass laminated with a resin film (resin film) or the like sandwiched therebetween.
  • resin substrates examples include substrates made of acrylic resins such as polymethyl methacrylate, aromatic polycarbonate resins such as polyphenylene carbonate, and aromatic polyester resins such as polyethylene terephthalate (PET).
  • acrylic resins such as polymethyl methacrylate
  • aromatic polycarbonate resins such as polyphenylene carbonate
  • aromatic polyester resins such as polyethylene terephthalate (PET).
  • the shape of the dielectric substrate in this embodiment is not particularly limited, but is preferably planar in order to facilitate the formation of a uniform heat ray reflective film and to perform laser processing with a fixed focus.
  • the thickness of the dielectric substrate in this embodiment is also not particularly limited and can be adjusted appropriately according to the desired strength, lightness, etc.
  • the thickness of the dielectric substrate may be 0.05 mm or more, 0.1 mm or more, 1.0 mm or more, or 3.0 mm or more.
  • the thickness of the dielectric substrate may be 20.0 mm or less, 12.0 mm or less, 10.0 mm or less, 5.0 mm or less, or 4.0 mm or less.
  • the specific gravity of the glass substrate is preferably 2.4 or more and 3.0 or less.
  • the Young's modulus of the glass substrate is preferably 60 GPa or more and 100 GPa or less.
  • the average thermal expansion coefficient of the glass substrate from 50° C. to 350° C. is preferably 50 ⁇ 10 ⁇ 7 /° C. or more and 120 ⁇ 10 ⁇ 7 /° C. or less. If the glass substrate satisfies these physical property requirements, it can be used sufficiently suitably as a window material.
  • the heat ray reflective film imparts the function of reflecting heat rays to the heat ray reflective substrate, and is typically a film having electrical conductivity.
  • “having electrical conductivity” means, for example, that the electrical resistivity at 20° C. is 100 ⁇ / ⁇ or less.
  • the heat ray reflective film of this embodiment is a multilayer film including a conductive layer (hereinafter sometimes referred to as Ag layer) whose main component is Ag (silver). Since the Ag layer is conductive, by including the Ag layer in the heat ray reflective film, a heat ray reflective substrate exhibiting excellent heat ray reflectivity is obtained.
  • the term "main component" means that the content of the Ag layer in the total components is 50 atomic % or more.
  • the content of Ag in the Ag layer is preferably 65 atomic % or more, more preferably 75 atomic % or more, even more preferably 85 atomic % or more, and most preferably consists of Ag only.
  • An example of a multilayer film including an Ag layer is a Low-E metal film.
  • the Ag layer may contain an additive element other than Ag, and may specifically contain one or more additive elements such as gold, palladium, copper, bismuth, neodymium, platinum, zinc, and aluminum.
  • additive element is not limited to the above examples, and any element can be added as long as it achieves the effects of the present invention.
  • the content of the additive element is preferably 25 atomic % or less, and more preferably 15 atomic % or less.
  • the thickness of the Ag layer is preferably 1.5 nm or more. By making the Ag layer 1.5 nm or more thick, it is possible to prevent a decrease in conductivity due to Ag being scattered like islands, and to ensure performance as a conductive film.
  • the thickness of the Ag layer is more preferably 3 nm or more, even more preferably 5 nm or more, and particularly preferably 7 nm or more.
  • the thickness of the Ag layer is preferably 50 nm or less, more preferably 40 nm or less, and even more preferably 35 nm or less.
  • the sheet resistance value of the heat ray reflective film is preferably 100 ⁇ / ⁇ or less, more preferably 25 ⁇ / ⁇ or less, even more preferably 20 ⁇ / ⁇ or less, even more preferably 15 ⁇ / ⁇ or less, and particularly preferably 10 ⁇ / ⁇ or less.
  • the sheet resistance value of the heat ray reflective film may be 0.01 ⁇ / ⁇ or more, 0.1 ⁇ / ⁇ or more, or 1 ⁇ / ⁇ or more.
  • the sheet resistance value can be measured, for example, by a four-terminal measuring device, or by a Hall effect measuring device or an eddy current method non-contact resistance measuring device.
  • the normal emissivity ⁇ n of the heat ray reflective film is preferably 0.1 or less. If the normal emissivity ⁇ n of the heat ray reflective film is 0.1 or less, it has excellent heat insulation and heat blocking properties, and can effectively prevent damage to the dielectric substrate even in the event of a fire.
  • the normal emissivity ⁇ n can be measured by the method specified in JIS R3106 (2019).
  • the heat ray reflective film may contain only one Ag layer or two or more Ag layers.
  • the number of Ag layers is preferably one or more, more preferably two or more.
  • the number of Ag layers is preferably four or less, more preferably three or less.
  • the heat ray reflective film may contain a conductive layer other than the conductive layer mainly composed of Ag (hereinafter, may be referred to as a conductive layer other than the Ag layer).
  • the outermost layer of the heat ray reflective film according to this embodiment is preferably a conductive layer other than the Ag layer or other film.
  • the conductive layer other than the Ag layer when present as the outermost layer of the heat ray reflective film, serves as a protective layer that prevents the Ag contained in the Ag layer from coming into contact with oxygen and moisture in the air, protecting the Ag layer and suppressing deterioration.
  • Conductive layers other than the Ag layer include layers whose main component is a metal such as aluminum nitride, titanium nitride, niobium nitride, chromium nitride, zirconium nitride, and hafnium nitride.
  • the thickness of the heat ray reflecting film is preferably 5 nm or more. When the thickness of the heat ray reflecting film is 5 nm or more, the terminal portion described below can be easily formed.
  • the thickness of the heat ray reflecting film is more preferably 10 nm or more, even more preferably 15 nm or more, even more preferably 50 nm or more, particularly preferably 80 nm or more, and extremely preferably 100 nm or more. From the viewpoint of stable formation of the slit portion and productivity, the thickness is preferably 1500 nm or less, more preferably 1200 nm or less, even more preferably 1000 nm or less, even more preferably 500 nm or less, particularly preferably 450 nm or less, and extremely preferably 400 nm or less.
  • the heat ray reflective film may include a film (other film) different from the Ag layer.
  • the other film may include, for example, a metal oxide layer, a metal nitride layer, or a metal layer, and it is preferable for the heat ray reflective film to include at least one of a metal oxide layer and a metal nitride layer.
  • the heat ray reflective film has a layer structure in which an Ag layer and a conductive layer other than the Ag layer are sandwiched between the other films, such as a metal oxide layer or a metal nitride layer.
  • a conductive layer such as an Ag layer
  • metal oxide layer examples include layers of metal oxides whose main components are aluminum oxide, zinc oxide, indium oxide, titanium oxide, niobium oxide, tin oxide, bismuth oxide, tantalum oxide, tungsten oxide, zirconium oxide, silicon oxide, etc.
  • the metal oxide layer contains zinc oxide as a main component, since it has good compatibility with the Ag layer contained in the heat ray reflective film and can increase the durability of the Ag layer.
  • the metal nitride layer include a metal nitride layer containing silicon nitride ( Si3N4 ), aluminum nitride (AlN), etc. as a main component.
  • the method for forming a heat ray reflective film (conductive layer or other film) on a dielectric substrate is not particularly limited, and for example, physical vapor deposition (vacuum vapor deposition, ion plating, magnetron sputtering, etc.), chemical vapor deposition (thermal CVD, plasma CVD, photo CVD, etc.), ion beam sputtering, etc. can be used.
  • physical vapor deposition vacuum vapor deposition, ion plating, magnetron sputtering, etc.
  • chemical vapor deposition thermal CVD, plasma CVD, photo CVD, etc.
  • ion beam sputtering etc.
  • DC magnetron sputtering, DC pulse magnetron sputtering, or AC dual magnetron sputtering are preferred because they are easy to control the thickness uniformity and have excellent productivity.
  • the heat ray reflective film in this embodiment may be formed directly or indirectly on the dielectric substrate.
  • the method for indirectly forming the heat ray reflective film on the dielectric substrate include a method in which a heat ray reflective film formed on a resin film is attached to the substrate and then the resin film is peeled off.
  • the area of the heat ray reflective film relative to the area of the dielectric substrate is 70% or more.
  • the area of the heat ray reflective film relative to the area of the dielectric substrate is preferably 75% or more, more preferably 80% or more, and even more preferably 85% or more.
  • the upper limit of the area of the heat ray reflective film relative to the area of the dielectric substrate is not particularly limited, but is, for example, 98% or less.
  • the energy absorption rate Ae of the heat ray reflective film is 8.5% or more. With the energy absorption rate Ae of 8.5% or more, when the heat ray reflective film is irradiated with a laser, the heat ray reflective film easily absorbs the heat of the laser, and the slit portion and the end portion described later can be easily formed, and excellent durability can be obtained.
