WO2024090375A1 - 塩化ビニル系繊維、及びその製造方法 - Google Patents

塩化ビニル系繊維、及びその製造方法 Download PDF

Info

Publication number
WO2024090375A1
WO2024090375A1 PCT/JP2023/038176 JP2023038176W WO2024090375A1 WO 2024090375 A1 WO2024090375 A1 WO 2024090375A1 JP 2023038176 W JP2023038176 W JP 2023038176W WO 2024090375 A1 WO2024090375 A1 WO 2024090375A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
chloride resin
mass
vinyl
polyvinyl chloride
Prior art date
Application number
PCT/JP2023/038176
Other languages
English (en)
French (fr)
Inventor
吉田直人
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2024090375A1 publication Critical patent/WO2024090375A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/48Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons

Definitions

  • the present invention relates to polyvinyl chloride fibers and their manufacturing method.
  • Patent Document 1 describes, as artificial hair fibers for use in wigs and the like, vinyl chloride fibers obtained by melt spinning a vinyl chloride resin containing a plasticizer and a heat stabilizer.
  • the undrawn polyvinyl chloride fiber produced in the examples has a single fiber fineness of approximately 170 dtex, and finer fibers are required for use as clothing fibers, etc.
  • the polyvinyl chloride fiber finer By increasing the amount of plasticizer blended and improving spinnability, it is possible to make the polyvinyl chloride fiber finer, but this poses the problem of reduced heat resistance.
  • the present invention provides a polyvinyl chloride fiber that has excellent spinnability and good heat resistance, and a method for producing the same.
  • One or more embodiments of the present invention relate to a polyvinyl chloride fiber comprising a polyvinyl chloride resin composition, the polyvinyl chloride resin composition comprising polyvinyl chloride resin A and polyvinyl chloride resin B, the polyvinyl chloride resin A being a copolymer of vinyl chloride and a macromonomer, and the polyvinyl chloride resin B being a polyvinyl chloride resin other than the polyvinyl chloride resin A.
  • One or more embodiments of the present invention relate to a method for producing a polyvinyl chloride fiber, the method comprising the step of melt-spinning a polyvinyl chloride resin composition to obtain an undrawn yarn, the polyvinyl chloride resin composition comprising polyvinyl chloride resin A and polyvinyl chloride resin B, the polyvinyl chloride resin A being a copolymer of vinyl chloride and a macromonomer, and the polyvinyl chloride resin B being a polyvinyl chloride resin other than polyvinyl chloride resin A.
  • vinyl chloride fibers having excellent spinnability and good heat resistance can be stably produced by melt spinning.
  • the inventors of the present invention have conducted extensive research into suppressing the decrease in heat resistance of vinyl chloride-based fibers and improving spinning stability in melt spinning. As a result, they have found that by using vinyl chloride-based resin A, which is a copolymer of vinyl chloride and a macromonomer, in combination with vinyl chloride-based resin B, which is another vinyl chloride-based resin (containing no macromonomer), the spinning stability in melt spinning is improved, and vinyl chloride-based fibers having good heat resistance and fine fineness can be obtained.
  • vinyl chloride-based resin A which is a copolymer of vinyl chloride and a macromonomer
  • a macromonomer having a polymer of an ethylenically unsaturated monomer containing a double bond in its main chain and a mass average molecular weight (also referred to as weight average molecular weight) of 1,000 to 10,000 the spinning stability in melt spinning is significantly improved while suppressing heat resistance, and a vinyl chloride-based fiber having a fine fineness, preferably a fineness of 30 dtex or less in undrawn yarn, can be obtained.
  • the mass average molecular weight of the macromonomer which is a soft component and serves as the starting point of thermal flow
  • the fluidity of the copolymer of vinyl chloride and the macromonomer is increased, and a vinyl chloride resin composition containing the copolymer can be spun into a thin undrawn yarn by melt spinning.
  • the vinyl chloride resin is a polymer mainly composed of vinyl chloride and contains 50% by mass or more of vinyl chloride.
  • "vinyl chloride” means a monomer.
  • the vinyl chloride resin A is a copolymer of vinyl chloride and a macromonomer.
  • the vinyl chloride resin A is not particularly limited, for example, from the viewpoint of polymerization stability and mixability with the vinyl chloride resin B, it preferably contains 50 to 99 mass% of vinyl chloride and 1 to 50 mass% of a macromonomer, more preferably contains 60 to 97 mass% of vinyl chloride and 3 to 40 mass% of a macromonomer, and further preferably contains 70 to 95 mass% of vinyl chloride and 5 to 30 mass% of a macromonomer.
  • vinyl chloride resin A may contain other monomers copolymerizable therewith, such as vinylidene chloride, vinyl acetate monomer, and ⁇ -olefin compounds that do not have reactive functional groups after polymerization (e.g., ethylene, propylene, etc.), within the scope of not impairing the effects of the present invention.
  • Vinyl chloride resin A may contain 20% by mass or less of other monomers, 10% by mass or less, or 5% by mass or less.
  • a macromonomer refers to an oligomer molecule having a reactive functional group (also called a polymerizable functional group) at the end of the polymer.
  • a macromonomer having a polymer in the main chain made of an ethylenically unsaturated monomer containing a double bond can be preferably used.
  • the macromonomer preferably has a mass average molecular weight (Mw) of 1000 to 10000, more preferably 1500 to 9500, even more preferably 2000 to 9000, and particularly preferably 2500 to 8000.
  • Mw mass average molecular weight
  • the Mw of the macromonomer is within the above-mentioned range, the polymerization stability with vinyl chloride is excellent, the fluidity of vinyl chloride resin A is easily improved, and the fineness of the undrawn yarn of the vinyl chloride fiber containing vinyl chloride resin A is easily reduced.
  • the Mw of the macromonomer is a value measured by gel permeation chromatography (also referred to as the GPC method) using polystyrene as the standard polymer and chloroform as the mobile phase (eluent).
  • gel permeation chromatography also referred to as the GPC method
  • measurements can be made using a Tosoh HLC-8320 GPC system, chloroform as the mobile phase, a Tosoh polystyrene gel column TSKgel Super HM-N, and a column temperature of 40°C, by injecting a sample solution with a polymer concentration of 1 mg/mL.
  • ethylenically unsaturated monomers can be used as the main chain polymer of the macromonomer.
  • (meth)acrylic acid, (meth)acrylic acid ester monomers, styrene monomers, nitrile group-containing vinyl monomers, amide group-containing vinyl monomers, fluorine-containing vinyl monomers, silicon-containing vinyl monomers, maleimide monomers, vinyl esters, alkenes, and conjugated dienes can be mentioned.
  • maleic anhydride, maleic acid, monoalkyl esters and dialkyl esters of maleic acid, fumaric acid, monoalkyl esters and dialkyl esters of fumaric acid, allyl chloride, and allyl alcohol can also be used.
  • (meth)acrylic acid means acrylic acid and/or methacrylic acid.
  • Examples of the (meth)acrylic acid ester monomer include aliphatic (meth)acrylic acid (e.g., alkyl having 1 to 18 carbon atoms) esters, alicyclic (meth)acrylic acid esters, aromatic (meth)acrylic acid esters, and aralkyl (meth)acrylic acid esters.
  • Examples of aliphatic (meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, and stearyl (meth)acrylate.
  • Examples of alicyclic (meth)acrylic acid esters include cyclohexyl (meth)acrylate and isobornyl (meth)acrylate.
  • Examples of aromatic (meth)acrylic acid esters include phenyl (meth)acrylate and toluyl (meth)acrylate.
  • Examples of aralkyl (meth)acrylic acid esters include benzyl (meth)acrylate.
  • the (meth)acrylic acid ester monomer for example, a (meth)acrylic acid ester monomer having a heteroatom in the ester portion may be used.
  • the heteroatom is not particularly limited, and examples thereof include oxygen (O), fluorine (F), and nitrogen (N).
  • Specific examples of the (meth)acrylic acid ester monomer having a heteroatom in the ester portion include 2-methoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, glycidyl (meth)acrylate, 2-aminoethyl (meth)acrylate, and 2,2,2-trifluoroethyl (meth)acrylate.
  • Examples of the styrene monomer include styrene, vinyltoluene, ⁇ -methylstyrene, chlorostyrene, styrenesulfonic acid and its salts.
  • Examples of the nitrile group-containing vinyl monomer include acrylonitrile and methacrylonitrile.
  • Examples of the amide group-containing vinyl monomer include acrylamide and methacrylamide.
  • Examples of the fluorine-containing vinyl monomer include perfluoroethylene, perfluoropyrene, and vinylidene fluoride.
  • Examples of the silicon-containing vinyl monomer include vinyltrimethoxysilane and vinyltriethoxysilane.
  • maleimide monomer examples include maleimide, methylmaleimide, ethylmaleimide, butylmaleimide, phenylmaleimide, and cyclohexylmaleimide.
  • vinyl esters examples include vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, and vinyl cinnamate.
  • alkenes examples include ethylene and propylene.
  • conjugated dienes include butadiene and isoprene.
  • the ethylenically unsaturated monomer is preferably at least one selected from the group consisting of (meth)acrylic acid ester monomers, styrene monomers, nitrile group-containing vinyl monomers, and amide group-containing vinyl monomers. More preferably, it is at least one selected from the group consisting of (meth)acrylic acid ester monomers and nitrile group-containing vinyl monomers, and even more preferably, it is an acrylic acid ester monomer.
  • the above-mentioned ethylenically unsaturated monomers may be used alone or in the form of copolymers of two or more kinds.
  • the macromonomer has at least one reactive functional group per molecule at the molecular end.
  • the macromonomer may have reactive functional groups at both ends of the molecule, but from the viewpoint of excellently enhancing the fluidity of the vinyl chloride resin A, it is preferable that the macromonomer has a reactive functional group at one end of the molecule.
  • the reactive functional group include functional groups selected from the group consisting of allyl groups, vinyl silyl groups, vinyl ether groups, dicyclopentadienyl groups, and groups having a polymerizable carbon-carbon double bond represented by the following general formula (1).
  • the reactive functional group is a functional group having a polymerizable carbon-carbon double bond represented by the following general formula (1).
  • R 1 and R 2 may be the same or different and each independently represents hydrogen or an organic group having 1 to 20 carbon atoms.
  • the organic group may be an alkyl group having 1 to 20 carbon atoms, which may be substituted.
  • Specific examples of R 1 and R 2 are not particularly limited, and are preferably, for example, a group selected from the group consisting of -H, -CH 3 , -(CH 2 ) n CH 3 (n is an integer of 1 to 19), -C 6 H 5 , -CH 2 OH, and -CN, and more preferably a group selected from the group consisting of -H and -CH 3 .
  • the reactive functional group is preferably an acryloyl group in which R 1 and R 2 are both hydrogen atoms, or a crotonic acid group in which R 1 is -CH 3 and R 2 is hydrogen atoms, and more preferably an acryloyl group, in the general formula (1).
  • the method for producing the macromonomer is not particularly limited, and a conventionally known method, such as a radical polymerization method, can be used.
  • a conventionally known method such as a radical polymerization method
  • known methods such as a general radical polymerization method and a controlled radical polymerization method as described in JP-A-2006-299240 and the like can be used. Any of the known methods may be used, but usually, a controlled radical polymerization method is used, and a living radical polymerization method is preferably used because of ease of control, and an atom transfer radical polymerization method is particularly preferred.
  • an organic halide or a halogenated sulfonyl compound may be used as a polymerization initiator, and a transition metal complex may be used as a polymerization catalyst.
  • a method described in JP-A-2005-232209 and the like may be used.
  • a macromonomer can be obtained by introducing a reactive functional group into a polymer having a halogen group at the end obtained by the atom transfer radical polymerization method, for example, by the method described in JP-A-2005-232209.
  • the molecular weight of the macromonomer can be adjusted by the charging ratio of the ethylenically unsaturated monomer and the polymerization initiator. For example, the molecular weight of the macromonomer can be reduced by decreasing the ratio of monomer to polymerization initiator (monomer/polymerization initiator).
  • a macromonomer is copolymerized with vinyl chloride to form a graft copolymer, and a vinyl chloride resin composition containing the graft copolymer (vinyl chloride resin A) is melt spun, so that the glass transition temperature of the resulting vinyl chloride fiber does not decrease and the heat resistance can be maintained.
  • the method for producing the copolymer of vinyl chloride and the macromonomer is not particularly limited, but copolymerization in an aqueous medium is preferred from the viewpoints of ease of polymerization control and ease of separation and washing of the polymer particles after polymerization.
  • Examples of polymerization methods in an aqueous medium include suspension polymerization, fine suspension polymerization, and emulsion polymerization. Among these, suspension polymerization or fine suspension polymerization is preferred from the viewpoint of polymerization stability, and suspension polymerization is more preferred from the viewpoint of suppressing initial coloration of the fibers.
  • the suspension dispersant can be any one that does not impair the object of the present invention and is not particularly limited.
  • suspension dispersants include partially saponified polyvinyl acetate; water-soluble cellulose ethers such as methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, and carboxymethyl cellulose; polyethylene oxide; polyvinylpyrrolidone; polyacrylic acid; vinyl acetate-maleic acid copolymer; styrene-maleic acid copolymer; gelatin; and organic polymer dispersants such as starch. These may be used alone or in combination of two or more.
  • the suspension dispersant may be used in an amount of, for example, 0.01 to 0.1 parts by mass per 100 parts by mass of the total amount of monomers.
  • the polymerization initiator is not particularly limited, and any oil-soluble polymerization initiator may be added within a range that does not impair the objectives of the present invention, but it is preferable to use among these initiators those with a 10-hour half-life temperature of 30 to 65°C.
  • oil-soluble polymerization initiators examples include organic peroxide-based polymerization initiators such as diisobutyl peroxide, cumyl peroxyneodecanoate, diisopropyl peroxydicarbonate, di(2-ethylhexyl) peroxydicarbonate, t-butyl peroxypivalate, t-butyl peroxyneodecanoate, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, dilauroyl peroxide, and di(3,5,5-trimethylhexanoyl) peroxide; and azo-based polymerization initiators such as 2,2'-azobisisobutyronitrile, 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), and 2,2'-azobis-(2,4-dimethylvaleronitrile). These oil-soluble polymerization initiators may be used alone or in combination of two or more.
  • the oil-soluble polymerization initiator can be added without any particular restrictions, but when used by dissolving it in an organic solvent, examples of the organic solvent include aromatic hydrocarbons such as toluene, xylene, and benzene; aliphatic hydrocarbons such as hexane and isoparaffin; ketones such as acetone and methyl ethyl ketone; and esters such as ethyl acetate, butyl acetate, and dioctyl phthalate. These organic solvents may be used alone or in combination of two or more.
  • aromatic hydrocarbons such as toluene, xylene, and benzene
  • aliphatic hydrocarbons such as hexane and isoparaffin
  • ketones such as acetone and methyl ethyl ketone
  • esters such as ethyl acetate, butyl acetate, and dioctyl phthalate.
  • the chain transfer agent is not particularly limited, and any agent that does not impair the object of the present invention can be used. Suitable examples of such chain transfer agents include alkyl mercaptans having 2 to 12 carbon atoms in the main chain, and mercaptoalcohols.
