WO2024085404A1 - 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품 - Google Patents

열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품 Download PDF

Info

Publication number
WO2024085404A1
WO2024085404A1 PCT/KR2023/012324 KR2023012324W WO2024085404A1 WO 2024085404 A1 WO2024085404 A1 WO 2024085404A1 KR 2023012324 W KR2023012324 W KR 2023012324W WO 2024085404 A1 WO2024085404 A1 WO 2024085404A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
alkyl acrylate
graft copolymer
compound
thermoplastic resin
Prior art date
Application number
PCT/KR2023/012324
Other languages
English (en)
French (fr)
Inventor
박춘호
김태훈
조윤경
안용희
김호훈
장정민
윤혁준
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230108416A external-priority patent/KR20240055631A/ko
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to EP23869301.4A priority Critical patent/EP4397709A1/en
Priority to CN202380013889.4A priority patent/CN118234800A/zh
Publication of WO2024085404A1 publication Critical patent/WO2024085404A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a thermoplastic resin composition, a method for manufacturing the same, and a molded article containing the same. More specifically, the present invention relates to a thermoplastic resin composition, a method for manufacturing the same, and a molded article containing the same. More specifically, the present invention relates to a thermoplastic resin composition, a method for manufacturing the same, and a molded article containing the same. More specifically, the present invention relates to a thermoplastic resin composition having excellent impact resistance, transparency, and weather resistance, and the change over time is reduced due to the excellent weather resistance, so that it is injected with excellent color stability and an attractive appearance. It relates to a thermoplastic resin composition applicable to all molding, extrusion molding, and calendar molding, a method of manufacturing the same, and a molded article containing the same.
  • Acrylic film is a material with high transparency and weather resistance and is a representative material used as a finishing material to protect materials. With the advancement of the market, acrylic films are especially used to coat surfaces such as outdoor W/P (Window profile) that require high weather resistance, and coating methods include wrapping, co-extrusion, and lamination.
  • W/P Winddow profile
  • acrylonitrile-styrene-acrylate copolymers (hereinafter referred to as 'ASA' resins) containing alkyl (meth)acrylate compounds do not have ethylenically unsaturated bonds, so they have excellent processability, impact resistance, chemical resistance, and Due to its excellent physical properties such as weather resistance, it is widely used in various fields such as building materials, interior and exterior materials for vehicles such as automobiles and motorcycles, electrical and electronic products, as well as ships, leisure goods, and gardening products, and its demand is also rapidly increasing. there is.
  • ASA resin which has excellent impact strength and chemical resistance compared to acrylic film, and by improving transparency, but compared to acrylic film, which is a single material, ASA resin, which is a multi-component system, has poor weather resistance at the initial stage.
  • ASA resin which is a multi-component system, has poor weather resistance at the initial stage.
  • this substrate has excellent impact resistance, transparency, and weather resistance, and has excellent color stability and a dull appearance due to reduced changes over time due to excellent weather resistance, and can be used in injection molding, extrusion molding, and calendar molding. It relates to applicable thermoplastic resin compositions, methods for manufacturing the same, and molded articles containing the same.
  • thermoplastic resin composition The purpose of this description is to provide a method for producing the above thermoplastic resin composition.
  • thermoplastic resin composition a molded article manufactured from the above thermoplastic resin composition.
  • the present substrate is (A) (a-1) an alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer containing an alkyl acrylate rubber with an average particle diameter of 50 to 120 nm, (a-2) an alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer containing an alkyl acrylate rubber with an average particle diameter of 150 to 600 nm, and (a-3) an average particle diameter of 80 nm or more to less than 150 nm.
  • G represents the gel content (% by weight) relative to the total weight of the graft copolymer
  • Y represents the content (% by weight) of alkyl acrylate in the gel relative to the total weight of the graft copolymer.
  • this substrate is (A) (a-1) an alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer containing an alkyl acrylate rubber with an average particle diameter of 50 to 120 nm, (a-2) an alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer containing an alkyl acrylate rubber with an average particle diameter of 150 to 600 nm, and (a-3) an alkyl acrylate rubber with an average particle diameter of 80 nm or more to less than 150 nm.
  • L', a', and b' are the L, a, and b values measured respectively with the CIE LAB color coordinate system after leaving the specimen, and L 0 , a 0 , and b 0 are the CIE LAB colors before leaving the specimen. These are the L, a, and b values measured respectively in the coordinate system.
  • the (C) at least one selected from the group consisting of benzotriazole UV stabilizers, benzoate UV stabilizers, and benzophenone UV stabilizers preferably has a melting point of 100 to 200°C. You can.
  • the (C) benzotriazole-based UV stabilizer is preferably 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenyl) Ethyl)phenol (2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol), and 2-[2-hydroxy-3-dimethylbenzylphenyl-5- (1,1,3,3-tetramethylbutyl)]-2H-benzotriazole (2-[2-hydroxy-3-dimethylbenzylphenyl-5-(1,1,3,3-tertamethylbutyl)]-2H-benzotriazole ) may be one or more types selected from the group consisting of
  • the benzoate-based UV stabilizer is preferably 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate (2,4 -di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate), Hexadecyl 3,5-di-tert-butyl -4- hydroxybenzoate), or a mixture thereof.
  • the benzophenone-based UV stabilizer is preferably 2-Hydroxy-4-octoxybenzophenone, 4-benzyloxy-2-hydroxy Benzophenone (4-benzyloxy-2-hydroxybenzophenone), 2-Hydroxy-4-methoxybenzophenone-5-sulfonic acid, 2,2'-dihydroxy -4,4'-Dimethoxybenzophenone-5,5'-Disulfonic Acid (2,2'-Dihydroxy-4,4'-Dimethoxybenzophenone-5,5'-Disulfonic Acid), and 2,2'-dihydride A group consisting of 2,2'-Dihydroxy-4,4'-Dimethoxybenzophenone-5,5'-Disulfonic Acid Disodium Salt It may be one or more types selected from.
  • the (D) NH type HALS-based ultraviolet stabilizer may preferably have a melting point of 60 to 120°C.
  • the (D) NH type HALS-based UV stabilizer is preferably bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate and bis(1, It may be one or more types selected from the group consisting of 2,2,6,6-pentamethyl-4-piperidyl)sebacate.
  • the (a-1) graft copolymer preferably contains 20 to 60% by weight of alkyl acrylate rubber and 40 to 80% by weight of aromatic vinyl compound-vinylcyan compound copolymer surrounding the same. It can be done including.
  • the sum of the (A-1) graph copolymer, (A-2) graph copolymer, and (A-3) the weight of the graph copolymer preferably default It may be 15 to 80% by weight based on the total weight of the resin.
  • It may include at least one member selected from the group consisting of 2-ethylhexyl ester of acrylic acid, decyl ester of (meth)acrylic acid, and lauryl (meth)acrylic acid.
  • L', a', and b' are the L, a, and b values measured respectively with the CIE LAB color coordinate system after leaving the specimen, and L 0 , a 0 , and b 0 are the CIE LAB colors before leaving the specimen. These are the L, a, and b values measured respectively in the coordinate system.
  • an alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer containing an alkyl acrylate rubber with an average particle diameter of 150 to 600 nm, and (a-3) an alkyl acrylate rubber with an average particle diameter of 80 nm or more to less than 150 nm.
  • G represents the gel content (% by weight) relative to the total weight of the graft copolymer
  • Y represents the content (% by weight) of alkyl acrylate in the gel relative to the total weight of the graft copolymer.
  • an alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer containing an alkyl acrylate rubber with an average particle diameter of 150 to 600 nm, and (a-3) an alkyl acrylate rubber with an average particle diameter of 80 nm or more to less than 150 nm.
  • thermoplastic resin composition was prepared, and an injection specimen with a thickness of 3 mm was left for 8,000 hours using a whetherometer according to ASTM G155-1, and the degree of discoloration was measured using a colorimeter as follows.
  • a method for producing a thermoplastic resin composition can be provided, wherein the change over time ( ⁇ E) calculated using Equation 4 is 3 or less.
  • L', a', and b' are the L, a, and b values measured respectively with the CIE LAB color coordinate system after leaving the specimen, and L 0 , a 0 , and b 0 are the CIE LAB colors before leaving the specimen. These are the L, a, and b values measured respectively in the coordinate system.
  • the present substrate provides a molded article comprising the thermoplastic resin composition of I) to XV).
  • thermoplastic resin composition that has excellent impact resistance, transparency, and weather resistance, and has excellent color stability and an attractive appearance due to reduced changes over time due to excellent weather resistance, and is applicable to all injection molding, extrusion molding, and calendar molding, and a method for producing the same. There is an effect of providing a molded article containing the same.
  • thermoplastic resin composition of the present invention adjusts the alkyl acrylate coverage value of the alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer containing alkyl acrylate rubber with an average particle diameter of 50 to 120 nm within a predetermined range. It has the effect of reducing the occurrence of whitening during bending processing such as bending or folding.
  • thermoplastic resin composition of the present invention its manufacturing method, and molded articles containing the same will be described in detail.
  • the present inventors have disclosed at least one of three alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymers containing rubbers having different average particle diameters, and (meth)acrylic acid alkyl ester polymer and (meth)acrylic acid alkyl ester compound.
  • a combination of NH type HALS UV stabilizer is included in a predetermined content ratio, color stability is improved by reducing changes over time due to excellent impact resistance, transparency, and weather resistance, and excellent weather resistance, and is suitable for all injection molding, extrusion molding, and calendar molding.
  • thermoplastic resin composition according to the present invention is as follows.
  • thermoplastic resin composition of the present invention is (A) (a-1) an alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer containing an alkyl acrylate rubber with an average particle diameter of 50 to 120 nm, (a-2) an alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer containing an alkyl acrylate rubber with an average particle diameter of 150 to 600 nm, and (a-3) an alkyl acrylate rubber with an average particle diameter of 80 nm or more to less than 150 nm.
  • G represents the gel content (% by weight) relative to the total weight of the graft copolymer
  • Y represents the content (% by weight) of alkyl acrylate in the gel relative to the total weight of the graft copolymer.
  • thermoplastic resin composition of the present invention will be described in detail by composition.
  • the alkyl acrylate rubber of the graft copolymer (a-1) has an average particle diameter of 50 to 120 nm, preferably 50 to 110 nm, more preferably 50 to 100 nm, even more preferably 60 to 120 nm. It may be 90 nm, and within this range, excellent light transparency and gloss can be provided to the finally manufactured thermoplastic resin composition.
  • the average particle diameter can be measured using dynamic light scattering, and in detail, the intensity can be measured in Gaussian mode using a particle meter (product name: Nicomp 380, manufacturer: PSS). ) is measured by the value.
  • a particle meter product name: Nicomp 380, manufacturer: PSS.
  • the sample is prepared by diluting 0.1 g of latex with a total solid content of 35 to 50% by weight by 1,000 to 5,000 times with distilled water, the measurement method is auto-dilution and measurement using a flow cell, and the measurement mode is dynamic light scattering.
  • the setting value is a temperature of 23°C, a measurement wavelength of 632.8 nm, and a channel width of 10 ⁇ sec.
  • the (a-1) graft copolymer has an alkyl acrylate coverage ( More preferably, it may be 85 to 140% by weight, and even more preferably 95 to 120% by weight. Within this range, mechanical properties, transparency and gloss are excellent, and in particular, the effect of suppressing whitening during bending processing is achieved. there is.
  • G represents the gel content (% by weight) relative to the total weight of the graft copolymer
  • Y represents the content (% by weight) of alkyl acrylate in the gel relative to the total weight of the graft copolymer.
  • the content of alkyl acrylate in the gel of the graft copolymer is the content of alkyl acrylate in the insoluble matter collected in the process of calculating the gel content described above (based on 100% by weight of the total graft copolymer added). indicates.
  • the gel content represents the content of insoluble matter based on a total of 100% by weight of the graft copolymer.
  • the content of the alkyl acrylate is quantitatively measured through NMR (nuclear magnetic resonance) analysis or FT-IR (Fourier transform infrared spectroscopy) analysis.
  • NMR analysis means analysis by 1 H NMR, unless otherwise specified.
  • NMR analysis can be measured using methods commonly performed in the art, and specific measurement examples are as follows.
  • FT-IR analysis can be measured using methods commonly performed in the technical field, and specific measurement examples are as follows.
  • the gel content was determined by adding 1 g of the graft copolymer to 30 ml of acetone, stirring it at room temperature for 12 hours, centrifuging it, collecting only the insoluble matter that did not dissolve in acetone, drying it for 12 hours, and measuring the weight, using the following equation: Calculated using equation 2.
  • the gel content was measured by adding 1 g of the graft copolymer to 30 ml of acetone, stirring at 210 rpm for 12 hours at room temperature with a shaker (Orbital Shaker, equipment name: Lab companion SKC-6075), and Using a centrifuge (Supra R30 from Hanil Science), centrifuge at 18,000 rpm at 0°C for 3 hours to collect only the insoluble matter that has not dissolved in acetone and place in an oven (Forced Convection Oven; Equipment name: Lab companion OF-12GW). The weight can be measured after drying using a forced circulation drying method at 85°C for 12 hours.
  • the alkyl acrylate coverage value is a parameter that measures the degree of dispersion of the aromatic vinyl compound-vinylcyan compound polymer grafted onto the alkyl acrylate rubber in the alkyl acrylate-aromatic vinyl compound-vinylcyan compound graft copolymer.
  • This value is, the more the aromatic vinyl compound-vinyl cyan compound polymer is evenly grafted onto the alkyl acrylate rubber, forming a form that evenly surrounds the rubber, resulting in high gloss and transparency, and excellent mechanical properties, coloring properties, and non-whitening properties.
  • the higher the alkyl acrylate coverage value the better the alkyl acrylate homogeneity between the inside and outside of the graft copolymer gel, thereby reducing defect parts due to external stress and cracking occurring inside the graft copolymer. By reducing the resulting voids, the occurrence of whitening during bending is suppressed.
  • the difference between the alkyl acrylate coverage value and the grafting rate is that the alkyl acrylate coverage value is calculated from the alkyl acrylate content actually present in the graft copolymer using an NMR analyzer or FT-IR, and the grafting rate is calculated from the rubber component added during polymerization. There is a difference calculated from the content.
  • the (a-1) graft copolymer may preferably include an alkyl acrylate rubber (core) and an aromatic vinyl compound-vinyl cyan compound copolymer (shell) surrounding the same.
  • the (a-1) graft copolymer may include 20 to 60% by weight of an alkyl acrylate rubber and 40 to 80% by weight of an aromatic vinyl compound-vinylcyan compound copolymer surrounding the same, based on the total weight thereof. , preferably comprising 30 to 50% by weight of alkyl acrylate rubber and 50 to 70% by weight of an aromatic vinyl compound-vinyl cyan compound copolymer surrounding the same, and more preferably 40 to 50% by weight of alkyl acrylate rubber. and 50 to 60% by weight of an aromatic vinyl compound-vinyl cyanide compound copolymer surrounding the same. Within this range, mechanical properties, gloss, transparency, and weather resistance are excellent, and whitening occurs during bending. There is.
  • the alkyl acrylate rubber can be manufactured, for example, by emulsion polymerization of alkyl acrylate, preferably by emulsion polymerization by mixing alkyl acrylate, emulsifier, initiator, grafting agent, crosslinking agent, electrolyte and solvent, In this case, the grafting efficiency is excellent and the mechanical properties are excellent.
  • the alkyl acrylate rubber may further include an aromatic vinyl compound, and in this case, it has superior chemical resistance and impact resistance.
  • the content of the aromatic vinyl compound contained in the alkyl acrylate rubber is, for example, 0.1 to 25% by weight, preferably 2 to 23% by weight, more preferably 5 to 20% by weight, based on a total of 100% by weight of the alkyl acrylate rubber. %, and within this range, impact resistance, gloss, transparency, and weather resistance are excellent without deterioration in physical properties, and the excellent weather resistance has the effect of reducing changes over time.
  • the aromatic vinyl compound-vinyl cyanide compound copolymer (shell) may have a weight average molecular weight of 40,000 to 120,000 g/mol, preferably 50,000 to 110,000 g/mol, and more preferably 60,000 to 110,000 g/mol. , within this range, it has excellent processability without reducing impact strength and has the effect of reducing the occurrence of whitening during bending processing.
  • the weight average molecular weight can be measured using GPC (Gel Permeation Chromatography, waters breeze).
  • GPC Gel Permeation Chromatography, waters breeze
  • THF tetrahydrofuran
  • PS standard polystyrene
  • the solvent is THF
  • the column temperature is 40 °C
  • the flow rate is 0.3ml/min
  • the sample concentration is 20mg/ml
  • the injection volume is 5 ⁇ l
  • the column model is 1xPLgel 10 ⁇ m MiniMix-B (250x4.6mm).
  • measuring device is Agilent 1200 series system
  • refractive index detector Agilent G1362 RID
  • RI temperature 35 °C
  • data processing can be measured using Agilent ChemStation S/W and test methods (Mn, Mw, and PDI) under OECD TG 118 conditions.
  • the aromatic vinyl compound-vinyl cyan compound copolymer (shell) contains 55 to 85 wt% of the aromatic vinyl compound and 15 to 45 wt% of the vinyl cyan compound, preferably 60 to 80 wt% of the aromatic vinyl compound, based on the total weight. and 20 to 40 wt% of a vinyl cyan compound, more preferably 65 to 75 wt % of an aromatic vinyl compound and 25 to 35 wt % of a vinyl cyan compound, and within this range, it has the advantage of excellent impact resistance and weather resistance. There is.
  • the aromatic vinyl compound-vinyl cyan compound copolymer (shell) may preferably further include an alkyl acrylate, and in this case, it has excellent impact resistance, weather resistance, and processability, and has the advantage of reducing the occurrence of whitening during bending processing. there is.
