WO2024089731A1 - エアロゾル生成システム - Google Patents

エアロゾル生成システム Download PDF

Info

Publication number
WO2024089731A1
WO2024089731A1 PCT/JP2022/039477 JP2022039477W WO2024089731A1 WO 2024089731 A1 WO2024089731 A1 WO 2024089731A1 JP 2022039477 W JP2022039477 W JP 2022039477W WO 2024089731 A1 WO2024089731 A1 WO 2024089731A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resistive heating
heating layer
cylindrical body
side wall
Prior art date
Application number
PCT/JP2022/039477
Other languages
English (en)
French (fr)
Inventor
学 山田
康信 井上
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2022/039477 priority Critical patent/WO2024089731A1/ja
Publication of WO2024089731A1 publication Critical patent/WO2024089731A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater

Definitions

  • This disclosure relates to an aerosol generation system.
  • inhalation devices such as electronic cigarettes and nebulizers
  • inhalation devices generate aerosol imparted with flavor components using a substrate that includes an aerosol source for generating aerosol and a flavor source for imparting flavor components to the generated aerosol.
  • Users can taste the flavor by inhaling the aerosol imparted with flavor components generated by the inhalation device.
  • the action of a user inhaling an aerosol is hereinafter also referred to as a puff or a puffing action.
  • Patent Document 1 discloses a technique in which a coating of an electrically insulating material is formed on the surface of a heating chamber that has an opening for receiving the substrate, and a coating of an electrically conductive material that acts as a Joule heater is further formed on top of that.
  • Patent Document 1 the technology disclosed in the above-mentioned Patent Document 1 has only recently been developed, and there is still room for improvement in various respects.
  • the present disclosure has been made in light of the above problems, and the purpose of the present disclosure is to provide a mechanism that can further improve the quality of the user experience.
  • an aerosol generating system comprising a cylindrical body that contains a substrate containing an aerosol source, a plurality of resistive heating layers laminated on the outside of a side wall of the cylindrical body, and a first thermal diffusion layer laminated on the outside of the side wall of the cylindrical body and inside the resistive heating layers.
  • the side walls of the cylindrical body include a plurality of first side walls that are flat on the outside and a plurality of second side walls that are different from the first side walls, the first side walls and the second side walls are alternately arranged along the circumferential direction of the cylindrical body, and the two resistive heating layers may be laminated by using a deposition process or a printing process on the outside of the two first side walls adjacent to the second side wall, with the two resistive heating layers spaced apart from each other on the second side wall.
  • the aerosol generating system may further include a plurality of first electrically insulating layers laminated using a deposition process or a printing process on the outside of the first side wall, inside the resistive heating layer, and the cylindrical body may be made of a material having electrical conductivity.
  • the portion of the outer periphery of the cylindrical body on which the first electrical insulation layer is laminated may occupy less than 50% of the outer periphery of the cylindrical body.
  • the first electrically insulating layer may have a shape that conforms to the resistive heating layer.
  • the aerosol generating system may further include a plurality of second electrically insulating layers that are laminated using a deposition process or a printing process outside the resistive heating layer, and at least a portion of the resistive heating layer may be sandwiched between the first electrically insulating layer and the second electrically insulating layer.
  • the aerosol generating system may further include a power supply unit that supplies power to the resistive heating layer, the first thermal diffusion layer being made of a material having a higher electrical conductivity than the cylindrical body, the first electrical insulation layer being laminated on the outside of the first thermal diffusion layer, and at least one of the two ends of the resistive heating layer extending beyond the first electrical insulation layer and connected to the first thermal diffusion layer, and may be electrically connected to the power supply unit via the first thermal diffusion layer.
  • At least one of the two ends of the resistive heating layer may extend beyond the first electrical insulation layer and be connected to the first thermal diffusion layer, and may be electrically connected to another resistive heating layer adjacent to the resistive heating layer via the first thermal diffusion layer.
  • a conductor connected to the power supply unit may be connected to the cylindrical body, and one of the two ends of the resistive heating layer may extend beyond the first electrical insulation layer and be connected to the first thermal diffusion layer, and may be electrically connected to the conductor connected to the cylindrical body via the first thermal diffusion layer and the cylindrical body.
  • the end of the two ends of the resistive heating layer that protrudes beyond the first electrical insulation layer may be connected to the first thermal diffusion layer on the first side wall.
  • the end of the resistive heating layer that protrudes from the first electrical insulation layer may protrude from the first side wall and be connected to the first thermal diffusion layer on the second side wall.
  • a conductor connected to the power supply unit may be connected to one of the two ends of the resistive heating layer.
  • the aerosol generating system may further include a power supply unit that supplies power to the resistive heating layer, and a conductor connected to the power supply unit may be connected to each of the two ends of the resistive heating layer.
  • the end to which the conductor connected to the power supply unit is connected may be configured to be wider than the other parts.
  • the aerosol generation system may further include a second thermal diffusion layer that is wrapped and laminated around the outside of the side wall of the cylindrical body and outside the resistive heating layer.
  • the aerosol generating system may further include an insulating layer that is wrapped and laminated around the outside of the side wall of the cylindrical body and outside the resistive heating layer.
  • the aerosol generating system may further include a power supply unit that supplies power to the resistive heating layer, and at least one of the two ends of the resistive heating layer may extend beyond the first electrical insulation layer and be connected to the cylindrical body, and may be electrically connected to the power supply unit via the cylindrical body.
  • the first side wall may be a flat plate
  • the second side wall may be a curved plate that is curved outwardly of the cylindrical body along the circumferential direction of the cylindrical body, and the base material contained in the cylindrical body may be pressed by the first side wall.
  • the first side wall may be a flat plate
  • the second side wall may be a flat plate
  • the length of the first side wall may be longer than the length of the second side wall in the circumferential direction of the cylindrical body
  • the base material contained in the cylindrical body may be pressed by the first side wall
  • the aerosol generating system may further include the substrate.
  • this disclosure provides a mechanism that can further improve the quality of the user experience.
  • FIG. 2 is a schematic diagram showing a configuration example of a suction device.
  • FIG. 1 is a perspective view of an example of a heating system for a suction apparatus according to an embodiment of the present disclosure.
  • FIG. 3 is a perspective view of the storage unit shown in FIG. 2 .
  • 4 is a cross-sectional view of the storage portion taken along line 4-4 of FIG. 3.
  • 5 is a cross-sectional view of the storage portion taken along line 5-5 of FIG. 4.
  • 1 is a longitudinal sectional view of a storage section including a non-pressing section in a state in which a stick-shaped substrate is held by a holding section.
  • FIG. 1 is a longitudinal sectional view of a storage section including a non-pressing section in a state in which a stick-shaped substrate is held by a holding section.
  • FIG. 1 is a vertical cross-sectional view of a storage section including a pressing section in a state in which a stick-shaped substrate is held by the holding section.
  • FIG. 7A is a cross-sectional view of the storage portion taken along line 7-7 of FIG. 5A to 5C are diagrams illustrating an example of a manufacturing process for the heating system according to the embodiment.
  • 5A to 5C are diagrams illustrating an example of a manufacturing process for the heating system according to the embodiment.
  • FIG. 11 is a diagram showing the configuration of the outer thermal diffusion layer shown in FIG. 10 .
  • 11 is a diagram showing a configuration of a heat insulating section shown in FIG. 10 .
  • 11A to 11C are diagrams illustrating an example of a manufacturing process for the heating system according to the first modified example.
  • 11A to 11C are diagrams illustrating an example of a manufacturing process for a heating system according to a second modified example.
  • 13A to 13C are diagrams illustrating an example of a manufacturing process for a heating system according to a third modified example.
  • 13A to 13C are diagrams illustrating an example of a manufacturing process for a heating system according to a fourth modified example.
  • 13A to 13C are diagrams illustrating an example of a manufacturing process for a heating system according to a fifth modified example.
  • FIG. 13 is a diagram illustrating an example of the configuration of a storage section and a stick-shaped substrate according to a sixth modified example.
  • 13A to 13C are diagrams illustrating an example of a manufacturing process for a heating system according to a seventh modified example.
  • elements having substantially the same functional configuration may be distinguished by assigning an index containing different letters or numbers after the same reference numeral.
  • multiple elements having substantially the same functional configuration may be distinguished as necessary, such as devices 1-1, 1-2, and 1-3.
  • only the same reference numeral may be assigned.
  • devices 1-1, 1-2, and 1-3 they may also be simply referred to as device 1.
  • the inhalation device is a device that generates a substance to be inhaled by a user.
  • the substance generated by the inhalation device is described as an aerosol.
  • the substance generated by the inhalation device may be a gas.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a suction device.
  • the suction device 100 includes a power supply unit 111, a sensor unit 112, a notification unit 113, a memory unit 114, a communication unit 115, a control unit 116, a heating unit 40, a storage unit 50, and a heat insulating unit 70.
  • the power supply unit 111 stores power.
  • the power supply unit 111 supplies power to each component of the suction device 100 under the control of the control unit 116.
  • the power supply unit 111 may be configured, for example, by a rechargeable battery such as a lithium ion secondary battery.
  • the sensor unit 112 acquires various information related to the suction device 100.
  • the sensor unit 112 is configured with a pressure sensor such as a condenser microphone, a flow sensor, or a temperature sensor, and acquires values associated with suction by the user.
  • the sensor unit 112 is configured with an input device such as a button or switch that accepts information input from the user.
  • the notification unit 113 notifies the user of information.
  • the notification unit 113 is composed of, for example, a light-emitting device that emits light, a display device that displays an image, a sound output device that outputs sound, or a vibration device that vibrates.
  • the storage unit 114 stores various information for the operation of the suction device 100.
  • the storage unit 114 is configured, for example, from a non-volatile storage medium such as a flash memory.
  • the communication unit 115 is a communication interface capable of performing communication conforming to any wired or wireless communication standard.
  • Such communication standards may include, for example, standards using Wi-Fi (registered trademark), Bluetooth (registered trademark), BLE (Bluetooth Low Energy (registered trademark)), NFC (Near Field Communication), or LPWA (Low Power Wide Area).
  • the control unit 116 functions as an arithmetic processing unit and a control unit, and controls the overall operation of the suction device 100 in accordance with various programs.
  • the control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) or a microprocessor.
  • the storage unit 50 has an internal space 80 and holds the stick-shaped substrate 150 while storing a part of the stick-shaped substrate 150 in the internal space 80.
  • the storage unit 50 has an opening 52 that connects the internal space 80 to the outside, and stores the stick-shaped substrate 150 inserted into the internal space 80 through the opening 52.
  • the storage unit 50 is a cylindrical body with the opening 52 and the bottom wall 56 as the bottom surface, and defines a columnar internal space 80.
  • An air flow path that supplies air to the internal space 80 may be connected to the storage unit 50.
  • An air inlet hole which is an air inlet to the air flow path, is arranged, for example, on the side of the suction device 100.
  • An air outlet hole, which is an air outlet from the air flow path to the internal space 80, is arranged, for example, on the bottom wall 56.
  • the stick-type substrate 150 includes a substrate portion 151 and a mouthpiece portion 152.
  • the substrate portion 151 includes an aerosol source.
  • the aerosol source includes a flavor component derived from tobacco or non-tobacco.
  • the aerosol source may include a medicine.
  • the aerosol source may be, for example, a liquid such as polyhydric alcohol such as glycerin and propylene glycol, and water, which includes a flavor component derived from tobacco or non-tobacco, or may be a solid containing a flavor component derived from tobacco or non-tobacco.
  • the stick-type substrate 150 When the stick-type substrate 150 is held in the storage portion 50, at least a part of the substrate portion 151 is stored in the internal space 80, and at least a part of the mouthpiece portion 152 protrudes from the opening 52.
  • the heating unit 40 generates an aerosol by heating the aerosol source and atomizing the aerosol source.
  • the heating unit 40 is configured in a film shape and is arranged to cover the outer periphery of the storage unit 50.
  • the heating unit 40 generates heat, the substrate unit 151 of the stick-shaped substrate 150 is heated from the outer periphery, and an aerosol is generated.
  • the heating unit 40 generates heat when power is supplied from the power supply unit 111.
  • power may be supplied when the sensor unit 112 detects that the user has started inhaling and/or that specific information has been input. Power supply may be stopped when the sensor unit 112 detects that the user has stopped inhaling and/or that specific information has been input.
  • the insulating section 70 prevents heat transfer from the heating section 40 to other components.
  • the insulating section 70 is made of a vacuum insulating material or an aerogel insulating material.
  • the configuration of the suction device 100 is not limited to the above, and various configurations such as those exemplified below are possible.
  • the storage unit 50 may include an opening/closing mechanism such as a hinge that opens and closes a portion of the outer shell that forms the internal space 80. The storage unit 50 may then open and close the outer shell to accommodate the stick-shaped substrate 150 inserted into the internal space 80 while clamping it.
  • the heating unit 40 may be provided at the clamping location in the storage unit 50, and may heat the stick-shaped substrate 150 while pressing it.
  • the intake and exhaust form of the storage section 50 may be a so-called counterflow. In that case, air flows into the internal space 80 from the opening 52 as the user puffs. The air then passes through the inside of the stick-shaped substrate 150 from the tip of the stick-shaped substrate 150 and reaches the user's mouth together with the aerosol.
  • Stick-type substrate 150 is an example of an aerosol-generating substrate that contains an aerosol source. Inhalation device 100 and stick-type substrate 150 work together to generate an aerosol that is inhaled by the user. Therefore, the combination of inhalation device 100 and stick-type substrate 150 may be considered as an aerosol-generating system.
  • the heating system 30 is a system consisting of components involved in heating the stick-shaped substrate 150.
  • the heating system 30 shown in FIG. 2 includes a heating section 40 and a storage section 50.
  • the heating system 30 includes an outer thermal diffusion layer 90 and a heat shrink tube 99, which will be described later, and a heat insulating section 70.
  • the heating section 40 is disposed outside the storage section 50. Therefore, when the heating section 40 generates heat, the storage section 50 is heated from the outside, and the stick-shaped substrate 150 is heated by heat transfer from the storage section 50. This makes it possible to generate an aerosol from the stick-shaped substrate 150.
  • FIG. 3 is a perspective view of the storage section 50 shown in FIG. 2.
  • FIG. 4 is a cross-sectional view of the storage section 50 taken along line 4-4 in FIG. 3.
  • FIG. 5 is a cross-sectional view of the storage section 50 taken along line 5-5 in FIG. 4.
  • the storage section 50 is a bottomed cylindrical body including an opening 52, a side wall 54, and a bottom wall 56 that closes the end opposite the opening 52.
  • the side wall 54 has an inner surface 54a and an outer surface 54b.
  • the bottom wall 56 has an inner surface 56a and an outer surface 56b.
  • the stick-shaped substrate 150 is inserted into the storage section 50 from the opening 52 and is contained in the internal space 80 surrounded by the side wall 54 and the bottom wall 56.
  • the storage section 50 is preferably made of a metal with high thermal conductivity, and may be made of, for example, SUS (steel use stainless steel). This allows the stick-shaped substrate 150 to be heated efficiently.
  • the stick-shaped substrate 150 is inserted and removed along the axial direction of the cylindrical storage section 50.
  • the direction in which the stick-shaped substrate 150 is inserted is also referred to as "down,” and the direction in which the stick-shaped substrate 150 is removed is also referred to as "up.”
  • the axial direction is also referred to as the "up-down” direction.
  • the up-down direction may be the longitudinal direction of the storage section 50.
  • the direction toward the central axis of the storage section 50 is also referred to as “inner,” and the direction away from the central axis is also referred to as "outer.”
  • the storage section 50 has a holding section 60 that holds the stick-shaped substrate 150.
  • the holding section 60 includes a pressing section 62 that presses a portion of the stick-shaped substrate 150, and a non-pressing section 66.
  • the pressing section 62 has an inner surface 62a and an outer surface 62b.
  • the non-pressing section 66 has an inner surface 66a and an outer surface 66b.
  • the pressing section 62 and the non-pressing section 66 are part of the side wall 54 of the storage section 50.
  • the pressing section 62 is an example of a first side wall.
  • the non-pressing section 66 is an example of a second side wall that is different from the first side wall.
  • the opening 52 of the storage unit 50 is preferably capable of receiving the stick-shaped substrate 150 without pressing it.
  • the opening 52 of the storage unit 50 in a plane perpendicular to the vertical direction, is preferably configured to be larger than the stick-shaped substrate 150.
  • the shape of the opening 52 of the storage unit 50 in a plane perpendicular to the vertical direction may be polygonal or elliptical, but is preferably circular.
  • the heating section 40 is disposed on the outer surface 62b of the pressing section 62. It is preferable that the heating section 40 is disposed without any gaps on the outer surface 62b of the pressing section 62. It is also preferable that the heating section 40 is disposed over the entire outer surface 62b of the pressing section 62. However, it is preferable that the heating section 40 is disposed so as not to protrude beyond the outer surface 62b of the pressing section 62. Of course, the heating section 40 may be disposed so as to protrude from the outer surface 62b of the pressing section 62 onto the outer surface 66b of the non-pressing section 66.
  • the heating unit 40 has a heat generating region 44 and a non-heat generating region 45.
  • the heat generating region 44 is a region that generates heat when a current is applied to the heating unit 40.
  • the non-heat generating region 45 is a region that does not generate heat or generates very little heat even when a current is applied to the heating unit 40.
  • the heat generating region 44 is disposed on the outer surface 62b of the pressing unit 62. With this configuration, it is possible to efficiently heat the stick-shaped substrate 150 while pressing the stick-shaped substrate 150 with the pressing unit 62.
  • the storage section 50 has two pressing sections 62 and two non-pressing sections 66.
  • the pressing sections 62 and non-pressing sections 66 are alternately arranged along the circumferential direction of the storage section 50.
  • the two pressing sections 62 of the holding section 60 face each other. At least a portion of the distance between the inner surfaces 62a of the two pressing sections 62 is smaller than the width of the portion of the stick-shaped substrate 150 inserted into the storage section 50 that is arranged between the pressing sections 62. With this configuration, it becomes possible to press the stick-shaped substrate 150 with the two opposing pressing sections 62.
  • the inner surface 66a of the non-pressing portion 66 of the holding portion 60 is curved in a plane perpendicular to the longitudinal direction of the storage portion 50. It is preferable that the shape of the inner surface 66a of the non-pressing portion 66 in the plane perpendicular to the longitudinal direction of the storage portion 50 is the same as the shape of the opening 52 in the plane perpendicular to the longitudinal direction of the storage portion 50 at any position in the longitudinal direction of the storage portion 50. In other words, it is preferable that the inner surface 66a of the non-pressing portion 66 is formed by extending the inner surface of the storage portion 50 that forms the opening 52 in the longitudinal direction. The outer surface 66b of the non-pressing portion 66 of the holding portion 60 is curved parallel to the inner surface 66a.
  • the inner surface 62a of the pressing portion 62 has a pair of flat pressing surfaces facing each other.
  • the inner surface 66a of the non-pressing portion 66 has a pair of curved non-pressing surfaces facing each other, connecting both ends of the pair of flat pressing surfaces.
  • the curved non-pressing surfaces may have an overall arc-shaped cross section in a plane perpendicular to the longitudinal direction of the storage portion 50.
  • the outer surface 62b of the pressing portion 62 and the outer surface 66b of the non-pressing portion 66 are connected to each other at an angle, and a boundary 68 may be formed between the outer surface 62b of the pressing portion 62 and the outer surface 66b of the non-pressing portion 66.
  • the pressing portion 62 and the non-pressing portion 66 may have a uniform thickness.
  • the pressing portion 62 may be a flat plate.
  • the non-pressing portion 66 may be a curved plate curved outward from the storage portion 50 along the circumferential direction of the storage portion 50.
  • the storage section 50 preferably has a first guide section 58 with a tapered surface 58a that connects the inner surface of the storage section 50 (i.e., the non-holding section 69) that forms the opening 52 and the inner surface 62a of the pressing section 62.
  • the first guide section 58 smoothly connects the pressing section 62 and the non-holding section 69, making it possible to suitably guide the stick-shaped substrate 150 into the holding section 60 during the process of inserting the stick-shaped substrate 150 into the storage section 50.
  • the storage section 50 has a cylindrical non-holding section 69 between the opening 52 and the holding section 60.
  • the non-holding section 69 is a portion of the storage section 50 that does not contribute to holding the stick-shaped substrate 150.
  • the non-holding section 69 can be formed to be larger than the stick-shaped substrate 150. This makes it possible to easily insert the stick-shaped substrate 150 into the storage section 50.
  • Figure 6 is a vertical cross-sectional view of the storage section 50 including the non-pressing section 66 when the stick-shaped substrate 150 is held by the holding section 60.
  • Figure 7 is a vertical cross-sectional view of the storage section 50 including the pressing section 62 when the stick-shaped substrate 150 is held by the holding section 60.
  • Figure 8 is a cross-sectional view of the storage section 50 taken along the arrows 7-7 in Figure 7. Note that Figure 8 shows a cross-section of the stick-shaped substrate 150 before it is pressed, so that it is easy to see that the stick-shaped substrate 150 is pressed by the pressing section 62.
  • the stick-shaped substrate 150 is pressed by the pressing portion 66, and the inner surface 66a of the pressing portion 66 and the stick-shaped substrate 150 are in close contact with each other.
  • a gap 67 is formed between the inner surface 66a of the non-pressing portion 66 and the stick-shaped substrate 150.
  • the gap 67 between the inner surface 66a of the non-pressing portion 66 and the stick-shaped substrate 150 is substantially maintained even when the stick-shaped substrate 150 is held by the holding portion 60 and is deformed by being pressed by the pressing portion 62.
  • this gap 67 can form an air flow path that connects the opening 52 and the tip of the stick-shaped substrate 150.
  • the distance L A between the inner surface 62a of the pressing part 62 and the center of the stick-shaped substrate 150 is shorter than the distance L B between the inner surface 66a of the non-pressing part 66 and the center of the stick-shaped substrate 150.
  • the distance between the heating part 40 arranged on the outer surface 62b of the pressing part 62 and the center of the stick-shaped substrate 150 can be made shorter than in the case in which the pressing part 62 is not provided.
  • the heating efficiency of the stick-shaped substrate 150 can be improved.
  • the outer peripheral surface of the holding portion 60 has the same shape and size (the outer peripheral length of the holding portion 60 in a plane perpendicular to the longitudinal direction of the holding portion 60) over the entire longitudinal length of the holding portion 60. This makes it possible to ensure a gap 67 while uniformly pressing the stick-shaped substrate 150 over the entire vertical area of the holding portion 60.
  • the suction device 100 holds and heats the stick-shaped substrate 150 while pressing it with the pressing section 62.
  • This configuration makes it possible to improve the heating efficiency of the stick-shaped substrate 150 compared to when the stick-shaped substrate 150 is heated without being pressed.
  • the heating system 30 is manufactured by sequentially stacking components constituting the heating system 30 on the outer side of the side wall 54 of the accommodation section 50.
  • the manufacturing process of the heating system 30 will be described with reference to Figs. 9 and 10, and the configuration of the heating system 30 will be described.
  • FIG. 9 and 10 are diagrams showing an example of the manufacturing process of the heating system 30 according to this embodiment.
  • the manufacturing process of the heating system 30 according to this embodiment proceeds in order through manufacturing steps S11 to S17 shown in FIG. 9 and FIG. 10.
  • the two pressing parts 62 of the holding part 60 may be distinguished as pressing part 62-1 and pressing part 62-2.
  • the two non-pressing parts 66 of the holding part 60 may be distinguished as non-pressing part 66-1 and non-pressing part 66-2.
  • each manufacturing process is shown on a development diagram in which the side wall 54 of the storage part 50 (particularly the part corresponding to the holding part 60) is divided and developed at the center of the non-pressing part 66-2.
  • the left-right direction in these development diagrams corresponds to the circumferential direction of the storage part 50.
  • the first electrical insulating layer 41 (41-1 and 41-2) is laminated on the pressing portion 62. More specifically, the first electrical insulating layer 41-1 is laminated on the outside of the pressing portion 62-1, and the first electrical insulating layer 41-2 is laminated on the outside of the pressing portion 62-2.