  • alkyl mercaptans having 2 to 12 carbon atoms in the main chain examples include n-octyl mercaptan (also called 1-octanethiol), t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, and 2-ethylhexyl thioglycol, and examples of mercaptoalcohols include 2-mercaptoethanol.
  • surfactants In the suspension polymerization method or the microsuspension polymerization method, surfactants, dispersing agents, antioxidants, polymerization degree regulators, particle size regulators, pH regulators, gelling property improvers, antistatic agents, stabilizers, and scale inhibitors can be used as needed within the scope that does not impair the object of the present invention.
  • a copolymer of vinyl chloride and a macromonomer is obtained in the form of a latex or a slurry, but there are no particular restrictions on the method for drying this to obtain a powdered copolymer resin, and examples include a method in which the latex or slurry is dehydrated and then dried in a hot air dryer, etc.
  • Vinyl chloride resin A is not particularly limited, but from the viewpoint of the balance between processability and practical properties, the viscosity average degree of polymerization of the trunk polymer containing vinyl chloride and other monomers is preferably 500 to 900, more preferably 550 to 850, and even more preferably 600 to 750. Also, vinyl chloride resin A is not particularly limited, but from the viewpoint of the balance between processability and practical properties, the viscosity average degree of polymerization of the branch polymer consisting of macromonomers is preferably 20 to 95, more preferably 20 to 75, even more preferably 20 to 55, and even more preferably 20 to 35.
  • the viscosity average degree of polymerization of vinyl chloride resin A means the K value measured in accordance with JIS K 7367-2:2002.
  • the vinyl chloride resin A preferably has a method B flow value measured under conditions of 180°C and 98N using a high-speed flow tester in accordance with the flow test method for thermoplastic resins specified in JIS K 7210-1:2014, Appendix C, of 15 x 10-2 cm3/s or more, more preferably 20 x 10-2 cm3 /s or more, even more preferably 30 x 10-2 cm3 /s or more, even more preferably 40 x 10-2 cm3 /s or more, even more preferably 50 x 10-2 cm3 /s or more, and particularly preferably 60 x 10-2 cm3 /s or more.
  • the upper limit of the B method flow value of the vinyl chloride resin A is not particularly limited, but may be, for example, 100 x 10-2 cm3 /s or less, or may be 90 x 10-2 cm3 /s or less, from the viewpoint of preventing deterioration of melt spinnability due to low melt viscosity.
  • Vinyl chloride resin B As the vinyl chloride resin B, a vinyl chloride resin other than the vinyl chloride resin A (a vinyl chloride resin not containing a macromonomer) can be appropriately used.
  • the vinyl chloride resin B for example, a conventionally known vinyl chloride homopolymer, a vinyl chloride copolymer of vinyl chloride and another monomer (comonomer), etc. can be appropriately used.
  • the comonomer may be any one that can be copolymerized with vinyl chloride, and is not particularly limited.
  • the comonomer examples include vinyl ester compounds such as vinyl acetate and vinyl propionate, acrylic ester compounds such as butyl acrylate and 2-ethylhexyl acrylate, ⁇ -olefins such as ethylene and propylene, and acrylonitrile.
  • the content of the comonomer is not particularly limited, but from the viewpoint of spinning stability, yarn properties, etc., the content of the comonomer is preferably 2 to 30% by mass.
  • the vinyl chloride copolymer may contain, for example, 70 to 98% by weight of vinyl chloride and 2 to 30% by weight of a comonomer, 75 to 95% by weight of vinyl chloride and 5 to 25% by weight of a comonomer, or 80 to 95% by weight of vinyl chloride and 5 to 20% by weight of a comonomer.
  • Vinyl chloride resin B preferably contains vinyl chloride homopolymer from the viewpoint of heat resistance. Also, from the viewpoint of spinnability, in addition to vinyl chloride homopolymer, it preferably contains one or more selected from the group consisting of vinyl chloride-ethylene copolymer and vinyl chloride-vinyl acetate copolymer, and from the viewpoint of spinnability, it is more preferable to use vinyl chloride homopolymer and vinyl chloride-vinyl acetate copolymer in combination.
  • vinyl chloride resin B preferably contains 0.5 to 20 parts by mass of vinyl chloride-vinyl acetate copolymer per 100 parts by mass of vinyl chloride homopolymer, more preferably 1 to 10 parts by mass, and even more preferably 2 to 5 parts by mass.
  • vinyl chloride resin B preferably has a viscosity average degree of polymerization of 400 to 1700.
  • the viscosity average degree of polymerization is preferably 600 to 1300, more preferably 800 to 1200, and even more preferably 800 to 1000.
  • vinyl chloride resin B is a copolymer of vinyl chloride and a comonomer
  • the viscosity average degree of polymerization is preferably 400 to 1500, more preferably 600 to 1300, and even more preferably 800 to 1200.
  • the vinyl chloride resin B may be produced by any polymerization method, such as emulsion polymerization, bulk polymerization, or suspension polymerization, but from the viewpoint of suppressing initial coloring of the fibers, it is preferable to use one produced by suspension polymerization.
  • the vinyl chloride resin composition contains vinyl chloride resin A and vinyl chloride resin B as vinyl chloride resins.
  • the total amount of vinyl chloride resin A and vinyl chloride resin B is taken as 100 mass%, from the viewpoint of easily obtaining vinyl chloride fibers with a fineness, it is preferable to contain vinyl chloride resin A at 10 mass%, more preferably at 15 mass% or more, and even more preferably at 20 mass% or more.
  • vinyl chloride resin A and vinyl chloride resin B when the total amount of vinyl chloride resin A and vinyl chloride resin B is taken as 100 mass%, from the viewpoint of easily suppressing a decrease in heat resistance, it is preferable to contain vinyl chloride resin A at 80 mass% or less, more preferably at 70 mass% or less, even more preferably at 60 mass% or less, and particularly preferably at 50 mass% or less.
  • the fiber when the total amount of vinyl chloride resin A and vinyl chloride resin B is taken as 100 mass%, the fiber preferably contains 10 to 80 mass% vinyl chloride resin A and 20 to 90 mass% vinyl chloride resin B, more preferably contains 15 to 70 mass% vinyl chloride resin A and 30 to 85 mass% vinyl chloride resin B, still more preferably contains 20 to 60 mass% vinyl chloride resin A and 40 to 80 mass% vinyl chloride resin B, and particularly preferably contains 20 to 50 mass% vinyl chloride resin A and 50 to 80 mass% vinyl chloride resin B.
  • the vinyl chloride resin composition may contain a plasticizer within a range that enhances spinnability while suppressing a significant decrease in heat resistance.
  • a plasticizer any known plasticizer for vinyl chloride resins can be used as appropriate. Examples include trimellitic acid ester plasticizers, phthalic acid ester plasticizers, pyromellitic acid ester plasticizers, epoxy plasticizers, polyester plasticizers, and fatty acid ester plasticizers.
  • trimellitic acid ester plasticizer is not particularly limited, but examples thereof include trioctyl trimellitate, triisooctyl trimellitate, triisodecyl trimellitate, etc.
  • the phthalate ester plasticizer is not particularly limited, but examples include dibutyl phthalate, diisobutyl phthalate, dioctyl phthalate, diisooctyl phthalate, etc.
  • the pyromellitic acid-based plasticizer is not particularly limited, but examples include tetrabutyl pyromellitic acid and tetraoctyl pyromellitic acid.
  • the epoxy plasticizer is not particularly limited, but examples include epoxidized soybean oil, epoxidized linseed oil, and epoxidized tall oil fatty acid (2-ethylhexyl).
  • the polyester plasticizer is not particularly limited, but examples include adipic acid polyester plasticizers such as adipic acid (1,3-butanediol) (2-ethylhexanol) polyester and adipic acid (propylene glycol) (coconut oil fatty acid) polyester, and sebacic acid polyester plasticizers such as sebacic acid (1,6-hexanediol) (2-ethylhexanol) polyester.
  • adipic acid polyester plasticizers such as adipic acid (1,3-butanediol) (2-ethylhexanol) polyester and adipic acid (propylene glycol) (coconut oil fatty acid) polyester
  • sebacic acid polyester plasticizers such as sebacic acid (1,6-hexanediol) (2-ethylhexanol) polyester.
  • the fatty acid ester plasticizer is not particularly limited, but examples thereof include sebacate ester plasticizers such as dioctyl sebacate (DOS), azelaate ester plasticizers such as dioctyl azelaate (DOZ), and adipate ester plasticizers such as dioctyl adipate (DOA), diisodecyl adipate (DIDA), and diisononyl adipate (DINA).
  • DOS dioctyl sebacate
  • DOZ dioctyl azelaate
  • DOA dioctyl adipate
  • DIDA diisodecyl adipate
  • DINA diisononyl adipate
  • plasticizers may be used alone or in combination of two or more.
  • the plasticizer is preferably one or more selected from the group consisting of trimellitic acid ester plasticizers, phthalic acid ester plasticizers, pyromellitic acid plasticizers, epoxy plasticizers, and adipic acid polyester plasticizers, more preferably one or more selected from the group consisting of phthalic acid ester plasticizers and epoxy plasticizers, and even more preferably one or more selected from the group consisting of epoxidized soybean oil, diisononyl phthalate, and bis(2-ethylhexyl) phthalate.
  • the amount of the plasticizer is preferably 0.5 to 5 parts by mass, more preferably 0.6 to 4.5 parts by mass, even more preferably 0.7 to 4.2 parts by mass, even more preferably 1 to 4 parts by mass, and particularly preferably 1 to 3 parts by mass, per 100 parts by mass of the vinyl chloride resin (a total of 100 parts by mass of vinyl chloride resin A and vinyl chloride resin B).
  • the amount of plasticizer added is 0.1 parts by mass or more, the melt viscosity of the vinyl chloride resin composition is reduced, making it easier to reduce the pressure applied to the nozzle during spinning, and improving spinning stability.
  • the amount of plasticizer added is 8 parts by mass or less, the heat resistance is not significantly reduced and thermal shrinkage of the vinyl chloride fiber is suppressed.
  • the vinyl chloride resin composition may further contain a heat stabilizer for thermal stability.
  • a heat stabilizer for thermal stability.
  • the heat stabilizer is preferably one or more heat stabilizers selected from the group consisting of epoxy-based heat stabilizers, hydrotalcite-based heat stabilizers, tin-based heat stabilizers, Ca-Zn-based heat stabilizers, and ⁇ -diketone-based heat stabilizers.
  • epoxy-based heat stabilizer for example, one or more compounds selected from the group consisting of butyl glycidyl ether, phenyl glycidyl ether, glycidyl methacrylate, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and glycidyl acrylate, or homopolymers or copolymers thereof can be used.
  • polyglycidyl methacrylate (homopolymer of glycidyl methacrylate), copolymer of glycidyl methacrylate, tetrabromobisphenol A diglycidyl ether, hexahydrophthalic acid diglycidyl ester, hydrogenated bisphenol A diglycidyl ether, etc.
  • the hydrotalcite-based heat stabilizer is not particularly limited as long as it is a hydrotalcite compound. It may be a natural product or a synthetic product. For example, Alcamizer (registered trademark) manufactured by Kyowa Chemical Industry Co., Ltd. can be used.
  • the tin-based stabilizer is not particularly limited as long as it has a heat stabilizing effect.
  • mercaptotin-based heat stabilizers such as dimethyltin mercapto, dimethyltin mercaptide, dibutyltin mercapto, dioctyltin mercapto, dioctyltin mercapto polymer, and dioctyltin mercaptoacetate
  • maleatetin-based heat stabilizers such as dimethyltin maleate, dibutyltin maleate, dioctyltin maleate, and dioctyltin maleate polymer
  • lauratetin-based heat stabilizers such as dimethyltin laurate, dibutyltin laurate, and dioctyltin laurate can be used.
  • the Ca-Zn-based heat stabilizer is not particularly limited as long as it has a heat stabilizing effect.
  • zinc stearate, calcium stearate, zinc 12-hydroxystearate, calcium 12-hydroxystearate, etc. can be used.
  • the ⁇ -diketone-based heat stabilizer is not particularly limited as long as it has a heat stabilizing effect.
  • SBM stearoylbenzoylmethane
  • DBM dibenzoylmethane
  • the above heat stabilizers may be used alone or in combination of two or more.
  • the heat stabilizer is preferably one or more selected from the group consisting of polyglycidyl methacrylate, tetrabromobisphenol A diglycidyl ether, hydrotalcite, zinc 12-hydroxystearate, calcium 12-hydroxystearate, stearoylbenzoylmethane (SBM), and dibenzoylmethane (DBM).
  • the vinyl chloride resin composition preferably contains 0.1 to 30 parts by mass of a heat stabilizer per 100 parts by mass of vinyl chloride resin (100 parts by mass of vinyl chloride resin A and vinyl chloride resin B combined). More preferably, it contains 0.2 to 20 parts by mass, and even more preferably, it contains 0.5 to 10 parts by mass.
  • the heat stabilizer is 0.1 parts by mass or more, the coloring suppression effect is good.
  • the heat stabilizer is 30 parts by mass or less, the coloring suppression effect is good, transparency can be ensured, and the deterioration of the mechanical properties of the vinyl chloride fiber is minor.
  • the vinyl chloride resin composition may contain a lubricant, within the scope of the present invention, from the viewpoint of reducing heat generation due to friction and shear between the vinyl chloride resin and the processing machine, and improving fluidity and releasability.
  • a lubricant include fatty acid ester lubricants such as monoglyceride stearic acid and stearyl stearate, hydrocarbon lubricants such as liquid paraffin, paraffin wax, and synthetic polyethylene wax, fatty acid lubricants such as stearic acid, higher alcohol lubricants such as stearyl alcohol, aliphatic amide lubricants such as stearic acid amide, oleic acid amide, and erucic acid amide, alkylene fatty acid amide lubricants such as methylene bisstearic acid amide and ethylene bisstearic acid amide, metal soap lubricants such as lead stearate, zinc stearate, calcium stearate, and magnesium stea
  • the lubricant may be used alone or in combination of two or more.
  • the amount of the lubricant added may be 10 parts by mass or less, or may be 0.1 to 10 parts by mass, per 100 parts by mass of vinyl chloride resin (total of 100 parts by mass of vinyl chloride resin A and vinyl chloride resin B).
  • the vinyl chloride resin composition may contain a processing aid from the viewpoint of improving spinnability, within the scope of the present invention.
  • a processing aid from the viewpoint of improving spinnability, within the scope of the present invention.
  • known ones can be used.
  • acrylic processing aids mainly composed of methyl methacrylate, polyester processing aids mainly composed of thermoplastic polyester, etc. can be used.
  • the processing aids may be used alone or in combination of two or more.
  • the amount of the processing aid used is preferably about 0.2 to 12 parts by mass per 100 parts by mass of vinyl chloride resin (total of 100 parts by mass of vinyl chloride resin A and vinyl chloride resin B).
  • the vinyl chloride resin composition may contain, as necessary, known compounding agents used in vinyl chloride resin compositions, such as reinforcing agents, ultraviolet absorbers, antioxidants, antistatic agents, fillers, flame retardants, pigments, foaming agents, and crosslinking agents, within the scope of the present invention.
  • compounding agents used in vinyl chloride resin compositions, such as reinforcing agents, ultraviolet absorbers, antioxidants, antistatic agents, fillers, flame retardants, pigments, foaming agents, and crosslinking agents, within the scope of the present invention.
  • the vinyl chloride resin composition is not particularly limited, but can be used as a powder compound obtained by uniformly mixing or mixing and kneading a mixture of vinyl chloride resin A, vinyl chloride resin B, and, if necessary, a plasticizer, a heat stabilizer, a lubricant, a processing aid, and other additives using a mixer and/or a mixer/kneader or the like by a conventional method such as hot blending or cold blending, or as a pellet compound obtained by melt kneading the powder compound.
  • a mixer and/or mixer/kneader for example, a ribbon blender, a super mixer, a tumbler mixer, a Banbury mixer, a Henschel mixer, a mixing roll, etc. can be used.
  • any technique can be used as long as it does not impair the purpose of the present invention.