  • the aromatic vinyl compound-vinyl cyan compound copolymer (shell) includes 55 to 85 wt% of an aromatic vinyl compound, 10 to 35 wt% of a vinyl cyan compound, and 1 to 25 wt% of an alkyl acrylate based on the total weight. It may consist of 60 to 80% by weight of an aromatic vinyl compound, 15 to 30% by weight of a vinyl cyan compound, and 3 to 20% by weight of an alkyl acrylate, and more preferably 65 to 72% by weight of an aromatic vinyl compound. % by weight, it may contain 20 to 25 wt% of a vinyl cyan compound and 5 to 15 wt% of an alkyl acrylate, and within this range, the impact resistance and weather resistance are more excellent.
  • the (a-1) graft copolymer can be manufactured by, for example, emulsion polymerization, and in this case, it has excellent glossiness and surface hardness.
  • the emulsion polymerization is not particularly limited as long as it is carried out by an emulsion polymerization method commonly performed in the technical field to which the present invention pertains.
  • it may be an emulsion graft polymerization method.
  • the (a-1) graft copolymer has a graft ratio calculated by Equation 3 below of 60 to 150%, preferably 65 to 140%, more preferably 65 to 130%, even more preferably 65 to 150%. It may be 120%, more preferably 65 to 110%, particularly preferably 65 to 100%, and even more preferably 65 to 80%. Within this range, impact resistance and processability are excellent and whitening is prevented during bending. There is an advantage in reducing the occurrence.
  • Grafting rate (%) [Weight of grafted monomer (g) / Weight of rubber (g)] * 100
  • the weight (g) of the grafted monomer is the weight of the insoluble material (gel) minus the rubber weight (g) after dissolving the graft copolymer in acetone and centrifuging, and the rubber weight (g) g) is the weight (g) of the theoretically added rubber component in the graft copolymer powder.
  • the weight of the insoluble material (gel) was determined by adding (A) 0.5 g of graft copolymer dry powder to 50 ml of acetone, stirring at room temperature for 12 hours, centrifuging, collecting only the insoluble matter that did not dissolve in acetone, and stirring for 12 hours. This is the weight measured after drying, and the rubber weight (g) is the weight (g) of the theoretical rubber component added into 0.5 g of (A) graft copolymer dry powder.
  • the weight of the insoluble material was measured by adding 0.5 g of graft copolymer dry powder to 50 ml of acetone and then shaking it at 210 rpm with a shaker (Orbital Shaker, equipment name: Lab companion SKC-6075) at room temperature. This was stirred for 12 hours and then centrifuged for 3 hours at 18,000 rpm at 0°C using a centrifuge (Supra R30 from Hanil Science) to collect only the insoluble matter that did not dissolve in acetone and place in an oven (Forced Convection Oven; equipment name: Measured after drying using forced circulation drying method at 85°C for 12 hours using Lab companion OF-12GW).
  • the (a-1) graft copolymer may be 55 to 80% by weight, preferably 60 to 75% by weight, more preferably 65 to 70% by weight, based on the total weight of the base resin, and is within this range. It has excellent mechanical properties, gloss, and transparency, and has the advantage of reducing whitening during bending processing.
  • the alkyl acrylate may be, for example, an alkyl acrylate having an alkyl group having 1 to 15 carbon atoms, and is preferably methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylbutyl acrylate, It may be one or more selected from the group consisting of octyl acrylate, 2-ethylhexyl acrylate, hexyl acrylate, heptyl acrylate, n-pentyl acrylate, and lauryl acrylate, and more preferably an alkyl group having 1 to 4 carbon atoms. It may be an alkyl acrylate containing, more preferably butyl acrylate, ethylhexyl acrylate, or a mixture thereof, and even more preferably butyl acrylate.
  • aromatic vinyl compounds in the present disclosure include styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, m-methyl styrene, ethyl styrene, isobutyl styrene, t-butyl styrene, ⁇ -brobostyrene, ⁇ - It may be one or more selected from the group consisting of bromo styrene, m-bromo styrene, ⁇ -chloro styrene, ⁇ -chloro styrene, m-chloro styrene, vinyl toluene, vinyl xylene, fluorostyrene, and vinyl naphthalene, Preferably, it may be at least one selected from the group consisting of styrene and ⁇ -methyl styrene, more preferably
  • the vinyl cyan compound may be, for example, one or more selected from the group consisting of acrylonitrile, methacrylonitrile, phenylacrylonitrile, and ⁇ -chloroacrylonitrile, and preferably may be acrylonitrile.
  • a polymer comprising a certain compound refers to a polymer polymerized by including that compound (monomer), and the units in the polymerized polymer are derived from the compound.
  • the alkyl acrylate rubber of the graft copolymer (a-2) has an average particle diameter of 150 to 600 nm, preferably 200 to 600 nm, more preferably 250 to 500 nm, and even more preferably 300 to 470 nm. nm, more preferably 330 to 430 nm, and within this range, excellent mechanical properties such as impact strength are achieved.
  • the (a-2) graft copolymer may preferably include an alkyl acrylate rubber (core) and a shell containing an aromatic vinyl compound and a vinyl cyan compound surrounding the same, and in this case, the mechanical properties and processability are improved. It has excellent effects.
  • the (a-2) graft copolymer may include 35 to 65% by weight of an alkyl acrylate rubber, 20 to 55% by weight of an aromatic vinyl compound, and 1 to 25% by weight of a vinyl cyan compound, based on the total weight thereof. Within this range, mechanical properties such as impact strength and transparency are excellent.
  • the (a-2) graft copolymer may include 40 to 60% by weight of an alkyl acrylate rubber, 25 to 50% by weight of an aromatic vinyl compound, and 5 to 20% by weight of a vinyl cyan compound, within this range, mechanical properties such as impact strength and transparency are excellent.
  • the (a-2) graft copolymer may include 45 to 55% by weight of alkyl acrylate rubber, 33 to 43% by weight of aromatic vinyl compound, and 10 to 15% by weight of vinyl cyan compound, within this range, mechanical properties such as impact strength and transparency are excellent.
  • alkyl acrylate rubber, aromatic vinyl compound, and vinyl cyan compound contained in the graft copolymer (a-2) include alkyl acrylate rubber, aromatic vinyl compound, and vinyl cyan compound contained in the graft copolymer (a-1) of the present disclosure. It may be within the same category as the type of compound and vinyl cyan compound.
  • the (a-2) graft copolymer can be manufactured by, for example, emulsion polymerization, and in this case, it has excellent mechanical properties such as impact strength and transparency.
  • the emulsion polymerization is not particularly limited as long as it is carried out by an emulsion polymerization method commonly performed in the technical field to which the present invention pertains.
  • it may be an emulsion graft polymerization method.
  • the (a-2) graft copolymer may have a graft ratio calculated by Equation 3 of 40 to 120%, preferably 45 to 100%, more preferably 45 to 80%, and within this range. It has excellent mechanical properties such as impact strength and processability.
  • the (a-2) graft copolymer may be 5 to 35% by weight, preferably 10 to 30% by weight, more preferably 15 to 25% by weight, based on the total weight of the base resin, within this range. It has excellent mechanical properties and transparency.
  • the alkyl acrylate rubber of the graft copolymer (a-3) has an average particle diameter of 80 nm or more to less than 150 nm, preferably 90 nm or more to less than 150 nm, more preferably 91 to 140 nm, and further. Preferably, it may be 101 to 140 nm, and more preferably, 111 to 140 nm. Within this range, mechanical properties are maintained while maintaining excellent gloss, transparency, and colorability.
  • the (a-3) graft copolymer may preferably include an alkyl acrylate rubber (core) and a shell containing an aromatic vinyl compound and a vinyl cyan compound surrounding the same, and in this case, the mechanical properties are maintained while It has the advantage of being excellent in glossiness, transparency, and colorability.
  • the (a-3) graft copolymer may include 35 to 65% by weight of an alkyl acrylate rubber, 20 to 55% by weight of an aromatic vinyl compound, and 1 to 25% by weight of a vinyl cyan compound, based on the total weight thereof.
  • the (a-3) graft copolymer may include 40 to 60% by weight of an alkyl acrylate rubber, 25 to 50% by weight of an aromatic vinyl compound, and 5 to 20% by weight of a vinyl cyan compound, It has the advantage of excellent gloss, transparency, and colorability while maintaining mechanical properties within the range.
  • the (a-3) graft copolymer may include 45 to 55% by weight of alkyl acrylate rubber, 33 to 43% by weight of aromatic vinyl compound, and 10 to 15% by weight of vinyl cyan compound, There is an advantage in that the mechanical properties are maintained within this range and the glossiness, transparency, and colorability are excellent.
  • alkyl acrylate rubber, aromatic vinyl compound, and vinyl cyan compound contained in the graft copolymer (a-3) include alkyl acrylate rubber, aromatic vinyl compound, and vinyl cyan compound contained in the graft copolymer (a-1) of the present disclosure. It may be within the same category as the type of compound and vinyl cyan compound.
  • the (a-3) graft copolymer can be manufactured by, for example, emulsion polymerization, and in this case, it has the advantage of excellent gloss, transparency, and colorability while maintaining mechanical properties.
  • the emulsion polymerization is not particularly limited as long as it is carried out by an emulsion polymerization method commonly performed in the technical field to which the present invention pertains.
  • it may be an emulsion graft polymerization method.
  • the (a-3) graft copolymer may have a graft ratio calculated by Equation 3 of 15 to 60%, preferably 20 to 50%, more preferably 25 to 45%, and within this range.
  • a graft ratio calculated by Equation 3 of 15 to 60%, preferably 20 to 50%, more preferably 25 to 45%, and within this range.
  • the (a-3) graft copolymer may be 5 to 70% by weight, preferably 10 to 65% by weight, more preferably 15 to 60% by weight, based on the total weight of the base resin, and is within this range. It has excellent gloss and transparency and has the advantage of reducing whitening during bending processing.
  • the sum of the weight of the (a-1) graft copolymer, (a-2) graft copolymer, and (a-3) graft copolymer is, for example, 15 to 80% by weight based on the total weight of the base resin, Preferably 15 to 75% by weight, more preferably 20 to 70% by weight, even more preferably 30 to 70% by weight, even more preferably 40 to 70% by weight, particularly preferably 50 to 70% by weight, In particular, it may be more preferably 57 to 70% by weight, and within this range, excellent mechanical properties, gloss, transparency, and processability are achieved.
  • the (A) graft copolymer may be, for example, one or more selected from the group consisting of (a-1) graft copolymer, (a-2) graft copolymer, and (a-3) graft copolymer.
  • a-1) graft copolymer graft copolymer
  • a-2) graft copolymer graft copolymer
  • a-3) graft copolymer there are advantages of excellent mechanical properties, glossiness, transparency, weather resistance, and coloring properties.
  • the (A) graft copolymer may preferably be a (a-1) graft copolymer.
  • the mechanical properties are maintained while the gloss, transparency, and weather resistance are excellent, and the occurrence of whitening during bending is reduced. It has a beautiful appearance and excellent weather resistance, reducing changes over time, resulting in excellent color stability.
  • the (A) graft copolymer may preferably be the (a-2) graft copolymer, and in this case, it has excellent mechanical properties and weather resistance.
  • the (A) graft copolymer may preferably be a (a-3) graft copolymer, and in this case, mechanical properties are maintained while maintaining excellent gloss, transparency, and weather resistance.
  • the (A) graft copolymer may preferably be a mixture of (a-2) graft copolymer and (a-3) graft copolymer, in which case it has excellent mechanical properties, gloss, and transparency. And it has the effect of reducing changes over time due to its excellent weather resistance.
  • the mixture of the (a-2) graft copolymer and the (a-3) graft copolymer has a weight ratio (a-2:a-3) of 40:60 to 60:40, preferably 45. :55 to 55:45, and within this range, mechanical properties such as impact strength, gloss, and colorability are improved.
  • the weight ratio of A and B means the weight ratio of A:B.
  • Examples of the (b-1) (meth)acrylic acid alkyl ester polymer include (meth)acrylic acid methyl ester, (meth)acrylic acid ethyl ester, (meth)acrylic acid propyl ester, (meth)acrylic acid 2-ethylhexyl ester, (meth)acrylic acid. It may include at least one member selected from the group consisting of decyl acrylate ester and lauryl (meth)acrylic acid, preferably an alkyl methacrylate ester, an alkyl acrylic acid ester, or a mixture thereof, and is more preferred. It may be polymethyl methacrylate resin, and in this case, it has the advantage of excellent mechanical properties, fluidity, and transparency.
  • the (meth)acrylic acid alkyl ester polymer may mean a polymer containing more than 85% by weight, more than 90% by weight, or more than 95% by weight of (meth)acrylic acid alkyl ester.
  • (meth)acrylic acid alkyl ester means that both “acrylic acid alkyl ester” and “methacrylic acid alkyl ester” are possible.
  • the polymethyl methacrylate resin may include, for example, methyl methacrylate and methyl acrylate, and preferably includes 1 to 10% by weight, preferably 2 to 7% by weight, of methyl acrylate. Within this range, it has excellent compatibility with (b-2) (meth)acrylic acid alkyl ester compound-aromatic vinyl compound-vinyl cyan compound copolymer, which has the advantage of improving glossiness, fluidity, and mechanical properties. .
  • the (b-1) polymer may have a weight average molecular weight of 50,000 to 150,000 g/mol, preferably 60,000 to 130,000 g/mol, more preferably 70,000 to 110,000 g/mol, even more preferably It may be 70,000 to 100,000 g/mol, and within this range, it has the advantage of excellent transparency, gloss, and fluidity while maintaining impact resistance.
  • the (b-1) (meth)acrylic acid alkyl ester polymer may have a glass transition temperature of 80 to 130°C, preferably 90 to 120°C, and has the advantage of excellent heat resistance within this range.
  • the glass transition temperature can be measured using Differential Scanning Calorimetry (DSC) according to ASTM D3418, and as a specific example, TA Instrument's Q100 DSC (Differential Scanning Calorimetry) can be used to measure the temperature at 10°C/min. It can be measured by the temperature increase rate.
  • DSC Differential Scanning Calorimetry
  • the (b-1) (meth)acrylic acid alkyl ester polymer may be 15 to 85% by weight, preferably 20 to 80% by weight, more preferably 25 to 75% by weight, based on the total weight of the base resin, Within this range, mechanical properties are maintained, transparency and gloss are excellent, and the occurrence of whitening during bending is reduced.
  • the (b-1) (meth)acrylic acid alkyl ester polymer may be prepared, for example, by suspension polymerization, and the suspension polymerization is not particularly limited as long as it is a suspension polymerization commonly performed in the technical field to which the present invention pertains.
  • the (b-2) copolymer includes 60 to 85% by weight of alkyl (meth)acrylate, 10 to 35% by weight of aromatic vinyl compound, and 1 to 20% by weight of vinyl cyan compound based on the total weight thereof.
  • the (A) graft copolymer and (b-1) (meth)acrylic acid alkyl ester polymer has excellent mechanical properties, transparency, and gloss, and does not cause whitening during bending. There is an advantage in reducing this.
  • the (b-2) copolymer includes 65 to 80% by weight of a (meth)acrylic acid alkyl ester compound, 15 to 30% by weight of an aromatic vinyl compound, and 3 to 15% by weight of a vinyl cyan compound, based on the total weight of the (b-2) copolymer. It can be achieved, and within this range, it has excellent compatibility with the (A) graft copolymer and (b-1) (meth)acrylic acid alkyl ester polymer, has excellent mechanical properties, transparency, and gloss, and is excellent in bending processing. There is an advantage in reducing the occurrence of bleaching.
  • the (b-2) copolymer contains 68 to 74% by weight of a (meth)acrylic acid alkyl ester compound, 20 to 25% by weight of an aromatic vinyl compound, and 5 to 10% by weight of a vinyl cyan compound, based on the total weight thereof. It may be made by, and within this range, it has excellent compatibility with the (A) graft copolymer and (b-1) (meth)acrylic acid alkyl ester polymer, has excellent mechanical properties, transparency, and gloss, and has excellent bending properties. There is an advantage in reducing the occurrence of whitening during processing.
  • (meth)acrylic acid alkyl ester compounds include, for example, (meth)acrylic acid methyl ester, (meth)acrylic acid ethyl ester, (meth)acrylic acid propyl ester, (meth)acrylic acid 2-ethylhexyl ester, (meth)acrylic acid decyl ester. and (meth)acrylic acid lauryl ester.
  • the types of aromatic vinyl compounds and vinyl cyan compounds contained in the (b-2) copolymer are within the same category as the types of aromatic vinyl compounds and vinyl cyan compounds contained in the (a-1) graft copolymer of the present disclosure. You can.
  • the (b-2) copolymer may have a weight average molecular weight of 50,000 to 150,000 g/mol, preferably 60,000 to 130,000 g/mol, more preferably 70,000 to 120,000 g/mol, even more preferably It may be 80,000 to 110,000 g/mol, and within this range there are advantages of excellent tensile strength, flexural strength, impact strength, and scratch resistance.
  • the (b-2) copolymer may be 5 to 45% by weight, preferably 5 to 40% by weight, more preferably 10 to 35% by weight, based on the total weight of the base resin, and within this range, (b-1) It has the advantage of excellent compatibility with (meth)acrylic acid alkyl ester polymer and excellent mechanical properties and fluidity.
  • the (b-2) copolymer may be produced, for example, by bulk polymerization, and the bulk polymerization is not particularly limited as long as it is commonly performed in the technical field to which the present invention pertains.