  • the energy absorption rate Ae is preferably 10% or more, more preferably 12% or more, and even more preferably 15% or more.
  • the energy absorption rate Ae is preferably 35% or less, and more preferably 30% or less.
  • the energy absorption rate Ae is calculated by the following formula (1).
  • Te the energy transmittance
  • Re the energy reflectance of the heat ray reflecting film.
  • the energy transmittance Te of the heat ray reflective film may be, for example, 20% or more, or 30% or more. Also, the energy transmittance Te may be, for example, 90% or less, or 70% or less. The energy transmittance Te is measured based on ISO 9050:2003.
  • the energy reflectance Re of the heat ray reflective film may be, for example, 10% or more, or 20% or more. Also, the energy reflectance Re may be, for example, 50% or less, or 40% or less.
  • the energy reflectance Re of the heat ray reflective film measured from the surface on the dielectric substrate side may be, for example, 10% or more, or may be 20% or more, and the energy reflectance Re may be, for example, 50% or less, or may be 40% or less.
  • the energy reflectance Re is measured based on ISO 9050:2003.
  • the slit portion is a portion where at least a conductive layer mainly composed of Ag does not exist in a plan view, and is partitioned by a terminal portion formed at the end of the heat ray reflection film.
  • the heat ray reflection film includes a conductive layer such as an Ag layer and other films, the conductive layer and all other films are removed, and a portion where the dielectric substrate is the outermost surface is included. That is, the slit portion may be in a form where the dielectric substrate is exposed. However, in this embodiment, the slit portion may be in a form where at least one layer other than the Ag layer is laminated on the dielectric substrate.
  • the layer other than the Ag layer is present so as not to connect the Ag layers separated by the slit portion, and it is acceptable that a layer other than the Ag layer is provided on the main surface of the dielectric substrate in the region including the slit portion in a shape that does not contact the Ag layer.
  • a layer other than the Ag layer located closer to the dielectric substrate than the Ag layer closest to the dielectric substrate may be provided on the main surface of the dielectric substrate.
  • FIG. 2 is a cross-sectional view showing one embodiment of the heat ray reflective substrate 10 of the present embodiment.
  • a heat ray reflecting film 12 including conductive layers 15 and 16 mainly composed of Ag is formed on the main surface of the dielectric substrate 11 so as to sandwich the other layer 24.
  • the other layer 24 may be any layer other than the conductive layer mainly composed of Ag, and may be, for example, a conductive layer other than the conductive layer mainly composed of Ag that may be included in the heat ray reflecting film 12, or other films exemplified.
  • a terminal portion 14 is formed so as to cover the end of the heat ray reflecting film 12 on the slit portion 13 side and a part of the other layer 24.
  • the slit portion 13 is a gap between two terminal portions 14 facing each other on the surface of the other layer 24, and the distance of this gap corresponds to the width of the slit portion 13.
  • the heat ray reflective film 12 is a multilayer film consisting of, in order from the dielectric substrate 11 side, other film 21/conductive layer 15 mainly made of Ag/other film 22/conductive layer 16 mainly made of Ag/other film 23.
  • the other layer 24 is formed on the main surface of the dielectric substrate 11 in a state of not contacting (in a non-contact state) the conductive layers 15 and 16 mainly made of Ag. Note that the other layer 24 may be in contact with, for example, the other film 21.
  • FIG. 3 is a cross-sectional view showing another aspect of the heat ray reflective substrate 10 of the present embodiment.
  • the configuration of the heat ray reflective substrate 10 in the embodiment shown in Fig. 3 is basically the same as the configuration of the heat ray reflective substrate 10 in the embodiment shown in Fig. 2.
  • the other layer 24 is located closer to the dielectric substrate 11 than the one (conductive layer 15 mainly composed of Ag) that is closest to the dielectric substrate 11.
  • FIG. 4 is a cross-sectional view showing another aspect of the heat ray reflective substrate 10 of the present embodiment.
  • a heat ray reflective film 12 including conductive layers 15, 16 mainly composed of Ag is formed on the main surface of a dielectric substrate 11.
  • a terminal end 14 is formed so as to cover the end of the heat ray reflective film 12 on the slit portion 13 side and a part of the dielectric substrate 11.
  • the slit portion 13 is a gap between two terminal ends 14 facing each other on the surface of the dielectric substrate 11, and the distance of this gap corresponds to the width of the slit portion 13.
  • the dielectric substrate 11 is exposed at the slit portion 13.
  • the width of the slit portion is preferably 250 ⁇ m or less. By making the width of the slit portion 250 ⁇ m or less, the aesthetic appearance of the heat ray reflective substrate is improved.
  • the width of the slit portion is more preferably 200 ⁇ m or less, further preferably 150 ⁇ m or less, and particularly preferably 125 ⁇ m or less.
  • the width of the slit portion is preferably 0.3 ⁇ m or more, and more preferably 0.5 ⁇ m or more.
  • the width of the slit portion refers to the width in a direction perpendicular to the direction in which the slit portion extends (Y in FIG. 1A).
  • the interval between the slits is preferably 50 mm or less.
  • the interval between the slits is more preferably 10 mm or less, further preferably 5 mm or less, and particularly preferably 3 mm or less.
  • the interval between the slits is preferably 5 ⁇ m or more from the viewpoint of stably forming the end portion.
  • the spacing between the slit portions is the shortest distance between the ends of the slit portions and the ends of the adjacent slit portions, and refers to the width where the heat ray reflective film and/or the terminal end are present (Z in FIG. 1A).
  • the end portion is formed at the end of the heat ray reflecting film. Specifically, as shown in FIG. 1, the end portion is continuously formed so as to cover the end portion (the portion separated by the slit portion of the heat ray reflecting film) of the conductive layer mainly composed of Ag in the heat ray reflecting film that divides the slit portion, and thus the Ag layer contained in the heat ray reflecting film is not exposed at the end portion on the slit portion side, and deterioration of the Ag layer due to contact with oxygen and moisture in the air is suppressed, and the durability of the heat ray reflecting substrate can be improved.
  • “the end portion is continuously formed” means that the end portion is formed at the end portion on the slit portion side of the heat ray reflecting film, and the conductive layer mainly composed of Ag is not exposed.
  • the end portion can be formed, for example, by applying heat to the heat ray reflecting film when forming the slit portion, melting the components of the heat ray reflecting film; specifically, the components of the multilayer film that makes up the heat ray reflecting film are mixed together while losing their layered structure.
  • the method of forming the end portion will be described later.
  • the thickness of the terminal portion is 10 nm or more and 200 nm or less. By making the thickness of the terminal portion 10 nm or more, it is possible to suppress the intrusion of deterioration factors of silver in the heat ray reflection film, such as water. In addition, by making the thickness of the terminal portion 200 nm or less, it is possible to ensure an aesthetic appearance.
  • the thickness of the terminal portion is preferably 20 nm or more, more preferably 30 nm or more, even more preferably 45 nm or more, and particularly preferably 75 nm or more.
  • the thickness of the terminal portion is preferably 180 nm or less, more preferably 170 nm or less, even more preferably 160 nm or less, and particularly preferably 150 nm or less.
  • the thickness of the end portion refers to the smallest value (T in FIG. 5) among the distances from the tips of the Ag layers 15 on the slit portion 13 side included in the heat ray reflecting film 12 to the surface of the end portion 14, as shown in FIG. 5.
  • the heat ray reflecting film 12 includes a plurality of Ag layers 15
  • the shortest distances from the tips of all the Ag layers 15 on the end portion 14 side to the surface of the end portion 14 are obtained, and the smallest value is regarded as the thickness of the end portion.
  • the thickness of the end portion can be measured by observing a cross section perpendicular to the width direction of the slit portion of the heat ray reflective substrate using a scanning electron microscope.
  • the heat ray reflective substrate of the present embodiment can be obtained, for example, by forming a heat ray reflective film on a dielectric substrate, and then performing decoating on the heat ray reflective film by irradiating it with a laser to form a slit portion and an end portion.
  • the decoating of the heat reflective film by laser irradiation may be performed by any method that can provide an appropriate amount of heat to the heat reflective film, such as a method using a laser with a pulse width on the order of nanoseconds.
  • a laser with a pulse width on the order of nanoseconds has a longer output laser light duration and a greater thermal impact on the heat reflective film than a laser with a very short pulse width (e.g., on the order of femtoseconds). Therefore, by performing decoating using a laser with a pulse width on the order of nanoseconds, it is possible to provide an appropriate amount of heat to the heat reflective film and form a terminal portion having a specific film thickness. This provides a heat reflective substrate that exhibits excellent durability. However, other methods may be used as long as they can form the slit portion and the end portion having the specified thickness.
  • the pulse width of the laser is preferably 1 ns or more, more preferably 10 ns or more, and even more preferably 20 ns or more.