  • a method of blending vinyl chloride resin A, vinyl chloride resin B, and various additives all at once; a method of blending vinyl chloride resin A, vinyl chloride resin B, and various powdered additives first in order to blend the liquid additives uniformly, or a method of blending vinyl chloride resin A and vinyl chloride resin B first, blending liquid additives, and finally blending various powdered additives; and a method of blending various additives first, and then blending vinyl chloride resin A and vinyl chloride resin B.
  • Conditions such as temperature and time during the mixing operation are not particularly limited as long as a powder compound can be obtained.
  • the temperature is set in the range of 0 to 120°C during the mixing operation, and at the end of the mixing operation, the temperature may be cooled to a temperature 10°C or more lower than the glass transition temperature of the powder compound to prevent the powders from fusing to each other or to equipment such as piping during transfer.
  • the pellet compound can be produced by melt-kneading the powder compound.
  • the temperature during melt-kneading is equal to or higher than the glass transition temperature of the powder compound, and from the viewpoint of suppressing thermal decomposition of the polyvinyl chloride resin, is preferably 40 to 200°C, more preferably 80 to 185°C, and even more preferably 100 to 175°C.
  • melt-kneading there are no particular limitations, but kneading devices such as single-screw extruders, twin-screw extruders, and plastomills can be used.
  • the vinyl chloride resin composition (for example, a pellet compound) can be melt-spun to obtain a vinyl chloride fiber.
  • the vinyl chloride resin composition is melt-spun to form an undrawn yarn.
  • a molten mixture (pellet compound) of the vinyl chloride resin composition melt-kneaded in an extruder (for example, a single-screw extruder, a counter-rotating twin-screw extruder, or a conical twin-screw extruder) is discharged from a spinning nozzle of the extruder, and the extruded filament is passed through a heating cylinder for heat treatment, and then the extruded filament is taken up while being cooled by air cooling, wind cooling, or the like to form an undrawn yarn, which is then wound around a bobbin.
  • an extruder for example, a single-screw extruder, a counter-rotating twin-screw extruder, or a conical twin-screw extruder
  • the extruder is preferably operated, for example, in a temperature range of 120 to 200°C.
  • the ratio of the take-up speed/exhaust speed is not particularly limited, but it is preferable to take up at a speed ratio in the range of 1 to 100 times, and more preferably in the range of 5 to 50 times from the viewpoint of spinning stability.
  • the cross-sectional area of one nozzle hole of the spinning nozzle is preferably 0.2 mm 2 or less, more preferably 0.13 mm 2 or less, and even more preferably 0.06 mm 2 or less.
  • the lower limit of the cross-sectional area of one nozzle hole of the spinning nozzle is not particularly limited, but may be, for example, 0.008 mm 2 or more from the viewpoint of preventing nozzle clogging.
  • the cross-sectional shape of the nozzle hole may be, for example, circular or a non-circular irregular shape (such as an ellipse) as long as it matches the cross-sectional shape of the target fiber.
  • the temperature of the spinning nozzle is preferably 160 ° C or more, more preferably 170 ° C or more.
  • the temperature of the heating barrel is preferably 200 ° C or more, more preferably 230 ° C or more.
  • the cooling temperature is preferably -196 to 40°C, more preferably 0 to 30°C, for air cooling, and is preferably 5 to 60°C, more preferably 10 to 40°C for water cooling.
  • the vinyl chloride resin composition contains vinyl chloride resin A, which is a copolymer of vinyl chloride and a macromonomer, and therefore can be stably spun even when the undrawn yarn has a single fiber fineness of 60 dtex or less, and preferably can be stably spun even when the undrawn yarn has a single fiber fineness of 30 dtex or less.
  • vinyl chloride resin A which is a copolymer of vinyl chloride and a macromonomer, and therefore can be stably spun even when the undrawn yarn has a single fiber fineness of 60 dtex or less, and preferably can be stably spun even when the undrawn yarn has a single fiber fineness of 30 dtex or less.
  • the single fiber fineness of the undrawn yarn is preferably 10 to 30 dtex, and more preferably 20 to 30 dtex.
  • the undrawn yarn obtained above can be stretched by a known method, and if necessary, heat-relaxed to obtain a fine drawn yarn (fiber).
  • the single fiber fineness of the drawn yarn is not particularly limited, and is preferably 1 to 15 dtex, more preferably 2 to 5 dtex, from the viewpoint of suitable use as a clothing fiber.
  • the stretching conditions are a stretching temperature of 70 to 150°C in a dry heat atmosphere, and a stretch ratio of about 1.1 to 6 times, more preferably about 1.5 to 4.5 times.
  • the thermal shrinkage rate can be reduced by subjecting the drawn fiber to a heat-relaxing treatment, preferably at a relaxation rate of 1 to 50%, more preferably at a relaxation rate of 5 to 40%.
  • the fineness can also be controlled by washing the undrawn yarn or drawn yarn with water.
  • the polyvinyl chloride fiber preferably has a glass transition temperature of 90°C or higher, more preferably 91°C or higher, even more preferably 92°C or higher, even more preferably 93°C or higher, and particularly preferably 94°C or higher, as determined by dynamic mechanical analysis (DMA) in accordance with JIS K 0129:2005. If the glass transition temperature is within the above-mentioned range, shrinkage when heat is applied can be suppressed.
  • the upper limit of the glass transition temperature is not particularly limited, but may be, for example, 100°C or lower from the viewpoint of practical heat resistance.
  • the polyvinyl chloride fiber preferably has a tensile strength of 1.7 cN/dtex or more, more preferably 1.8 cN/dtex or more, even more preferably 1.9 cN/dtex or more, even more preferably 2.0 cN/dtex or more, and particularly preferably 2.1 cN/dtex or more.
  • tensile strength There is no particular upper limit to the tensile strength, but from the viewpoint of practical strength, it may be, for example, 2.5 cN/dtex or less.
  • the polyvinyl chloride fibers can be used as artificial hair for head accessories such as wigs and weaving, and can also be used in clothing and industrial materials such as filters.
  • Mass average molecular weight was measured using a Tosoh Corporation HLC-8320 type GPC system, a Tosoh Corporation polystyrene gel column TSKgel Super HM-N, and a column temperature of 40° C., by injecting a sample solution having a polymer concentration of 1 mg/mL.
  • thermoplastic resin flow test method specified in JIS K 7210-1:2014, Appendix C, a high-speed flow tester (Shimadzu Corporation, "CFT-500C type") was used to determine the resin flow value per second under conditions of a test temperature of 180°C, a die length of 1 mm, a die diameter of 1 mm, and a test load of 9.8 ⁇ 10 N, which was used as the method B flow value.
  • Viscosity Average Degree of Polymerization The K value was measured based on JIS K 7367-2:2002, and used as the viscosity average degree of polymerization.
  • the glass transition temperature was measured in accordance with JIS K 0129:2005 using a dynamic viscoelasticity measuring device (manufactured by Thermo Fisher Scientific, product name "HAAKE MARS40").
  • n-butyl acrylate (528 g) was continuously added dropwise over 90 minutes, and the mixture was further heated and stirred at 70°C for 80 minutes.
  • the reaction mixture was diluted with toluene, passed through an activated alumina column, and the volatile matter was distilled off under reduced pressure to obtain poly(n-butyl acrylate) with a Br group at one end.
  • a flask was charged with 800 mL of methanol and cooled to 0°C. Potassium t-butoxide (130 g) was added thereto in several portions. Next, while the flask was maintained at 0°C, 200 mL of a methanol solution (concentration: 0.5 g/mL) of acrylic acid (100 g) was added dropwise. Thereafter, the temperature of the reaction liquid was returned from 0°C to room temperature, and the volatile matter of the reaction liquid was distilled off under reduced pressure to obtain potassium acrylate (CH 2 ⁇ CHCO 2 K).
  • reaction solution was concentrated under reduced pressure at 80° C. for 1 hour.
  • 1100 g of the concentrated reaction solution was added with 1100 g of butyl acetate, 11 g of an adsorbent (Kyoward (registered trademark) 500, manufactured by Kyowa Chemical Industry Co., Ltd.), and 11 g of an adsorbent (Kyoward (registered trademark) 700, manufactured by Kyowa Chemical Industry Co., Ltd.), and stirred at 100° C. for 1 hour.
  • the resulting reaction solution was filtered.
  • the obtained slurry was dehydrated and dried in a hot air dryer at 60°C for 24 hours to obtain a graft copolymer of vinyl chloride and poly(n-butyl acrylate).
  • the obtained graft copolymer (vinyl chloride resin A1) was composed of 80% by mass of vinyl chloride and 20% by mass of poly(n-butyl acrylate), and the conversion rate of the macromonomer was 100%.
  • the trunk polymer consisting of vinyl chloride had a viscosity average degree of polymerization of 700
  • the branch polymer poly(n-butyl acrylate) had a viscosity average degree of polymerization of 90.
  • vinyl chloride resin A1 had a flow value according to Method B of 11 ⁇ 10 ⁇ 2 cm 3 /s.
  • the trunk polymer consisting of vinyl chloride had a viscosity average degree of polymerization of 700, and the branch polymer poly(n-butyl acrylate) had a viscosity average degree of polymerization of 22.
  • the flow value of the vinyl chloride resin A2 by Method B was 74 ⁇ 10 -2 cm 3 /s.
  • the trunk polymer consisting of vinyl chloride had a viscosity average degree of polymerization of 700, and the branch polymer poly(n-butyl acrylate) had a viscosity average degree of polymerization of 22.
  • the flow value of vinyl chloride resin A3 by method B was 22 ⁇ 10 ⁇ 2 cm 3 /s.
  • Vinyl chloride resin B1 was 80 parts by mass of vinyl chloride homopolymer (manufactured by Kaneka Corporation, product name "S-1008", viscosity average polymerization degree 800), 20 parts by mass of vinyl chloride resin A1 of Production Example 4, and vinyl chloride resin B2 was 1.4 parts by mass of a copolymer of vinyl chloride and ethylene-vinyl acetate (vinyl chloride 90% by mass, ethylene-vinyl acetate 10% by mass, viscosity average polymerization degree 1000), 0.9 parts by mass of a plasticizer (epoxidized soybean oil), and a thermostable agent.
  • vinyl chloride resin B1 was 80 parts by mass of vinyl chloride homopolymer (manufactured by Kaneka Corporation, product name "S-1008", viscosity average polymerization degree 800), 20 parts by mass of vinyl chloride resin A1 of Production Example 4, and vinyl chloride resin B2 was 1.4 parts by mass of a copolymer of vinyl chloride and ethylene-viny
  • ⁇ Spinning process> The compound obtained above was put into the hopper of a single-screw extruder, and the compound was extruded and melt-spun at a cylinder temperature of 160 ⁇ 30°C and a nozzle temperature of 180 ⁇ 15°C. The cross-sectional shape of the nozzle hole was circular.
  • the extruded filament was heat-treated for about 0.5 to 1.5 seconds in a heating cylinder (atmosphere of 300 ⁇ 50°C) provided directly below the nozzle, and the undrawn yarn after the heat treatment was wound on a bobbin by a take-up roll.
  • the spinnability of each of the undrawn yarns with single fiber finenesses of about 170 dtex, 60 dtex, and 30 dtex was evaluated. An attempt was made to obtain an undrawn yarn with a single fiber fineness of 30 dtex, but the spinnability was poor and it was not possible to wind it on a bobbin.
  • Example 2 A vinyl chloride resin composition (compound) was obtained in the same manner as in Example 1, except that the vinyl chloride resin A2 of Production Example 5 was used instead of the vinyl chloride resin A1 of Production Example 4.
  • ⁇ Spinning process> Except for using the compound obtained above, undrawn yarns were produced in the same manner as in Example 1. The spinnability of each of the undrawn yarns having single fiber finenesses of about 170 dtex, 60 dtex, and 30 dtex was evaluated.
  • ⁇ Stretching process> An undrawn yarn having a single fiber fineness of about 30 dtex was placed in an oven adjusted to 110 ⁇ 20° C. and drawn to about 3.5 times its original size. Next, a 25% relaxation treatment was continuously performed in an oven adjusted to 110 ⁇ 20° C., and the multifilament was wound up to obtain a vinyl chloride fiber having a single fiber fineness of about 10 dtex.
  • Example 3 A vinyl chloride resin composition (compound), an undrawn yarn, and a vinyl chloride fiber having a single fiber fineness of about 30 dtex were obtained in the same manner as in Example 2, except that 60 parts by mass of the vinyl chloride homopolymer and 40 parts by mass of the vinyl chloride resin A2 of Production Example 5 were used. In the spinning process, the spinnability of each of the undrawn yarns having single fiber finenesses of about 170 dtex, 60 dtex, and 30 dtex was evaluated.
  • Example 4 ⁇ Blending process> A vinyl chloride resin composition (compound) was obtained in the same manner as in Example 1, except that vinyl chloride resin A3 of Production Example 6 was used instead of vinyl chloride resin A1 of Production Example 4.
  • ⁇ Spinning process> Except for using the compound obtained above, undrawn yarns were produced in the same manner as in Example 1. The spinnability of each of the undrawn yarns having single fiber finenesses of about 170 dtex, 60 dtex, and 30 dtex was evaluated.
  • ⁇ Stretching process> An undrawn yarn having a single fiber fineness of about 30 dtex was placed in an oven adjusted to 110 ⁇ 20° C. and drawn to about 3.5 times its original size. Next, a 25% relaxation treatment was continuously performed in an oven adjusted to 110 ⁇ 20° C., and the multifilament was wound up to obtain a vinyl chloride fiber having a single fiber fineness of about 10 dtex.
  • Example 1 A vinyl chloride-based resin composition (compound) was obtained in the same manner as in Example 1, except that 100 parts by mass of a vinyl chloride homopolymer (manufactured by Kaneka Corporation, product name "S-1008", viscosity average polymerization degree 800) was used and no vinyl chloride-based resin A1 was used.
  • a vinyl chloride homopolymer manufactured by Kaneka Corporation, product name "S-1008", viscosity average polymerization degree 800
  • ⁇ Spinning process> Except for using the compound obtained above, undrawn yarns were produced in the same manner as in Example 1. The spinnability of each of the undrawn yarns having single fiber finenesses of about 170 dtex, 60 dtex, and 30 dtex was evaluated.
  • Examples 1 to 4 which used a vinyl chloride resin composition containing a vinyl chloride resin A, which is a copolymer of vinyl chloride and a macromonomer, undrawn yarns having a single fiber fineness of about 60 dtex or less could be obtained with good spinnability. Furthermore, the vinyl chloride fibers of Examples 1 to 4 had glass transition temperatures of 90° C. or more and good heat resistance.
  • Comparative Example 1 which used a vinyl chloride resin composition containing only vinyl chloride resin B and not vinyl chloride resin A, it was not possible to obtain undrawn yarns with a single fiber fineness of approximately 60 dtex or less.
  • Comparative Examples 2 and 3 which used vinyl chloride resin compositions containing no vinyl chloride resin A and increased amounts of plasticizer, it was possible to obtain undrawn yarns with a single fiber fineness of approximately 60 dtex or less, but the glass transition temperature was less than 65°C and the heat resistance was poor.
  • a vinyl chloride fiber comprising a vinyl chloride resin composition
  • the vinyl chloride resin composition contains a vinyl chloride resin A and a vinyl chloride resin B
  • the vinyl chloride-based fiber wherein the vinyl chloride-based resin A is a copolymer of vinyl chloride and a macromonomer, and the vinyl chloride-based resin B is a vinyl chloride-based resin other than the vinyl chloride-based resin A.
  • the vinyl chloride resin composition contains a vinyl chloride resin A and a vinyl chloride resin B,
  • the vinyl chloride resin A is a copolymer of vinyl chloride and a macromonomer
  • the vinyl chloride resin B is a vinyl chloride resin other than the vinyl chloride resin A.
  • the method for producing a polyvinyl chloride fiber according to [13] wherein the undrawn yarn has a single fiber fineness of 30 dtex or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、塩化ビニル系樹脂組成物を含む塩化ビニル系繊維であって、前記塩化ビニル系樹脂組成物は、塩化ビニル系樹脂A及び塩化ビニル系樹脂Bを含み、前記塩化ビニル系樹脂Aは、塩化ビニルとマクロモノマーの共重合体であり、前記塩化ビニル系樹脂Bは、塩化ビニル系樹脂A以外の塩化ビニル系樹脂である、塩化ビニル系繊維に関する。前記塩化ビニル系繊維の製造方法は、塩化ビニル系樹脂組成物を溶融紡糸して未延伸糸を得る工程を含む。