  • the sum of the weight of the polymer (b-1) and the copolymer (b-2) is, for example, 20 to 85% by weight, preferably 25 to 85% by weight, more preferably 30 to 80% by weight, based on the total weight of the base resin. weight%, more preferably 30 to 70% by weight, even more preferably 30 to 60% by weight, particularly preferably 30 to 50% by weight, especially more preferably 30 to 43% by weight, and this range It has the advantages of excellent mechanical properties, gloss, transparency, weather resistance, and colorability.
  • (C) a molecular weight of 280 to 600 g/mol, and at least one selected from the group consisting of benzotriazole UV stabilizers, benzoate UV stabilizers, and benzophenone UV stabilizers.
  • the (C) at least one selected from the group consisting of benzotriazole-based UV stabilizers, benzoate-based UV stabilizers, and benzophenone-based UV stabilizers is, for example, 0.5 to 3.5 parts by weight, preferably 1 to 1 to 100 parts by weight, based on 100 parts by weight of the base resin. It may be 3 parts by weight, more preferably 1 to 2.6 parts by weight, and even more preferably 1.5 to 2.2 parts by weight. Within this range, impact resistance, transparency and weather resistance are excellent, and changes over time are reduced due to excellent weather resistance, thereby improving color stability. It has the advantage of having this outstanding and beautiful appearance.
  • At least one selected from the group consisting of benzotriazole UV stabilizers, benzoate UV stabilizers, and benzophenone UV stabilizers has, for example, a molecular weight of 280 to 600 g/mol, preferably 300 to 600 g/mol, More preferably 300 to 550 g/mol, even more preferably 300 to 500 g/mol, even more preferably 350 to 500 g/mol, particularly preferably 400 to 500 g/mol, especially more preferably It may be 420 to 470 g/mol, most preferably 440 to 455 g/mol, and within this range, mechanical properties, gloss, transparency and weather resistance are excellent, and changes over time are reduced due to excellent weather resistance, giving a luxurious appearance. There is an advantage.
  • the (C) at least one selected from the group consisting of benzotriazole-based ultraviolet stabilizers, benzoate-based ultraviolet stabilizers, and benzophenone-based ultraviolet stabilizers has, for example, a melting point of 100 to 200°C, preferably 110 to 200°C, more preferably is 120 to 200°C, more preferably 120 to 180°C, even more preferably 120 to 160°C, particularly preferably 125 to 150°C, particularly more preferably 130 to 145°C, most preferably 135 to 135°C. It may be 144°C, and within this range, it has excellent mechanical properties, gloss, transparency, and weather resistance, and has the advantage of having a luxurious appearance as changes over time are reduced due to excellent weather resistance.
  • the melting point can be measured using a differential scanning calorimeter (DSC: Differential Scanning Calorimeter 2920) manufactured by TA.
  • DSC Differential Scanning Calorimeter 2920
  • the melting point is determined by bringing the DSC to equilibrium at a temperature of 0 °C, then increasing it by 20 °C per minute to raise it to 180 °C, then decreasing it by 20 °C per minute to -60 °C, and then increasing it by 10 °C per minute. It can be measured by increasing the temperature to 180 °C.
  • the melting point is obtained by taking the area at the top of the endothermic curve during the second temperature rise.
  • the benzotriazole-based UV stabilizer is, for example, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (2-(2H-Benzotriazol-2-yl) )-4,6-bis(1-methyl-1-phenylethyl)phenol) and 2-[2-hydroxy-3-dimethylbenzylphenyl-5-(1,1,3,3-tetramethylbutyl)]- It may be at least one selected from the group consisting of 2H-benzotriazole (2-[2-hydroxy-3-dimethylbenzylphenyl-5-(1,1,3,3-tertamethylbutyl)]-2H-benzotriazole), preferably 2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (2-(2H-Benzotriazol-2-yl)-4,6-bis(1 It may be -methyl-1-pheny
  • the benzoate-based UV stabilizer is, for example, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate (2,4-di-tert-butylphenyl 3,5-di -tert-butyl-4-hydroxybenzoate), hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate (Hexadecyl 3,5-di-tert-butyl-4- hydroxybenzoate), or a mixture thereof It may be 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, and in this case, it has excellent mechanical properties, gloss, transparency and weather resistance. Due to its excellent weather resistance, changes over time are reduced, resulting in excellent color stability and an attractive appearance.
  • the benzophenone-based UV stabilizer includes, for example, 2-Hydroxy-4-octoxybenzophenone, 4-benzyloxy-2-hydroxybenzophenone, and 4-benzyloxy-2-hydroxybenzophenone.
  • the (D) NH type HALS-based ultraviolet stabilizer may be, for example, more than 0.6 parts by weight and less than or equal to 2 parts by weight, preferably 0.7 to 1.7 parts by weight, more preferably 0.7 to 1.2 parts by weight, based on 100 parts by weight of the base resin. Within this range, it has excellent impact resistance, transparency, and weather resistance, and due to excellent weather resistance, changes over time are reduced, resulting in excellent color stability and an attractive appearance.
  • the (D) NH type HALS-based ultraviolet stabilizer has, for example, a molecular weight of 300 to 700 g/mol, preferably 350 to 650 g/mol, more preferably 400 to 600 g/mol, even more preferably 450 to 550. g/mol, more preferably 460 to 510 g/mol, and within this range, mechanical properties, gloss, transparency, and weather resistance are excellent, and changes over time are reduced due to excellent weather resistance, resulting in excellent color stability and an attractive appearance. There is an advantage to having .
  • the (D) NH type HALS-based UV stabilizer has, for example, a melting point of 60 to 120°C, preferably 65 to 110°C, more preferably 70 to 100°C, even more preferably 70 to 95°C, even more preferably It may be 74 to 92 °C, especially preferably 78 to 87 °C, and within this range, mechanical properties, gloss, transparency and weather resistance are excellent, and changes over time are reduced due to excellent weather resistance, resulting in excellent color stability and a beautiful appearance. There is an advantage to having it.
  • the (D) NH type HALS-based ultraviolet stabilizer includes, for example, bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate and bis(1,2,2,6,6-pentamethyl- It may be one or more types selected from the group consisting of 4-piperidyl)sebacate, preferably bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, in which case mechanical It has excellent physical properties, gloss, transparency, and weather resistance, and its excellent weather resistance reduces changes over time, resulting in excellent color stability and a luxurious appearance.
  • the (C) UV stabilizer with a molecular weight of 280 to 600 g/mol can be used in a larger amount than the (D) NH type HALS UV stabilizer, and in this case, it has excellent mechanical properties, gloss, transparency and weather resistance. It has the advantage of excellent color stability and a luxurious appearance as changes over time are reduced depending on weather resistance.
  • the weight ratio (C:D) of (C) the ultraviolet stabilizer having a molecular weight of 280 to 600 g/mol and (D) the NH type HALS-based ultraviolet stabilizer is, for example, 1.3:1 to 3.2:1, preferably 1.5:1 to 3.0. :1, more preferably 2.0:1 to 3.0:1, more preferably 2.5:1 to 3.0:1, and within this range, mechanical properties, gloss, transparency and weather resistance are excellent, and depending on excellent weather resistance, It has the advantage of reduced change over time, excellent color stability, and a luxurious appearance.
  • the present invention is a combination of (C) a UV stabilizer with a molecular weight of 280 to 600 g/mol and (D) an NH type HALS-based UV stabilizer with a molecular weight of 300 to 700 g/mol, preferably (C) a UV stabilizer with a molecular weight of 280 to 600 g/mol.
  • the thermoplastic resin composition is measured by measuring the degree of discoloration with a colorimeter after leaving an injection specimen with a thickness of 3 mm for 8,000 hours according to ASTM G155-1 using a weatherometer (whetherometer), and the time value calculated by Equation 4 below.
  • the change ( ⁇ E) may be 3 or less, preferably 2.5 or less, more preferably 2 or less, even more preferably 1.8 or less, even more preferably 1.6 or less, particularly preferably 0.1 to 1.6, and this range It has excellent mechanical properties, weather resistance, and transparency, and has the advantage of reducing changes over time depending on weather resistance, resulting in excellent color stability and an attractive appearance.
  • L', a', and b' are the L, a, and b values measured respectively with the CIE LAB color coordinate system after leaving the specimen, and L 0 , a 0 , and b 0 are the CIE LAB colors before leaving the specimen. These are the L, a, and b values measured respectively in the coordinate system.
  • the thermoplastic resin composition is measured by measuring the degree of discoloration with a colorimeter after leaving an injection specimen with a thickness of 3 mm for 4,000 hours according to ASTM G155-1 using a weatherometer (whetherometer), and the time period calculated by Equation 4 above.
  • the change ( ⁇ E) may be 2 or less, preferably 1.6 or less, more preferably 1.3 or less, even more preferably 1.0 or less, and even more preferably 0.1 to 1.0, and within this range, mechanical properties, transparency and It has excellent weather resistance and has the advantage of reducing changes over time depending on weather resistance, resulting in excellent color stability and an attractive appearance.
  • the thermoplastic resin composition has a haze of 10% or less, preferably 8% or less, more preferably 6% or less, and even more preferably 0.1 to 6%, as measured by a sheet with a thickness of 0.15 mm according to ASTM D1003. Within this range, it has excellent physical property balance and excellent transparency and coloring properties.
  • the thermoplastic resin composition has a total light transmittance of 80% or more, preferably 85% or more, more preferably 90% or more, and even more preferably 90 to 120%, as measured by a sheet with a thickness of 0.15 mm according to ASTM D1003. It can be, and within this range, it has excellent physical property balance and excellent transparency and coloring properties.
  • thermoplastic resin composition for example, folded a sheet with a thickness of 0.15 mm and a size of 10 cm * 10 cm by hand in the MD direction (Machine direction) and TD direction (Traverse direction) and visually observed the occurrence of whitening at the folded surface. As a result, whitening occurred. It can be reduced, and in this case, there is an advantage of excellent physical property balance, excellent impact resistance and transparency, and a beautiful appearance.
  • the thermoplastic resin composition has a tensile strength of 300 kgf/cm 2 or more, preferably measured in the machine direction (MD) of a sheet with a thickness of 0.15 mm under the condition of a tensile speed of 10 mm/min according to ASTM D412. is 310 kgf/cm 2 or more, more preferably 320 kgf/cm 2 or more, even more preferably 330 kgf/cm 2 or more, even more preferably 350 kgf/cm 2 or more, particularly preferably 350 to 600 kgf. /cm 2 , and within this range, the balance of physical properties is excellent and the mechanical properties of injection molded products, extrusion molded products, and calendar molded products are excellent.
  • MD machine direction
  • the thermoplastic resin composition has an elongation of 10% or more, preferably 30% or more, as measured under the condition of a tensile speed of 10 mm/min according to ASTM D412 in the machine direction (MD) of a sheet with a thickness of 0.15 mm. , more preferably 40% or more, more preferably 50% or more, even more preferably 60% or more, particularly preferably 60 to 80%, and within this range, the physical property balance is excellent and the injection molded product, It has excellent mechanical properties in extruded and calendered products.
  • the thermoplastic resin composition has a tear strength of 67 kgf/cm or more, preferably measured under the condition of a tensile speed of 10 mm/min according to ASTM D624 in the machine direction (MD) of a sheet with a thickness of 0.15 mm. It may be 72 kgf/cm or more, more preferably 80 kgf/cm or more, even more preferably 90 kgf/cm or more, and even more preferably 90 to 130 kgf/cm, and the physical property balance is excellent within this range. It has excellent mechanical properties in injection molded products, extrusion molded products, and calendered products.
  • the thermoplastic resin composition has a tensile strength of 230 kgf/cm 2 or more, preferably measured in the transverse direction (TD) of a sheet with a thickness of 0.15 mm under the condition of a tensile speed of 10 mm/min according to ASTM D412. It may be 245 kgf/cm 2 or more, more preferably 250 kgf/cm 2 or more, and even more preferably 250 to 500 kgf/cm 2 , and within this range, the physical property balance is excellent and injection molded products, extrusion molded products, and calendars can be used. The mechanical properties of the molded product are excellent.
  • the thermoplastic resin composition has an elongation of 14% or more, preferably 20% or more, as measured under the condition of a tensile speed of 10 mm/min according to ASTM D412 in the transverse direction (TD) of a sheet with a thickness of 0.15 mm. , more preferably 30% or more, more preferably 40% or more, even more preferably 50% or more, especially preferably 50 to 75%, and within this range, the physical property balance is excellent and the injection molded product, It has excellent mechanical properties in extruded and calendered products.
  • the thermoplastic resin composition has a tear strength of 55 kgf/cm or more, preferably measured in the transverse direction (TD) of a sheet with a thickness of 0.15 mm under the condition of a tensile speed of 10 mm/min according to ASTM D624.
  • TD transverse direction
  • ASTM D624 may be 60 kgf/cm or more, more preferably 65 kgf/cm or more, even more preferably 70 kgf/cm or more, even more preferably 75 kgf/cm, particularly preferably 75 to 95 kgf/cm, , Within this range, the physical property balance is excellent and the mechanical properties of injection molded products, extrusion molded products, and calender molded products are excellent.
  • the thermoplastic resin composition optionally consists of a heat stabilizer, dye, pigment, colorant, lubricant, mold release agent, antistatic agent, antibacterial agent, processing aid, metal deactivator, flame retardant, suppressant, anti-dripping agent, anti-friction agent, and anti-wear agent as needed.
  • One or more selected from the group may be further included in an amount of 0.01 to 5 parts by weight, 0.05 to 3 parts by weight, 0.1 to 2 parts by weight, or 0.5 to 1 part by weight, respectively, based on 100 parts by weight of the base resin, and within this range, the present description It has the effect of realizing the necessary physical properties without deteriorating the original physical properties of the thermoplastic resin composition.
  • the heat stabilizer may preferably include a primary heat stabilizer and a secondary heat stabilizer.
  • the primary heat stabilizer may be, for example, a phenol-based heat stabilizer, and is preferably 2-t-butyl-6-(3-t-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate.
  • the secondary heat stabilizer may be, for example, a phosphorus-based heat stabilizer, and is preferably bis(dialkylphenyl)pentaerythritol diphosphite ester, phosphite ester, trioctyl phosphite, trilauryl phosphite, and tridecyl phosphite.
  • (octyl)diphenyl phosphite tris(2,4-di-t-butylphenyl) phosphite, triphenyl phosphite, tris(butoxyethyl) phosphite, tris(nonylphenyl) phosphite, distearyl Pentaerythritol diphosphite, tetra(tridecyl)-1,1,3-tris(2-methyl-5-t-butyl-4-hydroxy-phenyl)butane diphosphite, tetra(C12-C15 mixed alkyl)- 4,4'-Isopropylidenediphenyl diphosphite, tetra(tridecyl)-4,4'-butylidenebis(3-methyl-6-t-bunylphenol)diphosphite, tris(mono- and di- Mixed nonylphenyl)phosphite, tri
  • the lubricant may preferably be one or more selected from the group consisting of aliphatic amide-based lubricants, fatty acid ester-based lubricants, and olefin-based waxes.
  • the aliphatic amide-based lubricant preferably consists of stearamide, oleamide, erucamide, ethylene bis stearamide, and ethylene bis oleamide. It may be one or more types selected from the group.
  • the fatty acid ester-based lubricant is preferably one selected from the group consisting of alcohol or fatty acid ester of polyhydric alcohol, hydrogenated oil, butyl stearate, monoglyceride stearate, pentaerythritol tetrastearate, stearyl stearate, ester wax, and alkyl phosphate ester. There may be more than one species.
  • the olefin wax may preferably be polyethylene wax.
  • thermoplastic resin composition Method for producing thermoplastic resin composition
  • the method for producing the thermoplastic resin composition of the present invention includes (A) (a-1) an alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer containing an alkyl acrylate rubber with an average particle diameter of 50 to 120 nm, ( a-2) an alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer containing an alkyl acrylate rubber with an average particle diameter of 150 to 600 nm, and (a-3) an alkyl acrylate with an average particle diameter of 80 mm or more to less than 150 nm.
  • the (a-1) graft copolymer is characterized by an alkyl acrylate coverage (X) value calculated by the following formula (1) of 65% by weight or more.
  • X alkyl acrylate coverage
  • it has excellent mechanical properties, transparency, and weather resistance, and the excellent weather resistance reduces changes over time, has excellent color stability, has an attractive appearance, and can be applied to injection molding, extrusion molding, and calendar molding.
  • G represents the gel content (% by weight) relative to the total weight of the graft copolymer
  • Y represents the content (% by weight) of alkyl acrylate in the gel relative to the total weight of the graft copolymer.
  • thermoplastic resin composition shares all technical features of the thermoplastic resin composition described above. Therefore, description of the overlapping parts will be omitted.
  • the kneading and extrusion can preferably be carried out using an extrusion kneader at 200 to 300°C, more preferably 210 to 260°C, and even more preferably 220 to 250°C, and stable extrusion is possible within this range.
  • the mixing effect is excellent.
  • the temperature is the temperature set in the cylinder.
  • the kneading and extrusion may be performed under conditions where the screw rotation speed is 100 to 500 rpm, preferably 150 to 450 rpm, and more preferably 200 to 400 rpm.
  • the throughput per unit time is appropriate, so the process efficiency is high. It has excellent effects.
  • thermoplastic resin composition obtained through the extrusion can be manufactured into pellets, for example, using a pelletizer.
  • the extrusion kneader is not particularly limited as long as it is an extrusion kneader commonly used in the technical field to which the present invention pertains, and may preferably be a twin-screw extrusion kneader.
  • the molded product of this base is characterized in that it contains the thermoplastic resin composition, and in this case, it has excellent mechanical properties, transparency, and weather resistance, and the change over time is reduced due to excellent weather resistance, so it has excellent color stability and a luxurious appearance, and is an injection molded product and an extrusion molded product. It has the advantage of being applicable to both calendered and calendered products.