  • the pulse width is preferably 1 ⁇ s or less, more preferably 500 ns or less, and even more preferably 100 ns or less.
  • the laser wavelength is preferably 500 to 1500 nm.
  • an oxide film can be formed by applying heat from the laser to the heat ray reflective film.
  • the laser wavelength is more preferably 600 nm or more, and even more preferably 700 nm or more.
  • the laser wavelength is 1500 nm or less, the effect of the laser on the substrate can be suppressed.
  • the laser wavelength is more preferably 1400 nm or less, and even more preferably 1300 nm or less.
  • the laser scanning speed may be, for example, 10 to 1000 mm/sec, or 100 to 500 mm/sec.
  • the magnitude of the laser energy can be adjusted by the laser output.
  • the laser output is preferably 0.1 W or more, and more preferably 1 W or more.
  • the laser output is preferably 100 W or less, more preferably less than 100 W, and even more preferably 50 W or less.
  • the processing conditions of the laser light e.g., focus, scan speed, etc.
  • the processing conditions of the laser light can be set appropriately, taking into account the balance of insulation, transparency, heat shielding, etc. of the laser-processed area.
  • the shape of the slit portion can be, for example, linear, curved, zigzag, concentric, spiral, or random linear, but from the viewpoint of workability when forming, linear is preferred, and linear is more preferred.
  • a linear slit portion extending in a first direction can be easily formed by transporting the substrate in a first direction while irradiating the heat ray reflecting film with a fixed laser.
  • linear slit portions extending in both the first and second directions can also be easily formed by subsequently transporting the substrate in a second direction different from the first direction while irradiating the heat ray reflecting film with a fixed laser.
  • the slit portion in this embodiment is preferably a straight line extending in the first direction, or a straight line extending in the first direction and a straight line extending in the second direction.
  • the slit portion is preferably a plurality of parallel lines or a lattice pattern.
  • the heat ray reflective substrate according to the present embodiment is preferably used in applications requiring heat ray reflectivity and radio wave transmittance.
  • applications include window glass for architectural applications, window glass for automobile applications (window glass, rear glass, side glass), window glass for railway vehicles, etc.
  • the heat ray reflective substrate has excellent visibility. Therefore, the visible light transmittance of the heat ray reflective substrate is preferably 50% or more, more preferably 53% or more, and even more preferably 55% or more.
  • the visible light transmittance is preferably 90% or less, more preferably 80% or less. If the visible light transmittance is 50% or more, it is possible to visually recognize objects present through the heat ray reflective substrate.
  • the visible light transmittance is measured and calculated in accordance with ISO9050:2003.
  • a heat ray reflecting film comprising a multilayer film including a conductive layer mainly composed of Ag on at least one main surface of the dielectric substrate, and a slit portion in which the conductive layer mainly composed of Ag is not present;
  • the energy absorption rate Ae of the heat ray reflective film is 8.5% or more,
  • a termination portion is formed at an end of the heat ray reflecting film,
  • a heat ray reflective substrate, wherein the thickness of the terminal portion is 10 nm or more and 200 nm or less.
  • the interval between the slit portions is 50 mm or less.
  • the heat ray reflective substrate according to [1].
  • the area of the heat ray reflective film is 70% or more relative to the area of the dielectric substrate.
  • the width of the slit portion is 250 ⁇ m or less.
  • the conductive layer containing Ag as a main component has a thickness of 1.5 nm or more and 50 nm or less, The thickness of the heat ray reflective film is 5 nm to 1500 nm.
  • the heat ray reflective substrate according to any one of [1] to [4].
  • a layer other than the conductive layer mainly composed of Ag is laminated on the dielectric substrate, a layer other than the conductive layer mainly composed of Ag is not in contact with the conductive layer mainly composed of Ag of the heat ray reflective film;
  • the heat ray reflective substrate according to any one of [1] to [5].
  • the layer other than the conductive layer mainly composed of Ag is located closer to the dielectric substrate than the conductive layer mainly composed of Ag that is closest to the dielectric substrate.
  • the dielectric substrate is exposed at the slit portion.
  • the heat ray reflective substrate according to any one of [1] to [7].
  • Examples 1 to 5 are examples
  • Examples 6 and 7 are comparative examples
  • Examples 8 and 9 are reference examples.
  • Example 1 As a dielectric substrate, a piece of soda lime glass having a thickness of 3 mm and a size of 100 mm ⁇ 100 mm was prepared. Next, a conductive layer and other films were formed on the entirety of one main surface of the dielectric substrate by sputtering in the following order: TiO2 layer (thickness: 20 nm)/Al-doped ZnO layer (thickness: 5 nm)/Ag layer (thickness: 13 nm)/Al-doped ZnO layer (thickness: 25 nm)/ TiO2 layer (thickness: 10 nm), to form a heat ray reflective film.
  • a laser (MD-X1520, manufactured by Keyence Corporation) with a pulse width of several tens of ns was used to form a lattice-shaped slit section on the entire surface (100 mm x 100 mm) on the side where the heat ray reflecting film was provided, with the slit section width being 20 ⁇ m and the slit section interval being 5.0 mm (the heat ray reflecting film was decoated), and a heat ray reflecting substrate was obtained in which the dielectric substrate was exposed at the decoated section. Note that a termination section was formed at the end of the heat ray reflecting film on the slit section side by melting the heat ray reflecting film. In addition, the area ratio (%) of the heat ray reflecting film to the area of the dielectric substrate was calculated from the width of the slit section, the interval between the slit sections, and the shape of the slit section.
  • Example 2 A heat ray reflective substrate was produced in the same manner as in Example 1, except that a Sn-doped ZnO layer (thickness: 40 nm)/Ag layer (thickness: 13 nm)/Sn-doped ZnO layer (thickness: 87 nm)/Ag layer (thickness: 13 nm)/Sn-doped ZnO layer (thickness: 33 nm) were formed in this order on one main surface of a dielectric substrate, and the decoating conditions were as shown in Table 1.
  • Example 3 A heat ray reflective substrate was prepared in the same manner as in Example 1, except that a four -layer Si 3 N layer (thickness: 55 nm)/NiCr layer (thickness: 3 nm)/Ag layer (thickness: 17 nm)/NiCr layer (thickness: 5 nm)/Si 3 N layer (thickness: 60 nm) was formed on one main surface of a dielectric substrate, and the decoating conditions were as shown in Table 1.
  • Example 4 A heat ray reflective substrate was prepared in the same manner as in Example 1, except that the decoating conditions were as shown in Table 1.
  • Example 5 A heat ray reflective substrate was prepared in the same manner as in Example 3, except that the decoating conditions were as shown in Table 1.
  • Kapton tape (width 0.50 mm) was attached in a grid pattern on one main surface of the dielectric substrate so that the distance between the ends of the tape and the adjacent tape was 10 mm, and then a heat ray reflective film was formed in the same manner as in Example 2. Next, the Kapton tape was peeled off to form slits (the heat ray reflective film was decoated).
  • Example 7 A heat ray reflective substrate was produced in the same manner as in Example 1, except that a Sn-doped ZnO layer (thickness: 15 nm)/Ag layer (thickness: 3 nm)/Sn-doped ZnO layer (thickness: 15 nm) was formed on one main surface of a dielectric substrate, and the decoating conditions were as shown in Table 1.
  • Example 8 A heat ray reflective substrate was prepared in the same manner as in Example 1, except that decoating was not carried out.
  • Example 9 A heat ray reflective substrate was prepared in the same manner as in Example 2, except that decoating was not performed.
  • End Thickness The thickness of the end portion was measured by observing a cross section perpendicular to the width direction of the slit portion of the heat ray reflecting substrate using a scanning electron microscope (Hitachi High-Tech Corporation, model number: S-4800). Also, cross-sectional SEM images of the end portion of the heat ray reflecting film on the slit portion side of Examples 2 and 6 are shown in Figures 6 and 7.
  • Table 1 show that, in Examples 1 to 5, which have a slit portion and an end portion of a specific thickness, no deterioration was observed from the end of the heat ray reflective film even after the durability test, and the end of the heat ray reflective film shows superior durability, compared to Examples 6 to 7, which have a slit portion but do not have an end portion of a specific thickness. This is thought to be because, in Examples 1 to 5, the thickness of the end portion was 10 nm or more, which prevented the silver contained in the heat ray reflective film from being exposed and coming into contact with oxygen and moisture in the air.
  • Example 6 the thickness of the end portion was 0 nm, meaning that the end portion on the slit portion side of the heat ray reflective film was exposed, and in Example 7, the thickness of the end portion was less than 10 nm, so deterioration from the end was observed after the durability test. Deterioration from the end is thought to spread over a wider area than white dot defects within the film surface, and is more likely to impair the aesthetic appearance.