  • the first electrical insulating layer 41 is made of a material having electrical insulation properties. Examples of materials that make up the first electrical insulating layer 41 include glass and ceramics.
  • the first electrical insulating layer 41 is laminated using a deposition process or a printing process.
  • the deposition process is a process in which a substance is evaporated toward the surface of the target object to form a thin film coating.
  • the printing process is a process in which a liquid is sprayed toward the surface of the target object to form a thin film coating.
  • the resistive heating layer 42 (42-1 and 42-2) is laminated on the outside of the pressing section 62 of the heating system 30 in the middle of manufacturing after the manufacturing step S12.
  • the resistive heating layer 42-1 is laminated on the outside of the first electrical insulation layer 41-1 laminated on the pressing section 62-1
  • the resistive heating layer 42-2 is laminated on the outside of the first electrical insulation layer 41-2 laminated on the pressing section 62-2.
  • the resistive heating layer 42 is laminated on the first electrical insulation layer 41 in the shape of a single line that moves back and forth up and down while leaving a gap on the left and right.
  • the resistive heating layer 42 is made of a material having electrical conductivity.
  • the resistive heating layer 42 examples include metallic materials such as SUS and non-metallic materials such as silicon carbide.
  • the resistive heating layer 42 may also be made of a conductive paste-like material.
  • a material that is mainly made of silver and contains a resistance adjuster. When a current is applied to the resistive heating layer 42, it generates Joule heat according to the electrical resistance.
  • the resistive heating layer 42 is laminated using a deposition process or a printing process.
  • the resistive heating layer 42-1 forms an open circuit with the first end 46-1 and the second end 47-1 at both ends.
  • the resistive heating layer 42-2 forms an open circuit with the first end 46-2 and the second end 47-2 at both ends.
  • the first end 46 (46-1 and 46-2) is disposed within the first electrical insulation layer 41.
  • the first end 46 is disposed at the lower end of the first electrical insulation layer 41.
  • the second end 47 (47-1 and 47-2) is disposed protruding from the first electrical insulation layer 41.
  • the second end 47 protrudes from the first electrical insulation layer 41, protrudes from the pressing portion 62, and is disposed in the non-pressing portion 66.
  • a second electrical insulation layer 43 (43-1 and 43-2) is laminated on the outside of the pressing section 62 of the heating system 30 in the process of being manufactured after manufacturing process S13.
  • the second electrical insulation layer 43-1 is laminated on the outside of the first electrical insulation layer 41-1 and the resistive heating layer 42-2 laminated on the pressing section 62-1
  • the second electrical insulation layer 43-2 is laminated on the outside of the first electrical insulation layer 41-2 and the resistive heating layer 42-2 laminated on the pressing section 62-2.
  • the second electrical insulation layer 43 is made of a material having electrical insulation properties, similar to the first electrical insulation layer 41.
  • the second electrical insulation layer 43 is laminated using a deposition process or a printing process.
  • a conductor 48-1 is connected to the resistive heating layer 42-1, and a conductor 48-2 is connected to the resistive heating layer 42-2. More specifically, the conductor 48-1 is connected to the first end 46-1 of the resistive heating layer 42-1, and the conductor 48-2 is connected to the first end 46-2 of the resistive heating layer 42-2.
  • the conductors 48 (48-1 and 48-2) are connected to a power supply unit 111.
  • the first end 46-1 of the resistive heating layer 42-1 is connected to the negative electrode of the power supply unit 111 via the conductor 48-1.
  • the first end 46-2 of the resistive heating layer 42-2 is connected to the positive electrode of the power supply unit 111 via the conductor 48-2.
  • the power supply unit 111 supplies power to the resistive heating layer 42 based on the control by the control unit 116, causing the resistive heating layer 42 to generate heat.
  • the storage section 50 is made of a material having electrical conductivity.
  • a material that can be used to make the storage section 50 is SUS.
  • the second end 47-1 of the resistive heating layer 42-1 protrudes from the first electrical insulation layer 41-1 and is connected to the housing 50, and is electrically connected to the power supply unit 111 via the housing 50.
  • the second end 47-2 of the resistive heating layer 42-2 protrudes from the first electrical insulation layer 41-2 and is connected to the housing 50, and is electrically connected to the power supply unit 111 via the housing 50. More specifically, the second end 47-1 of the resistive heating layer 42-1 and the second end 47-2 of the resistive heating layer 42-2 adjacent to the resistive heating layer 42-1 are electrically connected via the housing 50.
  • the first end 46-1 of the resistive heating layer 42-1 is electrically connected to the power supply unit 111 via the conductor 48-1
  • the first end 46-2 of the resistive heating layer 42-2 is electrically connected to the power supply unit 111 via the conductor 48-2.
  • the conductor 48-1, the resistive heating layer 42-1, the housing 50, the resistive heating layer 42-2, and the conductor 48-2 form a series circuit connected to the power supply unit 111.
  • the power supply unit 111 supplies power to this series circuit, it becomes possible to heat the resistive heating layer 42-1 and the resistive heating layer 42-2.
  • the first electrical insulation layer 41-1, the resistive heating layer 42-1, and the second electrical insulation layer 43-1 described above constitute the heating section 40-1.
  • the first electrical insulation layer 41-2, the resistive heating layer 42-2, and the second electrical insulation layer 43-2 constitute the heating section 40-2.
  • each component constituting the heating section 40 (40-1 and 40-2) is laminated using a printing process or a deposition process. Therefore, compared to other manufacturing methods such as manufacturing the heating section 40 separately and attaching it to the storage section 50, the manufacturing accuracy of the heating system 30 can be improved in that defects such as misalignment and peeling of the heating section 40 can be prevented. As a result, it is possible to improve the heating efficiency of the stick-shaped substrate 150 and improve the quality of the user experience.
  • the following provides additional information about the features of the heating unit 40.
  • the first electrical insulation layer 41-1 is laminated inside the resistive heating layer 42-1, and the second electrical insulation layer 43-1 is laminated outside the resistive heating layer 42-1. At least a portion of the resistive heating layer 42-1 is sandwiched between the first electrical insulation layer 41-1 and the resistive heating layer 42-2.
  • This configuration makes it possible to prevent a short circuit within the resistive heating layer 42-1 via an inner part of the heating unit 40 (e.g., the housing portion 50) or an outer part of the heating unit 40 (e.g., the outer thermal diffusion layer g1 described below).
  • the resistive heating layer 42-1 and the resistive heating layer 42-2 are laminated on the outside of the pressing portion 62-1 and the pressing portion 62-2 on both sides of the non-pressing portion 66-1, while being separated in the non-pressing portion 66-1.
  • the resistive heating layer 42 can be disposed on a flat surface on the pressing portion 62. Therefore, compared to disposing the resistive heating layer 42 on a curved surface on the non-pressing portion 66, the manufacturing precision of the heating system 30 can be improved in that defects such as misalignment and peeling can be prevented. As a result, it is possible to improve the heating efficiency of the stick-shaped substrate 150 and improve the quality of the user experience.
  • the second end 47-1 of the resistive heating layer 42-1 protruding from the first electrical insulation layer 41-1 protrudes from the pressing portion 62-1 and is connected to the non-pressing portion 66-1.
  • the second end 47-2 of the resistive heating layer 42-2 protruding from the first electrical insulation layer 41-2 protrudes from the pressing portion 62-2 and is connected to the non-pressing portion 66-1. That is, the second end 47-1 of the resistive heating layer 42-1 and the second end 47-2 of the resistive heating layer 42-2 are arranged to protrude in a direction approaching each other from the left and right ends of the non-pressing portion 66-1.
  • the distance between the second end 47-1 of the resistive heating layer 42-1 and the second end 47-2 of the resistive heating layer 42-2 can be minimized. As a result, it is possible to easily pass electricity between the resistive heating layer 42-1 and the resistive heating layer 42-2.
  • the resistive heating layer 42 laminated in the heat generating region 44 is configured to be thin. This increases the electrical resistance of the resistive heating layer 42 laminated in the heat generating region 44, making it possible to generate high Joule heat when power is applied.
  • the resistive heating layer 42 laminated in the non-heat generating region 45 of the heating section 40 is configured to be wider than the resistive heating layer 42 laminated in the heat generating region 44. This reduces the electrical resistance of the resistive heating layer 42 laminated in the non-heat generating region 45, making it possible to generate no Joule heat or generate very small Joule heat when power is applied.
  • the first end 46 to which the conductor 48 is connected is configured in the resistive heating layer 42 of the non-heat generating region 45, which is configured to be wider than the resistive heating layer 42 of the heat generating region 44. This makes it possible to prevent heat transfer to the conductor 48 and to prevent the connection between the conductor 48 and the resistive heating layer 42 from being damaged by heat.
  • the conductor 48 is connected to only one of the two ends of the resistive heating layer 42.
  • the number of conductors 48 can be reduced compared to when conductors 48 are connected to both ends of the resistive heating layer 42. This makes it possible to prevent poor connections between the conductors 48 and the resistive heating layer 42 and improve the quality of the user experience.
  • the resistive heating layer 42 is disposed at a position of the stick-shaped substrate 150 contained in the storage section 50 corresponding to the substrate section 151 in which the aerosol source is distributed.
  • a heat generating region 44 on which the resistive heating layer 42 is laminated is disposed at a position of the pressing section 62 corresponding to the substrate section 151.
  • the portion of the outer periphery of the storage section 50 on which the first electrical insulation layer 41 is laminated occupies less than 50% of the outer periphery of the storage section 50. More simply, it is desirable that the pressing section 62 occupies less than 50% of the outer periphery of the storage section 50. With this configuration, the area of the heat generating region 44 can be narrowed and the watt density can be increased. As a result, it is possible to improve the heating efficiency of the stick-shaped substrate 150.
  • the control unit 116 can control the temperature at which the stick-shaped substrate 150 is heated by estimating and controlling the temperature of the resistive heating layer 42 based on the electrical resistance value of the resistive heating layer 42.
  • the electrical resistance value of the resistive heating layer 42 is measured based on the amount of voltage drop between the conductors 48-1 and 48-2.
  • the temperature of the resistive heating layer 42 can be estimated to be close to the temperature of the housing 50 to the extent that the resistive heating layer 42-1 and the resistive heating layer 42-2 are electrically connected via the housing 50.
  • this configuration makes it possible to more appropriately control the temperature of the stick-shaped substrate 150 and improve the quality of the user experience.
  • an outer thermal diffusion layer 90 is laminated on the outside of the heating system 30 in the middle of manufacturing after manufacturing step S14. More specifically, the outer thermal diffusion layer 90 is wrapped around and laminated on the outside of the side wall 54 of the storage section 50 and on the outside of the heating section 40.
  • the outer thermal diffusion layer 90 is an example of a second thermal diffusion layer that diffuses the heat of the heating section 40 on the outside of the heating section 40. With this configuration, the heat of the heating section 40 laminated on the pressing section 62 can be diffused throughout the storage section 50 including the non-pressing section 66. As a result, the stick-shaped substrate 150 stored in the storage section 50 can be efficiently heated.
  • the configuration of the outer thermal diffusion layer 90 will be described with reference to FIG. 11.
  • FIG. 11 is a diagram showing the configuration of the outer thermal diffusion layer 90 shown in FIG. 10.
  • the outer thermal diffusion layer 90 includes a graphite sheet 91, a vertically elongated PI tape 92, and a horizontally elongated PI tape 93.
  • Graphite sheet 91 is a sheet-like member made of graphite.
  • the thermal conductivity of graphite sheet 91 is at least higher than the thermal conductivity of storage section 50. With this configuration, graphite sheet 91 can efficiently diffuse heat from heating section 40.
  • a sheet-like member made of silicon, acrylic, or the like may be used instead of graphite sheet 91.
  • the vertical PI tape 92 and the horizontal PI tape 93 are formed by applying an adhesive to one side of a film-like member made of PI (Polyimide).
  • the tensile strength of the vertical PI tape 92 and the horizontal PI tape 93 is higher than the tensile strength of the graphite sheet 91. Therefore, the vertical PI tape 92 and the horizontal PI tape 93 can prevent the graphite sheet 91 from tearing while fixing the graphite sheet 91 around the periphery of the storage section 50.
  • the outer thermal diffusion layer 90 is formed by bonding a graphite sheet 91 to the bottom layer, a vertically long PI tape 92 to the middle layer, and a horizontally long PI tape 93 to the top layer in an overlapping state.
  • the vertically long PI tape 92 and the horizontally long PI tape 93 are overlapped with the adhesive surface facing the bottom layer.
  • the layer that will be the inner side when the outer thermal diffusion layer 90 is wrapped around the storage section 50 is the bottom layer, and the layer that will be the outer side is the top layer. Then, in the manufacturing process S15 shown in FIG.
  • the outer thermal diffusion layer 90 is wrapped around the heating section 40 arranged outside the storage section 50 so as to cover the outside of the heating section 40 arranged outside the storage section 50, with the graphite sheet 91 on the inside and the horizontally long PI tape 93 on the outside.
  • the graphite sheet 91 adhere closely to the heating section 40 or the storage section 50.
  • the graphite sheet 91 that is in close contact with the heating unit 40 or the storage unit 50 can be protected from the outside by the horizontal PI tape 93.
  • the graphite sheet 91 is laminated so as to overlap the heat generating region 44 of the heating unit 40. With this configuration, it is possible to efficiently diffuse the heat of the heating unit 40. On the other hand, it is preferable that the graphite sheet 91 is laminated so as to avoid the non-heat generating region 45 of the heating unit 40. With this configuration, it is possible to prevent heat transfer to the conductor 48 and to prevent the connection between the conductor 48 and the resistance heating layer 42 from being damaged by heat.
  • the graphite sheet 91 is formed to be longer than the outer periphery of the storage section 50 (particularly the holding section 60) in the left-right direction. As a result, the graphite sheet 91 is wrapped around the outer surface of the storage section 50 one or more times. With this configuration, the graphite sheet 91 completely covers the outer periphery of the storage section 50, making it possible to diffuse the heat of the heating section 40 throughout the entire storage section 50.
  • the vertically elongated PI tape 92 is formed longer than the graphite sheet 91 in the vertical direction, and is positioned so that both ends in the vertical direction protrude from the graphite sheet 91. Then, referring again to manufacturing process S15 in FIG. 10, these protruding portions 95-1 and 95-2 are directly bonded to the non-pressing portion 66 where the heating portion 40 is not disposed. With this configuration, it is possible to firmly fix the outer thermal diffusion layer 90 to the accommodation portion 50 and prevent the outer thermal diffusion layer 90 from shifting out of position.
  • the vertically elongated PI tape 92 is bonded to the heating portion 40 on the pressing portion 62, it is possible to reduce the load on the heating portion 40 when the outer thermal diffusion layer 90 is wrapped around it, and to prevent damage to the heating portion 40.
  • the horizontally elongated PI tape 93 is formed longer than the graphite sheet 91 in the left-right direction, and is positioned so that its right end protrudes from the graphite sheet 91. Then, referring again to manufacturing process S15 in FIG. 10, this protruding portion 94 is adhered to the horizontally elongated PI tape 93 that is wrapped around one circumference inward from the protruding portion 94. With this configuration, the position of the graphite sheet 91 can be firmly fixed by the horizontally elongated PI tape 93. As a result, it is possible to prevent a situation in which excessive force is applied to the graphite sheet 91, causing the graphite sheet 91 to break.
  • the heat insulating section 70 is laminated on the outside of the heating system 30 in the middle of manufacture after the manufacturing process S15. More specifically, the heat insulating section 70 is wrapped around and laminated on the outside of the side wall 54 of the storage section 50, outside the heating section 40 and the outer thermal diffusion layer 90.
  • the heat insulating section 70 is an example of a heat insulating layer that blocks the heat of the heating section 40. With this configuration, it is possible to prevent the heat of the heating section 40 from diffusing to the outside. As a result, it is possible to prevent the occurrence of malfunctions caused by high temperatures, such as malfunctions of electronic circuits.
  • the heat insulating section 70 is laminated so as to cover a part of the side wall 54 of the storage section 50 in the vertical direction.
  • the heat insulating section 70 It is desirable for the heat insulating section 70 to completely cover the heat generating region 44 of the heating section 40 and the outer thermal diffusion layer 90.
  • the end of the heat insulating section 70 in the vertical direction and the part of the side wall 54 of the storage section 50 exposed from the heat insulating section 70 are sealed with a sealing member 73.
  • the sealing member 73 is made of a material with a certain heat resistance, such as silicon. This configuration makes it possible to improve the heat insulating effect of the heat insulating part 70.
  • the configuration of the heat insulating part 70 will be described with reference to FIG. 12.
  • the heat insulating section 70 is configured by laminating a heat insulating sheet 71 and a PI tape 72 (72-1 and 72-2).
  • the heat insulating sheet 71 is a member that blocks heat.
  • the heat insulating sheet 71 is configured from a glass material, a vacuum insulation material, an aerogel insulation material, or the like.
  • the PI tape 72 is a tape made of PI.
  • the PI tape 72 is configured by applying an adhesive to one side of a film-like member made of PI. Then, in the manufacturing process S16 shown in FIG.
  • the heat insulating section 70 is arranged so that the heat insulating sheet 71 is on the inside and the PI tape 72 is on the outside, and the adhesive surface of the PI tape 72 faces inward, and is wrapped around the outside of the outer thermal diffusion layer 90 arranged on the outside of the storage section 50 so as to cover the outside.
  • the heat insulating sheet 71 is formed to be longer than the graphite sheet 91 in the vertical direction, and is positioned so that the ends of the heat insulating sheet 71 in the vertical direction protrude beyond the graphite sheet 91. With this configuration, the heat insulating sheet 71 can completely cover the graphite sheet 91 in the vertical direction.
  • the heat insulating sheet 71 is also formed to be longer than the outer periphery of the storage section 50 (particularly the holding section 60) in the left-right direction. As a result, the heat insulating sheet 71 is wrapped around the outer surface of the storage section 50 one or more times. With this configuration, the heat insulating sheet 71 can completely cover the outer periphery of the storage section 50. As a result, it is possible to prevent the heat from the heating section 40 diffused by the outer thermal diffusion layer 90 from diffusing outside the heat insulating section 70.
  • the PI tape 72-1 is positioned at the left end of the insulating sheet 71 so that about half of it protrudes to the left from the insulating sheet 71.
  • the PI tape 72-1 is then adhered to the outer thermal diffusion layer 90 (e.g., horizontally elongated PI tape 93) wrapped around the holding part 60. With this configuration, it is possible to fix the position of the insulating part 70 and prevent the insulating part 70 from shifting out of position.
  • the PI tape 72-2 is positioned at the right end of the insulating sheet 71 so that about half of it protrudes to the right from the insulating sheet 71.
  • the protruding portion of the PI tape 72-2 is then adhered to the insulating part 70 (e.g., the insulating sheet 71) that is wrapped around one circumference inward from the protruding portion. With this configuration, it is possible to fix the position of the insulating part 70 and prevent the insulating part 70 from shifting out of position.
  • a heat shrink tube 99 is laminated on the outside of the heating system 30 in the process of being manufactured after manufacturing process S16.
  • the heat shrink tube 99 is a tubular member that shrinks when heat is applied.
  • the heat shrink tube 99 is made of a resin material.
  • the heat shrink tube 99 shrinks when heated while positioned so as to completely cover the heating system 30 in the process of being manufactured after manufacturing process S16, and fixes each component laminated on the outside of the storage section 50. This configuration makes it possible to prevent the components laminated on the outside of the storage section 50 from becoming misaligned.
  • FIG. 13 is a diagram showing an example of the manufacturing process of the heating system 30 according to this modified example.
  • the manufacturing process of the heating system 30 according to this modified example proceeds in order from manufacturing steps S21 to S24 shown in FIG. 13, and then manufacturing steps S15 to S17 shown in FIG. 10. That is, the manufacturing process of the heating system 30 according to this modified example includes manufacturing steps S21 to S24 instead of manufacturing steps S11 to S14 in FIG. 9.
  • differences from manufacturing steps S11 to S14 will be mainly described, and similarities will not be described.
  • Manufacturing process S21 in FIG. 13 is similar to manufacturing process S11 in FIG. 9.
  • the first electrical insulating layer 41 is laminated on the pressing portion 62.
  • a notch 49-1 is provided in the lower portion of the first electrical insulating layer 41-1, exposing a portion of the pressing portion 62-1.
  • a notch 49-2 is provided in the lower portion of the first electrical insulating layer 41-2, exposing a portion of the pressing portion 62-2.
  • the resistive heating layer 42 is laminated on the outside of the first electrical insulation layer 41 laminated on the pressing portion 62 of the heating system 30 in the process of being manufactured after manufacturing step S22.
  • the second end 47-1 of the resistive heating layer 42-1 protruding from the first electrical insulation layer 41-1 is connected to the pressing portion 62-1 exposed in the cutout 49-1 of the first electrical insulation layer 41-1.
  • the second end 47-2 of the resistive heating layer 42-2 protruding from the first electrical insulation layer 41-2 is connected to the pressing portion 62-2 exposed in the cutout 49-2 of the first electrical insulation layer 41-1.
  • a second electrical insulation layer 43 is laminated on the outside of the first electrical insulation layer 41 and the resistive heating layer 42 that are laminated on the pressing portion 62 of the heating system 30 in the process of being manufactured after manufacturing step S23.
  • a notch 49-1 is also provided in the lower part of the second electrical insulation layer 43-1, similar to the first electrical insulation layer 41-1.
  • a notch 49-2 is also provided in the lower part of the second electrical insulation layer 43-2, similar to the first electrical insulation layer 41-2.
  • a conductor 48-1 is connected to the resistive heating layer 42-1, and a conductor 48-2 is connected to the resistive heating layer 42-2.
  • the first and second electrical insulating layers 41 and 43 may have any shape as long as they are configured to sandwich and cover the resistance heating layer 42 from both sides.
  • a second modification another example of a shape that the first and second electrical insulating layers 41 and 43 may have will be described with reference to Fig. 14.
  • the second modification will be described as a further modification of the first modification.
  • FIG. 14 is a diagram showing an example of the manufacturing process of the heating system 30 according to this modified example.
  • the manufacturing process of the heating system 30 according to this modified example proceeds in order from manufacturing steps S31 to S34 shown in FIG. 14, and then manufacturing steps S15 to S17 shown in FIG. 10. That is, the manufacturing process of the heating system 30 according to this modified example includes manufacturing steps S31 to S34 instead of manufacturing steps S21 to S24 in FIG. 13. Below, differences from manufacturing steps S21 to S24 will be mainly described, and similarities will not be described.
  • Manufacturing process S31 in FIG. 14 is similar to manufacturing process S11 in FIG. 9.
  • the first electrical insulation layer 41 is laminated on the pressing portion 62.
  • the first electrical insulation layer 41-1 has a shape that conforms to the resistance heating layer 42-1 that will be laminated later. That is, the first electrical insulation layer 41-1 is laminated on the pressing portion 62-1 in the shape of a single line that moves back and forth up and down with a space left and right.
  • the first electrical insulation layer 41-2 has a shape that conforms to the resistance heating layer 42-2 that will be laminated later. That is, the first electrical insulation layer 41-2 is laminated on the pressing portion 62-2 in the shape of a single line that moves back and forth up and down with a space left and right.
  • a resistive heating layer 42 is laminated on the outside of the first electrical insulation layer 41 laminated on the pressing portion 62 of the heating system 30 in the process of being manufactured after manufacturing process S32.
  • a second electrical insulation layer 43 is laminated on the outside of the first electrical insulation layer 41 and the resistive heating layer 42 laminated on the pressing portion 62 of the heating system 30 in the process of being manufactured after manufacturing step S33.
  • the second electrical insulation layer 43-1 has the same shape as the first electrical insulation layer 41-1.
  • the second electrical insulation layer 43-2 has the same shape as the first electrical insulation layer 41-2.
  • a conductor 48-1 is connected to the resistive heating layer 42-1, and a conductor 48-2 is connected to the resistive heating layer 42-2.
  • the first electrical insulation layer 41 and the second electrical insulation layer 43 in this modified example have the shape of a single line that moves back and forth up and down with a gap left and right. Therefore, the outer thermal diffusion layer 90 that is laminated later comes into direct contact with the pressing portion 62 exposed in the left and right gap between the first electrical insulation layer 41 and the second electrical insulation layer 43. Therefore, the thermal diffusion effect of the outer thermal diffusion layer 90 can be exerted on the pressing portion 62 as well, making it possible to further improve heating efficiency.
  • the resistive heating layer 42-1 and the resistive heating layer 42-2 form a series circuit, but the present disclosure is not limited to this example.
  • the resistive heating layer 42-1 and the resistive heating layer 42-2 may form a parallel circuit. This modification will be described with reference to FIG. 15.
  • FIG. 15 is a diagram showing an example of the manufacturing process of the heating system 30 according to this modified example.