  • the injection molded products may preferably be automotive interior and exterior parts, parts for electrical and electronic products, unpainted molded products, or metal insert molded products. Specific examples include bidet control panels, lawn robot housings, pool clean robot housings, and door accessories. Or it may be a window frame.
  • the extrusion molded product may preferably be a film, sheet, or foil, and is specifically used for decoration sheets, outdoor building material finishing materials, roof finishing materials, interior films, wallpaper, edge bands, VCM (vinyl coated metal), and flooring materials. , it may be PSP (Plastic-steel-Plastic) for molding, or a film for wrapping.
  • PSP Plastic-steel-Plastic
  • the calender molded product may preferably be a film, sheet, or foil, and is specifically used for decoration sheets, outdoor building material finishing materials, roof finishing materials, interior films, wallpaper, edge bands, VCM (vinyl coated metal), and flooring materials. , it may be PSP (Plastic-steel-Plastic) for molding, or a film for wrapping.
  • PSP Plastic-steel-Plastic
  • the method for manufacturing the molded product is preferably (A) (a-1) an alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer containing an alkyl acrylate rubber with an average particle diameter of 50 to 120 nm, (a- 2) an alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer containing an alkyl acrylate rubber with an average particle diameter of 150 to 600 nm, and (a-3) an alkyl acrylate with an average particle diameter of 80 mm or more to less than 150 nm.
  • the (a-1) graft copolymer may have an alkyl acrylate coverage (X) value of 65% by weight or more calculated by the following formula (1).
  • X alkyl acrylate coverage
  • G represents the gel content (% by weight) relative to the total weight of the graft copolymer
  • Y represents the content (% by weight) of alkyl acrylate in the gel relative to the total weight of the graft copolymer.
  • the extrudate may be in the form of a pellet or plate, for example.
  • the plate shape is not particularly limited as long as it is generally defined as a plate shape in the technical field to which the present invention pertains, and may include, for example, a flat shape, a sheet shape, a film shape, etc.
  • thermoplastic resin composition its manufacturing method, and molded article of the present disclosure
  • other conditions and equipment not explicitly described can be appropriately selected within the range commonly practiced in the industry and are not particularly limited. do.
  • ASA graft copolymer containing alkyl acrylate rubber with an average particle diameter of 50 to 120 nm ASA graft copolymer with an average particle diameter of 70 nm of alkyl acrylate rubber prepared by emulsion polymerization ( Core (rubber): 36% by weight butyl acrylate, 7% by weight styrene, shell: 4% by weight butyl acrylate, 39.5% by weight styrene and 13.5% by weight acrylonitrile, alkyl acrylate coverage value 99% by weight, Graft rate 77%)
  • ASA graft copolymer containing alkyl acrylate rubber with an average particle diameter of 150 to 600 nm ASA graft copolymer with an average particle diameter of 350 nm of alkyl acrylate rubber prepared by emulsion polymerization (core ( Rubber): 50% by weight of butyl acrylate, shell: 37.5% by weight of styrene and 12.5% by weight of acrylonitrile, grafting rate 50%)
  • ASA graft copolymer containing alkyl acrylate rubber with an average particle diameter of 80 nm or more to less than 150 nm ASA graft copolymer with an average particle diameter of 130 nm of alkyl acrylate rubber prepared by emulsion polymerization ( Core (rubber): 50% by weight of butyl acrylate, shell: 37.5% by weight of styrene and 12.5% by weight of acrylonitrile, grafting rate 35%)
  • ASA graft copolymer containing alkyl acrylate rubber with an average particle diameter of 50 to 120 nm the average particle diameter of alkyl acrylate rubber prepared by emulsion polymerization is 65 nm ASA graft copolymer (core (rubber): 43% by weight butyl acrylate, 3% by weight styrene, shell: 4% by weight butyl acrylate, 37.5% by weight styrene and 12.5% by weight acrylonitrile, alkyl acrylate coverage value 77% by weight, grafting rate 65%)
  • SAMMA resin of bulk polymerization methyl methacrylate-styrene-acrylonitrile copolymer comprising 70% by weight of methyl methacrylate, 22.5% by weight of styrene, and 7.5% by weight of acrylonitrile ( Weight average molecular weight 95,000 g/mol)
  • UV234 (BASF): Benzotriazole UV stabilizer (2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol, molecular weight 447.5 g/mol, melting point 137 ⁇ 141 °C)
  • UV-P BASF: Benzotriazole-based ultraviolet stabilizer (molecular weight 225 g/mol, melting point 128-133 °C)
  • UV360 (BASF): Benzotriazole-based ultraviolet stabilizer (molecular weight 658.9 g/mol, melting point 195-198 °C)
  • SEESORB 105 (Shipro Kasei Kaisha): Benzophenone-based ultraviolet stabilizer (molecular weight 304.3 g/mol, melting point 122 °C)
  • UV770 BASF: NH type HALS ultraviolet stabilizer (molecular weight 480 g/mol, melting point 82-85 °C)
  • a sheet with a thickness of 0.15 mm was manufactured at a rotation speed of 1.5 m/min and the physical properties were measured.
  • G represents the gel content (% by weight) relative to the total weight of the graft copolymer
  • Y represents the content (% by weight) of alkyl acrylate in the gel relative to the total weight of the graft copolymer.
  • the content of alkyl acrylate in the gel was quantitatively measured using a 1 NMR analyzer or FT-IR. Specific measurement conditions are as follows.
  • Graft rate (%) 0.5 g of graft copolymer dry powder was added to 50 ml of acetone, stirred at room temperature for 12 hours, centrifuged, and only the insoluble matter that did not dissolve in acetone was collected, dried for 12 hours, and then weighed. So, it was calculated using Equation 3 below.
  • Grafting rate (%) [Weight of grafted monomer (g) / Weight of rubber (g)] * 100
  • the weight (g) of the grafted monomer is the weight of the insoluble material (gel) minus the rubber weight (g) after dissolving the graft copolymer in acetone and centrifuging, and the rubber weight (g) g) is the weight (g) of the theoretically added rubber component in the graft copolymer powder.
  • the weight of the insoluble material was calculated by adding 0.5 g of graft copolymer dry powder to 50 ml of acetone and stirring for 12 hours at 210 rpm with a stirrer (Orbital Shaker, equipment name: Lab companion SKC-6075) at room temperature. This was centrifuged at 18,000 rpm at 0°C for 3 hours using a centrifuge (Supra R30 from Hanil Science Co., Ltd.) to collect only the insoluble matter that did not dissolve in acetone, and then placed in an oven (Forced Convection Oven; Equipment name: Lab companion OF-12GW). ) was dried using a forced circulation drying method at 85°C for 12 hours, and then the weight was measured.
  • Total light transmittance (%) The total light transmittance of a sheet with a thickness of 0.15 mm was measured according to ASTM D1003.
  • L', a', and b' are the L, a, and b values measured respectively with the CIE LAB color coordinate system after leaving the specimen, and L 0 , a 0 , and b 0 are the CIE LAB colors before leaving the specimen. These are the L, a, and b values measured respectively in the coordinate system.
  • thermoplastic resin compositions of Examples 1 to 11 prepared according to the present invention had a total light transmittance and haze of the same or higher level compared to Comparative Examples 1 to 9, which were outside the scope of the present invention, and were left for 4,000 hours.
  • Examples 1 to 5, 10, 11 containing (a-1-1) ASA graft copolymer and Example 9 containing (a-1-2) ASA graft copolymer showed whitening occurred during bending processing. This had a reduced effect.
  • (C-1) Examples 1 to 9 containing a benzotriazole-based ultraviolet stabilizer showed smaller changes over time ( ⁇ E) after leaving for 4,000 hours and changes over time ( ⁇ E) after leaving for 8,000 hours.
  • Comparative Example 1 which did not contain (D-1) UV770, the change over time ( ⁇ E) increased after being left for 8000 hours, and in Comparative Example 2, which included (D-2) Chimassorb994 instead of (D-1) UV770, ( D-2) Comparative Example 3 containing Chimassorb994 and (D-1) UV770 in a small amount, and (C-1) Comparative Example containing (C-2) UV-P and (C-3) UV360 instead of UV234, respectively 4 and 5 showed poor changes over time ( ⁇ E) after being left for 4000 hours and 8000 hours.
  • Comparative Example 8 (D-1) containing an excessive amount of UV770 not only had poor haze and change over time ( ⁇ E) after being left for 4000 hours and 8000 hours, but also deposits occurred at the die entrance and the sheet during sheet processing.
  • Comparative Example 9 containing a small amount of UV770 showed a large change over time ( ⁇ E) after being left for 8000 hours.
  • thermoplastic resin composition containing at least one selected type and an NH type HALS UV stabilizer at a predetermined content ratio has excellent mechanical properties, transparency, and weather resistance, and has excellent color stability and a beautiful appearance by reducing changes over time due to excellent weather resistance. I was able to confirm. Furthermore, by adjusting the alkyl acrylate coverage value of the alkyl acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer within a predetermined range, it was possible to obtain the effect of reducing the occurrence of whitening during bending processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 기재는 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것으로, 보다 상세하게는 (A) (a-1) 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, (a-2) 평균입경 150 내지 600 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, 및 (a-3) 평균입경 80 nm 이상 내지 150 nm 미만인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체로 이루어진 군으로부터 선택된 1종 이상, 및 (B) (b-1) (메트)아크릴산 알킬 에스테르 중합체 및 (b-2) (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는 기본 수지 100 중량부; (C) 분자량이 280 내지 600 g/mol이고, 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상 0.5 내지 3.5 중량부; 및 (D) 분자량이 300 내지 700 g/mol인 NH 타입 HALS계 자외선 안정제 0.6 중량부 초과 내지 2 중량부 이하;를 포함하고, 상기 (a-1) 그라프트 공중합체는 알킬 아크릴레이트 커버리지(X) 값이 65 중량% 이상인 것을 특징으로 하는 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것이다. 본 발명에 따르면, 기계적 물성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 갖는 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품을 제공하는 효과가 있다.

Description

열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
〔출원(들)과의 상호 인용〕
본 출원은 2022.10.20일자 한국특허출원 제 10-2022-0135356호 및 그를 토대로 2023.08.18일자로 재출원한 한국특허출원 제 10-2023-0108416호를 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것으로, 보다 상세하게는 내충격성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 갖고 사출 성형, 압출 성형 및 캘린더 성형에 모두 적용 가능한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것이다.
아크릴 필름(Acryl film)은 높은 투명성과 내후성을 가진 소재로 재료를 보호하는 마감재로 사용되는 대표적인 소재이다. 시장의 고급화로 아크릴 필름은 특히 높은 내후성이 요구되는 실외 W/P(Window profile) 등의 표면을 코팅하는데 사용되고, 코팅은 랩핑(wrapping), 공압출, 합지 등의 방법이 있다.
일반적으로 알킬 (메트)아크릴레이트계 화합물을 포함하는 아크릴로니트릴-스티렌-아크릴레이트 공중합체(이하, 'ASA' 수지라 함)는 에틸렌계 불포화 결합이 존재하지 않아 가공성, 내충격성, 내화학성 및 내후성 등의 물성이 우수하여 건축용 자재, 자동차 및 오토바이 등 차량류의 내·외장재, 전기·전자 제품뿐만 아니라 선박, 레저용품, 원예 용품 등 다양한 분야에서 광범위하게 사용되고 있으며, 그 수요 또한 급격하게 증가되고 있다.
아크릴 필름 대비 충격강도와 내화학성이 우수한 ASA 수지의 장점을 이용하고 투명성을 보완하여 마감재용 아크릴 수지와 유사한 수준의 제품이 개발되었으나, 단일 소재인 아크릴 필름 대비하여 다성분계인 ASA 수지는 내후성이 초기 흡습 및 열이력에 의해 본래의 색상과 차이가 발생하는 경시 변화가 발생하는 문제가 있다. 이러한 현상은 ASA 수지를 포함하는 열가소성 수지 내부 굴절률 변화 및 열역학적으로 안정화되기 위한 수지의 미세 구조의 재배치로 인해 발생된다.
따라서, 시장에서 요구되는 고품질의 마감재로 적용할 수 있는 내충격성, 투명성 및 내후성이 우수하고 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 제공하는 소재의 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
한국 공개 특허 제2009-0095764호
상기와 같은 종래기술의 문제점을 해결하고자, 본 기재는 내충격성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미련한 외관을 가지며 사출 성형, 압출 성형 및 캘린더 성형에 모두 적용 가능한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것이다.
또한, 본 기재는 상기의 열가소성 수지 조성물의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 기재는 상기의 열가소성 수지 조성물로부터 제조되는 성형품을 제공하는 것을 목적으로 한다.
본 기재의 상기 목적 및 기타 목적들은 하기 설명된 본 기재에 의하여 모두 달성될 수 있다.
상기 목적을 달성하기 위하여, I) 본 기재는 (A) (a-1) 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, (a-2) 평균입경 150 내지 600 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, 및 (a-3) 평균입경 80 nm 이상 내지 150 nm 미만인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체로 이루어진 군으로부터 선택된 1종 이상, 및 (B) (b-1) (메트)아크릴산 알킬 에스테르 중합체 및 (b-2) (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는 기본 수지 100 중량부; (C) 분자량이 280 내지 600 g/mol이고, 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상 0.5 내지 3.5 중량부; 및 (D) 분자량 300 내지 700 g/mol인 NH 타입 HALS계 자외선 안정제 0.6 중량부 초과 내지 2 중량부 이하;를 포함하고, 상기 (a-1) 그라프트 공중합체는 하기 화학식 1로 계산한 알킬 아크릴레이트 커버리지(X) 값이 65 중량% 이상인 것을 특징으로 하는 열가소성 수지 조성물을 제공한다.
[수학식 1]
X = {(G-Y)/Y} * 100
(상기 수학식 1에서, G는 그라프트 공중합체 총 중량에 대하여 겔 함량(중량%), Y는 그라프트 공중합체 총 중량에 대하여 겔 내 알킬 아크릴레이트의 함량(중량%)을 나타낸다.)
또한, II) 본 기재는 (A) (a-1) 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, (a-2) 평균입경 150 내지 600 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, 및 (a-3) 평균입경 80 nm 이상 내지 150 nm 미만인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체로 이루어진 군으로부터 선택된 1종 이상, 및 (B) (b-1) (메트)아크릴산 알킬 에스테르 중합체 및 (b-2) (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는 기본 수지 100 중량부; (C) 분자량이 280 내지 600 g/mol이고, 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상 0.5 내지 3.5 중량부; 및 (D) 분자량 300 내지 700 g/mol인 NH 타입 HALS계 자외선 안정제 0.6 중량부 초과 내지 2 중량부 이하;를 포함하고, 워더로미터(whetherometer)로 ASTM G155-1에 의거하여 두께 3 mm인 사출시편을 8,000 시간 동안 방치한 후, 색차계로 변색 정도를 측정하여 하기 수학식 4로 산출한 경시 변화(△E)가 3 이하인 것을 특징으로 하는 열가소성 수지 조성물을 제공할 수 있다.
[수학식 4]
Figure PCTKR2023012324-appb-img-000001
(상기 수학식 4에서, L', a' 및 b'은 시편을 방치 후에 CIE LAB 색 좌표계로 각각 측정한 L, a 및 b 값이고, L0, a0, b0은 방치 전에 CIE LAB 색 좌표계로 각각 측정한 L, a 및 b 값이다.)
III) 상기 I) 또는 II)에서, 상기 (C) 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상은 바람직하게는 융점이 100 내지 200 ℃일 수 있다.
IV) 상기 I) 내지 III)에서, 상기 (C) 벤조트리아졸계 자외선 안정제는 바람직하게는 2-(2H-벤조트리아졸-2-일)-4,6-비스(1-메틸-1-페닐에틸)페놀(2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol), 및 2-[2-하이드록시-3-디메틸벤질페닐-5-(1,1,3,3-테트라메틸부틸)]-2H-벤조트리아졸(2-[2-hydroxy-3-dimethylbenzylphenyl-5-(1,1,3,3-tertamethylbutyl)]-2H-benzotriazole)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
V) 상기 I) 내지 IV)에서, 상기 벤조에이트계 자외선 안정제는 바람직하게는 2,4-디-터트-부틸페닐 3,5-디-터트-부틸-4-하이드록시벤조에이트(2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate), 헥사데실 3,5-디-터트-부틸-4-하이드록시벤조에이트(Hexadecyl 3,5-di-tert-butyl-4- hydroxybenzoate), 또는 이들의 혼합일 수 있다.
VI) 상기 I) 내지 V)에서, 상기 벤조페논계 자외선 안정제는 바람직하게는 2-하이드록시-4-옥토시벤조페논(2-Hydroxy-4-octoxybenzophenone), 4-벤질옥시-2-하이드록시벤조페논(4-benzyloxy-2-hydroxybenzophenone), 2-하이드록시-4-메톡시벤조페논-5-술폰산(2-Hydroxy-4-methoxybenzophenone-5-sulfonic acid), 2,2'-디하이드록시-4,4'-디메톡시벤조페논-5,5'-디술폰산(2,2'-Dihydroxy-4,4'-Dimethoxybenzophenone-5,5'-Disulfonic Acid), 및 2,2'-디하이드록시-4,4'-디메톡시벤조페논-5,5'-디술폰산 디소듐 염(2,2'-Dihydroxy-4,4'-Dimethoxybenzophenone-5,5'-Disulfonic Acid Disodium Salt)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
VII) 상기 I) 내지 VI)에서, 상기 (D) NH 타입의 HALS계 자외선 안정제는 바람직하게는 융점이 60 내지 120 ℃일 수 있다.