  • Example 5 because a termination part with a thickness of 10 nm or more was formed and the interval between the slit parts was 50 nm or less, the number of white dots on the surface of the heat ray reflective film was smaller than in Examples 5 and 8 to 9 even after the durability test, and it was found that the heat ray reflective film also showed superior durability within the surface.
  • Example 5 the interval between the slit parts was larger than 50 nm, and in Examples 8 to 9, a decoating process was not performed and slit parts and termination parts with the specified thickness were not formed, so five or more white dots were found on the surface of the heat ray reflective film after the durability test.
  • REFERENCE SIGNS LIST 10 heat ray reflecting substrate 11 dielectric substrate 12 heat ray reflecting film 13 slit portion 14 end portion 15, 16 conductive layer mainly composed of Ag 21, 22, 23 other films 24 other layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本発明は、誘電体基板と、前記誘電体基板の少なくとも一方の主面上に、Agを主成分とする導電層を含む多層膜からなる熱線反射膜と、前記Agを主成分とする導電層の存在しないスリット部とを備え、前記熱線反射膜のエネルギー吸収率Aeが8.5%以上であり、前記熱線反射膜の端部には、終端部が形成されており、前記終端部の厚さが10nm以上200nm以下である、熱線反射基板に関する。

Description

熱線反射基板
 本発明は、熱線反射基板に関する。
 近年、地球温暖化防止のために、エアコン等による冷房を控えるなど、電力消費量を低減させることが一般的に行われている。これに対応して、車両や建築物等の窓に赤外線(熱線)を反射させる機能を持たせることで、太陽光からの車内や屋内へ熱の取り込みを抑える試みがなされている。
 窓等に赤外線反射機能を持たせる方法としては、例えば銀などの赤外線反射機能を有する金属を含有する薄膜を、ガラス等の基板上に形成する方法が挙げられる。
 例えば、特許文献1では、ガラス板と、ガラス板の一方の主面側に銀を主成分とする金属層を有する熱線反射膜とを備えるガラス積層体が開示されている。
 また、このような赤外線反射機能を有する基板を例えば窓ガラスに適用する場合、所定の周波数の電波に対する高透過性も求められる。通信等のための電波を透過させる方法として、コーティングされている熱線反射膜をくり抜き電波を透過させる方法や、熱線反射膜に直交する2本のスリットを設けるFSS(Frequency Selective Surface)構造を設ける方法などがある。
日本国特開2010-068154号公報 国際公開第2020/054762号
 しかしながら、熱線反射基板にスリット部を設けた場合、熱線反射膜に含まれる銀が熱線反射膜のスリット部側の端部に露出し、空気中の酸素や水分に触れることで、熱線反射基板の劣化を引き起こすという問題がある。
 本発明は、上記課題に鑑み、従来と比して、スリット部を形成した場合において優れた耐久性を有する熱線反射基板を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、熱線反射膜のスリット部側の端部にて熱線反射膜に含まれるAgを主成分とする導電層を露出させないように終端部を形成することで、上記課題を解決できることを見出し、本発明を解決するに至った。
 すなわち、本発明は以下の構成をとる。
[1]誘電体基板と、前記誘電体基板の少なくとも一方の主面上に、Agを主成分とする導電層を含む多層膜からなる熱線反射膜と、前記Agを主成分とする導電層の存在しないスリット部とを備え、
 前記熱線反射膜のエネルギー吸収率Aeが8.5%以上であり、
 前記熱線反射膜の端部には、終端部が形成されており、
 前記終端部の厚さが10nm以上200nm以下である、熱線反射基板。
[2]前記スリット部の間隔が50mm以下である、
 [1]に記載の熱線反射基板。
[3]前記誘電体基板の面積に対する、前記熱線反射膜の面積が70%以上である、
 [1]または[2]に記載の熱線反射基板。
[4]前記スリット部の幅が250μm以下である、
 [1]または[2]に記載の熱線反射基板。
[5]前記Agを主成分とする導電層の厚さが1.5nm以上50nm以下であり、
 前記熱線反射膜の厚さが5nm以上1500nmである、
 [1]または[2]に記載の熱線反射基板。
[6]前記スリット部において、前記Agを主成分とする導電層以外の層が、前記誘電体基板に積層されており、
 前記Agを主成分とする導電層以外の層は、前記熱線反射膜の前記Agを主成分とする導電層と接触していない、
 [1]または[2]に記載の熱線反射基板。
[7]前記Agを主成分とする導電層以外の層は、前記誘電体基板側に最も近い前記Agを主成分とする導電層よりも前記誘電体基板側に位置する、
 [6]に記載の熱線反射基板。
[8]前記スリット部において、前記誘電体基板が露出している、
 [1]または[2]に記載の熱線反射基板。
 本発明によれば、従来と比して、優れた耐久性を有する熱線反射基板を提供できる。
図1は、本発明の熱線反射基板の一実施形態を示す図である。図1の(A)は熱線反射基板の上面を示す図であり、図1の(B)は(A)に示される上面図において点線で囲まれた部分についての、X-X線における断面の拡大図である。 図2は、熱線反射基板の一態様を示す断面図である。 図3は、熱線反射基板の一態様を示す断面図である。 図4は、熱線反射基板の一態様を示す断面図である。 図5は、終端部の厚みを説明する図である。 図6は、例2で得られた熱線反射基板における熱線反射膜の端部の断面SEM画像である。 図7は、例6で得られた熱線反射基板における熱線反射膜の端部の断面SEM画像である。
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施できる。
 また、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
 以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明することがあり、重複する説明は省略または簡略化することがある。また、図面に記載の実施形態は、本発明を明瞭に説明するために模式化されており、実際の製品のサイズや縮尺を必ずしも正確に表したものではない。
≪熱線反射基板≫
 本実施形態の熱線反射基板は、誘電体基板と、前記誘電体基板の少なくとも一方の主面上に、Agを主成分とする導電層を含む多層膜からなる熱線反射膜と、前記Agを主成分とする導電層の存在しないスリット部とを備え、前記熱線反射膜のエネルギー吸収率Aeが8.5%以上であり、前記熱線反射膜の端部には、終端部が形成されており、前記終端部の厚さが10nm以上200nm以下であることを特徴とする。
 図1は、本発明の熱線反射基板の一実施形態を表す図であり、図1の(A)は熱線反射基板の上面図であり、図1の(B)は(A)に示される上面図において点線で囲まれた部分についての、X-X線における断面の拡大図である。
 本実施形態における熱線反射基板10は、誘電体基板11と、前記誘電体基板11の少なくとも一方の主面上にAgを主成分とする導電層15を含む熱線反射膜12と、Agを主成分とする導電層15の存在しないスリット部13とを備える。また、前記熱線反射膜12のスリット部13側の端部には、終端部14が形成されている。ここで、本実施形態の熱線反射基板10において、熱線反射膜12のスリット部13側の端部は、Agを主成分とする導電層15が露出しないように、終端部14により覆われている。
 なお、図1では、平行に並んだ3つのスリット部13が形成されているが、これはあくまで一態様に過ぎず、スリット部の数やパターン等のスリット部の形成条件は、適宜改変可能である。
 また、図1の(B)に示すように、本態様において、熱線反射膜12は、Agを主成分とする導電層15がその他の膜21及びその他の膜22により挟まれた構造を有している。ただし、追って詳述するように、かかる構造はあくまで一態様に過ぎず、熱線反射膜12はAgを主成分とする導電層15を含む多層膜であればよい。