  • the manufacturing process of the heating system 30 according to this modified example proceeds in order from manufacturing steps S41 to S44 shown in FIG. 15, and then manufacturing steps S15 to S17 shown in FIG. 10. That is, the manufacturing process of the heating system 30 according to this modified example includes manufacturing steps S41 to S44 instead of manufacturing steps S11 to S14 in FIG. 9.
  • differences from manufacturing steps S11 to S14 will be mainly described, and similarities will not be described.
  • Manufacturing step S41 in FIG. 15 is similar to manufacturing step S11 in FIG. 9.
  • Manufacturing process S42 in FIG. 15 is similar to manufacturing process S12 in FIG. 9.
  • resistive heating layers 42-1 and 42-2 are laminated on the outside of the first electrical insulation layers 41-1 and 41-2 laminated on the pressing portion 62 of the heating system 30 in the process of being manufactured after manufacturing step S42.
  • a rectangular resistive heating layer 42-3 is laminated on the lower part of the non-pressure portion 66-1.
  • the resistive heating layer 42-3 is laminated on the non-heat-generating region 45. That is, the resistive heating layer 42-3 is configured to be wide, similar to the first end 46-1 of the resistive heating layer 42-1 and the first end 46-2 of the resistive heating layer 42-2. This makes it possible to prevent heat generation in the resistive heating layer 42-3, prevent heat transfer to the conductor 48, and prevent damage to the connection between the conductor 48 and the resistive heating layer 42 due to heat.
  • a second electrical insulation layer 43 is laminated on the outside of the first electrical insulation layer 41 and the resistive heating layer 42 laminated on the pressing portion 62 of the heating system 30 in the process of being manufactured after manufacturing step S43.
  • a conductor 48-1 is connected to the resistive heating layer 42-1, and a conductor 48-2 is connected to the resistive heating layer 42-2.
  • each of the conductors 48-1 and 48-2 is connected to the negative pole of the power supply unit 111.
  • a conductor 48-3 is connected to the resistive heating layer 42-3.
  • the conductor 48-3 is connected to the positive electrode of the power supply unit 111. This results in the conductor 48-3 connected to the power supply unit 111 being connected to the housing 50.
  • the second end 47-1 of the resistive heating layer 42-1 is then electrically connected to the conductor 48-3 connected to the housing 50 (more precisely, the resistive heating layer 42-3) via the housing 50.
  • the conductor 48-1, the resistive heating layer 42-1, the housing 50, the resistive heating layer 42-3, and the conductor 48-3 form a first circuit connected to the power supply unit 111.
  • the second end 47-2 of the resistive heating layer 42-2 is electrically connected to the conductor 48-3 connected to the housing 50 (more precisely, the resistive heating layer 42-3) via the housing 50. Therefore, the conductor 48-2, the resistive heating layer 42-2, the housing 50, the resistive heating layer 42-3, and the conductor 48-3 form a second circuit connected to the power supply unit 111.
  • the first circuit and the second circuit described above form one parallel circuit. When the power supply unit 111 supplies power to this parallel circuit, it becomes possible to heat the resistive heating layers 42-1 and 42-2.
  • FIG. 16 is a diagram showing an example of the manufacturing process of the heating system 30 according to this modified example.
  • the manufacturing process of the heating system 30 according to this modified example proceeds in order from manufacturing steps S51 to S54 shown in FIG. 16, to manufacturing steps S15 to S17 shown in FIG. 10. That is, the manufacturing process of the heating system 30 according to this modified example includes manufacturing steps S51 to S54 instead of manufacturing steps S11 to S14 in FIG. 9.
  • the following mainly describes the differences from manufacturing steps S11 to S14, and omits a description of the similarities.
  • Manufacturing step S51 in FIG. 16 is similar to manufacturing step S11 in FIG. 9.
  • Manufacturing process S52 in FIG. 16 is similar to manufacturing process S12 in FIG. 9.
  • a resistive heating layer 42 is laminated on the outside of the first electrical insulation layer 41 that has been laminated on the pressing portion 62 of the heating system 30 in the process of being manufactured after manufacturing step S52.
  • both ends of the resistive heating layer 42, the first end 46 and the second end 47, are disposed within the first electrical insulation layer 41.
  • the first end 46 and the second end 47 are disposed at the lower end of the first electrical insulation layer 41.
  • a second electrical insulation layer 43 is laminated on the outside of the first electrical insulation layer 41 and the resistive heating layer 42 laminated on the pressing portion 62 of the heating system 30 in the process of being manufactured after manufacturing step S53.
  • a conductor 48 connected to the power supply unit 111 is connected to each of the first end 46 and the second end 47 of the resistive heating layer 42.
  • a conductor 48-1 connected to the positive electrode of the power supply unit 111 is connected to the first end 46-1 of the resistive heating layer 42-1.
  • a conductor 48-4 connected to the negative electrode of the power supply unit 111 is connected to the second end 47-1 of the resistive heating layer 42-1.
  • a conductor 48-2 connected to the negative electrode of the power supply unit 111 is connected to the first end 46-2 of the resistive heating layer 42-2.
  • a conductor 48-5 connected to the positive electrode of the power supply unit 111 is connected to the second end 47-2 of the resistive heating layer 42-2. Therefore, the conductor 48-2, the resistive heating layer 42-2, and the conductor 48-5 form a second circuit connected to the power supply unit 111.
  • the first circuit and the second circuit described above form one parallel circuit.
  • the operations of the first circuit and the second circuit constituting the parallel circuit may be controlled individually or collectively. That is, different powers may be supplied to the first circuit and the second circuit, or the same power may be supplied to them.
  • FIG. 17 is a diagram showing an example of the manufacturing process of the heating system 30 according to this modified example.
  • the manufacturing process of the heating system 30 according to this modified example proceeds in the order of manufacturing steps S61 and S62 shown in FIG. 17, then manufacturing steps S12 to S14 shown in FIG. 9, and then manufacturing steps S15 to S17 shown in FIG. 10. That is, the manufacturing process of the heating system 30 according to this modified example includes manufacturing steps S61 and S62 instead of manufacturing step S11 of FIG. 9.
  • Manufacturing step S65 shown in FIG. 17 illustrates the state of the heating system 30 during manufacturing after having undergone manufacturing steps S61, S62, and S12 to S14.
  • differences from the manufacturing steps S11 to S17 shown in FIG. 9 and FIG. 10 will be mainly described, and similarities will not be described.
  • Manufacturing step S61 in FIG. 17 is similar to manufacturing step S11 in FIG. 9.
  • an inner thermal diffusion layer 96 is laminated on the outside of the side wall 54 of the storage section 50 by plating.
  • the inner thermal diffusion layer 96 is an example of a first thermal diffusion layer that is laminated on the outside of the side wall 54 of the storage section 50 and inside the heating section 40, and diffuses the heat of the heating section 40 inside the heating section 40.
  • the plating process is a process of thinly coating the surface of the target object with metal.
  • the inner thermal diffusion layer 96 is made of a material that can be plated and has a higher thermal conductivity than the material that constitutes the storage section 50. Furthermore, it is preferable that the inner thermal diffusion layer 96 is made of a material that has a higher electrical conductivity than the material that constitutes the storage section 50.
  • An example of a material that constitutes the inner thermal diffusion layer 96 is silver. With this configuration, the heat of the heating section 40 that will be laminated on the pressing section 62 later can be diffused throughout the storage section 50, including the non-pressing section 66. As a result, the stick-shaped substrate 150 contained in the storage section 50 can be efficiently heated.
  • the inner thermal diffusion layer 96 may be laminated using any method, such as thermal spraying, which sprays metal particles to form a coating, or applying a paste-like material and baking it.
  • the inner thermal diffusion layer 96 may also be plated with nickel or gold. This makes it possible to prevent deterioration, such as oxidation, of the inner thermal diffusion layer 96.
  • the inner thermal diffusion layer 96 is laminated so as to overlap the area where the heat generating region 44 of the heating unit 40 is located. With this configuration, it is possible to efficiently diffuse the heat of the heating unit 40. On the other hand, it is desirable that the inner thermal diffusion layer 96 is laminated so as to avoid the area where the non-heat generating region 45 of the heating unit 40 is located. With this configuration, it is possible to prevent heat transfer to the conductor 48 and prevent the connection between the conductor 48 and the resistance heating layer 42 from being damaged by heat.
  • the heating system 30 in the middle of manufacture shown in manufacturing step S63 in FIG. 17 is manufactured. That is, the first electrical insulation layer 41, the resistive heating layer 42, and the second electrical insulation layer 43 are laminated in order on the outer side of the inner thermal diffusion layer 96 laminated on the outer side of the pressing portion 62, using a printing process or a deposition process.
  • the electrical conductivity of the inner thermal diffusion layer 96 is higher than the electrical conductivity of the accommodating portion 50, it is desirable that the second end 47 of the resistive heating layer 42 is connected to the inner thermal diffusion layer 96, as shown in manufacturing step S63.
  • the second end 47 may be connected to the inner thermal diffusion layer 96 on the pressing portion 62, or may be connected to the inner thermal diffusion layer 96 on the non-pressing portion 66. With this configuration, it is possible to more easily pass electricity between the resistive heating layer 42-1 and the resistive heating layer 42-2.
  • this modification may be combined with the third modification, and the conductor 48 connected to the power supply unit 111 may be connected to the housing unit 50. In that case, the resistive heating layer 42 is connected to the power supply unit 111 via the inner thermal diffusion layer 96 and the housing unit 50.
  • the second end 47 of the resistive heating layer 42 may be connected to the housing portion 50 exposed from the inner thermal diffusion layer 96, avoiding the inner thermal diffusion layer 96.
  • the housing portion 50 and the resistive heating layer 42 may be made of the same SUS and electrically connected by welding. With such a configuration, it is possible to prevent a decrease in durability due to intermetallic corrosion or solid solution.
  • the storage unit 50 is a cylindrical body
  • the present disclosure is not limited to such an example.
  • the storage unit 50 may have any shape as long as it has a shape having the pressing unit 62 that is a flat plate. This modification will be described with reference to FIG. 18.
  • the storage section 50 may be a rectangular tube with a bottom, in which the shape of the surface perpendicular to the vertical direction is a square.
  • the non-pressing section 66 is configured as a flat plate. That is, the storage section 50 according to this modification is configured by connecting the bottom wall 56 to the lower end of the side wall 54, which is configured by alternately connecting a pair of pressing sections 62 that are flat plates and a pair of non-pressing sections 66 that are flat plates.
  • the length of the non-pressing section 66 in the circumferential direction of the storage section 50 is shorter than the length of the pressing section 62. That is, it is preferable that the shape of the surface perpendicular to the vertical direction of the storage section 50 is rectangular, with the pressing section 62 forming the long side and the non-pressing section 66 forming the short side. It is also preferable that the heating section 40 is disposed in the pressing section 62.
  • the stick-shaped substrate 150 may be configured in a prismatic shape with a rectangular cross-sectional shape to match the shape of the storage section 50.
  • the stick-shaped substrate 150 may be configured in a thin card shape.
  • the thin stick-shaped substrate 150 can be heated while being sandwiched between the heating units 40, making it easy to raise the temperature all the way to the center of the stick-shaped substrate 150.
  • the resistive heating layer 42 protrudes from the first electrical insulation layer 41 in the direction along the outer circumferential surface of the housing portion 50
  • the present disclosure is not limited to such an example.
  • the resistive heating layer 42 may protrude from the first electrical insulation layer 41 in a direction perpendicular to the outer circumferential surface of the housing portion 50. This modification will be described with reference to FIG. 19 .
  • FIG. 19 is a diagram showing an example of the manufacturing process of the heating system 30 according to this modified example.
  • the manufacturing process of the heating system 30 according to this modified example proceeds in the order of manufacturing steps S71 to S74 shown in FIG. 19, and then manufacturing steps S15 to S17 shown in FIG. 10. That is, the manufacturing process of the heating system 30 according to this modified example includes manufacturing steps S71 to S74 instead of manufacturing steps S11 to S14 in FIG. 9.
  • the following mainly describes the differences from manufacturing steps S11 to S14, and omits a description of the similarities. Also, the following mainly describes the manufacturing process for one of the two heating units 40, but the other heating unit 40 may be manufactured using the same manufacturing process.
  • the first electrical insulating layer 41 in this modified example may be a ceramic substrate before firing, such as a green sheet. Then, the through holes 41a of the first electrical insulating layer 41 are filled with a conductive material 42a.
  • the conductive material 42a is made of any material that has electrical conductivity. The material of the conductive material 42a may be the same as the material of the resistance heating layer 42.
  • a resistive heating layer 42 is laminated on the first electrical insulation layer 41 that has been subjected to manufacturing step S71.
  • the second end 47 of the resistive heating layer 42 is disposed on the through hole 41a.
  • the second end 47 of the resistive heating layer 42 is then connected to the conductive material 42a filled in the through hole 41a.
  • a second electrical insulation layer 43 is laminated on the first electrical insulation layer 41 and the resistive heating layer 42 that have been subjected to manufacturing step S72.
  • the second electrical insulation layer 43 is attached to the first electrical insulation layer 41 so as to sandwich the resistive heating layer 42, with the first end 46 of the resistive heating layer 42 exposed.
  • the second electrical insulation layer 43 in this modified example may be a pre-fired ceramic substrate such as a green sheet.
  • the heating unit 40 of this modified example is manufactured through the manufacturing process described above.
  • the heating section 40 that has undergone manufacturing step S73 is laminated on the outside of the pressing section 62 of the accommodating section 50.
  • the heating section 40 is attached to the outside of the pressing section 62 of the accommodating section 50 and fired.
  • the second end 47 of the resistive heating layer 42 is connected to the accommodating section 50 via the conductive material 42a arranged in the through hole 41a.
  • a conductor 48 is connected to the first end 46 of the resistive heating layer 42.
  • the resistive heating layer 42 is electrically connected to the power supply unit 111 via the accommodation portion 50.
  • the conductive material 42a arranged in the through hole 41a can also be considered as part of the resistive heating layer 42.
  • the resistive heating layer 42 may protrude from the first electrical insulation layer 41 in a direction penetrating the first electrical insulation layer 41 and be connected to the accommodation portion 50.
  • the through hole 41a in this modified example corresponds to the notch 49 in the above embodiment in that it is configured to expose the pressing portion 62 formed in the first electrical insulation layer 41.
  • FIG. 19 illustrates an example in which the heating unit 40 is manufactured separately and then attached to the outside of the storage unit 50, but the present disclosure is not limited to such an example.
  • the first electrical insulation layer 41, the resistive heating layer 42, and the second electrical insulation layer 43 may be laminated in this order on the storage unit 50.
  • the cylindrical storage section 50 may be constructed by drawing a plate material.
  • the cylindrical storage section 50 may be constructed by bending a plate material and welding the seams. In the latter case, the heating section 40 may be laminated on the plate material. Then, the plate material on which the heating section 40 is laminated may be bent and the seams may be welded to construct the storage section 50 with the heating section 40 laminated thereon.
  • the holding portion 60 has two pressing portions 62 and two non-pressing portions 66, but the present disclosure is not limited to such an example.
  • the holding portion 60 may have three or more pressing portions 62 and three or more non-pressing portions 66.
  • the first electrical insulation layer 41, the resistive heating layer 42, and the second electrical insulation layer 43 constituting the heating unit 40 are laminated using a printing process or a vapor deposition process, but the present disclosure is not limited to such an example.
  • the first electrical insulation layer 41 and the second electrical insulation layer 43 may be laminated by applying or transferring a paste-like material.
  • the resistive heating layer 42 may be a metal foil processed into a predetermined shape and may be placed on the first electrical insulation layer 41.
  • the resistive heating layer 42 is a metal foil
  • the metal foil may be placed on a carrier tape, and the first electrical insulation layer 41 may be printed on the carrier tape and then transferred to the storage unit 50.
  • the resistive heating layer 42 and the storage unit 50 may be electrically connected by welding.
  • the heating unit 40 may be manufactured separately and attached to the outside of the storage unit 50.
  • connection portion between the resistive heating layer 42 and the conductive wire 48 is exposed and not covered by the second electrical insulation layer 43, but the present disclosure is not limited to such an example.
  • the connection portion between the resistive heating layer 42 and the conductive wire 48 may be covered by the second electrical insulation layer 43.
  • the resistive heating layer 42 and the conductor 48 may be indirectly connected.
  • the conductor 48 may be connected to the resistive heating layer 42 via a conductive leaf spring.
  • the conductor 48 may be connected to the resistive heating layer 42 via a pogo pin.
  • the suction device 100 may be manufactured by assembling a plurality of parts including the heating system 30, and during the assembly process, the heating system 30 may be fitted into a main body including the power supply unit 111 and the like.
  • the lower part of the heating system 30 may be fitted into a socket provided in the main body, and the above-mentioned leaf spring or pogo pin may be provided in the socket.
  • the resistive heating layer 42 and the power supply unit 111 can be electrically connected, so that the manufacturing process of the suction device 100 can be simplified.
  • the resistive heating layer 42 and the conductor 48 are indirectly connected, it is desirable to plate the entire resistive heating layer 42, or at least the first end 46 that is the contact point with the conductor 48, with nickel, gold, or the like. This configuration makes it possible to further strengthen the electrical connection between the resistive heating layer 42 and the leaf spring or pogo pin.
  • the housing 50 and the conductor 48 may be connected directly or indirectly in the same manner.
  • the contact point i.e., the first end 46
  • the conductive wire 48 may be directly or indirectly connected to the resistive heating layer 42 at the bottom wall 56 of the storage portion 50.
  • the outer thermal diffusion layer 90 covers the holding portion 60, but the outer thermal diffusion layer 90 may cover not only the holding portion 60 but also the non-holding portion 69.
  • the insulating sheet 71 covers the holding portion 60, but the insulating sheet 71 may cover not only the holding portion 60 but also the non-holding portion 69.
  • the vertically elongated PI tape 92 is adhered to the non-pressing portion 66 when the outer thermal diffusion layer 90 is laminated to the housing portion 50, but the present disclosure is not limited to such an example.
  • the vertically elongated PI tape 92 may be adhered to the second electrical insulation layer 43 laminated to the pressing portion 62.
  • the present disclosure is not limited to such an example.
  • the stick-shaped substrate 150 may have only the substrate portion 151.
  • the suction device 100 may have the suction port portion 152.
  • the suction port portion 152 may be removably attached to the opening 52 of the storage portion 50 .
  • the heating system 30 may have both the outer thermal diffusion layer 90 and the inner thermal diffusion layer 96.
  • the storage unit 50 may have four or more pressing units 62, and any two types of heating units 40 among the heating units 40 shown in FIG. 9 and FIG. 13 to FIG. 17 may be arranged in one storage unit 50.
  • any one type of heating unit 40 among the heating units 40 shown in FIG. 9 and FIG. 13 to FIG. 17 may be arranged in the storage unit 50 shown in FIG. 18.
  • the storage section 50 may have three or more pressing sections 62, and both ends of the resistive heating layer 42 arranged in the pressing section 62 located in the center of the three pressing sections 62 may be connected to the storage section 50. Then, a resistive heating layer 42 having one end connected to the power supply section 111 may be arranged in each of the two adjacent pressing sections 62, and these three resistive heating layers 42 may form one series circuit.
  • the storage section 50 may have two pressing sections 62, and a resistive heating layer 42 having both ends connected to the storage section 50 may be arranged in each of the two pressing sections 62, and a conductor connected to the power supply section 111 may be connected to each of the two non-pressing sections 66.
  • the two resistive heating layers 42 form a parallel circuit.
  • a cylindrical body that accommodates a substrate containing an aerosol source; A plurality of resistive heating layers laminated on the outside of the sidewall of the cylindrical body; a first thermal diffusion layer disposed on the outer side of the side wall of the cylindrical body and on the inner side of the resistance heating layer; Equipped with Aerosol generation systems.
  • the side walls of the cylindrical body include a plurality of first side walls having a flat outer surface and a plurality of second side walls different from the first side walls, The first side walls and the second side walls are alternately arranged along a circumferential direction of the cylindrical body, The two resistive heating layers are laminated on the outer sides of the two first side walls adjacent to the second side wall by using a deposition process or a printing process while being spaced apart from each other on the second side wall.
  • the aerosol generating system further comprises a plurality of first electrically insulating layers laminated on an outer side of the first side wall and inside the resistive heating layer by a deposition process or a printing process;
  • the cylindrical body is made of a conductive material.
  • the first electrically insulating layer has a shape conforming to the resistive heating layer;
  • the aerosol generating system further comprises a plurality of second electrically insulating layers laminated on an outer side of the resistive heating layer by a deposition process or a printing process, At least a portion of the resistive heating layer is sandwiched between the first electrically insulating layer and the second electrically insulating layer.
  • the aerosol generation system further comprises a power supply unit for supplying power to the resistive heating layer, the first thermal diffusion layer is made of a material having a higher electrical conductivity than the cylindrical body; the first electrical insulation layer is laminated on an outer side of the first thermal diffusion layer, At least one of the two ends of the resistive heating layer protrudes from the first electrical insulation layer and is connected to the first thermal diffusion layer, and is electrically connected to the power supply unit via the first thermal diffusion layer.
  • At least one of the two ends of the resistive heating layer protrudes from the first electrical insulation layer and is connected to the first thermal diffusion layer, and is electrically connected to another resistive heating layer adjacent to the resistive heating layer via the first thermal diffusion layer.
  • a conductor connected to the power supply unit is connected to the cylindrical body, One of the two ends of the resistance heating layer protrudes from the first electrical insulation layer and is connected to the first thermal diffusion layer, and is electrically connected to the conductive wire connected to the cylindrical body via the first thermal diffusion layer and the cylindrical body.
  • the end of the resistive heating layer that protrudes from the first electrical insulating layer is connected to the first heat spreading layer on the first side wall.
  • (11) The end of the resistive heating layer that protrudes from the first electrical insulating layer protrudes from the first side wall and is connected to the first heat spreading layer on the second side wall.
  • (12) A conductor connected to the power supply unit is connected to one end of the two ends of the resistance heating layer.
  • the aerosol generation system further comprises a power supply unit for supplying power to the resistive heating layer, A conductor connected to the power supply is connected to each of the two ends of the resistance heating layer.
  • the aerosol generation system further includes a second thermal diffusion layer that is wrapped around and laminated on the outside of the side wall of the cylindrical body and outside the resistance heating layer. The aerosol generation system described in any one of (1) to (14).
  • the aerosol generation system further includes a heat insulating layer that is wrapped around and laminated on the outside of the side wall of the cylindrical body and outside the resistance heating layer.
  • the aerosol generation system further comprises a power supply unit for supplying power to the resistive heating layer, At least one of the two ends of the resistance heating layer is protruding from the first electrical insulating layer and connected to the cylindrical body, and is electrically connected to the power supply unit via the cylindrical body.
  • the first side wall is a flat plate;
  • the second side wall is a curved plate curved outwardly of the cylindrical body along a circumferential direction of the cylindrical body, The base material contained in the cylindrical body is pressed by the first side wall.
  • the first side wall is a flat plate;
  • the second side wall is a flat plate; In a circumferential direction of the cylindrical body, a length of the first side wall is longer than a length of the second side wall, The base material contained in the cylindrical body is pressed by the first side wall.
  • the aerosol generating system further comprises the substrate.
  • Suction device 111 Power supply unit 112 Sensor unit 113 Notification unit 114 Memory unit 115 Communication unit 116 Control unit 150 Stick-shaped substrate 151 Substrate unit 152 Suction port unit 30 Heating system 40 Heating unit 41 First electrical insulation layer 42 Resistance heating layer 43 Second electrical insulation layer 44 Heat generation area 45 Heat generation area 46 First end 47 Second end 48 Conductive wire 49 Cutout 50 Storage unit 52 Opening 54 Side wall (54a: inner surface, 54b: outer surface) 56 Bottom wall (56a: inner surface, 56b: outer surface) 58 First guide portion (58a: tapered surface) 60 Holding portion 62 Pressing portion (62a: inner surface, 62b: outer surface) 66 Non-pressing portion (66a: inner surface, 66b: outer surface) 67 Gap 68 Boundary 69 Non-holding portion 70 Heat insulating portion 71 Heat insulating sheet 72 PI tape 73 Sealing member 80 Internal space 90 Outer thermal diffusion layer 91 Graphite sheet 92 Vertically elongated PI tape 93 Horizontally elong