VIII) 상기 I) 내지 VII)에서, 상기 (D) NH 타입 HALS계 자외선 안정제는 바람직하게는 비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이트 및 비스(1,2,2,6,6-펜타메틸-4-피페리딜)세바케이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
IX) 상기 I) 내지 VIII)에서, 상기 (a-1) 그라프트 공중합체는 바람직하게는 알킬 아크릴레이트 고무 20 내지 60 중량% 및 이를 감싸는 방향족 비닐 화합물-비닐시안 화합물 공중합체 40 내지 80 중량%를 포함하여 이루어질 수 있다.
X) 상기 I) 내지 IX)에서, 상기 (a-1) 그라프트 공중합체, (a-2) 그라프트 공중합체, 및 (a-3) 그라프트 공중합체의 중량의 합은 바람직하게는 기본 수지 총 중량에 대하여 15 내지 80 중량%일 수 있다.
XI) 상기 I) 내지 X)에서, 상기 (b-1) 중합체 및 (b-2) 공중합체의 중량의 합은 바람직하게는 기본 수지 총 중량에 대하여 20 내지 85 중량%일 수 있다.
XII) 상기 I) 내지 XI)에서, 상기 (b-1) (메트)아크릴산 알킬 에스테르 중합체는 바람직하게는 (메트)아크릴산 메틸 에스테르, (메트)아크릴산 에틸 에스테르, (메트)아크릴산 프로필 에스테르, (메트)아크릴산 2-에틸 헥실 에스테르, (메트)아크릴산 데실 에스테르, 및 (메트)아크릴산 라우릴 에스테르로 이루어지는 군으로부터 선택되는 1종 이상을 포함하여 이루어질 수 있다.
XIII) 상기 I) 내지 XII)에서, 상기 (b-2) 공중합체는 바람직하게는 알킬 (메트)아크릴레이트 60 내지 85 중량%, 방향족 비닐 화합물 10 내지 35 중량%, 및 비닐시안 화합물 1 내지 20 중량%를 포함하여 이루어질 수 있다.
XIV) 상기 I) 내지 XIII)에서, 상기 (b-1) 중합체 및 (b-2) 공중합체는 바람직하게는 각각 중량평균 분자량이 50,000 내지 150,000 g/mol일 수 있다.
XV) 상기 I) 내지 XIV)에서, 상기 열가소성 수지 조성물은 바람직하게는 워더로미터(whetherometer)로 ASTM G155-1에 의거하여 두께 3 mm인 사출시편을 8,000 시간 동안 방치한 후, 색차계로 변색 정도를 측정하여 하기 수학식 4로 산출한 경시 변화(△E)가 3 이하일 수 있다.
[수학식 4]
Figure PCTKR2023012324-appb-img-000002
(상기 수학식 4에서, L', a' 및 b'은 시편을 방치 후에 CIE LAB 색 좌표계로 각각 측정한 L, a 및 b 값이고, L0, a0, b0은 방치 전에 CIE LAB 색 좌표계로 각각 측정한 L, a 및 b 값이다.)
또한, XVI) 본 기재는 (A) (a-1) 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, (a-2) 평균입경 150 내지 600 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, 및 (a-3) 평균입경 80 nm 이상 내지 150 nm 미만인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체로 이루어진 군으로부터 선택된 1종 이상, 및 (B) (b-1) (메트)아크릴산 알킬 에스테르 중합체 및 (b-2) (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는 기본 수지 100 중량부; (C) 분자량이 280 내지 600 g/mol이고, 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상 0.5 내지 3.5 중량부; 및 (D) 분자량 300 내지 700 g/mol인 NH 타입 HALS계 자외선 안정제 0.6 중량부 초과 내지 2 중량부 이하;를 포함하여 200 내지 300 ℃ 및 100 내지 500 rpm 조건 하에 혼련 및 압출하는 단계;를 포함하되, 상기 (a-1) 그라프트 공중합체는 하기 화학식 1로 계산한 알킬 아크릴레이트 커버리지(X) 값이 65 중량% 이상인 것을 특징으로 하는 열가소성 수지 조성물의 제조방법을 제공한다.
[수학식 1]
X = {(G-Y)/Y} * 100
(상기 수학식 1에서, G는 그라프트 공중합체 총 중량에 대하여 겔 함량(중량%), Y는 그라프트 공중합체 총 중량에 대하여 겔 내 알킬 아크릴레이트의 함량(중량%)을 나타낸다.)
또한, XVII) 본 기재는 (A) (a-1) 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, (a-2) 평균입경 150 내지 600 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, 및 (a-3) 평균입경 80 nm 이상 내지 150 nm 미만인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체로 이루어진 군으로부터 선택된 1종 이상, 및 (B) (b-1) (메트)아크릴산 알킬 에스테르 중합체 및 (b-2) (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는 기본 수지 100 중량부; (C) 분자량이 280 내지 600 g/mol이고, 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상 0.5 내지 3.5 중량부; 및 (D) 분자량 300 내지 700 g/mol인 NH 타입 HALS계 자외선 안정제 0.6 중량부 초과 내지 2 중량부 이하;를 포함하여 200 내지 300 ℃ 및 100 내지 500 rpm 조건 하에 혼련 및 압출하는 단계;를 포함하여 열가소성 수지 조성물을 제조하고, 제조된 열가소성 수지 조성물은 워더로미터(whetherometer)로 ASTM G155-1에 의거하여 두께 3 mm인 사출시편을 8,000 시간 동안 방치한 후, 색차계로 변색 정도를 측정하여 하기 수학식 4로 산출한 경시 변화(△E)가 3 이하인 것을 특징으로 하는 열가소성 수지 조성물의 제조방법을 제공할 수 있다.
[수학식 4]
Figure PCTKR2023012324-appb-img-000003
(상기 수학식 4에서, L', a' 및 b'은 시편을 방치 후에 CIE LAB 색 좌표계로 각각 측정한 L, a 및 b 값이고, L0, a0, b0은 방치 전에 CIE LAB 색 좌표계로 각각 측정한 L, a 및 b 값이다.)
또한, XVIII) 본 기재는 상기 I) 내지 XV)의 열가소성 수지 조성물을 포함하는 것을 특징으로 하는 성형품을 제공한다.
본 발명에 따르면, 내충격성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 가지며 사출 성형, 압출 성형 및 캘린더 성형에 모두 적용 가능한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품을 제공하는 효과가 있다.
나아가, 본 발명의 열가소성 수지 조성물은 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체의 알킬 아크릴레이트 커버리지 값을 소정 범위 내로 조정하여 구부리거나 접는 등의 절곡 가공시 백화 발생을 감소시키는 효과가 있다.
이하 본 기재의 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품을 상세하게 설명한다.
본 발명자들은 상이한 평균입경을 갖는 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 3종 중 1종 이상, 및 (메트)아크릴산 알킬 에스테르 중합체 및 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체 중 1종 이상을 포함하는 기본 수지에 소정 분자량을 갖는 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상, 및 NH 타입 HALS계 자외선 안정제의 조합을 소정 함량비로 포함하면, 내충격성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 개선되고, 사출 성형, 압출 성형 및 캘린더 성형에 모두 적용 가능하며 나아가 상기 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체의 알킬 아크릴레이트 커버리지 값을 소정 범위 내로 조정하면, 절곡 가공시 백화 발생이 감소되는 것을 확인하고, 이를 토대로 더욱 연구에 매진하여 본 발명을 완성하게 되었다.
본 기재에 의한 열가소성 수지 조성물을 상세하게 살펴보면 다음과 같다.
본 기재의 열가소성 수지 조성물은 (A) (a-1) 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, (a-2) 평균입경 150 내지 600 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, 및 (a-3) 평균입경 80 nm 이상 내지 150 nm 미만인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체로 이루어진 군으로부터 선택된 1종 이상, 및 (B) (b-1) (메트)아크릴산 알킬 에스테르 중합체 및 (b-2) (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는 기본 수지 100 중량부; (C) 분자량이 280 내지 600 g/mol이고, 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상 0.5 내지 3.5 중량부; 및 (D) 분자량 300 내지 700 g/mol인 NH 타입 HALS계 자외선 안정제 0.6 중량부 초과 내지 2 중량부 이하;를 포함하고, 상기 (a-1) 그라프트 공중합체는 하기 화학식 1로 계산한 알킬 아크릴레이트 커버리지(X) 값이 65 중량% 이상인 것을 특징으로 한다. 이러한 경우, 내충격성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 가지며 사출 성형, 압출 성형 및 캘린더 성형에 모두 적용 가능한 이점이 있다.
[수학식 1]
X = {(G-Y)/Y} * 100
(상기 수학식 1에서, G는 그라프트 공중합체 총 중량에 대하여 겔 함량(중량%), Y는 그라프트 공중합체 총 중량에 대하여 겔 내 알킬 아크릴레이트의 함량(중량%)을 나타낸다.)
이하 본 발명의 열가소성 수지 조성물을 구성별로 상세히 설명하기로 한다.
(a-1) 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체
상기 (a-1) 그라프트 공중합체의 알킬 아크릴레이트 고무는 일례로 평균입경이 50 내지 120 nm, 바람직하게는 50 내지 110 nm, 보다 바람직하게는 50 내지 100 nm, 보다 더 바람직하게는 60 내지 90 nm일 수 있고, 이 범위 내에서 최종 제조되는 열가소성 수지 조성물에 우수한 광 투과성 및 광택성을 부여할 수 있다.
본 기재에서 평균입경은 동적 광산란법(Dynamic light scattering)을 이용하여 측정할 수 있고, 상세하게는 입자측정기(제품명: Nicomp 380, 제조사: PSS)를 사용하여 가우시안(Gaussian) 모드로 인텐서티(intensity) 값으로 측정한다. 이때 구체적인 측정예로, 샘플은 총 고형분 함량 35 내지 50 중량%인 라텍스 0.1 g을 증류수로 1,000 내지 5,000배로 희석하여 준비하고, 측정방법은 Auto-dilution하여 flow cell로 측정하며, 측정모드는 동적 광산란법(Dynamic light scattering)법/Intensity 300KHz/Intensity-weight Gaussian Analysis로 하고, setting값은 온도 23 ℃, 측정 파장 632.8 nm, channel width 10 μsec으로 하여 측정할 수 있다.
상기 (a-1) 그라프트 공중합체는 일례로 하기 화학식 1로 계산한 알킬 아크릴레이트 커버리지(X) 값이 65 중량% 이상, 바람직하게는 75 중량% 이상, 보다 바람직하게는 85 중량% 이상, 더욱 바람직하게는 85 내지 140 중량%, 보다 더 바람직하게는 95 내지 120 중량%일 수 있고, 이 범위 내에서 기계적 물성, 투명성 및 광택성이 우수하면서 특히, 절곡 가공 시 백화 발생이 억제되는 효과가 있다.
[수학식 1]
X = {(G-Y)/Y} * 100
(상기 수학식 1에서, G는 그라프트 공중합체 총 중량에 대하여 겔 함량(중량%), Y는 그라프트 공중합체 총 중량에 대하여 겔 내 알킬 아크릴레이트의 함량(중량%)을 나타낸다.)
상기 수학식 1에서, 상기 그라프트 공중합체의 겔 내 알킬 아크릴레이트의 함량은 상술한 겔 함량을 구하는 과정에서 채취한 불용분 중의 알킬 아크릴레이트 함량(투입된 그라프트 공중합체 총 100 중량% 기준)을 나타낸다. 여기에서 겔 함량은 그라프트 공중합체 총 100 중량% 기준으로 불용분의 함량을 나타낸다.
상기 알킬 아크릴레이트의 함량은 NMR(핵자기공명) 분석 또는 FT-IR(푸리에 변환 적외선 분광) 분석을 통해 정량적으로 측정한다.
본 기재에서 NMR 분석은 별도로 한정하지 않는 이상 1H NMR에 의한 분석을 의미한다.
본 기재에서, NMR 분석은 본 기술 분야에서 통상적으로 실시되는 방법을 사용하여 측정할 수 있으며, 구체적인 측정예는 다음과 같다.
- 장비명: Bruker 600MHz NMR(AVANCE III HD) CPP BB(1H 19F tunable and broadband, with z-gradient) Prodigy Probe
- 측정조건: 1H NMR(zg30): ns=32, d1=5s, TCE-d2, at room temp.
본 기재에서, FT-IR 분석은 본 기술 분야에서 통상적으로 실시되는 방법을 사용하여 측정할 수 있으며, 구체적인 측정예는 다음과 같다.
- 장비명: Agilent Cary 660
- 측정조건: ATR mode
상기 겔 함량은 그라프트 공중합체 1 g을 아세톤 30 ml에 가한 후 상온에서 12시간 동안 교반하고 이를 원심분리하여 아세톤에 녹지 않은 불용분만을 채취하여 12시간 동안 건조시킨 후 무게를 측정하여, 하기 수학식 2로 산출한다. 구체적인 측정예로, 상기 겔 함량은 그라프트 공중합체 1 g을 아세톤 30 ml에 가한 후 상온에서 12시간 동안 교반기(Orbital Shaker, 장비명: Lab companion SKC-6075)로 210 rpm으로 12시간 교반하고 이를 원심분리기(한일과학社의 Supra R30)를 이용하여 0℃에서 18,000 rpm으로 3시간 동안 원심분리하여 아세톤에 녹지 않은 불용분만을 채취하여 오븐((Forced Convection Oven; 장비명: Lab companion OF-12GW)으로 85 ℃에서 12시간 동안 강제 순환 건조방식으로 건조시킨 후 무게를 측정할 수 있다.
[수학식 2]
겔 함량(중량%) = [불용분(겔)의 무게(g)/시료의 무게(g)] * 100
본 기재에서 알킬 아크릴레이트 커버리지 값은 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체에서 알킬 아크릴레이트 고무에 그라프트된 방향족 비닐 화합물-비닐시안 화합물 중합체의 분산 정도를 측정하는 파라미터이다. 이 값이 높을수록 알킬 아크릴레이트 고무에 방향족 비닐 화합물-비닐시안 화합물 중합체가 고르게 그라프트 되어 고무를 균일하게 감싸는 형태가 되어 광택성 및 투명성이 높고 기계적 물성, 착색성 및 무백화 특성이 우수한 효과가 있다. 또한, 알킬 아크릴레이트 커버리지 값이 높을수록 그라프트 공중합체 겔 내부와 외부 간의 알킬 아크릴레이트 균질도가 향상되어 외부 응력에 대한 결함부(defect part)가 감소되고 그라프트 공중합체 내부에 발생하는 크랙으로 인한 공극이 감소됨으로써 절곡 시 백화 발생이 억제되는 효과가 있다.
상기 알킬 아크릴레이트 커버리지 값과 상기 그라프트율의 차이는 알킬 아크릴레이트 커버리지 값은 NMR 분석기 또는 FT-IR을 이용하여 그라프트 공중합체 내에 실제로 존재하는 알킬 아크릴레이트 함량으로부터 산출되고, 그라프트율은 중합 시 투입된 고무질 성분의 함량으로부터 산출되는 차이가 있다.
상기 (a-1) 그라프트 공중합체는 바람직하게는 알킬 아크릴레이트 고무(코어) 및 이를 감싸는 방향족 비닐 화합물-비닐시안 화합물 공중합체(쉘)을 포함하여 이루어질 수 있다.
상기 (a-1) 그라프트 공중합체는 일례로 이의 총 중량에 대하여 알킬 아크릴레이트 고무 20 내지 60 중량% 및 이를 감싸는 방향족 비닐 화합물-비닐시안 화합물 공중합체 40 내지 80 중량%를 포함하여 이루어질 수 있고, 바람직하게는 알킬 아크릴레이트 고무 30 내지 50 중량% 및 이를 감싸는 방향족 비닐 화합물-비닐시안 화합물 공중합체 50 내지 70 중량%를 포함하여 이루어질 수 있으며, 보다 바람직하게는 알킬 아크릴레이트 고무 40 내지 50 중량% 및 이를 감싸는 방향족 비닐 화합물-비닐시안 화합물 공중합체 50 내지 60 중량%를 포함하여 이루어질 수 있고, 이 범위 내에서 기계적 물성, 광택성, 투명성, 및 내후성이 우수하고 절곡 가공시 백화 발생이 감소되는 효과가 있다.
상기 알킬 아크릴레이트 고무는 일례로 알킬 아크릴레이트를 유화중합하여 제조할 수 있고, 바람직하게는 알킬 아크릴레이트, 유화제, 개시제, 그라프트제, 가교제, 전해질 및 용매를 혼합하여 유화중합하여 제조할 수 있으며, 이 경우 그라프팅 효율이 우수하여 기계적 물성이 우수한 효과가 있다.
상기 알킬 아크릴레이트 고무는 일례로 방향족 비닐 화합물을 더 포함할 수 있고, 이 경우 내화학성 및 내충격성이 더욱 우수한 효과가 있다. 상기 알킬 아크릴레이트 고무 중에 포함되는 방향족 비닐 화합물의 함량은 일례로 상기 알킬 아크릴레이트 고무 총 100 중량%에 대해 0.1 내지 25 중량%, 바람직하게는 2 내지 23 중량%, 보다 바람직하게는 5 내지 20 중량%일 수 있고, 이 범위 내에서 물성 저하 없이 내충격성, 광택성, 투명성, 및 내후성이 우수하고 우수한 내후성에 따라 경시 변화가 감소되는 효과가 있다.
상기 방향족 비닐 화합물-비닐시안 화합물 공중합체(쉘)는 일례로 중량평균 분자량이 40,000 내지 120,000 g/mol, 바람직하게는 50,000 내지 110,000 g/mol, 보다 바람직하게는 60,000 내지 110,000 g/mol일 수 있고, 이 범위 내에서 충격강도의 저하없이 가공성이 우수하고 절곡 가공 시 백화 발생을 감소시키는 효과가 있다.