 また、本実施形態においては誘電体基板11の一方の主面の全体に熱線反射膜12が形成されている態様のほかに、一部のみに熱線反射膜が形成されている態様も含まれる。
<誘電体基板>
 本実施形態における誘電体基板は、誘電体からなる基板であれば特に限定されないが、透明な材料で構成された透明誘電体基板であることが好ましい。透明誘電体基板としては、例えば、ガラス基板または樹脂製の基板(樹脂基板)が挙げられる。なお、本明細書において、「透明」とは、例えば、可視光透過率が70%以上であることを意味する。
 ガラス基板としては、例えば、ソーダライムガラスや無アルカリガラス、石英ガラス等のガラス基板を使用できる。ガラス基板には物理強化処理や化学強化処理が施されていてもよい。またガラス基板は一枚のガラスから構成されてもよく、複数のガラスが樹脂製の膜(樹脂膜)等を挟んで積層されて構成してもよい。
 樹脂基板としては例えば、ポリメチルメタクリレート等のアクリル系樹脂やポリフェニレンカーボネート等の芳香族ポリカーボネート系樹脂、ポリエチレンテレフタレート(PET)等の芳香族ポリエステル系樹脂等からなる基板が挙げられる。
 本実施形態における誘電体基板の形状は特に限定されないが、均一な熱線反射膜を形成しやすくするため、また、焦点を固定してレーザー加工を実施するために、平面状であることが好ましい。また、本実施形態における誘電体基板の厚さも特に限定されず、所望の強度や軽量性等に応じて適宜調整できる。例えば、誘電体基板の厚さは0.05mm以上であってもよく、0.1mm以上であってもよく、1.0mm以上であってもよく、3.0mm以上であってもよい。また、誘電体基板の厚さは20.0mm以下であってもよく、12.0mm以下であってもよく、10.0mm以下であってもよく、5.0mm以下であってもよく、4.0mm以下であってもよい。
 本実施形態における誘電体基板としてガラス基板を用いる場合は、ガラス基板の比重は、2.4以上、3.0以下が好ましい。また、ガラス基板のヤング率は60GPa以上、100GPa以下が好ましい。また、ガラス基板の、50℃から350℃までの平均熱膨張係数は50×10-7/℃以上、120×10-7/℃以下が好ましい。ガラス基板がこれらの物性要件を満たせば、窓材として充分好適に使用できる。
<熱線反射膜>
 熱線反射膜は、熱線反射基板に熱線を反射する機能を付与するものであり、典型的には導電性を有する膜である。本明細書において「導電性を有する」とは、例えば、20℃における電気抵抗率が100Ω/□以下であることを意味する。
 本実施形態にかかる熱線反射膜は、Ag(銀)を主成分とする導電層(以下、Ag層と称することがある)を含む多層膜である。Ag層は導電性を有するため、熱線反射膜がAg層を含むことにより、優れた熱線反射性を示す熱線反射基板が得られる。なお、本明細書において、主成分とは、全構成成分に対する含有率が50原子%以上であることをいう。Ag層に含まれるAgの含有率は、65原子%以上が好ましく、75原子%以上がより好ましく、85原子%以上がさらに好ましく、最も好ましくはAgのみからなる。Ag層を含む多層膜としては、Low-E金属膜などが挙げられる。
 Ag層は、Ag以外の添加元素を含んでいてもよく、具体的には例えば、金、パラジウム、銅、ビスマス、ネオジウム、白金、亜鉛、アルミニウム等の添加元素を1種又は複数種含有してもよい。Ag層にこのような添加元素を含有させることで、銀の拡散を抑制し耐湿性を向上できる。なお、添加元素は上記に例示したものに限定されず、本発明の効果を奏する限りにおいて任意の元素を添加できる。添加元素の含有率は25原子%以下が好ましく、15原子%以下がより好ましい。
 Ag層の厚みは1.5nm以上であることが好ましい。Ag層の厚みが1.5nm以上であることで、Agが島状に点在することにより導電性が下がることを防止し、導電膜としての性能を確保できる。Ag層の厚みは3nm以上であることがより好ましく、5nm以上であることがさらに好ましく、7nm以上であることが特に好ましい。また、可視光透過性を維持する観点および生産性の観点から、Ag層の厚みは50nm以下であることが好ましく、40nm以下であることがより好ましく、35nm以下であることがさらに好ましい。
 熱線反射膜のシート抵抗値は、熱線反射性能を確保する観点から、熱線反射膜の抵抗値は100Ω/□以下が好ましく、25Ω/□以下がより好ましく、20Ω/□以下がさらに好ましく、15Ω/□以下がよりさらに好ましく、10Ω/□以下が特に好ましい。また、熱線反射膜のシート抵抗値は0.01Ω/□以上であってもよく、0.1Ω/□以上であってもよく、1Ω/□以上であってもよい。シート抵抗値は、例えば4端子測定装置により測定でき、ホール効果測定装置または渦電流法非接触式抵抗測定装置でも測定できる。
 熱線反射膜の垂直放射率εnは、0.1以下が好ましい。熱線反射膜の垂直放射率εnが0.1以下であると、優れた断熱性、遮熱性を有するので、火災時にも有効に誘電体基板の破損を防止することができる。垂直放射率εnはJIS R3106(2019)に規定された方法によって測定できる。
 熱線反射膜において、Ag層は1層のみ含まれていてもよく、2層以上含まれていてもよい。ただし、熱線反射性を向上させる観点から、Ag層の数は、1以上が好ましく、2以上がより好ましい。また、生産性の観点から、Ag層の数は4以下が好ましく、3以下がより好ましい。
 熱線反射膜にAg層を複数含む場合、それらは熱線反射膜の厚さ方向において隣接してもよく、層間に後述するAg層以外の導電性を有する層(導電層)や、その他の膜が介在して離隔してもよい。
 上述のように、熱線反射膜はAg層のほかに、Agを主成分とする導電層以外の導電層(以下、Ag層以外の導電層と称することがある)を含んでもよい。また、本実施形態に係る熱線反射膜の最表層は、耐久性を向上し、光学的な色調及び透過・反射性能を調整する観点から、Ag層以外の導電層またはその他の膜であることが好ましい。Ag層以外の導電層またはその他の膜は、熱線反射膜の最表層に存在することで、Ag層中に含まれるAgが空気中の酸素や水分に触れることを防ぎ、Ag層の保護、および劣化を抑制する、保護層となる。
 Ag層以外の導電層としては、アルミニウム、窒化チタン、窒化ニオブ、窒化クロム、窒化ジルコニウム及び窒化ハフニウム等の金属を主成分とする層が挙げられる。
 また、熱線反射膜の厚みは、5nm以上が好ましい。熱線反射膜の厚みが5nm以上であることで、後述する終端部を容易に形成できる。熱線反射膜の厚さは、10nm以上がより好ましく、15nm以上がさらに好ましく、50nm以上がよりさらに好ましく、80nm以上が特に好ましく、100nm以上が極めて好ましい。また、該厚みは、スリット部を安定して形成する観点および生産性の観点から、1500nm以下が好ましく、1200nm以下がより好ましく、1000nm以下がさらに好ましく、500nm以下がよりさらに好ましく、450nm以下が特に好ましく、400nm以下が極めて好ましい。
 熱線反射膜は、Ag層とは異なる膜(その他の膜)を備えてもよい。その他の膜としては、例えば、金属酸化物層、金属窒化物層、金属層を備えてもよく、金属酸化物層、金属窒化物層のうち少なくとも一方の層を含むと好ましい。特に、熱線反射膜は、Ag層およびAg層以外の導電層が金属酸化物層や金属窒化物層等の上記その他の膜で挟まれている層構成を有すると耐久性の点で好ましい。具体的には、その他の膜は、Ag層などの導電層に隣接して配置することにより、高温環境下での導電層中の金属の酸化を抑制する、保護層となる。
 金属酸化物層としては、酸化アルミニウム、酸化亜鉛、酸化インジウム、酸化チタン、酸化ニオブ、酸化スズ、酸化ビスマス、酸化タンタル、酸化タングステン、酸化ジルコニウム、酸化ケイ素等を主成分とする金属酸化物の層が挙げられる。
 これらのうち、熱線反射膜に含まれるAg層との相性がよく、Ag層の耐久性を高められる点で、金属酸化物層は酸化亜鉛を主成分とすることが好ましい。金属窒化物層としては、窒化ケイ素(Si)、窒化アルミニウム(AlN)等を主成分とする金属窒化物の層が挙げられる。
 誘電体基板上に熱線反射膜(導電層やその他の膜)を形成する方法は特に限定されず、たとえば物理的蒸着法(真空蒸着法、イオンプレーティング法、マグネトロンスパッタリング法等)、化学的蒸着法(熱CVD法、プラズマCVD法、光CVD法等)、イオンビームスパッタリング法等を使用できる。成膜面積が大きい場合、厚さの均一性が制御しやすく、生産性に優れることから、直流マグネトロンスパッタリング法、直流パルスマグネトロンスパッタリング法または交流デュアルマグネトロンスパッタリング法が好ましい。
 本実施形態における熱線反射膜は、誘電体基板に直接形成してもよく、間接的に形成してもよい。熱線反射膜を誘電体基板に間接的に形成する方法は特に限定されないが、樹脂フィルム上に形成された熱線反射膜を基板に貼付した後に、樹脂フィルムを剥がす方法などが挙げられる。
 また、熱線反射基板の遮熱性能を担保する観点から、誘電体基板の面積に対する熱線反射膜の面積は、70%以上であることが好ましい。誘電体基板の面積に対する熱線反射膜の面積が70%以上であることで、熱線反射膜の面積を十分に確保でき、遮熱性能が向上する。誘電体基板の面積に対する熱線反射膜の面積は、75%以上が好ましく、80%以上がより好ましく、85%以上がさらに好ましい。また、誘電体基板の面積に対する熱線反射膜の面積の上限は特に限定されないが、例えば98%以下である。