Description

塩化ビニル系繊維、及びその製造方法
 本発明は、塩化ビニル系繊維、及びその製造方法に関する。
 塩化ビニル系繊維は、一般的には、乾式紡糸や溶剤を用いた湿式紡糸にて細繊度の繊維を製造している。しかし、溶剤を用いた場合、脱溶剤工程が必要となり、その設備の維持や溶剤の回収にかかるコストが高い問題があった。
 一方、特許文献1には、かつら等に用いる人工毛髪用繊維として、可塑剤や熱安定剤を配合した塩化ビニル系樹脂を溶融紡糸して得られた塩化ビニル系繊維が記載されている。
国際公開2006/035863号
 しかし、特許文献1において、実施例で作製した塩化ビニル系繊維の未延伸糸の単繊維繊度は約170dtexであり、衣料用繊維等として用いるには細繊度化が求められている。可塑剤の配合量を増やして紡糸性を高めることで、塩化ビニル系繊維の細繊度化が可能になるが、耐熱性が低下するという問題があった。
 本発明は、前記従来の問題を解決するため、紡糸性に優れ、かつ耐熱性が良好である塩化ビニル系繊維及びその製造方法を提供する。
 本発明の1以上の実施形態は、塩化ビニル系樹脂組成物を含む塩化ビニル系繊維であって、前記塩化ビニル系樹脂組成物は、塩化ビニル系樹脂A及び塩化ビニル系樹脂Bを含み、前記塩化ビニル系樹脂Aは、塩化ビニルとマクロモノマーの共重合体であり、前記塩化ビニル系樹脂Bは、塩化ビニル系樹脂A以外の塩化ビニル系樹脂である、塩化ビニル系繊維に関する。
 本発明の1以上の実施形態は、前記塩化ビニル系繊維の製造方法であって、塩化ビニル系樹脂組成物を溶融紡糸して未延伸糸を得る工程を含み、前記塩化ビニル系樹脂組成物は、塩化ビニル系樹脂A及び塩化ビニル系樹脂Bを含み、前記塩化ビニル系樹脂Aは、塩化ビニルとマクロモノマーの共重合体であり、前記塩化ビニル系樹脂Bは、塩化ビニル系樹脂A以外の塩化ビニル系樹脂である、塩化ビニル系繊維の製造方法に関する。
 本発明によれば、紡糸性に優れ、耐熱性が良好である塩化ビニル系繊維を提供することができる。
 また、本発明によれば、耐熱性が良好である塩化ビニル系繊維を安定的に溶融紡糸で作製することができる。
 本発明の発明者は、塩化ビニル系繊維の耐熱性の低下を抑制するとともに、溶融紡糸における紡糸安定性を高めることについて検討を重ねた。その結果、塩化ビニルとマクロモノマーの共重合体である塩化ビニル系樹脂Aを、その他の塩化ビニル系樹脂である塩化ビニル系樹脂B(マクロモノマーを含有しない)と併用することで、溶融紡糸の紡糸安定性が向上し、耐熱性が良好であり、繊度が細い塩化ビニル系繊維が得られることを見出した。特に、驚くことに、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有し、質量平均分子量(重量平均分子量とも称される。)が1000~10000のマクロモノマーを用いることで、耐熱性を抑制しつつ、溶融紡糸の紡糸安定性が格段に向上し、細い繊度、好適には未延伸糸の繊度が30dtex以下の塩化ビニル系繊維が得られることを見出した。ソフト成分であり、熱流動の起点となるマクロモノマーの質量平均分子量を1000~10000の範囲にすることで、塩化ビニルとマクロモノマーの共重合体の流動性が高まり、該共重合体を含む塩化ビニル系樹脂組成物を溶融紡糸で細い未延伸糸として紡糸することができたと推測される。
 本明細書において、塩化ビニル系樹脂は、塩化ビニルを主成分とする重合体であり、塩化ビニルを50質量%以上含む。以下において、特に指摘がない場合は、「塩化ビニル」はモノマーを意味する。
 本明細書において、数値範囲が「~」で示されている場合、該数値範囲は両端値(上限及び下限)を含む。例えば、「X~Y」という数値範囲は、X及びYという両端値を含む範囲となる。また、本明細書において、数値範囲が複数記載されている場合、異なる数値範囲の上限及び下限を適宜組み合わせた数値範囲を含むものとする。また、本明細書において、数値範囲の上限と下限が別々に複数記載されている場合、上限及び下限を適宜組み合わせた数値範囲を含むものとする。
 (塩化ビニル系樹脂A)
 塩化ビニル系樹脂Aは、塩化ビニルとマクロモノマーの共重合体である。塩化ビニル系樹脂Aは、特に限定されないが、例えば、重合安定性及び塩化ビニル系樹脂Bとの混合性の観点から、塩化ビニルを50~99質量%、及びマクロモノマーを1~50質量%含むことが好ましく、塩化ビニルを60~97質量%、及びマクロモノマーを3~40質量%含むことがより好ましく、塩化ビニルを70~95質量%、及びマクロモノマーを5~30質量%含むことがさらに好ましい。
 塩化ビニル系樹脂Aは、塩化ビニルとマクロモノマーに加えて、本願発明の効果を阻害しない範囲内で、これらと共重合可能な他のモノマー、例えば塩化ビニリデン、酢酸ビニルモノマー、及び重合後に反応性官能基を有しないα-オレフィン化合物(例えば、エチレン、プロピレン等)を含んでもよい。塩化ビニル系樹脂Aは、他のモノマーを20質量%以下含んでもよく、10質量%以下含んでもよく、5質量%以下含んでもよい。
 一般にマクロモノマーとは、重合体の末端に反応性官能基(重合可能な官能基とも称される。)を有するオリゴマー分子を意味する。本発明の1以上の実施形態において、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを好適に用いることができる。
 本発明の1以上の好ましい実施形態において、マクロモノマーは、質量平均分子量(Mw)が1000~10000であることが好ましく、1500~9500であることがより好ましく、2000~9000であることがさらに好ましく、2500~8000であることが特に好ましい。マクロモノマーのMwが上述した範囲内であると、塩化ビニルとの重合安定性に優れるとともに、塩化ビニル系樹脂Aの流動性が向上しやすく、塩化ビニル系樹脂Aを含む塩化ビニル系繊維の未延伸糸の繊度が細くなりやすい。本明細書において、マクロモノマーのMwは、ゲルパーミエーションクロマトグラフィー(GPC法とも称される。)で、ポリスチレンを標準ポリマーとし、クロロホルムを移動相(溶離液)として測定した値である。例えば、東ソー社製HLC-8320型GPCシステムを用いて、クロロホルムを移動相とし、東ソー社製のポリスチレンゲルカラムTSKgel SuperHM-Nを使用し、カラム温度40℃の条件下にて、ポリマー濃度が1mg/mLである試料溶液を注入することで測定することができる。
 前記マクロモノマーの主鎖重合体を構成するエチレン性不飽和モノマーとしては、各種のものを使用することができる。例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル系モノマー、スチレン系モノマー、ニトリル基含有ビニル系モノマー、アミド基含有ビニル系モノマー、フッ素含有ビニルモノマー、ケイ素含有ビニルモノマー、マレイミド系モノマー、ビニルエステル類、アルケン類、及び共役ジエン類等が挙げられる。また、無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;塩化アリル、並びにアリルアルコール等を用いることもできる。本明細書において、(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を意味する。
 前記(メタ)アクリル酸エステル系モノマーとしては、例えば、(メタ)アクリル酸脂肪族炭化水素(例えば炭素数が1~18のアルキル)エステル、(メタ)アクリル酸脂環式炭化水素エステル、(メタ)アクリル酸芳香族炭化水素エステル、(メタ)アクリル酸アラルキルエステル等が挙げられる。(メタ)アクリル酸脂肪族炭化水素エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、及び(メタ)アクリル酸ステアリル等が挙げられる。(メタ)アクリル酸脂環式炭化水素エステルとしては、例えば、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル等が挙げられる。(メタ)アクリル酸芳香族炭化水素エステルとしては、例えば、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル等が挙げられる。(メタ)アクリル酸アラルキルエステルとしては、例えば、(メタ)アクリル酸ベンジル等が挙げられる。
 前記(メタ)アクリル酸エステル系モノマーとしては、例えば、エステル部分にヘテロ原子を有する(メタ)アクリル酸エステル系モノマーを用いてもよい。ヘテロ原子としては、特に限定されず、例えば、酸素(O)、フッ素(F)、及び窒素(N)等が挙げられる。前記エステル部分にヘテロ原子を有する(メタ)アクリル酸エステル系モノマーとしては、具体的には、例えば、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル、及び(メタ)アクリル酸2,2,2-トリフルオロエチル等が挙げられる。
 前記スチレン系モノマーとしては、例えば、スチレン、ビニルトルエン、α-メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等が挙げられる。前記ニトリル基含有ビニル系モノマーとしては、例えば、アクリロニトリル、及びメタクリロニトリル等が挙げられる。前記アミド基含有ビニル系モノマーとしては、例えば、アクリルアミド、及びメタクリルアミド等が挙げられる。前記フッ素含有ビニルモノマーとしては、例えば、パーフルオロエチレン、パーフルオロピレン、及びフッ化ビニリデン等が挙げられる。前記ケイ素含有ビニルモノマーとしては、例えば、ビニルトリメトキシシラン、及びビニルトリエトキシシラン等が挙げられる。前記マレイミド系モノマーとしては、例えば、マレイミド、メチルマレイミド、エチルマレイミド、ブチルマレイミド、フェニルマレイミド、及びシクロヘキシルマレイミド等が挙げられる。前記ビニルエステル類としては、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、及び桂皮酸ビニル等が挙げられる。前記アルケン類としては、例えば、エチレン、及びプロピレン等が挙げられる。前記共役ジエン類としては、例えば、ブタジエン、及びイソプレン等が挙げられる。
 前記エチレン性不飽和モノマーとしては、塩化ビニル系樹脂Aの曳糸性等の溶融加工性及び物性等の観点から、(メタ)アクリル酸エステル系モノマー、スチレン系モノマー、ニトリル基含有ビニル系モノマー及びアミド基含有ビニル系モノマーからなる群から選ばれる1種以上が好ましい。より好ましくは(メタ)アクリル酸エステル系モノマー及びニトリル基含有ビニル系モノマーからなる群から選ばれる1種以上であり、さらに好ましくはアクリル酸系エステル系モノマーである。
 上述したエチレン性不飽和モノマーは、1種を単独で使用しても良いし、2種以上を共重合させても構わない。
 前記マクロモノマーは、反応性官能基を少なくとも1分子あたり1個、分子末端に有する。例えば、前記マクロモノマーは、分子の両末端に反応性官能基を有してもよいが、塩化ビニル系樹脂Aの流動性を高める優れる観点から、分子の片末端に反応性官能基を有することが好ましい。前記反応性官能基としては、例えば、アリル基、ビニルシリル基、ビニルエーテル基、ジシクロペンタジエニル基、及び下記一般式(1)で表される重合性の炭素-炭素二重結合を有する基からなる群から選ばれる官能基等が挙げられる。塩化ビニルとの反応性に優れる観点から、反応性官能基は下記一般式(1)で表される重合性の炭素-炭素二重結合を有する官能基であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 前記一般式(1)中、R1及びR2は、同じでもよく、異なってもよく、それぞれ独立して、水素又は炭素数1~20の有機基を表す。有機基は、炭素数1~20のアルキル基でもよく、アルキル基は置換されてもよい。R1及びR2の具体例としては特に限定されず、例えば、-H、-CH3、-(CH2nCH3(nは1~19の整数を表す)、-C65、-CH2OH、及び-CNからなる群から選ばれる基が好ましく、より好ましくは-H、及び-CH3からなる群から選ばれる基である。塩化ビニル系樹脂Aの流動性を高めることで、塩化ビニル系樹脂Aを含む塩化ビニル系樹脂組成物の紡糸安定性を高め、塩化ビニル系繊維の未延伸糸の繊度を細くしやすい観点から、反応性官能基は、前記一般式(1)において、R1及びR2のいずれも水素であるアクリロイル基又はR1が-CH3であり、及びR2が水素であるクロトン酸基であることが好ましく、アクリロイル基であることがより好ましい。
 前記マクロモノマーの製法として、特に限定されず、従来公知の製法、例えばラジカル重合法を用いることができる。例えば、特開2006-299240号公報等に記載のような一般的なラジカル重合法や制御ラジカル重合法等の公知の方法が挙げられ、いずれの製造方法を用いても良いが、通常、制御ラジカル重合法が利用され、さらに制御の容易さ等からリビングラジカル重合法が好ましく用いられ、原子移動ラジカル重合法が特に好ましい。例えば、原子移動ラジカル重合法では、有機ハロゲン化物あるいはハロゲン化スルホニル化合物等を重合開始剤、遷移金属錯体を重合触媒として用いてもよく、具体的には、特開2005-232209号公報に記載の方法等を用いてもよい。原子移動ラジカル重合法で得られた末端にハロゲン基を有する重合体に、例えば、特開2005-232209号公報に記載の方法で、反応性官能基を導入することで、マクロモノマーを得ることができる。エチレン性不飽和モノマーや重合開始剤の仕込み比によって、マクロモノマーの分子量を調整することができる。例えば、重合開始剤に対するモノマーの比(モノマー/重合開始剤)を小さくすることで、マクロモノマーの分子量を低くすることができる。
 本発明の1以上の実施形態では、塩化ビニルにマクロモノマーを共重合させてグラフト共重合体にし、該グラフト共重合体(塩化ビニル系樹脂A)を含む塩化ビニル系樹脂組成物を溶融紡糸することで、得られた塩化ビニル系繊維のガラス転移温度が低下せず、耐熱性を保持することができる。
 本発明の1以上の実施形態において、塩化ビニルとマクロモノマーの共重合体の製造方法は特に限定されないが、重合制御の簡便性、重合後のポリマー粒子の分離や洗浄が容易な点から水性媒体中での共重合が好ましい。水性媒体中での重合方法としては、例えば、懸濁重合法、微細懸濁重合法、及び乳化重合法等が挙げられる。中でも重合安定性の観点から、懸濁重合法又は微細懸濁重合法が好ましく、繊維の初期着色を抑制する観点から、懸濁重合法がより好ましい。
 前記懸濁重合法又は微細懸濁重合法では、モノマー(塩化ビニル、マクロモノマー、及び他のモノマー)、懸濁分散剤、重合開始剤及び連鎖移動剤等を必要に応じて一括あるいは分割又は連続して仕込み、所定の重合温度、例えば、25~90℃で、好ましくは40~70℃で共重合反応を行うことができる。