본 기재에서 중량평균 분자량은 별도로 정의하지 않는 이상 GPC(Gel Permeation Chromatography, waters breeze)를 이용하여 측정할 수 있고, 구체적인 예로 용출액으로 THF(테트라하이드로퓨란)을 사용하여 GPC(Gel Permeation Chromatography, waters breeze)를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다. 이때 구체적인 측정예로, 용매는 THF, 컬럼온도는 40 ℃, 유속은 0.3ml/min, 시료 농도는 20mg/ml, 주입량은 5㎕로 하여 컬럼 모델은 1xPLgel 10㎛ MiniMix-B(250x4.6mm) + 1xPLgel 10㎛ MiniMix-B(250x4.6mm) + 1xPLgel 10㎛ MiniMix-B Guard(50x4.6mm), 측정기기는 Agilent 1200 series system, Refractive index detector: Agilent G1362 RID, RI 온도는 35 ℃, 데이터 처리는 Agilent ChemStation S/W, 및 시험방법(Mn, Mw 및 PDI)은 OECD TG 118 조건으로 측정할 수 있다.
상기 방향족 비닐 화합물-비닐시안 화합물 공중합체(쉘)는 일례로 이의 총 중량에 대해 방향족 비닐 화합물 55 내지 85 중량% 및 비닐시안 화합물 15 내지 45 중량%, 바람직하게는 방향족 비닐 화합물 60 내지 80 중량% 및 비닐시안 화합물 20 내지 40 중량%, 보다 바람직하게는 방향족 비닐 화합물 65 내지 75 중량% 및 비닐시안 화합물 25 내지 35 중량%를 포함하여 이루어진 것일 수 있고, 이 범위 내에서 내충격성 및 내후성이 뛰어난 이점이 있다.
상기 방향족 비닐 화합물-비닐시안 화합물 공중합체(쉘)는 바람직하게는 알킬 아크릴레이트를 더 포함하여 이루어질 수 있고, 이 경우 내충격성, 내후성, 및 가공성이 우수하고 절곡 가공시 백화 발생이 감소되는 이점이 있다.
상기 방향족 비닐 화합물-비닐시안 화합물 공중합체(쉘)는 일례로 이의 총 중량에 대해 방향족 비닐 화합물 55 내지 85 중량%, 비닐시안 화합물 10 내지 35 중량% 및 알킬 아크릴레이트 1 내지 25 중량%를 포함하여 이루어질 수 있고, 바람직하게는 방향족 비닐 화합물 60 내지 80 중량%, 비닐시안 화합물 15 내지 30 중량% 및 알킬 아크릴레이트 3 내지 20 중량%를 포함하여 이루어질 수 있으며, 보다 바람직하게는 방향족 비닐 화합물 65 내지 72 중량%, 비닐시안 화합물 20 내지 25 중량% 및 알킬 아크릴레이트 5 내지 15 중량%를 포함하여 이루어진 것일 수 있고, 이 범위 내에서 내충격성 및 내후성이 더욱 우수한 효과가 있다.
상기 (a-1) 그라프트 공중합체는 일례로 유화 중합으로 제조될 수 있고, 이 경우 광택성 및 표면 경도가 우수한 효과가 있다.
상기 유화 중합은 본 발명이 속한 기술분야에서 통상적으로 실시되는 유화 중합 방법에 의하는 경우 특별히 제한되지 않고, 일례로 유화 그라프트 중합 방법에 의할 수 있다.
상기 (a-1) 그라프트 공중합체는 일례로 하기 수학식 3으로 산출한 그라프트율이 60 내지 150 %, 바람직하게는 65 내지 140 %, 보다 바람직하게는 65 내지 130 %, 더욱 바람직하게는 65 내지 120 %, 보다 더 바람직하게는 65 내지 110 %, 특히 바람직하게는 65 내지 100 %, 특히 더 바람직하게는 65 내지 80 %일 수 있고, 이 범위 내에서 내충격성 및 가공성이 우수하고 절곡 가공시 백화 발생이 감소되는 이점이 있다.
[수학식 3]
그라프트율(%)=[그라프트된 단량체의 중량(g)/고무질 중량(g)] * 100
(상기 수학식 3에서 그라프트된 단량체의 중량(g)은 그라프트 공중합체를 아세톤에 용해시키고 원심 분리한 후의 불용성 물질(gel)의 중량에서 고무질 중량(g)을 뺀 중량이고, 고무질 중량(g)은 그라프트 공중합체 분말 중 이론상 투입된 고무질 성분의 중량(g)이다.)
상기 불용성 물질(gel)의 중량은 (A) 그라프트 공중합체 건조 분말 0.5 g을 아세톤 50 ml에 가한 후 상온에서 12시간 동안 교반하고 이를 원심분리하여 아세톤에 녹지 않은 불용분만을 채취하여 12시간 동안 건조시킨 후 측정한 무게이고, 고무질 중량(g)은 (A) 그라프트 공중합체 건조 분말 0.5 g내에 투입된 이론상의 고무질 성분의 중량(g)이다.
이 때 구체적인 측정예로, 상기 불용성 물질(gel)의 중량은 그라프트 공중합체 건조 분말 0.5 g을 아세톤 50 ml에 가한 후 상온에서 교반기(Orbital Shaker, 장비명: Lab companion SKC-6075)로 210 rpm으로 12시간 교반하고 이를 원심분리기(한일과학社의 Supra R30)를 이용하여 0 ℃에서 18,000 rpm으로 3시간 동안 원심분리하여 아세톤에 녹지 않은 불용분만을 채취하여 오븐((Forced Convection Oven; 장비명: Lab companion OF-12GW)으로 85 ℃에서 12시간 동안 강제 순환 건조방식으로 건조시킨 후 측정한다.
상기 (a-1) 그라프트 공중합체는 일례로 기본 수지 총 중량에 대하여 55 내지 80 중량%, 바람직하게는 60 내지 75 중량%, 보다 바람직하게는 65 내지 70 중량%일 수 있고, 이 범위 내에서 기계적 물성, 광택성 및 투명성이 우수하고 절곡 가공시 백화 발생이 감소되는 이점이 있다.
본 기재에서 알킬 아크릴레이트는 일례로 알킬기의 탄소수가 1 내지 15인 알킬 아크릴레이트일 수 있고, 바람직하게는 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 2-에틸부틸 아크릴레이트, 옥틸 아크릴레이트, 2-에틸헥실 아크릴레이트, 헥실 아크릴레이트, 헵틸 아크릴레이트, n-펜틸 아크릴레이트 및 라우릴 아크릴레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 보다 바람직하게는 탄소수 1 내지 4의 알킬기를 포함하는 알킬 아크릴레이트일 수 있고, 더욱 바람직하게는 부틸 아크릴레이트, 에틸헥실 아크릴레이트, 또는 이들의 혼합일 수 있고, 보다 더 바람직하게는 부틸아크릴레이트일 수 있다.
본 기재에서 방향족 비닐 화합물은 일례로 스티렌, α-메틸 스티렌, ο-메틸 스티렌, ρ-메틸 스티렌, m-메틸 스티렌, 에틸 스티렌, 이소부틸 스티렌, t-부틸 스티렌, ο-브로보 스티렌, ρ-브로모 스티렌, m-브로모 스티렌, ο-클로로 스티렌, ρ-클로로 스티렌, m-클로로 스티렌, 비닐톨루엔, 비닐크실렌, 플루오로스티렌 및 비닐나프탈렌으로 이루어지는 군으로부터 선택되는 1 종 이상일 수 있고, 바람직하게는 스티렌 및 α-메틸 스티렌으로 이루어진 군에서 선택된 1종 이상, 보다 바람직하게는 스티렌일 수 있으며, 이 경우 유동성이 적절하여 가공성이 우수하고 내충격성 등의 기계적 물성이 우수한 효과가 있다.
본 기재에서 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 아크릴로니트릴일 수 있다.
본 기재에서 어떤 화합물(단량체)을 포함하여 이루어진 중합체란 그 화합물(단량체)을 포함하여 중합된 중합체를 의미하는 것으로, 중합된 중합체 내 단위체가 그 화합물로부터 유래한다.
(a-2) 평균입경 150 내지 600 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체
상기 (a-2) 그라프트 공중합체의 알킬 아크릴레이트 고무는 일례로 평균입경이 150 내지 600 nm, 바람직하게는 200 내지 600 nm, 보다 바람직하게는 250 내지 500 nm, 더욱 바람직하게는 300 내지 470 nm, 보다 더 바람직하게는 330 내지 430 nm일 수 있고, 이 범위 내에서 충격강도 등의 기계적 물성이 우수한 효과가 있다.
상기 (a-2) 그라프트 공중합체는 바람직하게는 알킬 아크릴레이트 고무(코어) 및 이를 감싸는 방향족 비닐 화합물 및 비닐시안 화합물을 포함하는 쉘을 포함하여 이루어질 수 있고, 이 경우에 기계적 물성 및 가공성이 우수한 효과가 있다.
상기 (a-2) 그라프트 공중합체는 일례로 이의 총 중량에 대하여 알킬 아크릴레이트 고무 35 내지 65 중량%, 방향족 비닐 화합물 20 내지 55 중량% 및 비닐시안 화합물 1 내지 25 중량%를 포함하여 이루어질 수 있고, 이 범위 내에서 충격강도 등의 기계적 물성 및 투명성이 우수한 효과가 있다.
바람직하게는, 상기 (a-2) 그라프트 공중합체는 알킬 아크릴레이트 고무 40 내지 60 중량%, 방향족 비닐 화합물 25 내지 50 중량% 및 비닐시안 화합물 5 내지 20 중량%를 포함하여 이루어질 수 있고, 이 범위 내에서 충격강도 등의 기계적 물성 및 투명성이 우수한 효과가 있다.
보다 바람직하게는, 상기 (a-2) 그라프트 공중합체는 알킬 아크릴레이트 고무 45 내지 55 중량%, 방향족 비닐 화합물 33 내지 43 중량% 및 비닐시안 화합물 10 내지 15 중량%를 포함하여 이루어질 수 있고, 이 범위 내에서 충격강도 등의 기계적 물성 및 투명성이 우수한 효과가 있다.
상기 (a-2) 그라프트 공중합체에 포함된 알킬 아크릴레이트 고무, 방향족 비닐 화합물 및 비닐시안 화합물의 종류는 본 기재의 (a-1) 그라프트 공중합체에 포함되는 알킬 아크릴레이트 고무, 방향족 비닐 화합물 및 비닐시안 화합물의 종류와 동일한 범주 내의 것일 수 있다.
상기 (a-2) 그라프트 공중합체는 일례로 유화 중합으로 제조될 수 있고, 이 경우에 충격강도 등의 기계적 물성 및 투명성이 우수한 효과가 있다.
상기 유화 중합은 본 발명이 속한 기술분야에서 통상적으로 실시되는 유화 중합 방법에 의하는 경우 특별히 제한되지 않고, 일례로 유화 그라프트 중합 방법에 의할 수 있다.
상기 (a-2) 그라프트 공중합체는 일례로 상기 수학식 3으로 산출한 그라프트율이 40 내지 120 %, 바람직하게는 45 내지 100 %, 보다 바람직하게는 45 내지 80 %일 수 있고, 이 범위 내에서 충격강도 등의 기계적 물성 및 가공성이 우수한 효과가 있다.
상기 (a-2) 그라프트 공중합체는 일례로 기본 수지 총 중량에 대하여 5 내지 35 중량%, 바람직하게는 10 내지 30 중량%, 보다 바람직하게는 15 내지 25 중량%일 수 있고, 이 범위 내에서 기계적 물성 및 투명성이 우수한 효과가 있다.
(a-3) 평균입경 80 nm 이상 내지 150 nm 미만인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체
상기 (a-3) 그라프트 공중합체의 알킬 아크릴레이트 고무는 일례로 평균입경이 80 nm 이상 내지 150 nm 미만, 바람직하게는 90 nm 이상 내지 150 nm 미만, 보다 바람직하게는 91 내지 140 nm, 더욱 바람직하게는 101 내지 140 nm, 보다 더욱 바람직하게는 111 내지 140 nm일 수 있고, 이 범위 내에서 기계적 물성이 유지되면서 광택성, 투명성, 및 착색성이 우수한 이점이 있다.
상기 (a-3) 그라프트 공중합체는 바람직하게는 알킬 아크릴레이트 고무(코어) 및 이를 감싸는 방향족 비닐 화합물 및 비닐시안 화합물을 포함하는 쉘을 포함하여 이루어질 수 있고, 이 경우에 기계적 물성이 유지되면서 광택성, 투명성, 및 착색성이 우수한 이점이 있다.
상기 (a-3) 그라프트 공중합체는 일례로 이의 총 중량에 대하여 알킬 아크릴레이트 고무 35 내지 65 중량%, 방향족 비닐 화합물 20 내지 55 중량% 및 비닐시안 화합물 1 내지 25 중량%를 포함하여 이루어질 수 있고, 이 범위 내에서 기계적 물성이 유지되면서 광택성, 투명성, 및 착색성이 우수한 이점이 있다.
바람직하게는, 상기 (a-3) 그라프트 공중합체는 알킬 아크릴레이트 고무 40 내지 60 중량%, 방향족 비닐 화합물 25 내지 50 중량% 및 비닐시안 화합물 5 내지 20 중량%를 포함하여 이루어질 수 있고, 이 범위 내에서 기계적 물성이 유지되면서 광택성, 투명성, 및 착색성이 우수한 이점이 있다.
보다 바람직하게는, 상기 (a-3) 그라프트 공중합체는 알킬 아크릴레이트 고무 45 내지 55 중량%, 방향족 비닐 화합물 33 내지 43 중량% 및 비닐시안 화합물 10 내지 15 중량%를 포함하여 이루어질 수 있고, 이 범위 내에서 기계적 물성이 유지되면서 광택성, 투명성, 및 착색성이 우수한 이점이 있다.
상기 (a-3) 그라프트 공중합체에 포함된 알킬 아크릴레이트 고무, 방향족 비닐 화합물 및 비닐시안 화합물의 종류는 본 기재의 (a-1) 그라프트 공중합체에 포함되는 알킬 아크릴레이트 고무, 방향족 비닐 화합물 및 비닐시안 화합물의 종류와 동일한 범주 내의 것일 수 있다.
상기 (a-3) 그라프트 공중합체는 일례로 유화 중합으로 제조될 수 있고, 이 경우에 기계적 물성이 유지되면서 광택성, 투명성, 및 착색성이 우수한 이점이 있다.
상기 유화 중합은 본 발명이 속한 기술분야에서 통상적으로 실시되는 유화 중합 방법에 의하는 경우 특별히 제한되지 않고, 일례로 유화 그라프트 중합 방법에 의할 수 있다.
상기 (a-3) 그라프트 공중합체는 일례로 상기 수학식 3으로 산출한 그라프트율이 15 내지 60 %, 바람직하게는 20 내지 50 %, 보다 바람직하게는 25 내지 45 %일 수 있고, 이 범위 내에서 (b-1) (메트)아크릴산 알킬 에스테르 중합체 및 (b-2) (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체와의 가공 분산도가 우수한 효과가 있다.
상기 (a-3) 그라프트 공중합체는 일례로 기본 수지 총 중량에 대하여 5 내지 70 중량%, 바람직하게는 10 내지 65 중량%, 보다 바람직하게는 15 내지 60 중량%일 수 있고, 이 범위 내에서 광택성 및 투명성이 우수하고 절곡 가공시 백화 발생이 감소되는 이점이 있다.
상기 (a-1) 그라프트 공중합체, (a-2) 그라프트 공중합체, 및 (a-3) 그라프트 공중합체의 중량의 합은 일례로 기본 수지 총 중량에 대하여 15 내지 80 중량%, 바람직하게는 15 내지 75 중량%, 보다 바람직하게는 20 내지 70 중량%, 더욱 바람직하게는 30 내지 70 중량%, 보다 더 바람직하게는 40 내지 70 중량%, 특히 바람직하게는 50 내지 70 중량%, 특히 더 바람직하게는 57 내지 70 중량%일 수 있고, 이 범위 내에서 기계적 물성, 광택성, 투명성, 및 가공성이 우수한 효과가 있다.
상기 (A) 그라프트 공중합체는 일례로 (a-1) 그라프트 공중합체, (a-2) 그라프트 공중합체, 및 (a-3) 그라프트 공중합체로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우에 기계적 물성, 광택성, 투명성, 내후성 및 착색성이 우수한 이점이 있다.
상기 (A) 그라프트 공중합체는 바람직하게는 (a-1) 그라프트 공중합체일 수 있고, 이 경우 기계적 물성이 유지되면서 광택도, 투명성, 및 내후성이 우수하고 절곡 가공시 백화 발생이 감소되어 외관이 미려하고 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 탁월한 효과가 있다.
상기 (A) 그라프트 공중합체는 바람직하게는 (a-2) 그라프트 공중합체일 수 있고, 이 경우에 기계적 물성 및 내후성이 우수한 효과가 있다.
상기 (A) 그라프트 공중합체는 바람직하게는 (a-3) 그라프트 공중합체일 수 있고, 이 경우에 기계적 물성이 유지되면서 광택성, 투명성 및 내후성이 우수한 효과가 있다.
상기 (A) 그라프트 공중합체는 바람직하게는 (a-2) 그라프트 공중합체 및 (a-3) 그라프트 공중합체의 혼합일 수 있고, 이 경우에 기계적 물성, 광택성, 및 투명성이 우수하고 우수한 내후성에 따라 경시 변화가 감소되는 효과가 있다.
상기 (a-2) 그라프트 공중합체와 (a-3) 그라프트 공중합체의 혼합은 일례로 이들의 중량비(a-2:a-3)가 40:60 내지 60:40, 바람직하게는 45:55 내지 55:45일 수 있고, 이 범위 내에서 충격강도 등의 기계적 물성, 광택성, 및 착색성이 개선되는 효과가 있다.
본 기재에서 A와 B의 중량비는 A:B의 중량비를 의미한다.