 (熱線反射膜の特性)
 本実施形態において、熱線反射膜のエネルギー吸収率Aeは8.5%以上である。エネルギー吸収率Aeが8.5%以上であることで、熱線反射膜にレーザーを照射させた際に熱線反射膜がレーザーの熱を吸収しやすく、後述するスリット部および終端部を容易に形成でき、優れた耐久性が得られる。エネルギー吸収率Aeは、10%以上であることが好ましく、12%以上であることがより好ましく、15%以上がさらに好ましい。また、放射効率の観点から、エネルギー吸収率Aeは、35%以下が好ましく、30%以下がより好ましい。
 エネルギー吸収率Aeは、下記式(1)で求められる。
 Ae=100(%)-Te(%)-Re(%)・・・(1)
 ここで、Teは、エネルギー透過率であり、Reは、熱線反射膜のエネルギー反射率である。なお、熱線反射膜が誘電体基板の一方の主面にのみ形成されている場合、Reは、熱線反射膜が設けられた側の表面から測定されたエネルギー反射率とする。
 熱線反射膜のエネルギー透過率Teは、例えば20%以上であってもよく、30%以上であってもよい。また、エネルギー透過率Teは、例えば90%以下であってもよく、70%以下であってもよい。
 エネルギー透過率Teは、ISO9050:2003に基づき測定される。
 熱線反射膜のエネルギー反射率Reは、例えば10%以上であってもよく、20%以上であってもよい。また、エネルギー反射率Reは、例えば50%以下であってもよく、40%以下であってもよい。
 また、熱線反射膜が誘電体基板の一方の主面上にのみ形成されている場合、誘電体基板側の表面から測定される熱線反射膜のエネルギー反射率Reは、例えば10%以上であってもよく、20%以上であってもよい。また、エネルギー反射率Reは、例えば50%以下であってもよく、40%以下であってもよい。
 エネルギー反射率Reは、ISO9050:2003に基づき測定される。
(スリット部)
 スリット部は、平面視において少なくともAgを主成分とする導電層が存在しない部分であり、熱線反射膜の端部に形成された終端部によって区画される。スリット部の形態は、例えば、熱線反射膜がAg層等の導電層とその他の膜を含む場合、導電層とその他の膜の全てが取り除かれ、誘電体基板が最表面となる部分が存在する形態が挙げられる。すなわち、スリット部の形態としては、誘電体基板が露出している形態が挙げられる。但し、本実施形態において、スリット部は、Ag層以外の層の少なくとも一つが誘電体基板に積層されている形態であってもよい。この場合、膜応力による銀のマイグレーションを抑制するために、Ag層以外の層は、スリット部により離隔されたAg層同士を繋がないように存在することが好ましく、Ag層に非接触な形状で、スリット部を含む領域の誘電体基板の主面上にAg層以外の層が備えられることは許容される。例えば、スリット部を含む領域において、誘電体基板の主面上に誘電体基板側に最も近いAg層よりも誘電体基板側に位置するAg層以外の層が備えられていてもよい。これら各態様について、図2~図4を参照しつつ、以下に説明する。
 図2は、本実施形態の熱線反射基板10の一態様を示す断面図である。
 本態様の熱線反射基板10においては、誘電体基板11の主面上に、他の層24を挟むようにして、Agを主成分とする導電層15、16を含む熱線反射膜12が形成されている。ここで、他の層24とは、Agを主成分とする導電層以外の層であればよく、例えば、熱線反射膜12に含まれうる、Agを主成分とする導電層以外の導電層やその他の膜として例示されるものであってよい。また、熱線反射膜12のスリット部13側の端部と他の層24の一部とを覆うようにして、終端部14が形成されている。この場合において、スリット部13は、他の層24の面上で向かい合う2つの終端部14の間隙であり、この間隙の距離がスリット部13の幅に相当する。
 本態様において、熱線反射膜12は、誘電体基板11側から順に、その他の膜21/Agを主成分とする導電層15/その他の膜22/Agを主成分とする導電層16/その他の膜23からなる多層膜である。ここで、他の層24は、Agを主成分とする導電層15、16とは接触しない状態(非接触の状態)で誘電体基板11の主面上に形成されている。なお、他の層24は、例えばその他の膜21とは接触していてもよい。
 図3は、本実施形態の熱線反射基板10の別の一態様を示す断面図である。
 図3に示される態様の熱線反射基板10の構成は、図2に示される態様の熱線反射基板10の構成と基本的に同様である。ただし、図3に示される態様の熱線反射基板10の厚み方向の断面視においては、熱線反射膜12を構成するAgを主成分とする導電層15、16のうち、誘電体基板11側に最も近いもの(Agを主成分とする導電層15)よりも、他の層24の方が誘電体基板11に近い側に位置している。
 図4は、本実施形態の熱線反射基板10の別の一態様を示す断面図である。
 本態様の熱線反射基板10においては、誘電体基板11の主面上に、Agを主成分とする導電層15、16を含む熱線反射膜12が形成されている。また、熱線反射膜12のスリット部13側の端部と誘電体基板11の一部とを覆うようにして、終端部14が形成されている。この場合において、スリット部13は、誘電体基板11の面上で向かい合う2つの終端部14の間隙であり、この間隙の距離がスリット部13の幅に相当する。本態様の熱線反射基板10では、スリット部13において、誘電体基板11が露出している。
 スリット部の幅は、250μm以下が好ましい。スリット部の幅が250μm以下であることで、熱線反射基板の美観が向上する。スリット部の幅は、200μm以下がより好ましく、150μm以下がさらに好ましく、125μm以下が特に好ましい。また、スリット部の幅は、製造プロセスの安定性の観点から、0.3μm以上が好ましく、0.5μm以上がより好ましい。
 ここで、スリット部の幅とは、スリット部が延びる方向に垂直な方向の幅(図1の(A)のY)を指す。
 また、スリット部の間隔は、50mm以下が好ましい。スリット部の間隔は、50mm以下であることで、Ag層を含む熱線反射膜の応力を小さくでき、銀のマイグレーションや凝集による熱線反射膜の劣化を抑制できる。スリット部の間隔は、10mm以下がより好ましく、5mm以下がさらに好ましく、3mm以下が特に好ましい。また、スリット部の間隔は、終端部を安定して形成する観点から、5μm以上が好ましい。
 ここで、スリット部の間隔とは、スリット部の端部と、隣接するスリット部の端部との間の最短距離であり、熱線反射膜及び/又は終端部が存在する幅(図1の(A)のZ)を指す。
(終端部)
 終端部は、熱線反射膜の端部において形成される。具体的には、図1に示すように、スリット部を区画する熱線反射膜中のAgを主成分とする導電層の端部(熱線反射膜のスリット部を挟んで離隔した部分)を覆うように、終端部が連続的に形成されるものであり、これにより、熱線反射膜に含まれるAg層がスリット部側の端部において露出せず、Ag層が空気中の酸素や水分に触れ劣化することを抑制し、熱線反射基板の耐久性を向上できる。ここで、「連続的に終端部が形成する」とは、熱線反射膜のスリット部側の端部において、終端部が形成され、Agを主成分とする導電層が露出していないことを意味する。
 終端部は、例えば、スリット部の形成の際に熱線反射膜に熱を与え、熱線反射膜の構成成分を溶融させることによって形成でき、具体的には、熱線反射膜を構成する多層膜の成分が、積層構造を失いながら混在している状態である。終端部を形成する方法については後述する。
 終端部の厚みは、10nm以上200nm以下である。終端部の厚みが10nm以上であることで、水などの熱線反射膜中の銀の劣化因子の侵入を抑制できる。また、終端部の厚みが200nm以下であることで、美的外観を確保できる。終端部の厚みは、20nm以上が好ましく、30nm以上がより好ましく、45nm以上がさらに好ましく、75nm以上が特に好ましい。終端部の厚みは、180nm以下が好ましく、170nm以下がより好ましく、160nm以下がさらに好ましく、150nm以下が特に好ましい。
 ここで、終端部の厚みとは、図5に示すように、熱線反射膜12に含まれるAg層15のスリット部13側の先端から、終端部14の表面までの距離のうち最も小さい値(図5中のT)を指す。なお、熱線反射膜12にAg層15が複数含まれる場合は、全てのAg層15の終端部14側の先端から終端部14の表面までの最短距離を求め、最も小さい値を終端部の厚みとする。
 終端部の厚みは、熱線反射基板のスリット部の幅方向に垂直な断面を走査電子顕微鏡を用いて観察することによって測定できる。
<熱線反射基板の製造方法>
 次に、本実施形態の熱線反射基板の製造方法の一例を説明する。本実施形態の熱線反射基板は、例えば、誘電体基板上に熱線反射膜を形成したのち、熱線反射膜に対してレーザー照射によりデコートを行い、スリット部と終端部とを形成することにより得られる。
 レーザー照射による熱線反射膜のデコートは、熱線反射膜に適度な熱を与えられる方法であればよく、例えば、パルス幅がナノ秒オーダーであるレーザーを用いて形成する方法が挙げられる。パルス幅がナノ秒オーダーであるレーザーは、パルス幅が非常に短い(例えば、フェムト秒オーダー)レーザーと比較して、出力されるレーザー光の時間が長く、熱線反射膜に与える熱の影響が大きい。そのため、パルス幅がナノ秒オーダーであるレーザーを用いてデコートを行うことで、熱線反射膜に対して、適度な熱を与えることができ、特定の膜厚を有する終端部を形成することができる。これにより、優れた耐久性を示す熱線反射基板が得られる。