 前記懸濁分散剤としては、本発明の目的を損なわない範囲のものであれば、特に限定されずに使用することができる。そのような懸濁分散剤としては、例えば、部分鹸化ポリ酢酸ビニル;メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、及びカルボキシメチルセルロース等の水溶性セルロースエーテル;ポリエチレンオキサイド;ポリビニルピロリドン;ポリアクリル酸;酢酸ビニル-マレイン酸共重合体;スチレン-マレイン酸共重合体;ゼラチン;並びにデンプン等の有機高分子分散剤が使用可能である。これらは1種を単独で用いても良く、2種以上を組み合わせて使用することもできる。前記懸濁分散剤は、例えば、モノマー合計量100質量部に対して、0.01~0.1質量部用いてもよい。
 前記重合開始剤としては、特に限定されず、本発明の目的を損なわない範囲の油溶性重合開始剤を添加すれば良いが、これらの開始剤のうち10時間半減期温度が30~65℃のものを使用するのが好ましい。このような油溶性重合開始剤としては、例えば、ジイソブチルパーオキサイド、クミルパーオキシネオデカノエート、ジイソプロピルパーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、t-ブチルパーオキシピバレート、t-ブチルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジラウロイルパーオキサイド、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド等の有機過酸化物系重合開始剤;2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2'-アゾビス-(2,4-ジメチルバレロニトリル)等のアゾ系重合開始剤が挙げられる。これらの油溶性重合開始剤は1種を単独で用いても良く、2種以上を組み合わせて使用することもできる。前記重合開始剤は、例えば、モノマー合計量100質量部に対して、0.01~1質量部用いてもよい。
 前記油溶性重合開始剤は特に制約のない状態で添加することができるが、例えば有機溶剤に溶解して使用する場合には、その有機溶剤の例としては、トルエン、キシレン、及びベンゼン等の芳香族炭化水素;ヘキサン、及びイソパラフィン等の脂肪族炭化水素;アセトン、及びメチルエチルケトン等のケトン類;酢酸エチル、酢酸ブチル、及びジオクチルフタレ-ト等のエステル類が挙げられる。これらの有機溶剤は1種を単独で用いても良く、2種以上を組み合わせて使用することもできる。
 前記連鎖移動剤としては、特に限定されず、本発明の目的を損なわない範囲のものを用いることができる。そのような連鎖移動剤としては、例えば、主鎖の炭素数が2~12のアルキルメルカプタン、及びメルカプトアルコール等を好適に例示できる。主鎖の炭素数が2~12のアルキルメルカプタンとしては、例えば、n-オクチルメルカプタン(1-オクタンチオールとも称される。)、t-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、及び2-エチルヘキシルチオグリコール等が例示され、メルカプトアルコールとしては、例えば、2-メルカプトエタノール等が挙げられる。
 前記懸濁重合法又は微細懸濁重合法では、本発明の目的を損なわない範囲において、必要に応じて、界面活性剤、分散助剤、抗酸化剤、重合度調節剤、粒子径調節剤、pH調節剤、ゲル化性改良剤、帯電防止剤、安定剤、及びスケール防止剤等を適宜に使用することができる。
 懸濁重合又は微細懸濁重合によれば、塩化ビニルとマクロモノマーの共重合体はラテックス状又はスラリー状で得られるが、これを乾燥して粉粒体の共重合樹脂を得る方法としては特に制約はなく、ラテックス又はスラリーを脱水したのち熱風乾燥機等で乾燥する方法等が挙げられる。
 塩化ビニル系樹脂Aは、特に限定されないが、例えば、加工性と実用物性のバランスの観点から、塩化ビニル及び他のモノマーを含む幹ポリマーの粘度平均重合度が500~900であることが好ましく、より好ましくは550~850であり、さらに好ましくは600~750である。また、塩化ビニル系樹脂Aは、特に限定されないが、例えば、加工性と実用物性のバランスの観点から、マクロモノマーからなる枝ポリマーの粘度平均重合度が20~95であることが好ましく、20~75であることがより好ましく、さらに好ましくは20~55であり、さらにより好ましくは20~35である。塩化ビニル系樹脂Aの粘度平均重合度は、JIS K 7367-2:2002に準拠した測定したK値を意味する。
 塩化ビニル系樹脂Aは、塩化ビニル系樹脂組成物の流動性を高めて溶融紡糸性をより向上する観点から、JIS K 7210-1:2014附属書Cに規定の熱可塑性樹脂の流れ試験方法に準じて高化式フローテスタを用い、180℃、98Nの条件下で測定したB法フロー値が15×10-2cm3/s以上であることが好ましく、20×10-2cm3/s以上であることがより好ましく、30×10-2cm3/s以上であることがさらに好ましく、40×10-2cm3/s以上であることがさらにより好ましく、50×10-2cm3/s以上であることがさらにより好ましく、60×10-2cm3/s以上であることが特に好ましい。また、塩化ビニル系樹脂AのB法フロー値の上限は、特に限定されないが、例えば、低溶融粘度による溶融紡糸性の悪化を防止する観点から、100×10-2cm3/s以下であってもよく、90×10-2cm3/s以下であってもよい。
 (塩化ビニル系樹脂B)
 塩化ビニル系樹脂Bとしては、塩化ビニル系樹脂A以外の塩化ビニル系樹脂(マクロモノマーを含有しない塩化ビニル系樹脂)を適宜用いることができる。塩化ビニル系樹脂Bとしては、例えば、従来公知の塩化ビニル単独重合体、及び塩化ビニルと他のモノマー(コモノマー)との塩化ビニル共重合体等を適宜用いることができる。前記塩化ビニル共重合体において、コモノマーとしては、塩化ビニルと共重合可能なものであればよく、特に限定されず、例えば、酢酸ビニル及びプロピオン酸ビニル等のビニルエステル化合物、アクリル酸ブチル及びアクリル酸2-エチルヘキシル等のアクリル酸エステル化合物、エチレン及びプロピレン等のα-オレフィン、並びにアクリロニトル等が代表的に挙げられる。前記塩化ビニル共重合体において、コモノマーの含有量は特に限定されないが、紡糸安定性や糸特性等の観点から、コモノマーの含有量は、2~30質量%であることが好ましい。より具体的には、塩化ビニル共重合体は、例えば、塩化ビニルを70~98質量%、及びコモノマーを2~30質量%含んでもよく、塩化ビニルを75~95質量%、及びコモノマーを5~25質量%含んでもよく、塩化ビニルを80~95質量%、及びコモノマーを5~20質量%含んでもよい。
 塩化ビニル系樹脂Bは、耐熱性の観点から、塩化ビニル単独重合体を含むことが好ましい。また、紡糸性の観点から、塩化ビニル単独重合体に加えて、塩化ビニル-エチレン共重合体及び塩化ビニル-酢酸ビニル共重合体からなる群から選ばれる1以上を含むことが好ましく、紡糸性の観点から、塩化ビニル単独重合体及び塩化ビニル-酢酸ビニル共重合体を併用することがより好ましい。塩化ビニル単独重合体及び塩化ビニル-酢酸ビニル共重合体を併用する場合、紡糸性の観点から、塩化ビニル系樹脂Bは、塩化ビニル単独重合体100質量部に対し、塩化ビニル-酢酸ビニル共重合体を0.5~20質量部含むことが好ましく、より好ましくは1~10質量部含み、さらに好ましくは2~5質量部である。
 塩化ビニル系樹脂Bは、紡糸性の観点から、粘度平均重合度が400~1700であることが好ましい。塩化ビニル系樹脂Bが塩化ビニル単独重合体の場合、粘度平均重合度が600~1300であることが好ましく、より好ましくは800~1200であり、さらに好ましくは800~1000である。塩化ビニル系樹脂Bが塩化ビニルとコモノマーとの共重合体である場合、粘度平均重合度が400~1500であることが好ましく、より好ましくは600~1300であり、さらに好ましくは800~1200である。
 塩化ビニル系樹脂Bは、乳化重合、塊状重合及び懸濁重合等のいずれの重合方法で製造したものを用いてもよいが、繊維の初期着色を抑制する観点から、懸濁重合で製造したものが好ましい。
 (塩化ビニル系樹脂組成物)
 塩化ビニル系樹脂組成物は、塩化ビニル系樹脂として塩化ビニル系樹脂A及び塩化ビニル系樹脂Bを含む。塩化ビニル系樹脂A及び塩化ビニル系樹脂Bの合計量を100質量%とした場合、細い繊度の塩化ビニル系繊維を得やすい観点から、塩化ビニル系樹脂Aを10質量%以上含むことが好ましく、より好ましくは15質量%以上含み、さらに好ましくは20質量%以上含む。また、塩化ビニル系樹脂A及び塩化ビニル系樹脂Bの合計量を100質量%とした場合、耐熱性の低減を抑制しやすい観点から、塩化ビニル系樹脂Aを80質量%以下含むことが好ましく、より好ましくは70質量%以下含み、さらに好ましくは60質量%以下含み、特に好ましくは50質量%以下含む。細繊度及び耐熱性の両立を向上する観点から、より具体的には、塩化ビニル系樹脂A及び塩化ビニル系樹脂Bの合計量を100質量%とした場合、塩化ビニル系樹脂Aを10~80質量%、及び塩化ビニル系樹脂Bを20~90質量%含むことが好ましく、塩化ビニル系樹脂Aを15~70質量%、及び塩化ビニル系樹脂Bを30~85質量%含むことがより好ましく、塩化ビニル系樹脂Aを20~60質量%、及び塩化ビニル系樹脂Bを40~80質量%含むことがさらに好ましく、塩化ビニル系樹脂Aを20~50質量%、及び塩化ビニル系樹脂Bを50~80質量%含むことが特に好ましい。
 塩化ビニル系樹脂組成物は、紡糸性を高めつつ耐熱性の格段の低下を抑制する範囲内で、可塑剤を含んでもよい。前記可塑剤としては、公知の塩化ビニル系樹脂用可塑剤を適宜用いることができる。例えば、トリメリット酸エステル系可塑剤、フタル酸エステル系可塑剤、ピロメリット酸エステル系可塑剤、エポキシ系可塑剤、ポリエステル系可塑剤、脂肪酸エステル系可塑剤等が挙げられる。
 前記トリメリット酸エステル系可塑剤としては、特に限定されないが、例えば、トリメリット酸トリオクチル、トリメリット酸トリイソオクチル、トリメリット酸トリイソデシル、等が挙げられる。
 前記フタル酸エステル系可塑剤としては、特に限定されないが、例えば、フタル酸ジブチル、フタル酸ジイソブチル、フタル酸ジオクチル、フタル酸ジイソオクチル、等が挙げられる。
 前記ピロメリット酸系可塑剤としては、特に限定されないが、例えば、ピロメリット酸テトラブチル、及びピロメリット酸テトラオクチル等が挙げられる。
 前記エポキシ系可塑剤としては、特に限定されないが、例えば、エポキシ化大豆油、エポキシ化アマニ油、及びエポキシ化トール油脂肪酸(2-エチルヘキシル)等が挙げられる。
 前記ポリエステル系可塑剤としては、特に限定されないが、例えば、アジピン酸(1,3-ブタンジオール)(2-エチルヘキサノール)系ポリエステル、及びアジピン酸(プロピレングリコール)(椰子油脂肪酸)系ポリエステル等のアジピン酸系ポリエステル系可塑剤、セバシン酸(1,6-ヘキサンジオール)(2-エチルヘキサノール)系ポリエステル等のセバシン酸ポリエステル系可塑剤が挙げられる。
 前記脂肪酸エステル系可塑剤としては、特に限定されないが、例えば、セバシン酸ジオクチル(DOS)等のセバシン酸エステル系可塑剤、アゼライン酸ジオクチル(DOZ)等のアゼライン酸エステル系可塑剤、アジピン酸ジオクチル(DOA)、アジピン酸ジイソデシル(DIDA)及びアジピン酸ジイソノニル(DINA)等のアジピン酸エステル系可塑剤等があげられる。
 上述した可塑剤は、1種を単独で用いても良く、2種以上を組合せて使用してもよい。
 前記可塑剤は、溶融紡糸性及び耐熱性の観点から、トリメリット酸エステル系可塑剤、フタル酸エステル系可塑剤、ピロメリット酸系可塑剤、エポキシ系可塑剤、及びアジピン酸ポリエステル系可塑剤からなる群から選ばれる1以上が好ましく、より好ましくはフタル酸エステル系可塑剤及びエポキシ系可塑剤からなる群から選ばれる1種以上であり、さらに好ましくはエポキシ化大豆油、フタル酸ジイソノニル、フタル酸ビス(2-エチルヘキシル)からなる群から選ばれる1以上である。
 前記可塑剤は、塩化ビニル系樹脂100質量部(塩化ビニル系樹脂A及び塩化ビニル系樹脂Bの合計100質量部)に対して、0.5~5質量部が好ましく、0.6~4.5質量部がより好ましく、0.7~4.2質量部がさらに好ましく、1~4質量部がよりさらに好ましく、1~3質量部が特に好ましい。可塑剤の添加量が0.1質量部以上であると、塩化ビニル系樹脂組成物の溶融粘度を低減し、紡糸時のノズルに係る圧力を低減しやすく、紡糸安定性が高まる。また、可塑剤の添加量が8質量部以下であると、耐熱性が格段に低下せず、塩化ビニル系繊維の熱収縮が抑制される。
 前記塩化ビニル系樹脂組成物は、さらに、熱安定性のため、熱安定剤を含んでもよい。前記熱安定剤としては、熱安定性を付与するものであればよく、特に限定されない。前熱記安定剤は、溶融加工性を向上しつつ、着色を抑制し、透明性を確保する観点から、エポキシ系熱安定剤、ハイドロタルサイト系熱安定剤、錫系熱安定剤、Ca-Zn系熱安定剤、及びβ-ジケトン系熱安定剤からなる群から選択される1以上の熱安定剤であることが好ましい。
 前記エポキシ系熱安定剤としては、例えば、ブチルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルメタクリレート、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、及びグリシジルアクリレートからなる群から選ばれる1種以上の化合物、それらの単独重合体又は共重合体等を用いることができる。中でも、着色抑制及び透明性の観点から、ポリグリシジルメタクリレート(グリシジルメタクリレートの単独重合体)、グリシジルメタクリレートの共重合体、テトラブロモビスフェノールAジグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル、及び水添ビスフェノールAジグリシジルエーテル等を用いることが好ましい。
 前記ハイドロタルサイト系熱安定剤は、ハイドロタルサイト化合物であればよく、特に限定されない。天然物であってもよく、合成品であってもよい。例えば、協和化学工業株式会社製のアルカマイザー(登録商標)等を用いることができる。
 前記錫系安定剤は、熱安定効果があるものであればよく、特に限定されない。例えば、ジメチル錫メルカプト、ジメチル錫メルカプタイド、ジブチル錫メルカプト、ジオクチル錫メルカプト、ジオクチル錫メルカプトポリマー、及びジオクチル錫メルカプトアセテート等のメルカプト錫系熱安定剤、ジメチル錫マレエート、ジブチル錫マレエート、ジオクチル錫マレエート、及びジオクチル錫マレエートポリマー等のマレエート錫系熱安定剤、ジメチル錫ラウレート、ジブチル錫ラウレート、及びジオクチル錫ラウレート等のラウレート錫系熱安定剤等を用いることができる。
 前記Ca-Zn系熱安定剤は、熱安定効果があるものであればよく、特に限定されない。例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、12-ヒドロキシステアリン酸亜鉛、及び12-ヒドロキシステアリン酸カルシウム等を用いることができる。
 前記β-ジケトン系熱安定剤は、熱安定効果があるものであればよく、特に限定されない。例えば、ステアロイルベンゾイルメタン(SBM)、及びジベンゾイルメタン(DBM)等を用いることができる。
 前記熱安定剤は、1種を単独で用いても良く、2種以上を組み合わせて用いても良い。