(b-1) (메트)아크릴산 알킬 에스테르 중합체
상기 (b-1) (메트)아크릴산 알킬 에스테르 중합체는 일례로 (메트)아크릴산 메틸 에스테르, (메트)아크릴산 에틸 에스테르, (메트)아크릴산 프로필 에스테르, (메트)아크릴산 2-에틸 헥실 에스테르, (메트)아크릴산 데실 에스테르 및 (메트)아크릴산 라우릴 에스테르로 이루어지는 군으로부터 선택되는 1종 이상을 포함하여 이루어질 수 있고, 바람직하게는 메타크릴산 알킬 에스테르, 아크릴산 알킬에스테르, 또는 이들의 혼합일 수 있으며, 보다 바람직하게는 폴리메틸메타크릴레이트 수지일 수 있고, 이 경우 기계적 물성, 유동성, 및 투명성이 우수한 이점이 있다.
본 기재에서 (메트)아크릴산 알킬 에스테르 중합체는 (메트)아크릴산 알킬 에스테르를 85 중량% 초과 포함하거나 90 중량% 이상, 또는 95 중량% 이상 포함하여 이루어지는 중합체를 의미할 수 있다.
본 기재에서 특별한 언급이 없는 한, "(메트)아크릴산 알킬 에스테르"는 "아크릴산 알킬 에스테르"와 "메타크릴산 알킬 에스테르" 둘 다 가능함을 의미한다.
상기 폴리메틸메타크릴레이트 수지는 일례로 메틸 메타크릴레이트 및 메틸 아크릴레이트를 포함하여 이루어질 수 있고, 바람직하게는 메틸 아크릴레이트를 1 내지 10 중량%, 바람직하게는 2 내지 7 중량%를 포함하여 이루어질 수 있고, 이 범위 내에서 (b-2) (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체와의 상용성이 우수하여 광택성, 유동성, 및 기계적 물성이 향상되는 이점이 있다.
상기 (b-1) 중합체는 일례로 중량평균 분자량이 50,000 내지 150,000 g/mol일 수 있고, 바람직하게는 60,000 내지 130,000 g/mol, 보다 바람직하게는 70,000 g/mol 내지 110,000 g/mol, 더욱 바람직하게는 70,000 내지 100,000 g/mol일 수 있고, 이 범위 내에서 내충격성이 유지되면서 투명성, 광택성 및 유동성이 뛰어난 이점이 있다.
상기 (b-1) (메트)아크릴산 알킬 에스테르 중합체는 일례로 유리전이온도가 80 내지 130 ℃, 바람직하게는 90 내지 120 ℃일 수 있고, 이 범위 내에서 내열성이 우수한 이점이 있다.
본 기재에서 유리전이온도는 ASTM D3418에 의거하여 시차주사열량계(Differential Scanning Calorimetry; DSC)를 이용하여 측정할 수 있고, 구체적인 예로 TA Instrument사의 Q100 DSC(Differential Scanning Calorimetry)를 이용하여 10 ℃/min의 승온 속도로 측정할 수 있다.
상기 (b-1) (메트)아크릴산 알킬 에스테르 중합체는 일례로 기본 수지 총 중량에 대해 15 내지 85 중량%, 바람직하게는 20 내지 80 중량%, 보다 바람직하게는 25 내지 75 중량%일 수 있고, 이 범위 내에서 기계적 물성이 유지되면서 투명성 및 광택성이 우수하고 절곡 가공시 백화 발생이 감소되는 이점이 있다.
상기 (b-1) (메트)아크릴산 알킬 에스테르 중합체는 일례로 현탁 중합으로 제조될 수 있고, 상기 현탁 중합은 본 발명이 속한 기술분야에서 통상적으로 실시되는 현탁 중합에 의하는 경우 특별히 제한되지 않는다.
(b-2) (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체
상기 (b-2) 공중합체는 일례로 이의 총 중량에 대하여 알킬 (메트)아크릴레이트 60 내지 85 중량%, 방향족 비닐 화합물 10 내지 35 중량%, 및 비닐시안 화합물 1 내지 20 중량%를 포함하여 이루어지고, 이 범위 내에서 상기 (A) 그라프트 공중합체 및 (b-1) (메트)아크릴산 알킬 에스테르 중합체와의 상용성이 우수하고 기계적 물성, 투명성, 및 광택도가 우수하고 절곡 가공 시 백화 발생이 감소되는 이점이 있다.
바람직하게는 상기 (b-2) 공중합체는 이의 총 중량에 대하여 (메트)아크릴산 알킬 에스테르 화합물 65 내지 80 중량%, 방향족 비닐 화합물 15 내지 30 중량% 및 비닐시안 화합물 3 내지 15 중량%를 포함하여 이루어질 수 있고, 이 범위 내에서 상기 (A) 그라프트 공중합체 및 (b-1) (메트)아크릴산 알킬 에스테르 중합체와의 상용성이 우수하고 기계적 물성, 투명성, 및 광택도가 우수하고 절곡 가공 시 백화 발생이 감소되는 이점이 있다.
보다 바람직하게는 상기 (b-2) 공중합체는 이의 총 중량에 대하여 (메트)아크릴산 알킬 에스테르 화합물 68 내지 74 중량%, 방향족 비닐 화합물 20 내지 25 중량% 및 비닐시안 화합물 5 내지 10 중량%를 포함하여 이루어진 것일 수 있고, 이 범위 내에서 상기 (A) 그라프트 공중합체 및 (b-1) (메트)아크릴산 알킬 에스테르 중합체와의 상용성이 우수하고 기계적 물성, 투명성, 및 광택도가 우수하고 절곡 가공 시 백화 발생이 감소되는 이점이 있다.
본 기재에서 (메트)아크릴산 알킬 에스테르 화합물은 일례로 (메트)아크릴산 메틸 에스테르, (메트)아크릴산 에틸 에스테르, (메트)아크릴산 프로필 에스테르, (메트)아크릴산 2-에틸 헥실 에스테르, (메트)아크릴산 데실 에스테르 및 (메트)아크릴산 라우릴 에스테르로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다.
상기 (b-2) 공중합체에 포함된 방향족 비닐 화합물 및 비닐시안 화합물의 종류는 본 기재의 (a-1) 그라프트 공중합체에 포함되는 방향족 비닐 화합물 및 비닐시안 화합물의 종류와 동일한 범주 내의 것일 수 있다.
상기 (b-2) 공중합체는 일례로 중량평균 분자량이 50,000 내지 150,000 g/mol일 수 있고, 바람직하게는 60,000 내지 130,000 g/mol, 보다 바람직하게는 70,000 내지 120,000 g/mol, 더욱 바람직하게는 80,000 내지 110,000 g/mol일 수 있고, 이 범위 내에서 인장강도, 굴곡강도, 충격강도, 및 내스크래치성이 뛰어난 이점이 있다.
상기 (b-2) 공중합체는 일례로 기본 수지 총 중량에 대하여 5 내지 45 중량%, 바람직하게는 5 내지 40 중량%, 보다 바람직하게는 10 내지 35 중량%일 수 있고, 이 범위 내에서 상기 (b-1) (메트)아크릴산 알킬 에스테르 중합체와의 상용성이 우수하고 기계적 물성 및 유동성이 우수한 이점이 있다.
상기 (b-2) 공중합체는 일례로 벌크 중합으로 제조될 수 있고, 상기 벌크 중합은 본 발명이 속한 기술분야에서 통상적으로 실시되는 벌크 중합에 의하는 경우 특별히 제한되지 않는다.
상기 (b-1) 중합체 및 (b-2) 공중합체의 중량의 합은 기본 수지 총 중량에 대하여 일례로 20 내지 85 중량%, 바람직하게는 25 내지 85 중량%, 보다 바람직하게는 30 내지 80 중량%, 더욱 바람직하게는 30 내지 70 중량%, 보다 더 바람직하게는 30 내지 60 중량%, 특히 바람직하게는 30 내지 50 중량%, 특히 더 바람직하게는 30 내지 43 중량%일 수 있고, 이 범위 내에서 기계적 물성, 광택성, 투명성, 내후성 및 착색성이 우수한 이점이 있다.
(C) 분자량 280 내지 600 g/mol이고, 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상
상기 (C) 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상은 일례로 기본 수지 100 중량부에 대하여 0.5 내지 3.5 중량부, 바람직하게는 1 내지 3 중량부, 보다 바람직하게는 1 내지 2.6 중량부, 더욱 바람직하게는 1.5 내지 2.2 중량부일 수 있고, 이 범위 내에서 내충격성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 갖는 이점이 있다.
상기 (C) 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상은 일례로 분자량 280 내지 600 g/mol, 바람직하게는 300 내지 600 g/mol, 보다 바람직하게는 300 내지 550 g/mol, 더욱 바람직하게는 300 내지 500 g/mol, 보다 더 바람직하게는 350 내지 500 g/mol, 특히 바람직하게는 400 내지 500 g/mol, 특히 더 바람직하게는 420 내지 470 g/mol, 가장 바람직하게는 440 내지 455 g/mol일 수 있고, 이 범위 내에서 기계적 물성, 광택성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 외관이 고급스러운 이점이 있다.
상기 (C) 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상은 일례로 융점이 100 내지 200 ℃, 바람직하게는 110 내지 200 ℃, 보다 바람직하게는 120 내지 200 ℃, 더욱 바람직하게는 120 내지 180 ℃, 보다 더 바람직하게는 120 내지 160 ℃, 특히 바람직하게는 125 내지 150 ℃, 특히 더 바람직하게는 130 내지 145 ℃, 가장 바람직하게는 135 내지 144 ℃일 수 있고, 이 범위 내에서 기계적 물성, 광택성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 외관이 고급스러운 이점이 있다.
본 기재에서 융점은 TA 사에서 제조한 시차 주사 열량계(DSC: Differential Scanning Calorimeter 2920)를 이용하여 측정할 수 있다. 구체적인 측정예로, 융점은 DSC를 온도 0 ℃에서 평형에 이르게 한 후, 분당 20 ℃씩 증가시켜 180 ℃까지 올린 후, 분당 20 ℃씩 감소시켜 -60 ℃까지 내린 후, 분당 10 ℃씩 증가시켜 180 ℃까지 온도를 증가시키는 방법으로 측정할 수 있다. 여기에서 융점은 두 번째 온도가 상승하는 동안 흡열 곡선의 꼭대기 영역을 취해 얻어진다.
상기 벤조트리아졸계 자외선 안정제는 일례로 2-(2H-벤조트리아졸-2-일)-4,6-비스(1-메틸-1-페닐에틸)페놀(2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol) 및 2-[2-하이드록시-3-디메틸벤질페닐-5-(1,1,3,3-테트라메틸부틸)]-2H-벤조트리아졸(2-[2-hydroxy-3-dimethylbenzylphenyl-5-(1,1,3,3-tertamethylbutyl)]-2H-benzotriazole)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 2-(2H-벤조트리아졸-2-일)-4,6-비스(1-메틸-1-페닐에틸)페놀(2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol; UV234)일 수 있으며, 이 경우 기계적 물성, 광택성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 갖는 이점이 있다.
상기 벤조에이트계 자외선 안정제는 일례로 2,4-디-터트-부틸페닐 3,5-디-터트-부틸-4-하이드록시벤조에이트(2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate), 헥사데실 3,5-디-터트-부틸-4-하이드록시벤조에이트(Hexadecyl 3,5-di-tert-butyl-4- hydroxybenzoate), 또는 이들의 혼합일 수 있고, 바람직하게는 2,4-디-터트-부틸페닐 3,5-디-터트-부틸-4-하이드록시벤조에이트일 수 있으며, 이 경우 기계적 물성, 광택성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 갖는 이점이 있다.
상기 벤조페논계 자외선 안정제는 일례로 2-하이드록시-4-옥토시벤조페논(2-Hydroxy-4-octoxybenzophenone), 4-벤질옥시-2-하이드록시벤조페논(4-benzyloxy-2-hydroxybenzophenone), 2-하이드록시-4-메톡시벤조페논-5-술폰산(2-Hydroxy-4-methoxybenzophenone-5-sulfonic acid), 2,2'-디하이드록시-4,4'-디메톡시벤조페논-5,5'-디술폰산(2,2'-Dihydroxy-4,4'-Dimethoxybenzophenone-5,5'-Disulfonic Acid), 및 2,2'-디하이드록시-4,4'-디메톡시벤조페논-5,5'-디술폰산 디소듐 염(2,2'-Dihydroxy-4,4'-Dimethoxybenzophenone-5,5'-Disulfonic Acid Disodium Salt)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 4-벤질옥시-2-하이드록시벤조페논일 수 있으며, 이 경우 기계적 물성, 광택성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 갖는 이점이 있다.
(D) 분자량 300 내지 700 g/mol인 NH 타입 HALS계 자외선 안정제
상기 (D) NH 타입의 HALS계 자외선 안정제는 일례로 기본 수지 100 중량부에 대하여 0.6 중량부 초과 내지 2 중량부 이하, 바람직하게는 0.7 내지 1.7 중량부, 보다 바람직하게는 0.7 내지 1.2 중량부일 수 있고, 이 범위 내에서 내충격성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 갖는 이점이 있다.
상기 (D) NH 타입의 HALS계 자외선 안정제는 일례로 분자량 300 내지 700 g/mol, 바람직하게는 350 내지 650 g/mol, 보다 바람직하게는 400 내지 600 g/mol, 더욱 바람직하게는 450 내지 550 g/mol, 보다 더 바람직하게는 460 내지 510 g/mol일 수 있고, 이 범위 내에서 기계적 물성, 광택성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 갖는 이점이 있다.
상기 (D) NH 타입 HALS계 자외선 안정제는 일례로 융점이 60 내지 120 ℃, 바람직하게는 65 내지 110 ℃, 보다 바람직하게는 70 내지 100 ℃, 더욱 바람직하게는 70 내지 95 ℃, 보다 더 바람직하게는 74 내지 92 ℃, 특히 바람직하게는 78 내지 87 ℃일 수 있고, 이 범위 내에서 기계적 물성, 광택성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 갖는 이점이 있다.
상기 (D) NH 타입 HALS계 자외선 안정제는 일례로 비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이트 및 비스(1,2,2,6,6-펜타메틸-4-피페리딜)세바케이트로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이트일 수 있으며, 이 경우 기계적 물성, 광택성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 외관이 고급스러운 이점이 있다.
상기 (C) 분자량 280 내지 600 g/mol인 자외선 안정제는 일례로 상기 (D) NH 타입 HALS계 자외선 안정제 보다 많은 양으로 사용될 수 있고, 이 경우 기계적 물성, 광택성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 외관이 고급스러운 이점이 있다.
상기 (C) 분자량 280 내지 600 g/mol인 자외선 안정제 및 (D) NH 타입 HALS계 자외선 안정제의 중량비(C:D)는 일례로 1.3:1 내지 3.2:1, 바람직하게는 1.5:1 내지 3.0:1, 보다 바람직하게는 2.0:1 내지 3.0:1, 더욱 바람직하게는 2.5:1 내지 3.0:1일 수 있고, 이 범위 내에서 기계적 물성, 광택성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 외관이 고급스러운 이점이 있다.
본 발명은 상기 (C) 분자량 280 내지 600 g/mol인 자외선 안정제 및 (D) 분자량 300 내지 700 g/mol인 NH 타입 HALS계 자외선 안정제의 조합, 바람직하게는 (C) 분자량 280 내지 600 g/mol인 벤조트리아졸계 자외선 안정제 및 (D) 분자량 300 내지 700 g/mol인 NH 타입 HALS계 자외선 안정제의 조합, 보다 바람직하게는 (C) 분자량 280 내지 600 g/mol이고 융점이 100 내지 200 ℃인 벤조트리아졸계 자외선 안정제 및 (D) 분자량 300 내지 700 g/mol이고 융점이 60 내지 120 ℃인 NH 타입 HALS계 자외선 안정제의 조합에 의해 기계적 물성, 투명성, 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되는 시너지 효과가 발현된다.
열가소성 수지 조성물
상기 열가소성 수지 조성물은 일례로 웨더로미터(whetherometer)로 ASTM G155-1에 의거하여 두께 3 mm인 사출시편을 8,000 시간 동안 방치한 후, 색차계로 변색 정도를 측정하여 하기 수학식 4로 산출한 경시 변화(△E)가 3 이하, 바람직하게는 2.5 이하, 보다 바람직하게는 2 이하, 더욱 바람직하게는 1.8 이하, 보다 더 바람직하게는 1.6 이하, 특히 바람직하게는 0.1 내지 1.6일 수 있고, 이 범위 내에서 기계적 물성, 내후성 및 투명성이 우수하면서 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 갖는 이점이 있다.
[수학식 4]
Figure PCTKR2023012324-appb-img-000004
(상기 수학식 4에서, L', a' 및 b'은 시편을 방치 후에 CIE LAB 색 좌표계로 각각 측정한 L, a 및 b 값이고, L0, a0, b0은 방치 전에 CIE LAB 색 좌표계로 각각 측정한 L, a 및 b 값이다.)
상기 열가소성 수지 조성물은 일례로 웨더로미터(whetherometer)로 ASTM G155-1에 의거하여 두께 3 mm인 사출시편을 4,000 시간 동안 방치한 후, 색차계로 변색 정도를 측정하여 상기 수학식 4로 산출한 경시 변화(△E)가 2 이하, 바람직하게는 1.6 이하, 보다 바람직하게는 1.3 이하, 더욱 바람직하게는 1.0 이하, 보다 더 바람직하게는 0.1 내지 1.0일 수 있고, 이 범위 내에서 기계적 물성, 투명성 및 내후성이 우수하면서 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 갖는 이점이 있다.