 ただし、スリット部および特定の厚みを有する終端部が形成できれば、他の方法を用いてもよい。
 レーザーのパルス幅は具体的には、1ns以上が好ましく、10ns以上がより好ましく、20ns以上がさらに好ましい。また、レーザーの熱による基板への影響を抑制するため、1μs以下が好ましく、500ns以下がより好ましく、100ns以下がさらに好ましい。
 レーザーの波長は、500~1500nmであることが好ましい。レーザーの波長が500nm以上であることで、熱線反射膜に対してレーザーの熱を与えることによって、酸化被膜を形成できる。レーザーの波長は、600nm以上であることがより好ましく、700nm以上がさらに好ましい。レーザーの波長が1500nm以下であることで、基板にレーザーの影響を与えることを抑制できる。レーザーの波長は1400nm以下であることがより好ましく、1300nm以下がさらに好ましい。
 レーザーの走査速度は、例えば、10~1000mm/secであってもよく、100~500mm/secであってもよい。
 レーザーのエネルギーの大きさは、レーザーの出力により調整できる。具体的には、レーザーの出力は、0.1W以上であることが好ましく、1W以上であることがより好ましい。また、レーザーの出力は、100W以下であることが好ましく、100W未満であることがより好ましく、50W以下であることがさらに好ましい。なお、レーザーのエネルギーの大きさを調整することによって、誘電体基板側に最も近いAg層よりも誘電体基板側に位置するAg層以外の層を、スリット部において残存させることができる。
 パルス幅がナノ秒オーダーであるレーザーによる熱線反射膜のデコートにおいて、レーザー光の加工条件(例えば、フォーカス、スキャン速度など)は、レーザー加工された領域の絶縁性、透明性、遮熱性などのバランスを考え、適宜設定できる。
 スリット部の形状は、例えば、直線状、曲線状、ジグザグ形状、同心円状、渦巻き状、ランダムな線状が挙げられるが、形成する際の作業性の観点から、線状が好ましく、直線状がより好ましい。特に、レーザー照射によりスリット部を形成する場合は、熱線反射膜に、固定させたレーザーを照射しながら基板を第1の方向に搬送することで、第1の方向に延びる直線状のスリット部を容易に形成できる。また、例えば、その後、熱線反射膜に、固定させたレーザーを照射しながら基板を、第1の方向と異なる第2の方向に搬送することで、第1の方向及び第2の方向に延びる直線状のスリット部も容易に形成できる。
 上記のような製造容易性から、本実施形態におけるスリット部は、第1の方向に延びる直線状、又は、第1の方向に延びる直線状及び第2の方向に延びる直線状が好ましい。具体的には、スリット部は平行する複数の線状や格子状が好ましい。平行線状や格子状となる幅方向に、所定幅の熱線反射膜と所定幅のスリット部とが交互に配置されて周期性を持たせることで、特定の周波数帯の電波を遮断したり、目的の周波数の電波透過性を高めることができ、建築用や自動車用の窓ガラスとして活用するのに好ましくなる。
 <用途>
 本実施形態にかかる熱線反射基板は、熱線反射性と電波透過性とを求められる用途に好適に用いられる。かかる用途としては、例えば建築用途の窓ガラス、又は自動車用途の窓ガラス(ウインドガラス、リアガラス、サイドガラス)、鉄道車両用途等の窓ガラスなどが挙げられる。建築用途の窓ガラス等に用いられる場合、熱線反射基板は視認性に優れることが好ましい。したがって、熱線反射基板の可視光透過率は50%以上が好ましく、53%以上がより好ましく、55%以上がさらに好ましい。また、該可視光透過率は、90%以下が好ましく、80%以下がより好ましい。可視光透過率が50%以上であれば、熱線反射基板を通して存在するものを視認できる。可視光透過率は、ISO9050:2003に準拠して測定し算出する。
 以上説明したように、本明細書には以下の構成が開示されている。
[1]誘電体基板と、前記誘電体基板の少なくとも一方の主面上に、Agを主成分とする導電層を含む多層膜からなる熱線反射膜と、前記Agを主成分とする導電層の存在しないスリット部とを備え、
 前記熱線反射膜のエネルギー吸収率Aeが8.5%以上であり、
 前記熱線反射膜の端部には、終端部が形成されており、
 前記終端部の厚さが10nm以上200nm以下である、熱線反射基板。
[2]前記スリット部の間隔が50mm以下である、
 [1]に記載の熱線反射基板。
[3]前記誘電体基板の面積に対する、前記熱線反射膜の面積が70%以上である、
 [1]または[2]に記載の熱線反射基板。
[4]前記スリット部の幅が250μm以下である、
 [1]~[3]のいずれか1つに記載の熱線反射基板。
[5]前記Agを主成分とする導電層の厚さが1.5nm以上50nm以下であり、
 前記熱線反射膜の厚さが5nm以上1500nmである、
 [1]~[4]のいずれか1つに記載の熱線反射基板。
[6]前記スリット部において、前記Agを主成分とする導電層以外の層が、前記誘電体基板に積層されており、
 前記Agを主成分とする導電層以外の層は、前記熱線反射膜の前記Agを主成分とする導電層と接触していない、
 [1]~[5]のいずれか1つに記載の熱線反射基板。
[7]前記Agを主成分とする導電層以外の層は、前記誘電体基板側に最も近い前記Agを主成分とする導電層よりも前記誘電体基板側に位置する、
 [6]に記載の熱線反射基板。
[8]前記スリット部において、前記誘電体基板は露出している、
 [1]~[7]のいずれか1つに記載の熱線反射基板。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれに限定されない。なお、例1~5は実施例であり、例6~7は比較例であり、例8~9は参考例である。
[熱線反射基板の製造]
(例1)
 誘電体基板として、厚さ3mmの100mm×100mmのソーダライムガラスを準備した。
 次いで、誘電体基板の一方の主面の全体に、TiO層(厚さ:20nm)/AlがドープされたZnO層(厚さ:5nm)/Ag層(厚さ:13nm)/AlがドープされたZnO層(厚さ:25nm)/TiO層(厚さ:10nm)の順にスパッタリング法により、導電層とその他の膜を製膜し、熱線反射膜を形成させた。
 その後、パルス幅が数十nsのレーザー(MD―X1520、キーエンス社製)によって、熱線反射膜を設けた側の面の全体(100mm×100mm)に、スリット部の幅が20μm、スリット部の間隔が5.0mmとなるように、格子状のスリット部を形成し(熱線反射膜をデコートし)、デコート部において誘電体基板が露出した熱線反射基板を得た。なお、熱線反射膜のスリット部側の端部には、熱線反射膜の溶融による終端部が形成されていた。また、スリット部の幅とスリット部の間隔、スリット部の形状から、誘電体基板の面積に対する熱線反射膜の面積割合(%)を算出した。
(例2)
 誘電体基板の一方の主面上に、SnがドープされたZnO層(厚さ:40nm)/Ag層(厚さ:13nm)/SnがドープされたZnO層(厚さ:87nm)/Ag層(厚さ:13nm)/SnがドープされたZnO層(厚さ:33nm)を順に製膜し、さらにデコートの条件を表1の通りにした以外は、例1と同様に熱線反射基板を作製した。
(例3)
 誘電体基板の一方の主面上に、Si層(厚さ:55nm)/NiCr層(厚さ:3nm)/Ag層(厚さ:17nm)/NiCr層(厚さ:5nm)/Si層(厚さ:60nm)を製膜し、さらにデコートの条件を表1の通りにした以外は、例1と同様に熱線反射基板を作製した。
(例4)
 デコートの条件を表1の通りにした以外は、例1と同様に熱線反射基板を作製した。
(例5)
 デコートの条件を表1の通りにした以外は、例3と同様に熱線反射基板を作製した。
(例6)
 誘電体基板の一方の主面上にカプトンテープ(幅0.50mm)を、テープの端部と隣接するテープの端部との間隔が10mmとなるように格子状に貼り付けた後、例2と同様の手順で熱線反射膜を製膜した。次いで、カプトンテープを剥がして、スリット部を形成(熱線反射膜をデコート)した。
(例7)
 誘電体基板の一方の主面上に、SnがドープされたZnO層(厚さ:15nm)/Ag層(厚さ:3nm)/SnがドープされたZnO層(厚さ:15nm)を製膜し、さらにデコートの条件を表1の通りにした以外は、例1と同様に熱線反射基板を作製した。
(例8)
 デコートを行わなかったこと以外は、例1と同様に熱線反射基板を作製した。
(例9)
 デコートを行わなかったこと以外は、例2と同様に熱線反射基板を作製した。
[熱線反射膜の特性]
 上記で得られた熱線反射基板について、分光光度計(分光光度計U-4100:日立社製)を使用し、熱線反射膜のエネルギー透過率Te、エネルギー反射率Reを測定した。このとき、エネルギー反射率Reは、熱線反射基板の誘電体基板側と熱線反射膜側の両方を測定した。また、測定する波長の領域は、300~2500nmとした。測定は、ISO9050:2003に準拠して実施した。
 上記で得られた、熱線反射膜側から測定されたエネルギー反射率Reと、エネルギー透過率Teから、下記式(1)に基づき熱線反射膜のエネルギー吸収率Aeを測定した。
 Ae=100(%)-Te(%)-Re(%)・・・(1)