Landscapes

  • Resistance Heating (AREA)

Abstract

【課題】ユーザ体験の質をより向上させることが可能な仕組みを提供する。 【解決手段】エアロゾル源を含有した基材を収容する筒状体と、前記筒状体の側壁の外側に積層される複数のの抗加熱層と、前記筒状体の前記側壁の外側であって前記抵抗加熱層よりも内側に積層される第1熱拡散層と、を備える、エアロゾル生成システム。

Description

エアロゾル生成システム
 本開示は、エアロゾル生成システムに関する。
 電子タバコ及びネブライザ等の、ユーザに吸引される物質を生成する吸引装置が広く普及している。例えば、吸引装置は、エアロゾルを生成するためのエアロゾル源、及び生成されたエアロゾルに香味成分を付与するための香味源等を含む基材を用いて、香味成分が付与されたエアロゾルを生成する。ユーザは、吸引装置により生成された、香味成分が付与されたエアロゾルを吸引することで、香味を味わうことができる。ユーザがエアロゾルを吸引する動作を、以下ではパフ又はパフ動作とも称する。
 基材を加熱することでエアロゾルを生成する方式の吸引装置では、加熱効率の向上が求められている。例えば、下記特許文献1では、基材を受け入れるための開口部を有する加熱室の表面に電気絶縁材料のコーティングを形成し、さらにその上に、ジュールヒータとして作用する電気導電性材料のコーティングを形成する技術が開示されている。
国際公開第2022/167261号
 しかし、上記特許文献1に開示された技術は、開発されてから未だ日が浅く、様々な観点で向上の余地が残されている。
 そこで、本開示は、上記問題に鑑みてなされたものであり、本開示の目的とするところは、ユーザ体験の質をより向上させることが可能な仕組みを提供することにある。
 上記課題を解決するために、本発明のある観点によれば、エアロゾル源を含有した基材を収容する筒状体と、前記筒状体の側壁の外側に積層される複数の抵抗加熱層と、前記筒状体の前記側壁の外側であって前記抵抗加熱層よりも内側に積層される第1熱拡散層と、を備える、エアロゾル生成システムが提供される。
 前記筒状体の側壁は、外側が平面である複数の第1側壁と、前記第1側壁とは異なる複数の第2側壁と、を含み、前記第1側壁と前記第2側壁とは、前記筒状体の周方向に沿って交互に配置され、2つの前記抵抗加熱層は、前記第2側壁において離隔した状態で、当該第2側壁の両隣の2つの前記第1側壁の外側に、蒸着工程又は印刷工程を用いて積層されてもよい。
 前記エアロゾル生成システムは、前記抵抗加熱層よりも内側であって前記第1側壁の外側に、蒸着工程又は印刷工程を用いて積層される複数の第1電気絶縁層をさらに備え、前記筒状体は、導電性を有する材料により構成されてもよい。
 前記筒状体の外周のうち前記第1電気絶縁層が積層される部分は、前記筒状体の外周の50%未満を占めてもよい。
 前記第1電気絶縁層は、前記抵抗加熱層に沿った形状を有してもよい。
 前記エアロゾル生成システムは、前記抵抗加熱層よりも外側に、蒸着工程又は印刷工程を用いて積層される複数の第2電気絶縁層をさらに備え、前記抵抗加熱層の少なくとも一部は、前記第1電気絶縁層及び前記第2前記絶縁層により挟み込まれてもよい。
 前記エアロゾル生成システムは、前記抵抗加熱層に電力を供給する電源部をさらに備え、前記第1熱拡散層は、前記筒状体よりも電気伝導率が高い材料により構成され、前記第1電気絶縁層は、第1熱拡散層よりも外側に積層され、前記抵抗加熱層の2つの端部のうち少なくとも一方の端部は、前記第1電気絶縁層からはみ出して前記第1熱拡散層に接続され、前記第1熱拡散層を介して前記電源部に電気的に接続されてもよい。
 前記抵抗加熱層の2つの端部のうち少なくとも一方の端部は、前記第1電気絶縁層からはみ出して前記第1熱拡散層に接続され、前記抵抗加熱層に隣り合う他の前記抵抗加熱層に、前記第1熱拡散層を介して電気的に接続されてもよい。
 前記筒状体に、前記電源部に接続された導線が接続され、前記抵抗加熱層の2つの端部のうち一方の端部は、前記第1電気絶縁層からはみ出して前記第1熱拡散層に接続され、前記筒状体に接続された前記導線に、前記第1熱拡散層及び前記筒状体を介して電気的に接続されてもよい。
 前記抵抗加熱層の2つの端部のうち前記第1電気絶縁層からはみ出した端部は、前記第1側壁上の前記第1熱拡散層に接続されてもよい。
 前記抵抗加熱層の2つの端部のうち前記第1電気絶縁層からはみ出した端部は、前記第1側壁からはみ出して前記第2側壁上の前記第1熱拡散層に接続されてもよい。
 前記抵抗加熱層の2つの端部のうち一方の端部に、前記電源部に接続された導線が接続されてもよい。
 前記エアロゾル生成システムは、前記抵抗加熱層に電力を供給する電源部をさらに備え、前記抵抗加熱層の2つの端部の各々に、前記電源部に接続された導線が接続されてもよい。
 前記抵抗加熱層の2つの端部のうち、前記電源部に接続された導線が接続される端部は、その他の部分よりも幅広に構成されてもよい。
 前記エアロゾル生成システムは、前記筒状体の前記側壁の外側であって前記抵抗加熱層よりも外側に、巻き付けて積層される第2熱拡散層をさらに備えてもよい。
 前記エアロゾル生成システムは、前記筒状体の前記側壁の外側であって前記抵抗加熱層よりも外側に、巻き付けて積層される断熱層をさらに備えてもよい。
 前記エアロゾル生成システムは、前記抵抗加熱層に電力を供給する電源部をさらに備え、前記抵抗加熱層の2つの端部のうち少なくとも一方の端部は、前記第1電気絶縁層からはみ出して前記筒状体に接続され、前記筒状体を介して前記電源部に電気的に接続されてもよい。
 前記第1側壁は、平板であり、前記第2側壁は、前記筒状体の周方向に沿って前記筒状体の外側に湾曲した湾曲板であり、前記筒状体に収容された前記基材は、前記第1側壁により押圧されてもよい。
 前記第1側壁は、平板であり、前記第2側壁は、平板であり、前記筒状体の周方向において、前記第1側壁の長さは、前記第2側壁の長さよりも長く、前記筒状体に収容された前記基材は、前記第1側壁により押圧されてもよい。
 前記エアロゾル生成システムは、前記基材をさらに備えてもよい。
 以上説明したように本開示によれば、ユーザ体験の質をより向上させることが可能な仕組みが提供される。
吸引装置の構成例を模式的に示す模式図である。 本開示の一実施形態に係る吸引装置の加熱システムの一例の斜視図である。 図2に示した収容部の斜視図である。 図3に示した矢視4-4における収容部の断面図である。 図4に示した矢視5-5における収容部の断面図である。 スティック型基材が保持部に保持された状態の、非押圧部を含む収容部の縦断面図である。 スティック型基材が保持部に保持された状態の、押圧部を含む収容部の縦断面図である。 図7に示す矢視7-7における収容部の断面図である。 同実施形態に係る加熱システムの製造工程の一例を示す図である。 同実施形態に係る加熱システムの製造工程の一例を示す図である。 図10に示した外側熱拡散層の構成を示す図である。 図10に示した断熱部の構成を示す図である。 第1の変形例に係る加熱システムの製造工程の一例を示す図である。 第2の変形例に係る加熱システムの製造工程の一例を示す図である。 第3の変形例に係る加熱システムの製造工程の一例を示す図である。 第4の変形例に係る加熱システムの製造工程の一例を示す図である。 第5の変形例に係る加熱システムの製造工程の一例を示す図である。 第6の変形例に係る収容部及びスティック型基材の構成の一例を模式的に示す図である。 第7の変形例に係る加熱システムの製造工程の一例を示す図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する要素を、同一の符号の後に異なるアルファベット又は数字を含むインデックスを付して区別する場合がある。例えば、実質的に同一の機能構成を有する複数の要素を、必要に応じて装置1-1、1-2、及び1-3のように区別する。ただし、実質的に同一の機能構成を有する複数の要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、装置1-1、1-2、及び1-3を特に区別する必要が無い場合には、単に装置1とも称する。
 <1.吸引装置の構成例>
 吸引装置は、ユーザにより吸引される物質を生成する装置である。以下では、吸引装置により生成される物質が、エアロゾルであるものとして説明する。他に、吸引装置により生成される物質は、気体であってもよい。
 図1は、吸引装置の構成例を模式的に示す模式図である。図1に示すように、本構成例に係る吸引装置100は、電源部111、センサ部112、通知部113、記憶部114、通信部115、制御部116、加熱部40、収容部50、及び断熱部70を含む。
 電源部111は、電力を蓄積する。そして、電源部111は、制御部116による制御に基づいて、吸引装置100の各構成要素に電力を供給する。電源部111は、例えば、リチウムイオン二次電池等の充電式バッテリにより構成され得る。
 センサ部112は、吸引装置100に関する各種情報を取得する。一例として、センサ部112は、コンデンサマイクロホン等の圧力センサ、流量センサ又は温度センサ等により構成され、ユーザによる吸引に伴う値を取得する。他の一例として、センサ部112は、ボタン又はスイッチ等の、ユーザからの情報の入力を受け付ける入力装置により構成される。
 通知部113は、情報をユーザに通知する。通知部113は、例えば、発光する発光装置、画像を表示する表示装置、音を出力する音出力装置、又は振動する振動装置等により構成される。
 記憶部114は、吸引装置100の動作のための各種情報を記憶する。記憶部114は、例えば、フラッシュメモリ等の不揮発性の記憶媒体により構成される。
 通信部115は、有線又は無線の任意の通信規格に準拠した通信を行うことが可能な通信インタフェースである。かかる通信規格としては、例えば、Wi-Fi(登録商標)、Bluetooth(登録商標)、BLE(Bluetooth Low Energy(登録商標))、NFC(Near Field Communication)、又はLPWA(Low Power Wide Area)を用いる規格等が採用され得る。
 制御部116は、演算処理装置及び制御装置として機能し、各種プログラムに従って吸引装置100内の動作全般を制御する。制御部116は、例えばCPU(Central Processing Unit)、又はマイクロプロセッサ等の電子回路によって実現される。
 収容部50は、内部空間80を有し、内部空間80にスティック型基材150の一部を収容しながらスティック型基材150を保持する。収容部50は、内部空間80を外部に連通する開口52を有し、開口52から内部空間80に挿入されたスティック型基材150を収容する。例えば、収容部50は、開口52及び底壁56を底面とする筒状体であり、柱状の内部空間80を画定する。収容部50には、内部空間80に空気を供給する空気流路が接続されてもよい。空気流路への空気の入口である空気流入孔は、例えば、吸引装置100の側面に配置される。空気流路から内部空間80への空気の出口である空気流出孔は、例えば、底壁56に配置される。
 スティック型基材150は、基材部151、及び吸口部152を含む。基材部151は、エアロゾル源を含む。エアロゾル源は、たばこ由来又は非たばこ由来の香味成分を含む。吸引装置100がネブライザ等の医療用吸入器である場合、エアロゾル源は、薬剤を含んでもよい。エアロゾル源は、例えば、たばこ由来又は非たばこ由来の香味成分を含む、グリセリン及びプロピレングリコール等の多価アルコール、並びに水等の液体であってもよく、たばこ由来又は非たばこ由来の香味成分を含む固体であってもよい。スティック型基材150が収容部50に保持された状態において、基材部151の少なくとも一部は内部空間80に収容され、吸口部152の少なくとも一部は開口52から突出する。そして、開口52から突出した吸口部152をユーザが咥えて吸引すると、図示しない空気流路を経由して内部空間80に空気が流入し、基材部151から発生するエアロゾルと共にユーザの口内に到達する。
 加熱部40は、エアロゾル源を加熱することで、エアロゾル源を霧化してエアロゾルを生成する。図1に示した例では、加熱部40は、フィルム状に構成され、収容部50の外周を覆うように配置される。そして、加熱部40が発熱すると、スティック型基材150の基材部151が外周から加熱され、エアロゾルが生成される。加熱部40は、電源部111から給電されると発熱する。一例として、ユーザが吸引を開始したこと、及び/又は所定の情報が入力されたことが、センサ部112により検出された場合に、給電されてもよい。そして、ユーザが吸引を終了したこと、及び/又は所定の情報が入力されたことが、センサ部112により検出された場合に、給電が停止されてもよい。
 断熱部70は、加熱部40から他の構成要素への伝熱を防止する。例えば、断熱部70は、真空断熱材、又はエアロゲル断熱材等により構成される。
 以上、吸引装置100の構成例を説明した。もちろん吸引装置100の構成は上記に限定されず、以下に例示する多様な構成をとり得る。
 一例として、収容部50は、内部空間80を形成する外殻の一部を開閉する、ヒンジ等の開閉機構を含んでいてもよい。そして、収容部50は、外殻を開閉することで、内部空間80に挿入されたスティック型基材150を挟持しながら収容してもよい。その場合、加熱部40は、収容部50における当該挟持箇所に設けられ、スティック型基材150を押圧しながら加熱してもよい。
 また、収容部50の吸排気の形態は、いわゆるカウンターフローであってもよい。その場合、ユーザによるパフに伴い、開口52から内部空間80に空気が流入する。そして、流入した空気は、スティック型基材150の先端からスティック型基材150の内部を通過し、エアロゾルと共にユーザの口内に到達する。
 スティック型基材150は、エアロゾル源を含有したエアロゾル生成基材の一例である。吸引装置100とスティック型基材150とは協働してユーザにより吸引されるエアロゾルを生成する。そのため、吸引装置100とスティック型基材150との組み合わせは、エアロゾル生成システムとして捉えられてもよい。
 <2.技術的特徴>
 <2.1.基本的な構成>
 以下、図2~図8を参照しながら、本実施形態に係る吸引装置100の、スティック型基材150の加熱に関する基本的な構成について説明する。
 図2は、本実施形態に係る吸引装置100の加熱システム30の一例の斜視図である。加熱システム30とは、スティック型基材150の加熱に関与する構成要素から成るシステムである。図2に示した加熱システム30は、加熱部40と収容部50とを含む。加熱システム30は、図2に示した加熱部40及び収容部50の他に、後述する外側熱拡散層90及び熱収縮チューブ99、並びに断熱部70を含む。図2に示すように、加熱部40は、収容部50の外側に配置される。よって、加熱部40が発熱すると、収容部50が外側から加熱され、収容部50からの伝熱によりスティック型基材150が加熱される。これにより、スティック型基材150からエアロゾルを生成することが可能となる。
 図3は、図2に示した収容部50の斜視図である。図4は、図3に示した矢視4-4における収容部50の断面図である。図5は、図4に示した矢視5-5における収容部50の断面図である。図3~図5に示すように、収容部50は、開口52と、側壁54と、開口52と反対側の端部を塞ぐ底壁56と、を含む、有底の筒状体である。側壁54は、内面54aと、外面54bと、を有する。底壁56は、内面56aと、外面56bと、を有する。スティック型基材150は、開口52から収容部50に挿入され、側壁54と底壁56とにより囲まれる内部空間80に収容される。収容部50は、熱伝導率の高い金属で構成されることが好ましく、例えば、SUS(steel use stainless)等で構成され得る。これにより、スティック型基材150の効率的な加熱が可能になる。
 筒状体である収容部50の軸方向に沿って、スティック型基材150が挿抜される。軸方向のうち、スティック型基材150が挿入される方向を下とも称し、スティック型基材150が抜去される方向を上とも称する。また、軸方向を上下方向とも称する。上下方向は、収容部50の長手方向であってもよい。上下方向に直交する方向のうち、収容部50の中心軸に向かう方向を内とも称し、中心軸から離れる方向を外とも称する。
 図3~図5に示すように、収容部50は、スティック型基材150を保持する保持部60を有する。保持部60は、スティック型基材150の一部を押圧する押圧部62と、非押圧部66と、を含む。押圧部62は、内面62aと、外面62bとを有する。非押圧部66は、内面66aと、外面66bとを有する。押圧部62及び非押圧部66は、収容部50の側壁54の一部である。押圧部62は、第1側壁の一例である。非押圧部66は、第1側壁とは異なる第2側壁の一例である。
 収容部50の開口52は、スティック型基材150を押圧せずに受け入れ可能であることが好ましい。換言すると、上下方向に直交する面において、収容部50の開口52は、スティック型基材150よりも大きく構成されることが好ましい。上下方向に直交する面における収容部50の開口52の形状は多角形又は楕円形であってもよいが、円形であることが好ましい。
 図2に示すように、加熱部40は、押圧部62の外面62bに配置される。加熱部40は、押圧部62の外面62bに隙間なく配置されることが好ましい。また、加熱部40は、押圧部62の外面62bの全体に亘って配置されることが好ましい。ただし、加熱部40は、押圧部62の外面62bをはみ出ないように配置されることが好ましい。もちろん、加熱部40は、押圧部62の外面62bから非押圧部66の外面66bにはみ出て配置されてもよい。
 図2に示すように、加熱部40は、発熱領域44と、非発熱領域45と、を有する。発熱領域44は、加熱部40に電流が印加された場合に発熱する領域である。非発熱領域45は、加熱部40に電流が印加されても、発熱しない又は極微小に発熱する領域である。発熱領域44は、押圧部62の外面62bに配置される。かかる構成によれば、スティック型基材150を押圧部62により押圧しながら、スティック型基材150を効率的に加熱することが可能となる。
 図3~図5に示すように、本実施形態では、収容部50は、2つの押圧部62と2つの非押圧部66とを有する。そして、押圧部62と非押圧部66とは、収容部50の周方向に沿って交互に配置される。とりわけ、保持部60の2つの押圧部62は、互いに対向する。2つの押圧部62の内面62a間の少なくとも一部の距離は、収容部50に挿入されるスティック型基材150の押圧部62間に配置される箇所の幅よりも小さい。かかる構成により、対向する2つの押圧部62により、スティック型基材150を押圧することが可能となる。
 図3~図5に示すように、保持部60の非押圧部66の内面66aは、収容部50の長手方向に直交する面において湾曲している。非押圧部66の内面66aの収容部50の長手方向に直交する面における形状は、収容部50の長手方向に直交する面における開口52の形状と、収容部50の長手方向の任意の位置において同一であることが好ましい。言い換えれば、非押圧部66の内面66aは、開口52を形成する収容部50の内面を長手方向に延長して形成されることが好ましい。保持部60の非押圧部66の外面66bは、内面66aに平行して湾曲する。
 図5に示すように、押圧部62の内面62aは、向かい合う一対の平面状の平面押圧面を有する。他方、非押圧部66の内面66aは、一対の平面押圧面の両端を接続し、向かい合う一対の曲面状の曲面非押圧面を有する。図示のように、曲面非押圧面は、収容部50の長手方向に直交する面において、全体的に円弧状の断面を有し得る。押圧部62の外面62bと非押圧部66の外面66bとは、角度を有して互いに接続され、押圧部62の外面62bと非押圧部66の外面66bとの間に境界68が形成され得る。図5に示すように、押圧部62及び非押圧部66(即ち、収容部50の側壁54)は、均一な厚みを有していてもよい。例えば、押圧部62は、平板であってもよい。また、非押圧部66は、収容部50の周方向に沿って収容部50の外側に湾曲した湾曲板であってもよい。