 前記熱安定剤は、溶融加工性を向上しつつ、着色を抑制し、透明性を確保する観点から、ポリグリシジルメタクリレート、テトラブロモビスフェノールAジグリシジルエーテル、ハイドロタルサイト、12-ヒドロキシステアリン酸亜鉛、12-ヒドロキシステアリン酸カルシウム、ステアロイルベンゾイルメタン(SBM)、及びジベンゾイルメタン(DBM)からなる群から選択される1以上であることが好ましい。
 前記塩化ビニル系樹脂組成物は、塩化ビニル系樹脂100質量部(塩化ビニル系樹脂A及び塩化ビニル系樹脂Bの合計100質量部)に対して、熱安定剤を0.1~30質量部含むことが好ましく、より好ましくは0.2~20質量部含み、さらに好ましくは0.5~10質量部含む。熱安定剤が0.1質量部以上であると、着色抑制効果が良好である。また、熱安定剤が30質量部以下であると、着色抑制効果が良好であるとともに、透明性を確保でき、且つ塩化ビニル系繊維の力学特性の低下が軽微となる。
 前記塩化ビニル系樹脂組成物は、本発明の目的を損なわない範囲内で、塩化ビニル系樹脂と加工機との摩擦、剪断による発熱の低減、流動性及び離型性の向上の観点から、滑剤を含んでもよい。前記滑剤としては、例えば、ステアリン酸モノグリセライド、及びステアリルステアレート等の脂肪酸エステル系滑剤、流動パラフィン、パラフィンワックス、及び合成ポリエチレンワックス等の炭化水素系滑剤、ステアリン酸等の脂肪酸系滑剤、ステアリルアルコール等の高級アルコール系滑剤、ステアリン酸アミド、オレイン酸アミド、及びエルカ酸アミド等の脂肪族アミド系滑剤、メチレンビスステアリン酸アミド、及びエチレンビスステアリン酸アミド等のアルキレン脂肪酸アミド系滑剤、ステアリン酸鉛、ステアリン酸亜鉛、ステアリン酸カルシウム、及びステアリン酸マグネシウム等の金属石鹸系滑剤等を用いることができる。前記滑剤は、1種で用いてもよく、2種以上を組み合わせて用いてもよい。前記滑剤の添加量は、塩化ビニル系樹脂100質量部(塩化ビニル系樹脂A及び塩化ビニル系樹脂Bの合計100質量部)に対して、10質量部以下でもよく、0.1~10質量部でもよい。
 前記塩化ビニル系樹脂組成物は、本発明の目的を損なわない範囲内で、曳糸性を高める観点から、加工助剤を含んでもよい。前記加工助剤としては、公知のものを使用できる。例えば、メチルメタクリレートを主成分とするアクリル系加工助剤、及び熱可塑性ポリエステルを主成分とするポエステル系加工助剤等を使用できる。前記加工助剤は、1種で用いてもよく、2種以上を組み合わせて用いてもよい。前記加工助剤の使用量としては、塩化ビニル系樹脂100質量部(塩化ビニル系樹脂A及び塩化ビニル系樹脂Bの合計100質量部)に対して、0.2~12質量部程度が好ましい。
 前記塩化ビニル系樹脂組成物は、本発明の目的を損なわない範囲内で、必要に応じて、塩化ビニル系樹脂組成物に使用される公知の配合剤、例えば、強化剤、紫外線吸収剤、酸化防止剤、帯電防止剤、充填剤、難燃剤、顔料、発泡剤、及び架橋剤等を含んでもよい。
 前記塩化ビニル系樹脂組成物は、特に限定されるものではないが、塩化ビニル系樹脂A、塩化ビニル系樹脂B、及び必要に応じて可塑剤、熱安定剤、滑剤、加工助剤及びその他の添加剤を配合したものを、混合機及び/又は混合混練機等を用いて、ホットブレンド又はコールドブレンド等の常法によって均一に混合又は混合混練する等の方法で得られるパウダーコンパウンド又はパウダーコンパウンドを溶融混練して得られるペレットコンパウンドとして用いることができる。混合機及び/又は混合混練機としては、例えばリボンブレンダー、スーパーミキサー、タンブラーミキサー、バンバリーミキサー、ヘンシェルミキサー、及びミキシングロール等を用いることができる。
 パウダーコンパウンド作製時の配合順序等に特に限定はなく、本発明の目的を損なわない範囲の技術を任意に用いることができる。例えば塩化ビニル系樹脂A、塩化ビニル系樹脂B及び各種添加剤を一括して配合する方法;液状の添加剤を均一に配合する目的で先に塩化ビニル系樹脂A、塩化ビニル系樹脂B及び粉粒体の各種添加剤を配合したのち液状添加剤を配合する方法又は先に塩化ビニル系樹脂A、塩化ビニル系樹脂Bを配合したのち液状添加剤を配合し、最後に粉粒体の各種添加剤を配合する方法;並びに、まず各種添加剤を配合し、次いで塩化ビニル系樹脂A、塩化ビニル系樹脂Bを配合する方法等を用いることができる。混合操作時の温度や時間等の条件は、パウダーコンパウンドを得ることができればよく、特に限定されない。パウダーコンパウンドが得られやすい観点、及び、必要であれば各種添加剤を塩化ビニル系樹脂(塩化ビニル系樹脂A及び塩化ビニル系樹脂B)粉体表面に吸着させる観点から、混合操作中に、温度を0~120℃の範囲に設定し、混合操作の最後には、移送時に粉体同士もしくは配管等の設備へ融着することがないようにパウダーコンパウンドのガラス転移温度より10℃以上低い温度に冷却してもよい。
 パウダーコンパウンドを溶融混練することでペレットコンパウンドを作製することができる。溶融混練時の温度は、パウダーコンパウンドのガラス転移温度以上であり、且つ塩化ビニル系樹脂の熱分解を抑制する観点から、40~200℃であることが好ましく、より好ましくは80~185℃であり、さらに好ましくは100~175℃である。溶融混練には、特に限定されないが、例えば一軸押出機、二軸押出機及びプラストミル等の混練装置を用いることができる。
 (塩化ビニル系繊維)
 前記塩化ビニル系樹脂組成物(例えば、ペレットコンパウンド)を溶融紡糸することで、塩化ビニル系繊維を得ることができる。まず、前記塩化ビニル系樹脂組成物を溶融紡糸して未延伸糸にする。具体的には、押出機(例えば一軸押出機、異方向二軸押出機、コニカル二軸押出機)にて溶融混練した塩化ビニル系樹脂組成物の溶融混練物(ペレットコンパウンド)を、押出機にて紡糸ノズルから吐出し、押し出されたフィラメントを加熱筒を通過させて熱処理した後、空冷、風冷等の手段で冷却しながら、引取ることで未延伸糸を形成し、ボビンに巻取る。押出機は、例えば、120~200℃の温度範囲で運転することが好ましい。引取速度/吐出速度の比は、特に限定されないが、例えば、1~100倍の範囲となる速度比で引取ることが好ましく、紡糸安定性の観点から5~50倍の範囲であることがより好ましい。
 細繊度の未延伸糸、例えば、単繊維繊度が60dtex以下、好ましくは単繊維繊度が30dtex以下の未延伸糸を得やすい観点から、紡糸ノズルの1ケのノズル孔の断面積は0.2mm2以下であることが好ましく、0.13mm2以下であることがより好ましく、0.06mm2以下であることがさらに好ましい。紡糸ノズルの1ケのノズル孔の断面積の下限は特に限定されないが、例えば、ノズル詰まりを防止する観点から、0.008mm2以上でもよい。ノズル孔の断面形状は、目的とする繊維の断面形状に合わせればよく、例えば、円形でもよく、円形以外の異形(楕円形等)でもよい。紡糸ノズルの温度は、160℃以上であることが好ましく、170℃以上であることがより好ましい。加熱筒の温度は、200℃以上であることが好ましく、230℃以上であることがより好ましい。冷却温度は、空冷で-196~40℃であることが好ましく、より好ましくは0~30℃であり、水冷で5~60℃であることが好ましく、より好ましくは10~40℃である。
 前記塩化ビニル系樹脂組成物は、塩化ビニルとマクロモノマーの共重合体である塩化ビニル系樹脂Aを含むことで、未延伸糸の単繊維繊度が60dtex以下の場合も安定して紡糸することができ、好適には未延伸糸の単繊維繊度が30dtex以下の場合も安定して紡糸することができる。これにより、延伸倍率を大きくすることなく、細繊度の延伸糸を得ることができ、人工毛髪だけでなく、衣料用繊維等としても好適に用いることができる。紡糸安定性を高めつつ、延伸倍率を高くせず、細繊度の延伸糸を得やすい観点から、未延伸糸の単繊維繊度は、10~30dtexであることが好ましく、20~30dtexであることがより好ましい。
 上記で得られた未延伸糸に、公知の方法で延伸処理、及び必要に応じて熱緩和処理を施こすことで、細繊度の延伸糸(繊維)を得ることができる。延伸糸の単繊維繊度は、特に限定されず、衣料用繊維としても好適に用いる観点から、1~15dtexであることが好ましく、2~5dtexであることがより好ましい。延伸処理条件としては延伸処理温度70~150℃の乾熱雰囲気下で、延伸倍率は1.1~6倍程度にすることが好ましく、1.5~4.5倍程度であることがさらに好ましい。延伸処理を施した繊維に熱緩和処理を施して、好ましくは1~50%の緩和率で、より好ましくは5~40%の緩和率で繊維を緩和処理することにより、熱収縮率を低下させることができる。また、未延伸糸又は延伸糸を水洗することで、繊度のコントロールを行なうことも可能である。
 前記塩化ビニル系繊維は、耐熱性の観点から、JIS K 0129:2005に準拠した動的粘弾性測定(DMA)によるガラス転移温度が90℃以上であることが好ましく、91℃以上であることがより好ましく、92℃以上であることがさらに好ましく、93℃以上であることがさらにより好ましく、94℃以上であることが特に好ましい。ガラス転移温度が上述した範囲内であると、熱がかかった際の収縮を抑制することができる。ガラス転移温度の上限は特に限定されないが、例えば、実用耐熱性の観点から、100℃以下であってもよい。
 前記塩化ビニル系繊維は、実用的強度の観点から、引張強度が1.7cN/dtex以上であることが好ましく、より好ましくは1.8cN/dtex以上であり、さらに好ましくは1.9cN/dtex以上であり、さらにより好ましくは2.0cN/dtex以上であり、特に好ましくは2.1cN/dtex以上である。引張強度の上限は特に限定されないが、例えば、実用的強度の観点から、2.5cN/dtex以下であってもよい。
 前記塩化ビニル系繊維は、ウィッグ、ウィービング等の頭飾製品に人工毛髪として用いてもよく、衣料、及びフィルター等の産業資材にも用いることができる。
 以下、実施例により本発明を更に詳細に説明する。なお、本発明は下記の実施例に限定されるものではない。下記において、特に指摘がない場合、「部」は「質量部」を意味する。
 まず、各種測定方法及び評価方法を説明する。
 (1)質量平均分子量
 東ソー社製HLC-8320型GPCシステムを用いて、クロロホルムを移動相とし、東ソー社製のポリスチレンゲルカラムTSKgel SuperHM-Nを使用し、カラム温度40℃の条件下にて、ポリマー濃度が1mg/mLである試料溶液を注入することで測定した。
 (2)B法フロー値
 JIS K 7210-1:2014附属書Cに規定の熱可塑性樹脂の流れ試験方法に準じ、高化式フローテスタ(株式会社島津製作所製「CFT-500C形」)を用い、試験温度180℃、ダイ長さ1mm、ダイ直径1mm、試験荷重9.8×10Nの条件で1秒間当たりの樹脂の流れ値を求め、B法フロー値とした。
 (3)粘度平均重合度
 JIS K 7367-2:2002に基づいてK値を測定し、粘度平均重合度とした。
 (4)ガラス転移温度
 JIS K 0129:2005に準拠し、動的粘弾性測定装置(Thermo Fisher Scientific社製、製品名「HAAKE MARS40」)にて測定した。
 (5)単繊維繊度
 JIS L 1013:2021に準拠して測定した。
 (6)引張強度
 JIS L 1013:2021に準拠して測定した。
 (7)紡糸性
 未延伸糸の紡糸性を、糸切れ本数を測定し、下記の4段階の基準で評価した。
 1 0~1本/3分
 2 2~3本/3分
 3 4本以上/3分
 4 糸切れが多発でボビン巻取不可
 (製造例1)
 還流管及び攪拌機付きの2Lのセパラブルフラスコに、CuBrを5.54g仕込み、反応容器内を窒素置換した。次いで、アセトニトリル73.8mLを加え、セパラブルフラスコを70℃のオイルバス中に入れて、内容物を30分間攪拌した。その後、セパラブルフラスコ中に、アクリル酸n-ブチルを132g、2-ブロモプロピオン酸メチルを7.2mL、ペンタメチルジエチレントリアミンを4.69mL加え、反応を開始した。70℃で加熱攪拌しながら、アクリル酸n-ブチル(528g)を90分かけて連続的に滴下し、さらに70℃で80分間加熱攪拌した。反応混合物をトルエンで希釈し、活性アルミナカラムを通したのち、揮発分を減圧留去することにより、片末端Br基ポリ(アクリル酸n-ブチル)を得た。
 フラスコに、メタノール800mLを仕込み、0℃に冷却した。そこへ、t-ブトキシカリウム(130g)を数回に分けて加えた。次いで、フラスコを0℃に保持して、アクリル酸(100g)のメタノール液(濃度0.5g/mL)200mLを滴下した。その後、反応液の温度を0℃から室温に戻したのち、反応液の揮発分を減圧留去することにより、アクリル酸カリウム(CH2=CHCO2K)を得た。
 還流管付き500mLフラスコに、上記で得られた片末端Br基ポリ(アクリル酸n-ブチル)を150g、アクリル酸カリウムを7.45g、ジメチルアセトアミドを150mL仕込み、70℃で3時間加熱攪拌した。その後、反応混合物よりジメチルアセトアミドを留去し、反応混合物をトルエンに溶解させ、活性アルミナカラムを通したのち、トルエンを留去することにより、片末端アクリロイル基ポリ(アクリル酸n-ブチル)マクロモノマーを得た。得られたマクロモノマーの質量平均分子量は12000であった。
 (製造例2)
 還流管及び攪拌機付きの2Lのセパラブルフラスコに、アクリル酸n-ブチル440g、メタノール220g、トリエチルアミン5.9g、及び2-ブロモイソ酪酸エチル76gを仕込み、これに、別途調整した銅錯体溶液(臭化銅(II)0.22gをメタノール22gに溶解させ、純度96%のトリス[2-(ジメチルアミノ)エチル]アミン0.22gを混合した溶液)を混合し、窒素バブリングを30分間行った後、40℃で撹拌し、重合用組成物を得た。アスコルビン酸0.34g及びトリエチルアミン0.39gを、あらかじめ30分間窒素バブリングしたメタノール86mLに溶解し、得られたアスコルビン酸溶液を、上記で得られた重合用組成物に滴下して重合を開始した。アスコルビン酸溶液を滴下開始してから2時間後、あらかじめ30分間窒素バブリングしたアクリル酸n-ブチル660gを2時間かけて滴下した。アスコルビン酸溶液を滴下開始してから6時間後、アスコルビン酸溶液の滴下を止め、重合終了とした。当該時点におけるアスコルビン酸溶液の総滴下量は40mLであった。次に反応溶液を80℃で1時間減圧濃縮した。濃縮された反応溶液1100gに酢酸ブチル1100g、吸着剤(キョーワード(登録商標)500、協和化学工業社製)11g、吸着剤(キョーワード(登録商標)700、協和化学工業社製)11gを添加し、100℃で1時間撹拌した。次に、得られた反応溶液をろ過した。還流管及び攪拌機付きの2Lのセパラブルフラスコに、得られたろ液2200g、アクリル酸カリウム74g、吸着剤(キョーワード700(登録商標)、協和化学工業社製)4.4g、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル0.11g、臭化テトラ-n-ブチルアンモニウム1.2gを仕込み、120℃で3時間撹拌した。得られた反応溶液をろ過し、吸着材剤を除去し、さらに得られたろ液を120℃で3時間減圧濃縮することにより、片末端アクリロイル基ポリ(アクリル酸n-ブチル)マクロモノマーを得た。得られたマクロモノマーの質量平均分子量は3000であった。