 なお、表1中の空欄は「未測定」を意味する。
[スリット部の間隔と幅]
 スリット部の間隔および幅は、オプトデジタルマイクロスコープ(オリンパス社製、型番:DSX500)を用いて測定した。
[終端部の厚さ]
 終端部の厚さは、熱線反射基板のスリット部の幅方向に垂直な断面を走査電子顕微鏡(日立ハイテク社製、型番:S-4800)を用いて観察した。また、例2および例6の熱線反射膜のスリット部側の端部における断面SEM画像を、図6および図7に示す。
[耐久性試験]
 上記で得られた熱線反射基板を、温度80度、相対湿度90%RHの環境下に10日間静置した。静置後の熱線反射基板の熱線反射膜が設けられた側の表面の任意の10cm×10cmの領域を目視にて観察した。スリット部のエッジにある熱線反射膜端部において端部に沿うように発生する劣化の有無と、熱線反射膜面内における直径500μm以上の白点の数とを観察し、下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、スリット部および特定の厚みの終端部を有する例1~5は、スリット部を有するが、特定の厚みの終端部を有さない例6~7と比して、耐久性試験後においても熱線反射膜端部からの劣化が確認されず、熱線反射膜端部において優れた耐久性を示すことがわかった。これは、例1~5では終端部の厚みが10nm以上であったため、熱線反射膜に含まれる銀が露出して、空気中の酸素や水分に触れることを抑制できたためと考えられる。一方で、例6は終端部の厚みが0nm、すなわち熱線反射膜のスリット部側の端部が露出しており、例7は終端部の厚みが10nm未満であったため、耐久性試験後に端部からの劣化が見られた。端部からの劣化は、膜面内の白点の欠点に比べて広域に広がりやすく、美的外観を損ないやすいと考えられる。
 また、例1~4は、厚さ10nm以上の終端部が形成され、かつ、スリット部の間隔が50nm以下であったため、例5、例8~9と比して、耐久性試験後においても熱線反射膜表面における白点の数が少なく、熱線反射膜面内においてもより優れた耐久性を示すことがわかった。一方で、例5はスリット部の間隔が50nmより大きく、例8~9はデコート処理をせず、スリット部および所定の厚さを有する終端部を形成しなかったため、耐久性試験後に熱線反射膜の表面に5個以上の白点が見られた。
 さらに、例2および例3は、熱線反射膜のエネルギー吸収率が高く、終端部が厚く形成されたため、例1および例4と比して、耐久性試験後においても熱線反射膜表面に白点が観察されず、熱線反射膜面内において特に優れた耐久性を示すことがわかった。
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2022年10月31日出願の日本特許出願(特願2022-175049)に基づくものであり、その内容は本出願の中に参照として援用される。
 10 熱線反射基板
 11 誘電体基板
 12 熱線反射膜
 13 スリット部
 14 終端部
 15,16 Agを主成分とする導電層
 21,22,23 その他の膜
 24 他の層

Claims (8)

  1.  誘電体基板と、前記誘電体基板の少なくとも一方の主面上に、Agを主成分とする導電層を含む多層膜からなる熱線反射膜と、前記Agを主成分とする導電層の存在しないスリット部とを備え、
     前記熱線反射膜のエネルギー吸収率Aeが8.5%以上であり、
     前記熱線反射膜の端部には、終端部が形成されており、
     前記終端部の厚さが10nm以上200nm以下である、熱線反射基板。
  2.  前記スリット部の間隔が50mm以下である、
     請求項1に記載の熱線反射基板。
  3.  前記誘電体基板の面積に対する、前記熱線反射膜の面積が70%以上である、
     請求項1または2に記載の熱線反射基板。
  4.  前記スリット部の幅が250μm以下である、
     請求項1または2に記載の熱線反射基板。
  5.  前記Agを主成分とする導電層の厚さが1.5nm以上50nm以下であり、
     前記熱線反射膜の厚さが5nm以上1500nmである、
     請求項1または2に記載の熱線反射基板。
  6.  前記スリット部において、前記Agを主成分とする導電層以外の層が、前記誘電体基板に積層されており、
     前記Agを主成分とする導電層以外の層は、前記熱線反射膜の前記Agを主成分とする導電層と接触していない、
     請求項1または2に記載の熱線反射基板。
  7.  前記Agを主成分とする導電層以外の層は、前記誘電体基板側に最も近い前記Agを主成分とする導電層よりも前記誘電体基板側に位置する、
     請求項6に記載の熱線反射基板。
  8.  前記スリット部において、前記誘電体基板が露出している、
     請求項1または2に記載の熱線反射基板。
PCT/JP2023/038792 2022-10-31 2023-10-26 熱線反射基板 WO2024095898A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-175049 2022-10-31
JP2022175049 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024095898A1 true WO2024095898A1 (ja) 2024-05-10

Family

ID=90930366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038792 WO2024095898A1 (ja) 2022-10-31 2023-10-26 熱線反射基板

Country Status (1)

Country Link
WO (1) WO2024095898A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089822A1 (ja) * 2010-01-19 2011-07-28 セントラル硝子株式会社 車両用窓ガラスの製造方法
WO2020054762A1 (ja) * 2018-09-14 2020-03-19 Agc株式会社 電波透過性基板
WO2023033034A1 (ja) * 2021-09-06 2023-03-09 日本板硝子株式会社 ガラス体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089822A1 (ja) * 2010-01-19 2011-07-28 セントラル硝子株式会社 車両用窓ガラスの製造方法
WO2020054762A1 (ja) * 2018-09-14 2020-03-19 Agc株式会社 電波透過性基板
WO2023033034A1 (ja) * 2021-09-06 2023-03-09 日本板硝子株式会社 ガラス体

Similar Documents

Publication Publication Date Title
JP4961786B2 (ja) 透明導電膜、およびこれを用いた透明導電性フィルム
JP5076897B2 (ja) 赤外線反射ガラス板および車両窓用合わせガラス
JP5491736B2 (ja) 熱特性を有する積層体を備えた基材
JP5847334B2 (ja) 導電性コーティングを有する透明ガラスペイン
JP5076896B2 (ja) 車両窓用合わせガラス
KR101982357B1 (ko) 코팅이 제공된 기판의 획득 방법
KR101307639B1 (ko) 투명 적층 필름 및 그 제조 방법
US8658289B2 (en) Electromagnetic radiation shielding device
JP7439760B2 (ja) 電波透過性基板
EP3089869B1 (en) Optical film exhibiting improved light to solar gain heat ratio
JP6253663B2 (ja) 導電性コーティングを備える透明な板ガラス及びその製造方法
JP6106756B2 (ja) 透明導電性基材及び透明導電性基材の製造方法
JP2008511529A (ja) 赤外線および/または太陽光線を反射する薄膜積層体および加熱手段を備えた積層板ガラス
JPWO2007013269A1 (ja) 反射膜用積層体
JP2008037667A (ja) 窓用合わせガラス
TWI583807B (zh) 透明基板之層系統以及用於生產層系統的方法
EP1213599A2 (en) Heat resistant reflecting layer
CN111788162A (zh) 具有四重金属性层的太阳控制涂层
JPH05229052A (ja) 熱線遮断膜
JP6616408B2 (ja) 熱特性および金属製最終膜を有する積層体を備えた基板
WO2024095898A1 (ja) 熱線反射基板
KR20180088431A (ko) 적어도 1개의 니켈 산화물 층을 포함하는 열 특성을 갖는 스택이 제공된 기판
JP2001226765A (ja) 高耐熱性反射膜及びこの反射膜を用いた積層体
EP1489054A1 (en) Solar control coating with metal alloy film
JPH07249316A (ja) 透明導電膜および該透明導電膜を用いた透明基体