 図3及び図4に示すように、収容部50は、開口52を形成する収容部50(即ち、非保持部69)の内面と押圧部62の内面62aとを接続するテーパ面58aを備えた第1ガイド部58を有することが好ましい。第1ガイド部58により、押圧部62と非保持部69とが滑らかに接続されるので、スティック型基材150が収容部50に挿入される過程でスティック型基材150を保持部60に好適にガイドすることが可能となる。
 図4に示すように、収容部50は、開口52と保持部60との間に筒状の非保持部69を有することが好ましい。非保持部69は、収容部50のうち、スティック型基材150の保持に寄与しない部分である。例えば、収容部50の長手方向に直交する面において、非保持部69は、スティック型基材150よりも大きく形成され得る。これにより、スティック型基材150を収容部50に容易に挿入することが可能となる。
 図6は、スティック型基材150が保持部60に保持された状態の、非押圧部66を含む収容部50の縦断面図である。図7は、スティック型基材150が保持部60に保持された状態の、押圧部62を含む収容部50の縦断面図である。図8は、図7に示す矢視7-7における収容部50の断面図である。なお、図8においては、押圧部62においてスティック型基材150が押圧されることがわかりやすいように、押圧される前の状態のスティック型基材150の断面が示されている。
 図6に示すように、スティック型基材150は押圧部66により押圧され、押圧部66の内面66aとスティック型基材150とは密着する。他方、図7に示すように、非押圧部66の内面66aとスティック型基材150との間には、空隙67が形成される。
 図8に示すように、非押圧部66の内面66aとスティック型基材150との間の空隙67は、スティック型基材150が保持部60により保持され、スティック型基材150が押圧部62により押圧されて変形しても、実質的に維持される。収容部50の吸排気の形態がカウンターフローである場合、この空隙67は、開口52とスティック型基材150の先端とを連通する空気の流路を形成し得る。
 図8に示すように、スティック型基材150が保持部60により保持された状態において、押圧部62の内面62aとスティック型基材150の中心との距離Lは、非押圧部66の内面66aとスティック型基材150の中心との距離Lよりも短い。かかる構成により、押圧部62の外面62bに配置された加熱部40とスティック型基材150の中心との距離を、押圧部62が設けられない場合と比較して短くすることができる。よって、スティック型基材150の加熱効率を高めることができる。
 図3~図8に示すように、保持部60の外周面は、保持部60の長手方向全長に亘って同一の形状及び大きさ(保持部60の長手方向に直交する面における保持部60の外周長さ)を有することが好ましい。これにより、保持部60の上下方向の全域において、スティック型基材150を均一に押圧しつつ、空隙67を確保することが可能となる。
 以上説明したように、本実施形態に係る吸引装置100は、押圧部62によりスティック型基材150を押圧しながら保持し、加熱する。かかる構成によれば、スティック型基材150を押圧せずに加熱する場合と比較して、スティック型基材150の加熱効率を向上させることが可能となる。
 <2.2.加熱システム30の構成>
 本実施形態に係る加熱システム30は、収容部50の側壁54の外側に、加熱システム30を構成する部品を順に積層することで、製造される。以下、図9及び図10を参照しながら加熱システム30の製造工程を説明しつつ、加熱システム30の構成を説明する。
 図9及び図10は、本実施形態に係る加熱システム30の製造工程の一例を示す図である。本実施形態に係る加熱システム30の製造工程は、図9及び図10に示す製造工程S11~S17にかけて順に進行する。以下では、保持部60が有する2つの押圧部62を、押圧部62-1及び押圧部62-2として区別する場合がある。同様に、保持部60が有する2つの非押圧部66を、非押圧部66-1及び非押圧部66-2として区別する場合がある。図9及び図10では、各製造工程が、非押圧部66-2の中心で収容部50(とりわけ、保持部60に該当する部分)の側壁54を分割して展開した展開図上で図示されている。これらの展開図における左右方向は、収容部50の周方向に対応する。
 図9の製造工程S11では、他の部品が保持部60に積層される前の、収容部50が図示されている。
 図9の製造工程S12において、まず、押圧部62に第1電気絶縁層41(41-1及び41-2)が積層される。詳しくは、押圧部62-1の外側に第1電気絶縁層41-1が積層され、押圧部62-2の外側に第1電気絶縁層41-2が積層される。第1電気絶縁層41は、電気絶縁性を有する材料により構成される。第1電気絶縁層41を構成する材料の一例として、ガラス及びセラミック等が挙げられる。第1電気絶縁層41は、蒸着工程又は印刷工程を用いて積層される。蒸着工程とは、対象物体の表面に向けて物質を蒸発させて、薄膜コートを形成する工程である。印刷工程とは、対象物体の表面に向けて液体を噴射して、薄膜コートを形成する工程である。
 図9の製造工程S13において、製造工程S12を経た製造途中の加熱システム30の押圧部62の外側に、抵抗加熱層42(42-1及び42-2)が積層される。詳しくは、押圧部62-1に積層された第1電気絶縁層41-1の外側に抵抗加熱層42-1が積層され、押圧部62-2に積層された第1電気絶縁層41-2の外側に抵抗加熱層42-2が積層される。とりわけ、抵抗加熱層42は、第1電気絶縁層41上で、左右に間隔を空けながら上下に往復する1本線の形状に積層される。抵抗加熱層42は、導電性を有する材料により構成される。抵抗加熱層42を構成する材料の一例として、SUS等の金属製材料及び炭化ケイ素等の非金属性材料が挙げられる。また、抵抗加熱層42は、導電性を有するペースト状の材料により構成されてよい。そのような材料の一例として、銀を主体に抵抗調整剤を配合した材料が挙げられる。抵抗加熱層42は、電流が印加された場合に電気抵抗に応じたジュール熱を発する。抵抗加熱層42は、蒸着工程又は印刷工程を用いて積層される。
 ここで、図9に示すように、抵抗加熱層42-1は、第1端部46-1及び第2端部47-1を両端とする開回路を構成している。また、抵抗加熱層42-2は、第1端部46-2及び第2端部47-2を両端とする開回路を構成している。第1端部46(46-1及び46-2)は、第1電気絶縁層41内に配置される。とりわけ、第1端部46は、第1電気絶縁層41の下方端部に配置される。他方、第2端部47(47-1及び47-2)は、第1電気絶縁層41からはみ出て配置される。とりわけ、第2端部47は、第1電気絶縁層41からはみ出て、さらに押圧部62からはみ出て、非押圧部66に配置される。
 図9の製造工程S14において、製造工程S13を経た製造途中の加熱システム30の押圧部62の外側に、第2電気絶縁層43(43-1及び43-2)が積層される。詳しくは、押圧部62-1に積層された第1電気絶縁層41-1及び抵抗加熱層42-2の外側に第2電気絶縁層43-1が積層され、押圧部62-2に積層された第1電気絶縁層41-2及び抵抗加熱層42-2の外側に第2電気絶縁層43-2が積層される。第2電気絶縁層43は、第1電気絶縁層41と同様に、電気絶縁性を有する材料により構成される。第2電気絶縁層43は、蒸着工程又は印刷工程を用いて積層される。
 さらに、製造工程S14において、抵抗加熱層42-1に導線48-1が接続され、抵抗加熱層42-2に導線48-2が接続される。詳しくは、抵抗加熱層42-1の第1端部46-1に導線48-1が接続され、抵抗加熱層42-2の第1端部46-2に導線48-2が接続される。導線48(48-1及び48-2)は、電源部111に接続される。一例として、抵抗加熱層42-1の第1端部46-1は、導線48-1を介して電源部111の負極に接続される。他方、抵抗加熱層42-2の第1端部46-2は、導線48-2を介して電源部111の正極に接続される。そして、電源部111は、制御部116による制御に基づいて抵抗加熱層42に電力を供給し、抵抗加熱層42を発熱させる。
 ここで、収容部50は、導電性を有する材料により構成される。収容部50を構成する材料の一例としてSUSが挙げられる。
 抵抗加熱層42-1の第2端部47-1は、第1電気絶縁層41-1からはみ出して収容部50に接続され、収容部50を介して電源部111に電気的に接続される。同様に、抵抗加熱層42-2の第2端部47-2は、第1電気絶縁層41-2からはみ出して収容部50に接続され、収容部50を介して電源部111に電気的に接続される。より詳しくは、抵抗加熱層42-1の第2端部47-1と、抵抗加熱層42-1に隣り合う抵抗加熱層42-2の第2端部47-2とは、収容部50を介して電気的に接続される。そして、抵抗加熱層42-1の第1端部46-1は導線48-1を介して電源部111に電気的に接続され、抵抗加熱層42-2の第1端部46-2は導線48-2を介して電源部111に電気的に接続される。以上説明した構成により、導線48-1、抵抗加熱層42-1、収容部50、抵抗加熱層42-2、及び導線48-2は、電源部111に接続された1つの直列回路を構成する。電源部111がかかる直列回路に電力が供給することで、抵抗加熱層42-1及び抵抗加熱層42-2を発熱させることが可能となる。
 以上説明した、第1電気絶縁層41-1、抵抗加熱層42-1、及び第2電気絶縁層43-1が、加熱部40-1を構成する。また、第1電気絶縁層41-2、抵抗加熱層42-2、及び第2電気絶縁層43-2が、加熱部40-2を構成する。ここで、加熱部40(40-1及び40-2)を構成する各々の構成要素は、印刷工程又は蒸着工程を用いて積層される。そのため、加熱部40を別途製造して収容部50に貼り合わせる等の他の製造方法と比較して、加熱部40の位置ずれ及び剥離等の不具合の発生を防止することができる点で、加熱システム30の製造精度を向上させることができる。その結果、スティック型基材150の加熱効率を向上させて、ユーザ体験の質を向上させることが可能となる。
 以下、加熱部40の特徴について補足する。
 製造工程S12~S14を再度参照すると、抵抗加熱層42-1よりも内側に第1電気絶縁層41-1が積層され、抵抗加熱層42-1よりも外側に第2電気絶縁層43-1が積層される。そして、抵抗加熱層42-1の少なくとも一部は、第1電気絶縁層41-1及び抵抗加熱層42-2により挟み込まれる。かかる構成により、加熱部40の内側の部品(例えば、収容部50)又は加熱部40の外側の部品(例えば、後述する外側熱拡散層g1)を介した、抵抗加熱層42-1内での短絡を防止することが可能となる。第1電気絶縁層41-2、抵抗加熱層42-2、及び第2電気絶縁層43-2についても同様である。
 製造工程S13を再度参照すると、抵抗加熱層42-1と抵抗加熱層42-2とは、非押圧部66-1において離隔した状態で、非押圧部66-1の両隣の押圧部62-1及び押圧部62-2の外側に積層されている。かかる構成によれば、抵抗加熱層42を、押圧部62上の平らな面に配置することができる。そのため、抵抗加熱層42を、非押圧部66上の湾曲した面に配置する場合と比較して、位置ずれ及び剥離等の不具合の発生を防止することができる点で、加熱システム30の製造精度を向上させることができる。その結果、スティック型基材150の加熱効率を向上させて、ユーザ体験の質を向上させることが可能となる。
 製造工程S13を再度参照すると、抵抗加熱層42-1のうち第1電気絶縁層41-1からはみ出した第2端部47-1は、押圧部62-1からはみ出して非押圧部66-1に接続される。他方、抵抗加熱層42-2のうち第1電気絶縁層41-2からはみ出した第2端部47-2は、押圧部62-2からはみ出して非押圧部66-1に接続される。即ち、抵抗加熱層42-1の第2端部47-1と抵抗加熱層42-2の第2端部47-2とは、非押圧部66-1の左右端部から互いに近付く方向に突出して配置される。かかる構成によれば、抵抗加熱層42-1の第2端部47-1と抵抗加熱層42-2の第2端部47-2との距離を最短にすることができる。その結果、抵抗加熱層42-1と抵抗加熱層42-2との通電を容易にすることが可能となる。
 製造工程S13を再度参照すると、発熱領域44に積層される抵抗加熱層42は、細く構成される。これにより、発熱領域44に積層された抵抗加熱層42の電気抵抗を高くして、電力が印加された際に高いジュール熱を発生させることが可能となる。他方、加熱部40のうち非発熱領域45に積層される抵抗加熱層42は、発熱領域44に積層される抵抗加熱層42と比較して幅広に構成される。これにより、非発熱領域45に積層された抵抗加熱層42の電気抵抗を低くして、電力が印加された際にジュール熱を発生させない又は極微小のジュール熱を発生させることが可能となる。
 製造工程S14を再度参照すると、導線48が接続される第1端部46は、発熱領域44の抵抗加熱層42よりも幅広に構成された非発熱領域45の抵抗加熱層42に構成される。これにより、導線48への伝熱を防止すると共に、導線48と抵抗加熱層42との接続部分が熱により損傷することを防止することが可能となる。
 製造工程S14を再度参照すると、抵抗加熱層42の両端のうち一方にのみ導線48が接続される。かかる構成によれば、抵抗加熱層42の両端の双方に導線48を接続する場合と比較して、導線48の数を削減することができる。そのため、導線48と抵抗加熱層42との接続不良の発生を抑制して、ユーザ体験の質を向上させることが可能となる。
 抵抗加熱層42は、収容部50に収容されたスティック型基材150のうちエアロゾル源が分布する基材部151に対応する位置に配置される。詳しくは、図7に示したように、収容部50にスティック型基材150が収容された状態で、押圧部62のうち基材部151に対応する位置に、抵抗加熱層42が積層された発熱領域44が配置される。かかる構成によれば、スティック型基材150の加熱効率を向上させることが可能となる。
 収容部50の外周のうち、第1電気絶縁層41が積層される部分は、収容部50の外周の50%未満を占めることが望ましい。より簡易には、押圧部62は、収容部50の外周の50%未満を占めることが望ましい。かかる構成によれば、発熱領域44の面積を狭くして、ワット密度を高めることができる。その結果、スティック型基材150の加熱効率を向上させることが可能となる。
 制御部116は、抵抗加熱層42の電気抵抗値に基づいて抵抗加熱層42の温度を推定及び制御することで、スティック型基材150を加熱する温度を制御し得る。抵抗加熱層42の電気抵抗値は、導線48-1と導線48-2との間の電圧降下量に基づいて測定される。本実施形態では、抵抗加熱層42-1と抵抗加熱層42-2とが収容部50を介して電気的に接続される分だけ収容部50の温度に近い温度を、抵抗加熱層42の温度として推定することができると考えられる。スティック型基材150が直接的には収容部50により加熱されることを考慮すれば、かかる構成により、スティック型基材150の温度制御をより好適に実施して、ユーザ体験の質を向上させることが可能である。
 以上、加熱部40の特徴について補足した。続いて、図10を参照しながら、後続する製造工程について説明する。
 図10の製造工程S15において、製造工程S14を経た製造途中の加熱システム30の外側に、外側熱拡散層90が積層される。詳しくは、外側熱拡散層90は、収容部50の側壁54の外側であって加熱部40よりも外側に、巻き付けて積層される。外側熱拡散層90は、加熱部40よりも外側で加熱部40の熱を拡散する第2熱拡散層の一例である。かかる構成により、押圧部62に積層された加熱部40の熱を、非押圧部66を含む収容部50全体に拡散させることができる。その結果、収容部50に収容されたスティック型基材150を、効率的に加熱することが可能となる。外側熱拡散層90の構成について、図11を参照しながら説明する。
 図11は、図10に示した外側熱拡散層90の構成を示す図である。図11に示すように、外側熱拡散層90は、グラファイトシート91、縦長PIテープ92、及び横長PIテープ93を含む。
 グラファイトシート91は、グラファイトにより構成されたシート状の部材である。グラファイトシート91の熱伝導率は、少なくとも収容部50の熱伝導率よりも高い。かかる構成によれば、グラファイトシート91は、加熱部40の熱を効率よく拡散させることが可能となる。なお、グラファイトシート91に代えて、シリコン又はアクリル等のより構成されたシート状の部材が用いられてもよい。
 縦長PIテープ92及び横長PIテープ93は、PI(Polyimide)により構成された膜状の部材の一面に、接着剤を塗布することで構成される。縦長PIテープ92及び横長PIテープ93の引張強度は、グラファイトシート91の引張強度よりも高い。そのため、縦長PIテープ92及び横長PIテープ93は、グラファイトシート91を収容部50の周囲に固定しつつ、グラファイトシート91の破れを防止することが可能となる。
 外側熱拡散層90は、最下層にグラファイトシート91を、中層に縦長PIテープ92を、最上層に横長PIテープ93を、重ね合わされた状態で接着することで、構成される。縦長PIテープ92及び横長PIテープ93は、接着面を最下層に向けた状態で、重ね合わされる。なお、ここでは、外側熱拡散層90を収容部50に巻き付ける際に内側となる層を最下層とし、外側となる層を最上層としている。そして、図10に示した製造工程S15において、外側熱拡散層90は、グラファイトシート91を内側とし、横長PIテープ93を外側として、収容部50の外側に配置された加熱部40の外側を覆うように巻き付けて配置される。かかる構成によれば、グラファイトシート91を加熱部40又は収容部50に密着させることが可能となる。その結果、グラファイトシート91を介した加熱部40から収容部50への熱拡散効果を向上させることが可能となる。また、かかる構成によれば、加熱部40又は収容部50に密着したグラファイトシート91を、外側から横長PIテープ93により保護することが可能となる。その結果、横長PIテープ93によるグラファイトシート91の破れ防止効果を向上させることが可能となる。
 ここで、グラファイトシート91は、加熱部40の発熱領域44に重複して積層されることが望ましい。かかる構成によれば、加熱部40の熱を効率よく拡散させることが可能となる。他方、グラファイトシート91は、加熱部40の非発熱領域45を避けて積層されることが望ましい。かかる構成によれば、導線48への伝熱を防止すると共に、導線48と抵抗加熱層42との接続部分が熱により損傷することを防止することが可能となる。
 グラファイトシート91は、左右方向において収容部50(とりわけ、保持部60)の外周長よりも長く形成される。その結果、収容部50の外側面に、グラファイトシート91が1周以上巻き付けられる。かかる構成によれば、グラファイトシート91により収容部50の外周を余すことなく覆い、加熱部40の熱を収容部50全体に拡散させることが可能となる。
 図11に示すように、縦長PIテープ92は、上下方向においてグラファイトシート91よりも長く形成され、上下方向の両端がグラファイトシート91から突出するよう位置決めされる。そして、図10の製造工程S15を再度参照すると、この突出部分95-1及び95-2は、加熱部40が配置されていない非押圧部66に直接接着される。かかる構成によれば、外側熱拡散層90を収容部50に強固に固定して、外側熱拡散層90の位置ずれを防止することが可能となる。また、縦長PIテープ92を、押圧部62上の加熱部40に接着する場合と比較して、外側熱拡散層90を巻き付ける際に加熱部40にかかる負荷を軽減し、加熱部40の損傷を防止することが可能となる。