 (製造例3)
 アクリル酸カリウムの代わりにクロトン酸58g、炭酸カリウム101gを用いた以外は、製造例1と同様にして片末端クロトン酸基ポリ(アクリル酸n-ブチル)マクロモノマーを得た。得られたマクロモノマーの質量平均分子量は3000であった。
 (製造例4)
 ジャケット及び攪拌機を備えた内容量25リットルのステンレス鋼製重合反応機に初期水として、全モノマーに対し40部相当の水を予め仕込み、鹸化度約80モル%、平均重合度約2000の部分鹸化ポリ酢酸ビニル0.02部を添加し、重合反応機内温を20℃に制御して、1分間あたり900回転の回転速度で攪拌しながら溶解した。攪拌しながら、製造例1の片末端アクリロイル基ポリ(アクリル酸n-ブチル)マクロモノマー40部を仕込んで、脱気したのち、塩化ビニルモノマー60部を仕込み、投入後から10分間攪拌することにより、塩化ビニルモノマーにマクロモノマーを分散混合させた。t-ブチルパーオキシネオデカノエート0.03部、及び1,1,3,3-テトラメチルブチルパーオキシネオデカノエート0.01部を仕込んだ後、鹸化度約80モル%、平均重合度約2000の部分鹸化ポリ酢酸ビニル0.08部、平均分子量約450万のポリエチレンオキサイド0.005部を60℃の温水110部とともに仕込み、重合温度57℃で約6時間重合した。重合反応機内の未反応の塩化ビニルモノマーを回収したのち重合反応機を冷却し、スラリーを払い出した。得られたスラリーを脱水し、熱風乾燥機にて60℃で24時間乾燥し、塩化ビニルとポリ(アクリル酸n-ブチル)のグラフト共重合体を得た。得られたグラフト共重合体(塩化ビニル系樹脂A1)は、塩化ビニル80質量%、ポリ(アクリル酸n-ブチル)20質量%からなり、マクロモノマーの転化率は100%であった。塩化ビニル系樹脂A1において、塩化ビニルからなる幹ポリマーの粘度平均重合度が700であり、枝ポリマーであるポリ(アクリル酸n-ブチル)の粘度平均重合度は90であった。また、塩化ビニル系樹脂A1のB法フロー値は11×10-2cm3/sであった。
 (製造例5)
 製造例1の片末端アクリロイル基ポリ(アクリル酸n-ブチル)マクロモノマーに代えて、製造例2の片末端アクリロイル基ポリ(アクリル酸n-ブチル)マクロモノマーを用いた以外は、製造例4と同様にして塩化ビニルとポリ(アクリル酸n-ブチル)のグラフト共重合体を得た。得られたグラフト共重合体(塩化ビニル系樹脂A2)は、塩化ビニル75質量%、及びポリ(アクリル酸n-ブチル)25質量%からなり、マクロモノマーの転化率は100%であった。塩化ビニル系樹脂A2において、塩化ビニルからなる幹ポリマーの粘度平均重合度が700であり、枝ポリマーであるポリ(アクリル酸n-ブチル)の粘度平均重合度は22であった。また、塩化ビニル系樹脂A2のB法フロー値は74×10-2cm3/sであった。
 (製造例6)
 製造例1の片末端アクリロイル基ポリ(アクリル酸n-ブチル)マクロモノマーに代えて、製造例3の片末端クロトン酸基ポリ(アクリル酸n-ブチル)マクロモノマーを用いた以外は、製造例4と同様にして塩化ビニルとポリ(アクリル酸n-ブチル)のグラフト共重合体を得た。得られたグラフト共重合体(塩化ビニル系樹脂A3)は、塩化ビニル76質量%、及びポリ(アクリル酸n-ブチル)24質量%からなり、マクロモノマーの転化率は100%であった。塩化ビニル系樹脂A3において、塩化ビニルからなる幹ポリマーの粘度平均重合度が700であり、枝ポリマーであるポリ(アクリル酸n-ブチル)の粘度平均重合度は22であった。また、塩化ビニル系樹脂A3のB法フロー値は22×10-2cm3/sであった。
 (実施例1)
 <ブレンド工程>
 塩化ビニル系樹脂B1として塩化ビニル単独重合体(カネカ社製、品名「S-1008」、粘度平均重合度800)80質量部、製造例4の塩化ビニル系樹脂A1を20質量部、塩化ビニル系樹脂B2として塩化ビニルとエチレン-酢酸ビニルの共重合体(塩化ビニル90質量%、エチレン-酢酸ビニル10質量%、粘度平均重合度1000)1.4質量部、可塑剤(エポキシ化大豆油)0.9質量部、熱安定剤1.09質量部(Ca-Zn系熱安定剤0.27質量部、ハイドロタルサイト系熱安定剤0.46質量部、β-ジケトン系熱安定剤0.36質量部)、加工助剤(アクリル系加工助剤)2.93質量部、及び滑剤0.88質量部(高級脂肪酸系滑剤0.14質量部、脂肪酸エステル系滑剤0.74質量部)を添加し、ヘンシェルミキサーで攪拌混合し、塩化ビニル系樹脂組成物(コンパウンド)を得た。
 <紡糸工程>
 上記で得られたコンパウンドを単軸押出機のホッパー部へ投入し、シリンダー温度160±30℃、ノズル温度180±15℃の範囲で、コンパウンドを押し出して溶融紡糸した。ノズルの孔の断面形状は円形であった。押出されたフィラメントをノズル直下に設けた加熱筒内(300±50℃雰囲気)で約0.5~1.5秒熱処理し、熱処理後の未延伸糸を引取ロールによってボビンに巻いた。単繊維繊度が約170dtex、60dtex、及び30dtexの未延伸糸のそれぞれの紡糸性を評価した。なお、単繊維繊度が30dtexの未延伸糸を得ようとしたが、紡糸性が悪く、ボビンに巻き取ることができなった。
 <延伸工程>
 単繊維繊度が約60dtexの未延伸糸を110±20℃に温度調整したオーブンに入れ、約3.5倍へ延伸した。次に、110±20℃に温度調整したオーブンの中で連続的に25%の緩和処理を実施し、マルチフィラメントを巻き取ることで単繊維繊度が約20dtexの塩化ビニル系繊維を得た。
 (実施例2)
 <ブレンド工程>
 製造例4の塩化ビニル系樹脂A1の代わりに製造例5の塩化ビニル系樹脂A2を用いた以外は、実施例1と同様にして塩化ビニル系樹脂組成物(コンパウンド)を得た。
 <紡糸工程>
 上記で得られたコンパウンドを用いた以外は、実施例1と同様にして未延伸糸を作製した。単繊維繊度が約170dtex、60dtex、及び30dtexの未延伸糸のそれぞれの紡糸性を評価した。
 <延伸工程>
 単繊維繊度が約30dtexの未延伸糸を110±20℃に温度調整したオーブンに入れ、約3.5倍へ延伸した。次に、110±20℃に温度調整したオーブンの中で連続的に25%の緩和処理を実施し、マルチフィラメントを巻き取ることで単繊維繊度が約10dtexの塩化ビニル系繊維を得た。
 (実施例3)
 塩化ビニル単独重合体を60質量部、製造例5の塩化ビニル系樹脂A2を40質量部用いた以外は、実施例2と同様にして、塩化ビニル系樹脂組成物(コンパウンド)、未延伸糸、及び単繊維繊度が約30dtexの塩化ビニル系繊維を得た。紡糸工程において、単繊維繊度が約170dtex、60dtex、及び30dtexの未延伸糸のそれぞれの紡糸性を評価した。
 (実施例4)
 <ブレンド工程>
 製造例4の塩化ビニル系樹脂A1の代わりに製造例6の塩化ビニル系樹脂A3を用いた以外は、実施例1と同様にして塩化ビニル系樹脂組成物(コンパウンド)を得た。
 <紡糸工程>
 上記で得られたコンパウンドを用いた以外は、実施例1と同様にして未延伸糸を作製した。単繊維繊度が約170dtex、60dtex、及び30dtexの未延伸糸のそれぞれの紡糸性を評価した。
 <延伸工程>
 単繊維繊度が約30dtexの未延伸糸を110±20℃に温度調整したオーブンに入れ、約3.5倍へ延伸した。次に、110±20℃に温度調整したオーブンの中で連続的に25%の緩和処理を実施し、マルチフィラメントを巻き取ることで単繊維繊度が約10dtexの塩化ビニル系繊維を得た。
 (比較例1)
 <ブレンド工程>
 塩化ビニル単独重合体(カネカ社製、品名「S-1008」、粘度平均重合度800)を100質量部用い、塩化ビニル系樹脂A1を用いていない以外は、実施例1と同様にして塩化ビニル系樹脂組成物(コンパウンド)を得た。
 <紡糸工程>
 上記で得られたコンパウンドを用いた以外は、実施例1と同様にして未延伸糸を作製した。単繊維繊度が約170dtex、60dtex、及び30dtexの未延伸糸のそれぞれの紡糸性を評価した。単繊維繊度が60dtex及び30dtexの未延伸糸を得ようとしたが、紡糸性が悪く、ボビンに巻き取ることができなった。
 <延伸工程>
 単繊維繊度が約170dtexの未延伸糸を110±20℃に温度調整したオーブンに入れ、約3.5倍へ延伸した。次に、110±20℃に温度調整したオーブンの中で連続的に25%の緩和処理を実施し、マルチフィラメントを巻き取ることで単繊維繊度が約70dtexの塩化ビニル系繊維を得た。
 (比較例2)
 <ブレンド工程>
 可塑剤を5質量部用いた以外は、比較例1と同様にして、塩化ビニル系樹脂組成物(コンパウンド)を得た。
 <紡糸工程>
 上記で得られたコンパウンドを用いた以外は、実施例1と同様にして未延伸糸を作製した。単繊維繊度が約170dtex、60dtex、及び30dtexの未延伸糸のそれぞれの紡糸性を評価した。なお、単繊維繊度が30dtexの未延伸糸を得ようとしたが、紡糸性が悪く、ボビンに巻き取ることができなった。
 <延伸工程>
 単繊維繊度が約60dtexの未延伸糸を110±20℃に温度調整したオーブンに入れ、約3.5倍へ延伸した。次に、110±20℃に温度調整したオーブンの中で連続的に25%の緩和処理を実施し、マルチフィラメントを巻き取ることで単繊維繊度が約20dtexの塩化ビニル系繊維を得た。
 (比較例3)
 <ブレンド工程>
 可塑剤を10質量部用いた以外は、比較例1と同様にして、塩化ビニル系樹脂組成物(コンパウンド)を得た。
 <紡糸工程>
 上記で得られたコンパウンドを用いた以外は、実施例1と同様にして未延伸糸を作製した。単繊維繊度が約170dtex、60dtex、及び30dtexの未延伸糸のそれぞれの紡糸性を評価した。
 <延伸工程>
 単繊維繊度が約30dtexの未延伸糸を110±20℃に温度調整したオーブンに入れ、約3.5倍へ延伸した。次に、110±20℃に温度調整したオーブンの中で連続的に25%の緩和処理を実施し、マルチフィラメントを巻き取ることで単繊維繊度が約10dtexの塩化ビニル系繊維を得た。
 実施例1~4及び比較例1~3で得られた塩化ビニル系繊維のガラス転転移温度及び引張強度を上述したとおりに測定した。その結果を下記表1に示した。表1には、紡糸性の評価結果も併せて示した。
Figure JPOXMLDOC01-appb-T000003
 塩化ビニルとマクロモノマーの共重合体で塩化ビニル系樹脂Aを含む塩化ビニル系樹脂組成物を用いた実施例1~4では、単繊維繊度が約60dtex以下の未延伸糸を紡糸性よく得ることができた。また、実施例1~4の塩化ビニル系繊維は、ガラス転移温度が90℃以上であり、耐熱性が良好であった。
 特に、塩化ビニル系樹脂Aとして、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有し、質量平均分子量が1000~10000のマクロモノマーを用いた実施例2~4では、質量平均分子量が10000を超えるマクロモノマーを用いた実施例1に比べて、単繊維繊度が2倍も細い未延伸糸、具体的には単繊維繊度が約30dtex以下の未延伸糸を紡糸性よく得ることができるうえ、得られた塩化ビニル系繊維のガラス転移温度も高かった。
 一方、塩化ビニル系樹脂Aを含まず、塩化ビニル系樹脂Bのみを含む塩化ビニル系樹脂組成物を用いた比較例1では、単繊維繊度が約60dtex以下の細繊度の未延伸糸を得ることができなかった。塩化ビニル系樹脂Aを含まず、可塑剤の添加量を増やした塩化ビニル系樹脂組成物を用いた比較例2及び3では、単繊維繊度が約60dtex以下の細繊度の未延伸糸を得ることはできるが、ガラス転移温度が65℃未満であり、耐熱性が悪かった。
 本発明は、特に限定されないが、少なくとも下記の実施形態を含む。
[1] 塩化ビニル系樹脂組成物を含む塩化ビニル系繊維であって、
 前記塩化ビニル系樹脂組成物は、塩化ビニル系樹脂A及び塩化ビニル系樹脂Bを含み、
 前記塩化ビニル系樹脂Aは、塩化ビニルとマクロモノマーの共重合体であり、前記塩化ビニル系樹脂Bは、塩化ビニル系樹脂A以外の塩化ビニル系樹脂である、塩化ビニル系繊維。
[2] 前記マクロモノマーは、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有し、質量平均分子量が1000~15000である、[1]に記載の塩化ビニル系繊維。
[3] 前記マクロモノマーにおいて、分子末端の反応性官能基は、アリル基、ビニルシリル基、ビニルエーテル基、ジシクロペンタジエニル基、及び下記一般式(1)で表される重合性の炭素-炭素二重結合を有する基からなる群から選ばれる一つ以上である、[1]又は[2]に記載の塩化ビニル系繊維。
Figure JPOXMLDOC01-appb-C000004
 (但し、前記一般式(1)中、R1及びR2は、同じでもよく、異なってもよく、それぞれ独立して、水素又は炭素数1~20の有機基を表す。)
[4] 前記マクロモノマーにおいて、分子末端の反応性官能基は、アクリロイル基又はクロトン酸基である、[1]~[3]のいずれかに記載の塩化ビニル系繊維。
[5] 前記マクロモノマーは、分子の片末端に反応性官能基を有する、[1]~[4]のいずれかに記載の塩化ビニル系繊維。
[6]前記塩化ビニル系樹脂A及び前記塩化ビニル系樹脂Bの合計量を100質量部に対し、可塑剤を0.5~5質量部含む、[1]~[5]のいずれかに記載の塩化ビニル系繊維。
[7] 前記塩化ビニル系樹脂A及び前記塩化ビニル系樹脂Bの合計量を100質量%とした場合、前記塩化ビニル系樹脂Aの含有量は10~80質量%であり、及び前記塩化ビニル系樹脂Bの含有量は20~90質量%である、[1]~[6]のいずれかに記載の塩化ビニル系繊維。
[8] 前記塩化ビニル系樹脂Bは、塩化ビニルの単独重合体を含む、[1]~[7]のいずれかに記載の塩化ビニル系繊維。
[9] 前記塩化ビニル系樹脂Bは、塩化ビニルの単独重合体を100質量部、及び塩化ビニル-酢酸ビニル重合体を0.5~20質量部含む、[1]~[8]のいずれかに記載の塩化ビニル系繊維。
[10] 単繊維繊度が15dtex以下である、[1]~[9]のいずれかに記載の塩化ビニル系繊維。
[11] 引張強度が1.9cN/dtex以上である、[1]~[10]のいずれかに記載の塩化ビニル系繊維。
[12] JIS K 0129:2005に準拠した動的粘弾性測定によるガラス転移温度が91.0℃以上である、[1]~[11]のいずれかに記載の塩化ビニル系繊維。
[13] [1]~[12]のいずれかに記載の塩化ビニル系繊維の製造方法であって、
 塩化ビニル系樹脂組成物を溶融紡糸して未延伸糸を得る工程を含み、
 前記塩化ビニル系樹脂組成物は、塩化ビニル系樹脂A及び塩化ビニル系樹脂Bを含み、
 前記塩化ビニル系樹脂Aは、塩化ビニルとマクロモノマーの共重合体であり、前記塩化ビニル系樹脂Bは、塩化ビニル系樹脂A以外の塩化ビニル系樹脂である、塩化ビニル系繊維の製造方法。
[14] 前記未延伸糸の単繊維繊度は30dtex以下である、[13]に記載の塩化ビニル系繊維の製造方法。
[15] さらに前記未延伸糸を延伸して延伸糸を得る工程を含む、[13]又は[14]に記載の塩化ビニル系繊維の製造方法。