 図11に示すように、横長PIテープ93は、左右方向においてグラファイトシート91よりも長く形成され、右側の端部がグラファイトシート91から突出するよう位置決めされる。そして、図10の製造工程S15を再度参照すると、この突出部分94は、当該突出部分94よりも1周内側に巻き付けられた横長PIテープ93に接着される。かかる構成によれば、グラファイトシート91の位置を、横長PIテープ93により強固に固定することができる。その結果、グラファイトシート91に余計な力が加わってグラファイトシート91が破断するような事態を防止することが可能となる。
 続いて図10の製造工程S16において、製造工程S15を経た製造途中の加熱システム30の外側に、断熱部70が積層される。詳しくは、断熱部70は、収容部50の側壁54の外側であって加熱部40及び外側熱拡散層90よりも外側に、巻き付けて積層される。断熱部70は、加熱部40の熱を遮断する断熱層の一例である。かかる構成により、加熱部40の熱を外部まで拡散させないようにすることができる。その結果、電子回路の不調等の高温に起因する不具合の発生を防止することが可能となる。ここで、断熱部70は、上下方向における収容部50の側壁54のうち上下方向の一部を覆うように積層される。断熱部70は、加熱部40の発熱領域44、及び外側熱拡散層90を完全に被覆することが望ましい。他方、上下方向における断熱部70の端部と、収容部50の側壁54のうち断熱部70から露出する部分とは、封止部材73により封止される。封止部材73は、シリコン等の所定の耐熱性を有する材料により構成される。かかる構成により、断熱部70による断熱効果を向上させることが可能となる。断熱部70の構成について、図12を参照しながら説明する。
 図12は、図10に示した断熱部70の構成を示す図である。図12に示すように、断熱部70は、断熱シート71とPIテープ72(72-1及び72-2)とを積層することで構成される。断熱シート71は、熱を遮断する部材である。例えば、断熱シート71は、ガラス材料、真空断熱材、又はエアロゲル断熱材等により構成される。PIテープ72は、PIにより構成されたテープである。PIテープ72は、PIにより構成された膜状の部材の一面に、接着剤を塗布することで構成される。そして、図10に示した製造工程S16において、断熱部70は、断熱シート71を内側としPIテープ72を外側とし、且つPIテープ72の接着面を内側に向けて、収容部50の外側に配置された外側熱拡散層90の外側を覆うように巻き付けて配置される。かかる構成によれば、断熱シート71を外側熱拡散層90に密着させることが可能となる。その結果、断熱シート71による断熱効果を向上させることが可能となる。
 断熱シート71は、上下方向においてグラファイトシート91よりも長く形成され、断熱シート71の上下方向の端部がグラファイトシート91よりも突出するようにして位置決めされる。かかる構成によれば、断熱シート71は、グラファイトシート91を、上下方向において余すことなく被覆することができる。また、断熱シート71は、左右方向において収容部50(とりわけ、保持部60)の外周長よりも長く形成される。その結果、収容部50の外側面に、断熱シート71が1周以上巻き付けられる。かかる構成によれば、断熱シート71により収容部50の外周を余すことなく被覆することができる。これらにより、外側熱拡散層90により拡散された加熱部40からの熱が、断熱部70よりも外側に拡散することを防止することが可能となる。
 PIテープ72-1は、断熱シート71の左側端部において、半分程度が断熱シート71から左側に突出するように位置決めされる。そして、PIテープ72-1は、保持部60に巻き付けられた外側熱拡散層90(例えば、横長PIテープ93)に接着される。かかる構成によれば、断熱部70の位置を固定して、断熱部70の位置ずれを防止することが可能となる。
 PIテープ72-2は、断熱シート71の右端部において、半分程度が断熱シート71から右側に突出するように位置決めされる。そして、PIテープ72-2の突出部分は、当該突出部分よりも1周内側に巻き付けられた断熱部70(例えば、断熱シート71)に接着される。かかる構成によれば、断熱部70の位置を固定して、断熱部70の位置ずれを防止することが可能となる。
 図10の製造工程S17において、製造工程S16を経た製造途中の加熱システム30の外側に、熱収縮チューブ99が積層される。熱収縮チューブ99は、熱を加えると収縮する、管状の部材である。例えば、熱収縮チューブ99は、樹脂材料により構成される。熱収縮チューブ99は、製造工程S16を経た製造途中の加熱システム30を完全に被覆するように位置決めされた状態で加熱されることで収縮し、収容部50の外側に積層された各部品を固定する。かかる構成により、収容部50の外側に積層された各部品の位置ずれ等を防止することが可能となる。
 以上、加熱システム30の製造工程、及び加熱システム30の構成を説明した。
 <3.変形例>
 (1)第1の変形例
 上記実施形態では、抵抗加熱層42の第2端部47が非押圧部66に接続される例を説明したが、本開示はかかる例に限定されない。抵抗加熱層42の第2端部47は押圧部62に接続されてもよい。かかる変形例について、図13を参照しながら説明する。
 図13は、本変形例に係る加熱システム30の製造工程の一例を示す図である。本変形例に係る加熱システム30の製造工程は、図13に示す製造工程S21~S24、次いで図10に示した製造工程S15~S17にかけて順に進行する。即ち、本変形例に係る加熱システム30の製造工程は、図9の製造工程S11~S14の代わりに、製造工程S21~S24を含む。以下では、製造工程S11~S14と相違する点について主に説明し、同様の点については説明を省略する。
 図13の製造工程S21は、図9の製造工程S11と同様である。
 図13の製造工程S22において、押圧部62に第1電気絶縁層41が積層される。ただし、本変形例では、第1電気絶縁層41-1の下部に切り欠き49-1が設けられ、押圧部62-1の一部が露出している。同様に、第1電気絶縁層41-2の下部に切り欠き49-2が設けられ、押圧部62-2の一部が露出している。
 図13の製造工程S23において、製造工程S22を経た製造途中の加熱システム30の押圧部62に積層された第1電気絶縁層41の外側に、抵抗加熱層42が積層される。ただし、本変形例では、抵抗加熱層42-1のうち第1電気絶縁層41-1からはみ出した第2端部47-1は、第1電気絶縁層41-1の切り欠き49-1において露出した押圧部62-1に接続される。同様に、抵抗加熱層42-2のうち第1電気絶縁層41-2からはみ出した第2端部47-2は、第1電気絶縁層41-1の切り欠き49-2において露出した押圧部62-2に接続される。かかる構成によれば、抵抗加熱層42を、平らな押圧部62の外側のみに積層することが可能となる。従って、抵抗加熱層42の第2端部47が湾曲する非押圧部66に接続される場合と比較して、抵抗加熱層42の位置ずれ及び剥離等の不具合の発生をより防止することが可能となる。
 図13の製造工程S24において、製造工程S23を経た製造途中の30の加熱システム30の押圧部62に積層された第1電気絶縁層41及び抵抗加熱層42の外側に、第2電気絶縁層43が積層される。ただし、本変形例では、第2電気絶縁層43-1の下部にも、第1電気絶縁層41-1と同様に切り欠き49-1が設けられる。同様に、第2電気絶縁層43-2の下部にも、第1電気絶縁層41-2と同様に切り欠き49-2が設けられる。
 また、製造工程S24において、抵抗加熱層42-1に導線48-1が接続され、抵抗加熱層42-2に導線48-2が接続される。
 (2)第2の変形例
 第1電気絶縁層41及び第2電気絶縁層43は、抵抗加熱層42を両側から挟み込むように被覆する形状であれば、任意の形状をとり得る。以下では、図14を参照しながら、第2の変形例として、第1電気絶縁層41及び第2電気絶縁層43がとり得る形状の他の一例を説明する。なお、以下では、第1の変形例のさらなる変形例として、第2の変形例を説明する。
 図14は、本変形例に係る加熱システム30の製造工程の一例を示す図である。本変形例に係る加熱システム30の製造工程は、図14に示す製造工程S31~S34、次いで図10に示した製造工程S15~S17にかけて順に進行する。即ち、本変形例に係る加熱システム30の製造工程は、図13の製造工程S21~S24の代わりに、製造工程S31~S34を含む。以下では、製造工程S21~S24と相違する点について主に説明し、同様の点については説明を省略する。
 図14の製造工程S31は、図9の製造工程S11と同様である。
 図14の製造工程S32において、押圧部62に第1電気絶縁層41が積層される。ただし、本変形例では、第1電気絶縁層41-1は、後に積層される抵抗加熱層42-1に沿った形状を有している。即ち、第1電気絶縁層41-1は、押圧部62-1上で、左右に間隔を空けながら上下に往復する1本線の形状に積層される。同様に、第1電気絶縁層41-2は、後に積層される抵抗加熱層42-2に沿った形状を有している。即ち、第1電気絶縁層41-2は、押圧部62-2上で、左右に間隔を空けながら上下に往復する1本線の形状に積層される。
 図14の製造工程S33において、図13の製造工程S23と同様に、製造工程S32を経た製造途中の加熱システム30の押圧部62に積層された第1電気絶縁層41の外側に、抵抗加熱層42が積層される。
 図14の製造工程S34において、製造工程S33を経た製造途中の30の加熱システム30の押圧部62に積層された第1電気絶縁層41及び抵抗加熱層42の外側に、第2電気絶縁層43が積層される。ただし、本変形例では、第2電気絶縁層43-1は、第1電気絶縁層41-1と同様の形状を有している。同様に、第2電気絶縁層43-2は、第1電気絶縁層41-2と同様の形状を有している。
 さらに、製造工程S34において、抵抗加熱層42-1に導線48-1が接続され、抵抗加熱層42-2に導線48-2が接続される。
 以上説明したように、本変形例に係る第1電気絶縁層41及び第2電気絶縁層43は、左右に間隔を空けながら上下に往復する1本線の形状を有する。そのため、後に積層される外側熱拡散層90が、第1電気絶縁層41及び第2電気絶縁層43の左右方向の間隔において露出した押圧部62に、直接接触することとなる。そのため、外側熱拡散層90による熱拡散効果を押圧部62に対しても発揮して、加熱効率をさらに向上させることが可能となる。
 (3)第3の変形例
 上記では、抵抗加熱層42-1と抵抗加熱層42-2とが1つの直列回路を構成する例を説明したが、本開示はかかる例に限定されない。抵抗加熱層42-1と抵抗加熱層42-2とは、並列回路を構成してもよい。かかる変形例について、図15を参照しながら説明する。
 図15は、本変形例に係る加熱システム30の製造工程の一例を示す図である。本変形例に係る加熱システム30の製造工程は、図15に示す製造工程S41~S44、次いで図10に示した製造工程S15~S17にかけて順に進行する。即ち、本変形例に係る加熱システム30の製造工程は、図9の製造工程S11~S14の代わりに、製造工程S41~S44を含む。以下では、製造工程S11~S14と相違する点について主に説明し、同様の点については説明を省略する。
 図15の製造工程S41は、図9の製造工程S11と同様である。
 図15の製造工程S42は、図9の製造工程S12と同様である。
 図15の製造工程S43において、図9の製造工程S13と同様に、製造工程S42を経た製造途中の加熱システム30の押圧部62に積層された第1電気絶縁層41-1及び41-2の外側に、抵抗加熱層42-1及び42-2が積層される。
 さらに、本変形例では、製造工程S43において、非押圧部66-1の下部に、矩形状の抵抗加熱層42-3が積層される。抵抗加熱層42-3は、非発熱領域45に積層される。即ち、抵抗加熱層42-3は、抵抗加熱層42-1の第1端部46-1及び抵抗加熱層42-2の第1端部46-2と同様に、幅広に構成される。これにより、抵抗加熱層42-3における発熱を防止して、導線48への伝熱を防止すると共に、導線48と抵抗加熱層42との接続部分が熱により損傷することを防止することが可能となる。
 図15の製造工程S44において、図9の製造工程S14と同様に、製造工程S43を経た製造途中の30の加熱システム30の押圧部62に積層された第1電気絶縁層41及び抵抗加熱層42の外側に、第2電気絶縁層43が積層される。
 また、製造工程S44において、図9の製造工程S14と同様に、抵抗加熱層42-1に導線48-1が接続され、抵抗加熱層42-2に導線48-2が接続される。ただし、導線48-1及び導線48-2の各々は、電源部111の負極に接続される。
 さらに、本変形例では、製造工程S44において、抵抗加熱層42-3に導線48-3が接続される。導線48-3は、電源部111の正極に接続される。これにより、収容部50に、電源部111に接続された導線48-3が接続されることとなる。そして、抵抗加熱層42-1の第2端部47-1は、収容部50(より正確には、抵抗加熱層42-3)に接続された導線48-3に収容部50を介して電気的に接続される。従って、導線48-1、抵抗加熱層42-1、収容部50、抵抗加熱層42-3、及び導線48-3は、電源部111に接続された第1の回路を形成する。他方、抵抗加熱層42-2の第2端部47-2は、収容部50(より正確には、抵抗加熱層42-3)に接続された導線48-3に収容部50を介して電気的に接続される。従って、導線48-2、抵抗加熱層42-2、収容部50、抵抗加熱層42-3、及び導線48-3は、電源部111に接続された第2の回路を形成する。以上説明した第1の回路と第2の回路とにより、1つの並列回路が構成される。電源部111がかかる並列回路に電力が供給することで、抵抗加熱層42-1及び抵抗加熱層42-2を発熱させることが可能となる。
 (4)第4の変形例
 上記では、抵抗加熱層42が収容部50を介して電源部111に接続される例を説明したが、本開示はかかる例に限定されない。抵抗加熱層42は、収容部50を介さずに電源部111に接続されてもよい。かかる変形例について、図16を参照しながら説明する。
 図16は、本変形例に係る加熱システム30の製造工程の一例を示す図である。本変形例に係る加熱システム30の製造工程は、図16に示す製造工程S51~S54、次いで図10に示した製造工程S15~S17にかけて順に進行する。即ち、本変形例に係る加熱システム30の製造工程は、図9の製造工程S11~S14の代わりに、製造工程S51~S54を含む。以下では、製造工程S11~S14と相違する点について主に説明し、同様の点については説明を省略する。
 図16の製造工程S51は、図9の製造工程S11と同様である。
 図16の製造工程S52は、図9の製造工程S12と同様である。
 図16の製造工程S53において、製造工程S52を経た製造途中の加熱システム30の押圧部62に積層された第1電気絶縁層41の外側に、抵抗加熱層42が積層される。ただし、本変形例においては、抵抗加熱層42の両端である第1端部46及び第2端部47の双方が、第1電気絶縁層41内に配置される。とりわけ、第1端部46及び第2端部47は、第1電気絶縁層41の下方端部に配置される。
 図16の製造工程S54において、図9の製造工程S14と同様に、製造工程S53を経た製造途中の30の加熱システム30の押圧部62に積層された第1電気絶縁層41及び抵抗加熱層42の外側に、第2電気絶縁層43が積層される。
 また、本変形例では、製造工程S54において、抵抗加熱層42の第1端部46及び第2端部47の各々に、電源部111に接続された導線48が接続される。詳しくは、抵抗加熱層42-1の第1端部46-1に、電源部111の正極に接続された導線48-1が接続される。抵抗加熱層42-1の第2端部47-1に、電源部111の負極に接続された導線48-4が接続される。従って、導線48-1、抵抗加熱層42-1、及び導線48-4は、電源部111に接続された第1の回路を形成する。他方、抵抗加熱層42-2の第1端部46-2に、電源部111の負極に接続された導線48-2が接続される。抵抗加熱層42-2の第2端部47-2に、電源部111の正極に接続された導線48-5が接続される。従って、導線48-2、抵抗加熱層42-2、及び導線48-5は、電源部111に接続された第2の回路を形成する。以上説明した第1の回路と第2の回路とにより、1つの並列回路が構成される。電源部111がかかる並列回路に電力が供給することで、抵抗加熱層42-1及び抵抗加熱層42-2を発熱させることが可能となる。
 なお、上記並列回路を構成する第1の回路及び第2の回路の動作は、それぞれ個別に制御されてもよいし、一括して制御されてもよい。即ち、第1の回路及び第2の回路に、異なる電力が供給されてもよいし、同一の電力が供給されてもよい。
 (5)第5の変形例
 上記実施形態では、加熱部40の外側に外側熱拡散層90が積層される例を説明したが、本開示はかかる例に限定されない。加熱部40の内側に熱拡散層が積層されてもよい。かかる変形例について、図17を参照しながら説明する。
 図17は、本変形例に係る加熱システム30の製造工程の一例を示す図である。本変形例に係る加熱システム30の製造工程は、図17に示す製造工程S61、S62、次いで図9に示した製造工程S12~S14、次いで図10に示した製造工程S15~S17にかけて順に進行する。即ち、本変形例に係る加熱システム30の製造工程は、図9の製造工程S11の代わりに、製造工程S61及びS62を含む。図17に示した製造工程S65は、製造工程S61、S62、S12~S14を経た製造途中の加熱システム30の状態を図示している。以下では、図9及び図10に示した製造工程S11~S17と相違する点について主に説明し、同様の点については説明を省略する。
 図17の製造工程S61は、図9の製造工程S11と同様である。
 図17の製造工程S62において、収容部50の側壁54の外側に、めっき処理を用いて内側熱拡散層96が積層される。内側熱拡散層96は、収容部50の側壁54の外側であって加熱部40よりも内側に積層され、加熱部40よりも内側で加熱部40の熱を拡散する第1熱拡散層の一例である。めっき処理は、対象物体の表面を金属により薄くコーティングする処理である。内側熱拡散層96は、めっき処理可能であって熱伝導率が収容部50を構成する材料よりも高い材料により構成される。さらに、内側熱拡散層96は、電気伝導率が収容部50を構成する材料よりも高い材料により構成されることが望ましい。内側熱拡散層96を構成する材料の一例は、銀である。かかる構成により、後に押圧部62に積層される加熱部40の熱を、非押圧部66を含む収容部50全体に拡散させることができる。その結果、収容部50に収容されたスティック型基材150を、効率的に加熱することが可能となる。なお、内側熱拡散層96は、めっき処理以外にも、金属粒子を噴射してコーティングする溶射加工、又はペースト状の材料を塗工して焼成する処理等の任意の手段を用いて積層されてもよい。また、内側熱拡散層96は、さらに、ニッケル又は金等によりめっき処理されてもよい。これにより、内側熱拡散層96の酸化等の劣化を防止することが可能となる。
 ここで、内側熱拡散層96は、加熱部40の発熱領域44が配置される領域に重複して積層されることが望ましい。かかる構成によれば、加熱部40の熱を効率よく拡散させることが可能となる。他方、内側熱拡散層96は、加熱部40の非発熱領域45が配置される領域を避けて積層されることが望ましい。かかる構成によれば、導線48への伝熱を防止すると共に、導線48と抵抗加熱層42との接続部分が熱により損傷することを防止することが可能となる。