Claims (15)

  1.  塩化ビニル系樹脂組成物を含む塩化ビニル系繊維であって、
     前記塩化ビニル系樹脂組成物は、塩化ビニル系樹脂A及び塩化ビニル系樹脂Bを含み、
     前記塩化ビニル系樹脂Aは、塩化ビニルとマクロモノマーの共重合体であり、前記塩化ビニル系樹脂Bは、塩化ビニル系樹脂A以外の塩化ビニル系樹脂である、塩化ビニル系繊維。
  2.  前記マクロモノマーは、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有し、質量平均分子量が1000~15000である、請求項1に記載の塩化ビニル系繊維。
  3.  前記マクロモノマーにおいて、分子末端の反応性官能基は、アリル基、ビニルシリル基、ビニルエーテル基、ジシクロペンタジエニル基、及び下記一般式(1)で表される重合性の炭素-炭素二重結合を有する基からなる群から選ばれる一つ以上である、請求項1に記載の塩化ビニル系繊維。
    Figure JPOXMLDOC01-appb-C000001
     (但し、前記一般式(1)中、R1及びR2は、同じでもよく、異なってもよく、それぞれ独立して、水素又は炭素数1~20の有機基を表す。)
  4.  前記マクロモノマーにおいて、分子末端の反応性官能基は、アクリロイル基又はクロトン酸基である、請求項1に記載の塩化ビニル系繊維。
  5.  前記マクロモノマーは、分子の片末端に反応性官能基を有する、請求項1に記載の塩化ビニル系繊維。
  6.  前記塩化ビニル系樹脂A及び前記塩化ビニル系樹脂Bの合計量を100質量部に対し、可塑剤を0.5~5質量部含む、請求項1に記載の塩化ビニル系繊維。
  7.  前記塩化ビニル系樹脂A及び前記塩化ビニル系樹脂Bの合計量を100質量%とした場合、前記塩化ビニル系樹脂Aの含有量は10~80質量%であり、及び前記塩化ビニル系樹脂Bの含有量は20~90質量%である、請求項1に記載の塩化ビニル系繊維。
  8.  前記塩化ビニル系樹脂Bは、塩化ビニルの単独重合体を含む、請求項1に記載の塩化ビニル系繊維。
  9.  前記塩化ビニル系樹脂Bは、塩化ビニルの単独重合体を100質量部、及び塩化ビニル-酢酸ビニル重合体を0.5~20質量部含む、請求項1に記載の塩化ビニル系繊維。
  10.  単繊維繊度が15dtex以下である、請求項1に記載の塩化ビニル系繊維。
  11.  引張強度が1.9cN/dtex以上である、請求項1に記載の塩化ビニル系繊維。
  12.  JIS K 0129:2005に準拠した動的粘弾性測定によるガラス転移温度が91.0℃以上である、請求項1に記載の塩化ビニル系繊維。
  13.  請求項1~12のいずれかに記載の塩化ビニル系繊維の製造方法であって、
     塩化ビニル系樹脂組成物を溶融紡糸して未延伸糸を得る工程を含み、
     前記塩化ビニル系樹脂組成物は、塩化ビニル系樹脂A及び塩化ビニル系樹脂Bを含み、
     前記塩化ビニル系樹脂Aは、塩化ビニルとマクロモノマーの共重合体であり、前記塩化ビニル系樹脂Bは、塩化ビニル系樹脂A以外の塩化ビニル系樹脂である、塩化ビニル系繊維の製造方法。
  14.  前記未延伸糸の単繊維繊度は30dtex以下である、請求項13に記載の塩化ビニル系繊維の製造方法。
  15.  さらに前記未延伸糸を延伸して延伸糸を得る工程を含む、請求項13に記載の塩化ビニル系繊維の製造方法。
PCT/JP2023/038176 2022-10-26 2023-10-23 塩化ビニル系繊維、及びその製造方法 WO2024090375A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022171603 2022-10-26
JP2022-171603 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024090375A1 true WO2024090375A1 (ja) 2024-05-02

Family

ID=90831011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038176 WO2024090375A1 (ja) 2022-10-26 2023-10-23 塩化ビニル系繊維、及びその製造方法

Country Status (1)

Country Link
WO (1) WO2024090375A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097889A1 (ja) * 2004-03-30 2005-10-20 Kaneka Corporation 塩化ビニル系樹脂組成物
WO2019187404A1 (ja) * 2018-03-26 2019-10-03 株式会社カネカ 熱可塑性アクリル系樹脂、その製造方法及び樹脂組成物
WO2019235055A1 (ja) * 2018-06-07 2019-12-12 デンカ株式会社 人工毛髪用繊維及び頭髪装飾製品
WO2022049851A1 (ja) * 2020-09-01 2022-03-10 株式会社カネカ 易染型合成繊維用樹脂組成物、及び酸性染料易染型合成繊維

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097889A1 (ja) * 2004-03-30 2005-10-20 Kaneka Corporation 塩化ビニル系樹脂組成物
WO2019187404A1 (ja) * 2018-03-26 2019-10-03 株式会社カネカ 熱可塑性アクリル系樹脂、その製造方法及び樹脂組成物
WO2019235055A1 (ja) * 2018-06-07 2019-12-12 デンカ株式会社 人工毛髪用繊維及び頭髪装飾製品
WO2022049851A1 (ja) * 2020-09-01 2022-03-10 株式会社カネカ 易染型合成繊維用樹脂組成物、及び酸性染料易染型合成繊維

Similar Documents

Publication Publication Date Title
JP7181281B2 (ja) 熱可塑性アクリル系樹脂、その製造方法及び樹脂組成物
WO2022049851A1 (ja) 易染型合成繊維用樹脂組成物、及び酸性染料易染型合成繊維
WO2024090375A1 (ja) 塩化ビニル系繊維、及びその製造方法
JP2005206815A (ja) 軟質塩化ビニル系共重合樹脂、樹脂組成物およびそれらの製造方法
JP5271797B2 (ja) 塩化ビニル系樹脂成形体
JP4157428B2 (ja) 難燃繊維複合体
US4983665A (en) Flexible blend compositions based on overpolymers of vinyl chloride polymers on ethylene copolymers
AU621397B2 (en) An oil resistant thermoplastic elastomer composed of a polyvinyl chloride-acrylate copolymer
JPH1025321A (ja) 架橋メタクリル酸エステル系樹脂粒子およびそれを用いてなるアクリル系樹脂組成物
JP2009067930A (ja) 塩化ビニル系シート
JP2001131824A (ja) ポリ塩化ビニル系樹脂組成物よりなる繊維
WO2023190608A1 (ja) 熱可塑性モダクリル樹脂及びそれを含む熱可塑性モダクリル樹脂組成物
WO2023190607A1 (ja) 熱可塑性モダクリル樹脂及びそれを含む熱可塑性モダクリル樹脂組成物
JP2000234005A (ja) 防水シート用樹脂
JPS61278520A (ja) フツ素含有エラストマ−粒子の改質方法
WO2023190606A1 (ja) 熱可塑性モダクリル樹脂及びそれを含む熱可塑性モダクリル樹脂組成物
JP3302222B2 (ja) 耐衝撃性硬質塩化ビニル管
JPH10231410A (ja) 硬質塩化ビニル系樹脂管
JPH0834825A (ja) 塩化ビニル系樹脂の製造方法
JP2001098127A (ja) 窓枠用樹脂組成物及び窓枠
JPH10101884A (ja) 樹脂組成物、樹脂組成物を含む塩素系樹脂組成物およびその成形物
JPH1143577A (ja) 塩化ビニル系樹脂組成物
JPH10306194A (ja) 硬質塩化ビニル系樹脂管
JPH11106598A (ja) 塩化ビニル系グラフト樹脂組成物
JPH11181033A (ja) 耐熱耐衝撃性塩化ビニル系グラフト共重合体