 その後、図9の製造工程S12~S14を経ることで、図17の製造工程S63に示す製造途中の加熱システム30が製造される。即ち、押圧部62の外側に積層された内側熱拡散層96のさらに外側に、第1電気絶縁層41、抵抗加熱層42、及び第2電気絶縁層43の各々が、印刷工程又は蒸着工程を用いて順に積層される。ここで、内側熱拡散層96の電気伝導率が収容部50の電気伝導率よりも高い場合、製造工程S63に示すように、抵抗加熱層42の第2端部47は、内側熱拡散層96に接続されることが望ましい。その場合、第2端部47は、押圧部62上の内側熱拡散層96に接続されてもよいし、非押圧部66上の内側熱拡散層96に接続されてもよい。かかる構成によれば、抵抗加熱層42-1と抵抗加熱層42-2との通電をより容易にすることが可能となる。もちろん、本変形例に第3の変形例が組み合わされ、収容部50に、電源部111に接続された導線48が接続されてもよい。その場合、抵抗加熱層42は、内側熱拡散層96及び収容部50を介して、電源部111に接続されることとなる。
 他に、抵抗加熱層42の第2端部47は、内側熱拡散層96を避けて、内側熱拡散層96から露出している収容部50に接続されてもよい。例えば、収容部50と抵抗加熱層42とは、同じSUSで構成され、溶接されることで電気的に接続されてもよい。かかる構成によれば、金属間腐食又は固溶による耐久性の低下を防止することが可能となる。
 (6)第6の変形例
 上記では、収容部50が円筒状の筒状体である例を説明したが、本開示はかかる例に限定されない。収容部50は、平板である押圧部62を有する形状であれば、任意の形状をとり得る。かかる変形例について、図18を参照しながら説明する。
 図18は、本変形例に係る収容部50及びスティック型基材150の構成の一例を模式的に示す図である。図18に示すように、収容部50は、上下方向に直交する面の形状が四角形である、有底の角筒であってもよい。本変形例では、押圧部62だけでなく、非押圧部66もまた、平板として構成される。即ち、本変形例に係る収容部50は、平板である1対の押圧部62と平板である1対の非押圧部66とを交互に連結することで構成された側壁54の下端に、底壁56を連結することで、構成される。ただし、収容部50の周方向における非押圧部66の長さは、押圧部62の長さよりも短く構成されることが望ましい。即ち、収容部50は、上下方向に直交する面の形状が長方形に構成され、押圧部62が長辺を構成し、非押圧部66が短辺を構成することが望ましい。そして、押圧部62に、加熱部40が配置されることが望ましい。
 図18に示すように、スティック型基材150は、収容部50の形状に合わせて、断面形状が四角形である角柱状に構成されてよい。例えば、スティック型基材150は、薄いカード状に構成されてよい。
 かかる構成によれば、薄く構成されたスティック型基材150を加熱部40により挟み込みながら加熱することができるので、スティック型基材150の中心部まで容易に昇温させることが可能となる。
 (7)第7の変形例
 上記では、抵抗加熱層42が、収容部50の外周面に沿う方向に、第1電気絶縁層41からはみ出す例を説明したが、本開示はかかる例に限定されない。例えば、抵抗加熱層42は、収容部50の外周面に直交する方向に、第1電気絶縁層41からはみ出してもよい。かかる変形例について、図19を参照しながら説明する。
 図19は、本変形例に係る加熱システム30の製造工程の一例を示す図である。本変形例に係る加熱システム30の製造工程は、図19に示す製造工程S71~S74、次いで図10に示した製造工程S15~S17にかけて順に進行する。即ち、本変形例に係る加熱システム30の製造工程は、図9の製造工程S11~S14の代わりに、製造工程S71~S74を含む。以下では、製造工程S11~S14と相違する点について主に説明し、同様の点については説明を省略する。また、以下では、2つの加熱部40のうち一方に関する製造工程について主に説明するが、他方の加熱部40も同様の製造工程で製造されてよい。
 図19の製造工程S71において、第1電気絶縁層41にVia加工が施され、貫通孔41aが形成される。本変形例に係る第1電気絶縁層41は、グリーンシート等の焼成前のセラミック基板であってよい。そして、第1電気絶縁層41の貫通孔41aに、導電材42aが充填される。導電材42aは、導電性を有する任意の材料により構成される。導電材42aの材料は、抵抗加熱層42の材料と同一であってもよい。
 図19の製造工程S72において、製造工程S71を経た第1電気絶縁層41上に、抵抗加熱層42が積層される。ここで、抵抗加熱層42の第2端部47は、貫通孔41a上に配置される。そして、抵抗加熱層42の第2端部47は、貫通孔41aに充填された導電材42aに接続される。
 図19の製造工程S73において、製造工程S72を経た第1電気絶縁層41及び抵抗加熱層42に、第2電気絶縁層43が積層される。例えば、第2電気絶縁層43は、抵抗加熱層42の第1端部46を露出させた状態で、抵抗加熱層42を挟み込むようにして第1電気絶縁層41に貼り合わされる。本変形例に係る第2電気絶縁層43は、グリーンシート等の焼成前のセラミック基板であってよい。
 以上説明した製造工程により、本変形例に係る加熱部40は製造される。
 図19の製造工程S74において、製造工程S73を経た加熱部40は、収容部50の押圧部62の外側に積層される。例えば、加熱部40は、収容部50の押圧部62の外側に貼り付けられ、焼成される。その結果、抵抗加熱層42の第2端部47は、貫通孔41aに配置された導電材42aを介して収容部50に接続される。他方、抵抗加熱層42の第1端部46には、導線48が接続される。
 以上、本変形例に係る加熱システム30の製造工程について説明した。
 本変形例によれば、上記実施形態と同様に、抵抗加熱層42は、収容部50を介して電源部111に電気的に接続される。貫通孔41aに配置された導電材42aは、抵抗加熱層42の一部とも捉えることができる。即ち、抵抗加熱層42は、第1電気絶縁層41から第1電気絶縁層41を貫通する方向にはみ出して収容部50に接続されてもよい。本変形例における貫通孔41aは、第1電気絶縁層41に形成された押圧部62を露出させる構成である点で、上記実施形態における切り欠き49に相当する。
 なお、図19では、加熱部40を別途製造した上で、収容部50の外側に貼り付ける例を説明したが、本開示はかかる例に限定されない。上記実施形態と同様に、収容部50に第1電気絶縁層41、抵抗加熱層42、及び第2電気絶縁層43が順に積層されてもよい。
 <4.補足>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 筒状体である収容部50の製造方法は多様に考えられる。一例として、筒状体である収容部50は、板材に絞り加工を施すことで構成されてもよい。他の一例として、筒状体である収容部50は、板材に曲げ加工を施してつなぎ目を溶接することで構成されてもよい。後者の場合、板材に加熱部40が積層されてもよい。そして、加熱部40が積層された板材に曲げ加工を施してつなぎ目を溶接することで、加熱部40が積層された収容部50が構成されてもよい。
 上記では、保持部60が、2つの押圧部62と2つの非押圧部66とを有する例を説明したが、本開示はかかる例に限定されない。例えば、保持部60は、3以上の押圧部62と3以上の非押圧部66とを有していてもよい。
 上記では、加熱部40を構成する第1電気絶縁層41、抵抗加熱層42、及び第2電気絶縁層43の各々が、印刷工程又は蒸着工程を用いて積層される例を説明したが、本開示はかかる例に限定されない。一例として、第1電気絶縁層41及び第2電気絶縁層43は、ペースト状の材料を塗工すること、又は転写することで積層されてよい。他の一例として、抵抗加熱層42は、所定の形状に加工された金属箔であってもよく、第1電気絶縁層41上に設置されてもよい。抵抗加熱層42が金属箔である場合、金属箔をキャリアテープ上に設置し、その上から第1電気絶縁層41を印刷したものが、まとめて収容部50に転写されてもよい。抵抗加熱層42が金属箔である場合、抵抗加熱層42と収容部50とは、溶接されることで電気的に接続されてもよい。他にも例えば、加熱部40が別途製造され、収容部50の外側に貼り付けられてもよい。
 上記では、抵抗加熱層42と導線48との接続部分が、第2電気絶縁層43により被覆されずに露出する例を説明したが、本開示はかかる例に限定されない。抵抗加熱層42と導線48との接続部分が、第2電気絶縁層43により被覆されてもよい。
 上記では、抵抗加熱層42と導線48とが直接的に接続される例を説明したが、本開示はかかる例に限定されない。抵抗加熱層42と導線48とは間接的に接続されてもよい。一例として、導線48は、導電性の板バネを介して抵抗加熱層42に接続されてもよい。他の一例として、導線48は、ポゴピンを介して抵抗加熱層42に接続されてもよい。吸引装置100は、加熱システム30を含む複数の部品を組み立てることで製造されてもよく、その組み立ての過程で、電源部111等を含む本体に加熱システム30が嵌め込まれてよい。その際、本体に設けられたソケットに加熱システム30の下部が嵌め込まれてもよく、当該ソケットに、上記板バネ又はポゴピンが設けられてもよい。この場合、ソケットに加熱システム30の下部を嵌め込んだ際に、抵抗加熱層42と電源部111とを電気的に接続することができるので、吸引装置100の製造工程を簡略化することが可能となる。なお、抵抗加熱層42と導線48とが間接的に接続される場合、抵抗加熱層42全体、又は少なくとも導線48との接点となる第1端部46は、ニッケル又は金等によりめっき処理されることが望ましい。かかる構成により、抵抗加熱層42と板バネ又はポゴピンとの電気的な接続をより強固にすることが可能となる。なお、収容部50と導線48とについても、同様に、直接的に接続されてもよいし、間接的に接続されてもよい。
 上記では、抵抗加熱層42と導線48との接点(即ち、第1端部46)が押圧部62上に位置する例を説明したが、本開示はかかる例に限定されない。例えば、収容部50の底壁56まで第1電気絶縁層41及び抵抗加熱層42が延伸されてもよく、収容部50の底壁56において、抵抗加熱層42に導線48が直接的に又は間接的に接続されてもよい。
 上記では、外側熱拡散層90が保持部60を被覆する例を説明したが、外側熱拡散層90は、保持部60のみならず非保持部69をも被覆してもよい。同様に、上記では、断熱シート71が保持部60を被覆する例を説明したが、断熱シート71は保持部60のみならず非保持部69をも被覆してもよい。
 上記では、外側熱拡散層90が収容部50に積層される際に、縦長PIテープ92が非押圧部66に接着される例を説明したが、本開示はかかる例に限定されない。縦長PIテープ92は、押圧部62に積層された第2電気絶縁層43に接着されてもよい。
 上記では、スティック型基材150が基材部151と吸口部152とを有する例を説明したが、本開示はかかる例に限定されない。スティック型基材150は、基材部151のみを有していてもよい。そして、吸引装置100が、吸口部152を有していてもよい。
例えば、収容部50の開口52に対し、吸口部152が着脱可能に取り付けられてもよい。
 上記実施形態及び各変形例のうち2以上が、適宜組み合わされてもよい。一例として、上記実施形態と第5の変形例が組み合わされてもよい。即ち、加熱システム30は、外側熱拡散層90及び内側熱拡散層96の双方を有していてもよい。他の一例として、収容部50は、4つ以上の押圧部62を有していてもよく、1つの収容部50に、図9及び図13~図17に示した加熱部40のうち任意の2種類の加熱部40が配置されてもよい。他の一例として、図18に示した収容部50に、図9及び図13~図17に示した加熱部40のうちいずれか1種類の加熱部40が配置されてもよい。
 上記では、抵抗加熱層42の両端のうち少なくともいずれか一方に導線48が接続される例を説明したが、本開示はかかる例に限定されない。一例として、収容部50は、3つ以上の押圧部62を有していてもよく、3つの押圧部62の中央に位置する押圧部62に配置された抵抗加熱層42の両端が、収容部50に接続されてもよい。そして、両隣の2つの押圧部62の各々には、一端が電源部111に接続された抵抗加熱層42が配置され、これら3つの抵抗加熱層42が1つの直列回路を構成してもよい。他の一例として、収容部50は、2つの押圧部62を有し、2つの押圧部62の各々に、両端が収容部50に接続された抵抗加熱層42が配置され、2つの非押圧部66の各々に、電源部111に接続された導線が接続されてもよい。その場合、2つの抵抗加熱層42が、並列回路を構成することとなる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 エアロゾル源を含有した基材を収容する筒状体と、
 前記筒状体の側壁の外側に積層される複数の抵抗加熱層と、
 前記筒状体の前記側壁の外側であって前記抵抗加熱層よりも内側に積層される第1熱拡散層と、
 を備える、
 エアロゾル生成システム。
(2)
 前記筒状体の側壁は、外側が平面である複数の第1側壁と、前記第1側壁とは異なる複数の第2側壁と、を含み、
 前記第1側壁と前記第2側壁とは、前記筒状体の周方向に沿って交互に配置され、
 2つの前記抵抗加熱層は、前記第2側壁において離隔した状態で、当該第2側壁の両隣の2つの前記第1側壁の外側に、蒸着工程又は印刷工程を用いて積層される、
 前記(1)に記載のエアロゾル生成システム。
(3)
 前記エアロゾル生成システムは、前記抵抗加熱層よりも内側であって前記第1側壁の外側に、蒸着工程又は印刷工程を用いて積層される複数の第1電気絶縁層をさらに備え、
 前記筒状体は、導電性を有する材料により構成される、
 前記(2)に記載のエアロゾル生成システム。
(4)
 前記筒状体の外周のうち前記第1電気絶縁層が積層される部分は、前記筒状体の外周の50%未満を占める、
 前記(3)に記載のエアロゾル生成システム。
(5)
 前記第1電気絶縁層は、前記抵抗加熱層に沿った形状を有する、
 前記(3)又は(4)に記載のエアロゾル生成システム。
(6)
 前記エアロゾル生成システムは、前記抵抗加熱層よりも外側に、蒸着工程又は印刷工程を用いて積層される複数の第2電気絶縁層をさらに備え、
 前記抵抗加熱層の少なくとも一部は、前記第1電気絶縁層及び前記第2前記絶縁層により挟み込まれる、
 前記(3)~(5)のいずれか一項に記載のエアロゾル生成システム。
(7)
 前記エアロゾル生成システムは、前記抵抗加熱層に電力を供給する電源部をさらに備え、
 前記第1熱拡散層は、前記筒状体よりも電気伝導率が高い材料により構成され、
 前記第1電気絶縁層は、第1熱拡散層よりも外側に積層され、
 前記抵抗加熱層の2つの端部のうち少なくとも一方の端部は、前記第1電気絶縁層からはみ出して前記第1熱拡散層に接続され、前記第1熱拡散層を介して前記電源部に電気的に接続される、
 前記(3)~(6)のいずれか一項に記載のエアロゾル生成システム。
(8)
 前記抵抗加熱層の2つの端部のうち少なくとも一方の端部は、前記第1電気絶縁層からはみ出して前記第1熱拡散層に接続され、前記抵抗加熱層に隣り合う他の前記抵抗加熱層に、前記第1熱拡散層を介して電気的に接続される、
 前記(7)に記載のエアロゾル生成システム。
(9)
 前記筒状体に、前記電源部に接続された導線が接続され、
 前記抵抗加熱層の2つの端部のうち一方の端部は、前記第1電気絶縁層からはみ出して前記第1熱拡散層に接続され、前記筒状体に接続された前記導線に、前記第1熱拡散層及び前記筒状体を介して電気的に接続される、
 前記(7)又は(8)に記載のエアロゾル生成システム。
(10)
 前記抵抗加熱層の2つの端部のうち前記第1電気絶縁層からはみ出した端部は、前記第1側壁上の前記第1熱拡散層に接続される、
 前記(7)~(9)のいずれか一項に記載のエアロゾル生成システム。
(11)
 前記抵抗加熱層の2つの端部のうち前記第1電気絶縁層からはみ出した端部は、前記第1側壁からはみ出して前記第2側壁上の前記第1熱拡散層に接続される、
 前記(7)~(9)のいずれか一項に記載のエアロゾル生成システム。
(12)
 前記抵抗加熱層の2つの端部のうち一方の端部に、前記電源部に接続された導線が接続される、
 前記(7)~(11)のいずれか一項に記載のエアロゾル生成システム。
(13)
 前記エアロゾル生成システムは、前記抵抗加熱層に電力を供給する電源部をさらに備え、
 前記抵抗加熱層の2つの端部の各々に、前記電源部に接続された導線が接続される、
 前記(1)~(12)のいずれか一項に記載のエアロゾル生成システム。
(14)
 前記抵抗加熱層の2つの端部のうち、前記電源部に接続された導線が接続される端部は、その他の部分よりも幅広に構成される、
 前記(12)又は(13)に記載のエアロゾル生成システム。
(15)
 前記エアロゾル生成システムは、前記筒状体の前記側壁の外側であって前記抵抗加熱層よりも外側に、巻き付けて積層される第2熱拡散層をさらに備える、
 前記(1)~(14)のいずれか一項に記載のエアロゾル生成システム。
(16)
 前記エアロゾル生成システムは、前記筒状体の前記側壁の外側であって前記抵抗加熱層よりも外側に、巻き付けて積層される断熱層をさらに備える、
 前記(1)~(15)のいずれか一項に記載のエアロゾル生成システム。
(17)
 前記エアロゾル生成システムは、前記抵抗加熱層に電力を供給する電源部をさらに備え、
 前記抵抗加熱層の2つの端部のうち少なくとも一方の端部は、前記第1電気絶縁層からはみ出して前記筒状体に接続され、前記筒状体を介して前記電源部に電気的に接続される、
 前記(3)~(6)のいずれか一項に記載のエアロゾル生成システム。
(18)
 前記第1側壁は、平板であり、
 前記第2側壁は、前記筒状体の周方向に沿って前記筒状体の外側に湾曲した湾曲板であり、
 前記筒状体に収容された前記基材は、前記第1側壁により押圧される、
 前記(2)を引用する前記(3)~(17)のいずれか一項に記載のエアロゾル生成システム。
(19)
 前記第1側壁は、平板であり、
 前記第2側壁は、平板であり、
 前記筒状体の周方向において、前記第1側壁の長さは、前記第2側壁の長さよりも長く、
 前記筒状体に収容された前記基材は、前記第1側壁により押圧される、
 前記(2)を引用する前記(3)~(17)のいずれか一項に記載のエアロゾル生成システム。
(20)
 前記エアロゾル生成システムは、前記基材をさらに備える、
 前記(1)~(19)のいずれか一項に記載のエアロゾル生成システム。
 100  吸引装置
 111  電源部
 112  センサ部
 113  通知部
 114  記憶部
 115  通信部
 116  制御部
 150  スティック型基材
 151  基材部
 152  吸口部
 30  加熱システム
 40  加熱部
 41  第1電気絶縁層
 42  抵抗加熱層
 43  第2電気絶縁層
 44  発熱領域
 45  発熱領域
 46  第1端部
 47  第2端部
 48  導線
 49  切り欠き
 50  収容部
 52  開口
 54  側壁(54a:内面、54b:外面)
 56  底壁(56a:内面、56b:外面)
 58  第1ガイド部(58a:テーパ面)
 60  保持部
 62  押圧部(62a:内面、62b:外面)
 66  非押圧部(66a:内面、66b:外面)
 67  空隙
 68  境界
 69  非保持部
 70  断熱部
 71  断熱シート
 72  PIテープ
 73  封止部材
 80  内部空間
 90  外側熱拡散層
 91  グラファイトシート
 92  縦長PIテープ
 93  横長PIテープ(94:突出部分、95:突出部分)
 96  内側熱拡散層
 99  熱収縮チューブ

Claims (20)

  1.  エアロゾル源を含有した基材を収容する筒状体と、
     前記筒状体の側壁の外側に積層される複数の抵抗加熱層と、
     前記筒状体の前記側壁の外側であって前記抵抗加熱層よりも内側に積層される第1熱拡散層と、
     を備える、
     エアロゾル生成システム。
  2.  前記筒状体の側壁は、外側が平面である複数の第1側壁と、前記第1側壁とは異なる複数の第2側壁と、を含み、
     前記第1側壁と前記第2側壁とは、前記筒状体の周方向に沿って交互に配置され、
     2つの前記抵抗加熱層は、前記第2側壁において離隔した状態で、当該第2側壁の両隣の2つの前記第1側壁の外側に、蒸着工程又は印刷工程を用いて積層される、
     請求項1に記載のエアロゾル生成システム。
  3.  前記エアロゾル生成システムは、前記抵抗加熱層よりも内側であって前記第1側壁の外側に、蒸着工程又は印刷工程を用いて積層される複数の第1電気絶縁層をさらに備え、
     前記筒状体は、導電性を有する材料により構成される、
     請求項2に記載のエアロゾル生成システム。
  4.  前記筒状体の外周のうち前記第1電気絶縁層が積層される部分は、前記筒状体の外周の50%未満を占める、
     請求項3に記載のエアロゾル生成システム。
  5.  前記第1電気絶縁層は、前記抵抗加熱層に沿った形状を有する、
     請求項3又は4に記載のエアロゾル生成システム。
  6.  前記エアロゾル生成システムは、前記抵抗加熱層よりも外側に、蒸着工程又は印刷工程を用いて積層される複数の第2電気絶縁層をさらに備え、
     前記抵抗加熱層の少なくとも一部は、前記第1電気絶縁層及び前記第2前記絶縁層により挟み込まれる、
     請求項3~5のいずれか一項に記載のエアロゾル生成システム。
  7.  前記エアロゾル生成システムは、前記抵抗加熱層に電力を供給する電源部をさらに備え、
     前記第1熱拡散層は、前記筒状体よりも電気伝導率が高い材料により構成され、
     前記第1電気絶縁層は、第1熱拡散層よりも外側に積層され、
     前記抵抗加熱層の2つの端部のうち少なくとも一方の端部は、前記第1電気絶縁層からはみ出して前記第1熱拡散層に接続され、前記第1熱拡散層を介して前記電源部に電気的に接続される、
     請求項3~6のいずれか一項に記載のエアロゾル生成システム。
  8.  前記抵抗加熱層の2つの端部のうち少なくとも一方の端部は、前記第1電気絶縁層からはみ出して前記第1熱拡散層に接続され、前記抵抗加熱層に隣り合う他の前記抵抗加熱層に前記第1熱拡散層を介して電気的に接続される、
     請求項7に記載のエアロゾル生成システム。
  9.  前記筒状体に、前記電源部に接続された導線が接続され、
     前記抵抗加熱層の2つの端部のうち一方の端部は、前記第1電気絶縁層からはみ出して前記第1熱拡散層に接続され、前記筒状体に接続された前記導線に、前記第1熱拡散層及び前記筒状体を介して電気的に接続される、
     請求項7又は8に記載のエアロゾル生成システム。
  10.  前記抵抗加熱層の2つの端部のうち前記第1電気絶縁層からはみ出した端部は、前記第1側壁上の前記第1熱拡散層に接続される、
     請求項7~9のいずれか一項に記載のエアロゾル生成システム。
  11.  前記抵抗加熱層の2つの端部のうち前記第1電気絶縁層からはみ出した端部は、前記第1側壁からはみ出して前記第2側壁上の前記第1熱拡散層に接続される、
     請求項7~9のいずれか一項に記載のエアロゾル生成システム。
  12.  前記抵抗加熱層の2つの端部のうち一方の端部に、前記電源部に接続された導線が接続される、
     請求項7~11のいずれか一項に記載のエアロゾル生成システム。
  13.  前記エアロゾル生成システムは、前記抵抗加熱層に電力を供給する電源部をさらに備え、
     前記抵抗加熱層の2つの端部の各々に、前記電源部に接続された導線が接続される、
     請求項1~12のいずれか一項に記載のエアロゾル生成システム。
  14.  前記抵抗加熱層の2つの端部のうち、前記電源部に接続された導線が接続される端部は、その他の部分よりも幅広に構成される、
     請求項12又は13に記載のエアロゾル生成システム。
  15.  前記エアロゾル生成システムは、前記筒状体の前記側壁の外側であって前記抵抗加熱層よりも外側に、巻き付けて積層される第2熱拡散層をさらに備える、
     請求項1~14のいずれか一項に記載のエアロゾル生成システム。
  16.  前記エアロゾル生成システムは、前記筒状体の前記側壁の外側であって前記抵抗加熱層よりも外側に、巻き付けて積層される断熱層をさらに備える、
     請求項1~15のいずれか一項に記載のエアロゾル生成システム。
  17.  前記エアロゾル生成システムは、前記抵抗加熱層に電力を供給する電源部をさらに備え、
     前記抵抗加熱層の2つの端部のうち少なくとも一方の端部は、前記第1電気絶縁層からはみ出して前記筒状体に接続され、前記筒状体を介して前記電源部に電気的に接続される、
     請求項3~6のいずれか一項に記載のエアロゾル生成システム。
  18.  前記第1側壁は、平板であり、
     前記第2側壁は、前記筒状体の周方向に沿って前記筒状体の外側に湾曲した湾曲板であり、
     前記筒状体に収容された前記基材は、前記第1側壁により押圧される、
     請求項2を引用する請求項3~17のいずれか一項に記載のエアロゾル生成システム。
  19.  前記第1側壁は、平板であり、
     前記第2側壁は、平板であり、
     前記筒状体の周方向において、前記第1側壁の長さは、前記第2側壁の長さよりも長く、
     前記筒状体に収容された前記基材は、前記第1側壁により押圧される、
     請求項2を引用する請求項3~17のいずれか一項に記載のエアロゾル生成システム。
  20.  前記エアロゾル生成システムは、前記基材をさらに備える、
     請求項1~19のいずれか一項に記載のエアロゾル生成システム。
PCT/JP2022/039477 2022-10-24 2022-10-24 エアロゾル生成システム WO2024089731A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039477 WO2024089731A1 (ja) 2022-10-24 2022-10-24 エアロゾル生成システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039477 WO2024089731A1 (ja) 2022-10-24 2022-10-24 エアロゾル生成システム

Publications (1)

Publication Number Publication Date
WO2024089731A1 true WO2024089731A1 (ja) 2024-05-02

Family

ID=90830312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039477 WO2024089731A1 (ja) 2022-10-24 2022-10-24 エアロゾル生成システム

Country Status (1)

Country Link
WO (1) WO2024089731A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658593U (ja) * 1993-01-20 1994-08-12 株式会社岡部マイカ工業所 マイカヒーター
JP2002005522A (ja) * 2000-04-21 2002-01-09 Atsunobu Sakamoto 立ち上がりの早い電気温水器
JP2002110322A (ja) * 2000-09-29 2002-04-12 Nok Corp ミラー用面状発熱体
JP2003052539A (ja) * 2001-08-08 2003-02-25 Matsushita Electric Ind Co Ltd 電気湯沸かし器
JP3153158U (ja) * 2009-05-29 2009-08-27 勲 更科 床暖房畳
US20140261700A1 (en) * 2013-03-15 2014-09-18 Peter Klein High thermal transfer flow-through heat exchanger
JP2017513542A (ja) * 2014-02-27 2017-06-01 アライン テクノロジー, インコーポレイテッド 熱防曇システム及び方法
WO2018135225A1 (ja) * 2017-01-18 2018-07-26 京セラ株式会社 ヒータ装置
CN211407651U (zh) * 2019-07-23 2020-09-04 深圳麦克韦尔科技有限公司 雾化组件及电子雾化装置
JP2022502061A (ja) * 2018-10-12 2022-01-11 ジェイティー インターナショナル エス.エイ.JT International S.A. エアロゾル発生装置及びそのための加熱チャンバ
WO2022079753A1 (ja) * 2020-10-12 2022-04-21 日本たばこ産業株式会社 吸引装置、制御方法、及びプログラム
WO2022123757A1 (ja) * 2020-12-11 2022-06-16 日本たばこ産業株式会社 香味吸引器
JP2022090650A (ja) * 2020-12-07 2022-06-17 深▲せん▼麦克韋爾科技有限公司 エアロゾル生成装置及びその加熱エレメント
WO2022172528A1 (ja) * 2021-02-12 2022-08-18 日本たばこ産業株式会社 非燃焼加熱式たばこ製品及び非燃焼加熱式たばこスティック

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658593U (ja) * 1993-01-20 1994-08-12 株式会社岡部マイカ工業所 マイカヒーター
JP2002005522A (ja) * 2000-04-21 2002-01-09 Atsunobu Sakamoto 立ち上がりの早い電気温水器
JP2002110322A (ja) * 2000-09-29 2002-04-12 Nok Corp ミラー用面状発熱体
JP2003052539A (ja) * 2001-08-08 2003-02-25 Matsushita Electric Ind Co Ltd 電気湯沸かし器
JP3153158U (ja) * 2009-05-29 2009-08-27 勲 更科 床暖房畳
US20140261700A1 (en) * 2013-03-15 2014-09-18 Peter Klein High thermal transfer flow-through heat exchanger
JP2017513542A (ja) * 2014-02-27 2017-06-01 アライン テクノロジー, インコーポレイテッド 熱防曇システム及び方法
WO2018135225A1 (ja) * 2017-01-18 2018-07-26 京セラ株式会社 ヒータ装置
JP2022502061A (ja) * 2018-10-12 2022-01-11 ジェイティー インターナショナル エス.エイ.JT International S.A. エアロゾル発生装置及びそのための加熱チャンバ
CN211407651U (zh) * 2019-07-23 2020-09-04 深圳麦克韦尔科技有限公司 雾化组件及电子雾化装置
WO2022079753A1 (ja) * 2020-10-12 2022-04-21 日本たばこ産業株式会社 吸引装置、制御方法、及びプログラム
JP2022090650A (ja) * 2020-12-07 2022-06-17 深▲せん▼麦克韋爾科技有限公司 エアロゾル生成装置及びその加熱エレメント
WO2022123757A1 (ja) * 2020-12-11 2022-06-16 日本たばこ産業株式会社 香味吸引器
WO2022172528A1 (ja) * 2021-02-12 2022-08-18 日本たばこ産業株式会社 非燃焼加熱式たばこ製品及び非燃焼加熱式たばこスティック

Similar Documents

Publication Publication Date Title
JP2020516306A (ja) 巻きタバコ型電子タバコ装置用発熱ヒーター
JP7067813B2 (ja) 巻きタバコ型電子タバコ装置用ヒーター組立体およびこれを含む巻きタバコ型電子タバコ装置
KR20200109705A (ko) 에어로졸 발생장치의 히터 구조
JP7463556B2 (ja) 香味吸引器
US20230397665A1 (en) Heater tube with thermal insulation and electrical isolation
WO2024089731A1 (ja) エアロゾル生成システム
WO2024089729A1 (ja) エアロゾル生成システム
WO2024089730A1 (ja) エアロゾル生成システム
WO2024089732A1 (ja) エアロゾル生成システム
CN113558305A (zh) 红外加热体及其制备方法、加热烟具
EP4199649A1 (en) Surface heating heater pipe
WO2024105820A1 (ja) エアロゾル生成システム、制御方法及びプログラム
WO2023218586A1 (ja) エアロゾル生成システム、及びエアロゾル生成システムの製造方法
WO2022176063A1 (ja) 非燃焼加熱型香味吸引器の加熱ユニットおよび非燃焼加熱型香味吸引器
WO2023070259A1 (en) Heating assembly for aerosol-generating device
WO2023065407A1 (en) Method for manufacturing a heating assembly for an aerosol-generating device
WO2023070285A1 (en) Heating assembly for aerosol-generating device
WO2023070269A1 (en) Heating assembly for aerosol-generating device
US20240041117A1 (en) Aerosol generation system
WO2023105559A1 (ja) エアロゾル生成システム
WO2023105558A1 (ja) エアロゾル生成システム
RU2808169C1 (ru) Нагревательная трубка с теплоизоляцией и электрической изоляцией
US20240023619A1 (en) Flavour inhaler, and heater manufacturing method
WO2023286194A1 (ja) 香味吸引器及びヒータの製造方法
CN218245675U (zh) 气溶胶产生装置及其发热组件