상기 열가소성 수지 조성물은 일례로 ASTM D1003에 의거하여 두께 0.15 mm인 시트로 측정한 헤이즈가 10 % 이하, 바람직하게는 8 % 이하, 보다 바람직하게는 6 % 이하, 더욱 바람직하게는 0.1 내지 6 %일 수 있고, 이 범위 내에서 물성 밸런스가 우수하고 투명성 및 착색성이 뛰어난 효과가 있다.
상기 열가소성 수지 조성물은 일례로 ASTM D1003에 의거하여 두께 0.15 mm인 시트로 측정한 전광선 투과율이 80 % 이상, 바람직하게는 85 % 이상, 보다 바람직하게는 90 % 이상, 더욱 바람직하게는 90 내지 120 %일 수 있고, 이 범위 내에서 물성 밸런스가 우수하고 투명성 및 착색성이 뛰어난 효과가 있다.
상기 열가소성 수지 조성물은 일례로 두께 0.15 mm이고 10 cm * 10 cm인 시트를 손으로 MD 방향(Machined direction) 및 TD 방향(Traverse direction)으로 접어서 절곡면에서 백화 발생을 육안으로 관찰한 결과 백화 발생이 감소될 수 있고, 이 경우에 물성 밸런스가 우수하면서 내충격성 및 투명성이 뛰어나고 외관이 미려한 이점이 있다.
상기 열가소성 수지 조성물은 일례로 두께 0.15 mm인 시트의 길이 방향(Machine direction; MD)으로 ASTM D412에 의거하여 인장속도 10 mm/min인 조건 하에 측정한 인장강도가 300 kgf/cm2 이상, 바람직하게는 310 kgf/cm2 이상, 보다 바람직하게는 320 kgf/cm2 이상, 더욱 바람직하게는 330 kgf/cm2 이상, 보다 더 바람직하게는 350 kgf/cm2 이상, 특히 바람직하게는 350 내지 600 kgf/cm2일 수 있고, 이 범위 내에서 물성 밸런스가 우수하고 사출 성형품, 압출 성형품 및 캘린더 성형품의 기계적 물성이 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 두께 0.15 mm인 시트의 길이 방향(Machine direction; MD)으로 ASTM D412에 의거하여 인장속도 10 mm/min인 조건 하에 측정한 신율이 10 % 이상, 바람직하게는 30 % 이상, 보다 바람직하게는 40 % 이상, 더욱 바람직하게는 50 % 이상, 보다 더 바람직하게는 60 % 이상, 특히 바람직하게는 60 내지 80 %일 수 있고, 이 범위 내에서 물성 밸런스가 우수하고 사출 성형품, 압출 성형품 및 캘린더 성형품의 기계적 물성이 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 두께 0.15 mm인 시트의 길이 방향(Machine direction; MD)으로 ASTM D624에 의거하여 인장속도 10 mm/min인 조건 하에 측정한 인열강도가 67 kgf/cm 이상, 바람직하게는 72 kgf/cm 이상, 보다 바람직하게는 80 kgf/cm 이상, 더욱 바람직하게는 90 kgf/cm 이상, 보다 더 바람직하게는 90 내지 130 kgf/cm 일 수 있고, 이 범위 내에서 물성 밸런스가 우수하고 사출 성형품, 압출 성형품 및 캘린더 성형품의 기계적 물성이 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 두께 0.15 mm인 시트의 폭 방향(transverse direction; TD)으로 ASTM D412에 의거하여 인장속도 10 mm/min인 조건 하에 측정한 인장강도가 230 kgf/cm2 이상, 바람직하게는 245 kgf/cm2 이상, 보다 바람직하게는 250 kgf/cm2 이상, 더욱 바람직하게는 250 내지 500 kgf/cm2일 수 있고, 이 범위 내에서 물성 밸런스가 우수하고 사출 성형품, 압출 성형품 및 캘린더 성형품의 기계적 물성이 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 두께 0.15 mm인 시트의 폭 방향(transverse direction; TD)으로 ASTM D412에 의거하여 인장속도 10 mm/min인 조건 하에 측정한 신율이 14 % 이상, 바람직하게는 20 % 이상, 보다 바람직하게는 30 % 이상, 더욱 바람직하게는 40 % 이상, 보다 더 바람직하게는 50 % 이상, 특히 바람직하게는 50 내지 75 %일 수 있고, 이 범위 내에서 물성 밸런스가 우수하고 사출 성형품, 압출 성형품 및 캘린더 성형품의 기계적 물성이 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 두께 0.15 mm인 시트의 폭 방향(transverse direction; TD)으로 ASTM D624에 의거하여 인장속도 10 mm/min인 조건 하에 측정한 인열강도가 55 kgf/cm 이상, 바람직하게는 60 kgf/cm 이상, 보다 바람직하게는 65 kgf/cm 이상, 더욱 바람직하게는 70 kgf/cm 이상, 보다 더 바람직하게는 75 kgf/cm, 특히 바람직하게는 75 내지 95 kgf/cm 일 수 있고, 이 범위 내에서 물성 밸런스가 우수하고 사출 성형품, 압출 성형품 및 캘린더 성형품의 기계적 물성이 우수한 효과가 있다.
상기 열가소성 수지 조성물은 필요에 따라 선택적으로 열안정제, 염료, 안료, 착색제, 활제, 이형제, 대전방지제, 항균제, 가공조제, 금속 불활성화제, 난연제, 억연제, 적하방지제, 내마찰제 및 내마모제로 이루어진 군으로부터 선택된 1종 이상을 기본 수지 100 중량부를 기준으로 각각 0.01 내지 5 중량부, 0.05 내지 3 중량부, 0.1 내지 2 중량부 또는 0.5 내지 1 중량부로 더 포함할 수 있고, 이 범위 내에서 본 기재의 열가소성 수지 조성물 본연의 물성을 저하시키지 않으면서도 필요한 물성이 잘 구현되는 효과가 있다.
상기 열안정제는 바람직하게는 1차 열안정제 및 2차 열안정제를 포함할 수 있다.
상기 1차 열안정제는 일례로 페놀계 열안정제일 수 있으며, 바람직하게는 2-t-부틸-6-(3-t-부틸-2-하이드록시-5-메틸벤질)-4-메틸페닐 아크릴레이트, 2-[1-(2-하이드록시-3,5-디-t-펜틸페닐)에틸]-4,6-디-t-펜틸페닐 아크릴레이트, 1,6-헥산디올비스-[3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트], 2,2-티오디에틸렌비스-[3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트], 3,5-디-t-부틸-4-하이드록시벤질포스포네이트디에틸 에스테르, 트리스(2,6-디메틸-3-하이드록시-4-t-부틸벤질)이소시아누레이트, 트리스(3,5-디-t-부닐-4-하이드록시벤질)이소시아누레이트, 트리스[(3,5-디-t-부틸-4-하이드록시페닐)프로피오닐옥시에틸]이소시아누레이트, 트리스(4-t-부틸-2,6-디메틸-3-하이드록시벤질)이소시아누레이트, 2,2'-메틸렌비스(4-메틸-6-t-부틸페놀)테레프탈레이트, 1,3,5-트리메틸-2,4,6-트리스(3,5-디-t-부틸-4-하이드록시벤질)벤젠, 3,9-비스[1,1-디메틸-2-{β-(3-t-부틸-4-하이드록시-5-메틸-페닐)프리피오닐옥시}에틸]-2,4,8,10-테트라옥사스피로[5,5]운데칸, 2,2-비스[4-(2-3,5-디-t-부틸-4-하이드록시하이드로신나모일옥시)에톡시페닐]프로판, 및 β-(3,5-디-t-부틸-4-하이드록시페닐)프로피온산 스테아릴 에스테르로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 보다 바람직하게는 옥타데실 3-(3,5-디터셔리-부틸-4-하이드록시페닐)프로파노에이트(octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate; IR1076)일 수 있다.
상기 2차 열안정제는 일례로 인계 열안정제일 수 있으며, 바람직하게는 비스(디알킬페닐)펜타에리트리톨 디포스파이트 에스테르, 포스파이트 에스테르, 트리옥틸 포스파이트, 트리라우릴 포스파이트, 트리데실 포스파이트, (옥틸)디페닐 포스파이트, 트리스(2,4-디-t-부틸페닐) 포스파이트, 트리페닐 포스파이트, 트리스(부톡시에틸) 포스파이트, 트리스(노닐페닐) 포스파이트, 디스테아릴펜타에리트리톨 디포스파이트, 테트라(트리데실)-1,1,3-트리스(2-메틸-5-t-부틸-4-하이드록시-페닐)부탄 디포스파이트, 테트라(C12-C15 혼합 알킬)-4,4'-이소프로필리덴디페닐 디포스파이트, 테트라(트리데실)-4,4'-부틸리덴비스(3-메틸-6-t-부닐페놀)디포스파이트, 트리스(모노- 및 디-혼합 노닐페닐)포스파이트, 수소화-4,4'-이소프로필리덴디페놀 폴리포스파이트, 페닐(4,4'-이소프로필리덴디페놀)펜타에리트리톨 디포스파이트, 디스테아릴펜타에리트리톨 디포스파이트, 트리스[4,4'-이소프로필리덴비스(2-t-부틸페놀)] 포스파이트, 디(이소데실)페닐 포스파이트, 4,4'-이소프로필리덴비스(2-t-부틸페놀)비스(노닐페닐) 포스파이트, 비스(2,4-디-t-부틸-6-메틸페닐)에틸 포스파이트, 2-[{2,4,8,10-테트라-t-부틸디벤즈[d,f][1.3.2]-디옥사-포스페핀-6-일}옥시]-N,N-비스[2-[{2,4,8,10-테트라-t-부틸-디벤즈[d,f][1.3.2]-디옥사포스페핀-6-일}옥시]에틸]-에탄아민, 및 6-[3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로폭시]-2,4,8,10-테트라-t-부틸디벤즈[d,f][1.3.2]-디옥사포스페핀으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 보다 바람직하게는 트리스(2,4-디-터셔리-부틸페닐) 포스파이트(Tris(2,4-di-tert-butylphenyl) phosphite; IF168)일 수 있다.
상기 활제는 바람직하게는 지방족 아마이드계 활제, 지방산 에스테르계 활제 및 올레핀계 왁스로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 지방족 아마이드계 활제는 바람직하게는 스테아르아마이드(stearamide), 올레아마이드(oleamide), 에루카마이드(erucamide), 에틸렌 비스 스테아르아마이드(ethylene bis stearamide), 및 에틸렌 비스 올레아마이드(ethylene bis oleamide)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 지방산 에스테르계 활제는 바람직하게는 알콜 또는 다가 알콜의 지방산 에스테르, 경화유, 스테아린산부틸, 스테아린산모노글리세라이드, 펜타에리스리톨테트라스테아레이트, 스테아릴스테아레이트, 에스테르왁스 및 알킬인산에스테르로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 올레핀계 왁스는 바람직하게는 폴리에틸렌 왁스일 수 있다.
열가소성 수지 조성물의 제조방법
본 기재의 열가소성 수지 조성물의 제조방법은, (A) (a-1) 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, (a-2) 평균입경 150 내지 600 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, 및 (a-3) 평균입경 80 mm 이상 내지 150 nm 미만인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체로 이루어진 군으로부터 선택된 1종 이상, 및 (B) (b-1) (메트)아크릴산 알킬 에스테르 중합체 및 (b-2) (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는 기본 수지 100 중량부; (C) 분자량이 280 내지 600 g/mol이고, 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상 0.5 내지 3.5 중량부; 및 (D) 분자량 300 내지 700 g/mol인 NH 타입 HALS계 자외선 안정제 0.6 중량부 초과 내지 2 중량부 이하;를 포함하여 200 내지 300 ℃ 및 100 내지 500 rpm 조건 하에 혼련 및 압출하는 단계;를 포함하되, 상기 (a-1) 그라프트 공중합체는 하기 화학식 1로 계산한 알킬 아크릴레이트 커버리지(X) 값이 65 중량% 이상인 것을 특징으로 한다. 이러한 경우, 기계적 물성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 가지며 사출 성형, 압출 성형 및 캘린더 성형에 모두 적용 가능한 이점이 있다.
[수학식 1]
X = {(G-Y)/Y} * 100
(상기 수학식 1에서, G는 그라프트 공중합체 총 중량에 대하여 겔 함량(중량%), Y는 그라프트 공중합체 총 중량에 대하여 겔 내 알킬 아크릴레이트의 함량(중량%)을 나타낸다.)
상기 열가소성 수지 조성물의 제조방법은 전술한 열가소성 수지 조성물의 모든 기술적인 특징을 공유한다. 따라서 중첩되는 부분에 대한 설명은 생략하기로 한다.
상기 혼련 및 압출은 바람직하게는 압출 혼련기를 이용하여 200 내지 300 ℃, 보다 바람직하게는 210 내지 260 ℃, 더욱 바람직하게는 220 내지 250 ℃ 하에서 실시할 수 있고, 이 범위 내에서 안정된 압출이 가능하며 혼련 효과가 우수하다. 이때 온도는 실린더에 설정된 온도이다.
상기 혼련 및 압출은 일례로 스크류 회전수가 100 내지 500 rpm, 바람직하게는 150 내지 450 rpm, 보다 바람직하게는 200 내지 400 rpm인 조건 하에 수행될 수 있고, 이 경우 단위 시간당 처리량이 적절하여 공정 효율이 우수한 효과가 있다.
상기 압출을 통해 수득된 열가소성 수지 조성물은 일례로 펠렛타이저를 사용하여 펠렛으로 제조될 수 있다.
상기 압출 혼련기는 본 발명이 속한 기술분야에서 통상적으로 사용되는 압출 혼련기인 경우 특별히 제한되지 않으며, 바람직하게는 2축 압출 혼련기일 수 있다.
성형품
본 기재의 성형품은 상기 열가소성 수지 조성물을 포함하는 것을 특징으로 하고, 이 경우 기계적 물성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 외관이 고급스러우며 사출 성형품, 압출 성형품 및 캘린더 성형품에 모두 적용 가능한 이점이 있다.
상기 사출 성형품은 바람직하게는 자동차 내외장 부품 및 전기전자 제품용 부품, 무도장 성형품, 또는 금속 인서트 성형품일 수 있고, 구체적인 일례로 비데 컨트롤 패널, 잔디 로봇 하우징 및 풀(Pool) 클린 로봇하우징, 도어 액세사리 또는 창 프레임(frame)일 수 있다.
상기 압출 성형품은 바람직하게는 필름, 시트, 또는 호일(foil)일 수 있고, 구체적으로 데코시트, 옥외용 건축자재 마감재, 지붕용 마감재, 인테리어 필름, 벽지, 엣지밴드, VCM(Vinyl coated metal), 바닥재, 몰딩용 PSP(Plastic-steel-Plastic) 또는 랩핑용 필름일 수 있다.
상기 캘린더 성형품은 바람직하게는 필름, 시트, 또는 호일(foil)일 수 있고, 구체적으로 데코시트, 옥외용 건축자재 마감재, 지붕용 마감재, 인테리어 필름, 벽지, 엣지밴드, VCM(Vinyl coated metal), 바닥재, 몰딩용 PSP(Plastic-steel-Plastic) 또는 랩핑용 필름일 수 있다.
상기 성형품의 제조방법은 바람직하게는 (A) (a-1) 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, (a-2) 평균입경 150 내지 600 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, 및 (a-3) 평균입경 80 mm 이상 내지 150 nm 미만인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체로 이루어진 군으로부터 선택된 1종 이상, 및 (B) (b-1) (메트)아크릴산 알킬 에스테르 중합체 및 (b-2) (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는 기본 수지 100 중량부; (C) 분자량이 280 내지 600 g/mol이고, 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상 0.5 내지 3.5 중량부; 및 (D) 분자량 300 내지 700 g/mol인 NH 타입 HALS계 자외선 안정제 0.6 중량부 초과 내지 2 중량부 이하;를 포함하여 200 내지 300 ℃ 및 100 내지 500 rpm 조건 하에 혼련 및 압출하여 압출물을 제조하는 단계; 및 상기 압출물을 성형하여 성형품을 제조하는 단계;를 포함하되, 상기 (a-1) 그라프트 공중합체는 하기 화학식 1로 계산한 알킬 아크릴레이트 커버리지(X) 값이 65 중량% 이상일 수 있다. 이러한 경우, 기계적 물성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 가지며 사출 성형, 압출 성형 및 캘린더 성형에 모두 적용 가능한 이점이 있다.
[수학식 1]
X = {(G-Y)/Y} * 100
(상기 수학식 1에서, G는 그라프트 공중합체 총 중량에 대하여 겔 함량(중량%), Y는 그라프트 공중합체 총 중량에 대하여 겔 내 알킬 아크릴레이트의 함량(중량%)을 나타낸다.)
상기 압출물은 일례로 펠렛 형태 또는 판상 형태일 수 있다.
본 기재에서 판상 형태는 본 발명이 속한 기술분야에서 통상적으로 판상 형태로 정의하는 것인 경우 특별히 제한되지 않고, 일례로 납작한 형태, 시트 형태, 필름 형태 등을 포함할 수 있다.
본 기재의 열가소성 수지 조성물, 이의 제조방법 및 성형품을 설명함에 있어서, 명시적으로 기재하지 않은 다른 조건이나 장비 등은 당업계에서 통상적으로 실시되는 범위 내에서 적절히 선택할 수 있고, 특별히 제한되지 않음을 명시한다.
이하, 본 기재의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
하기 실시예 및 비교예에서 사용된 물질은 다음과 같다.
* (a-1-1) 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 ASA 그라프트 공중합체: 유화중합 방식으로 제조된 알킬 아크릴레이트 고무의 평균입경 70 nm인 ASA 그라프트 공중합체 (코어(고무): 부틸 아크릴레이트 36 중량%, 스티렌 7 중량%, 쉘: 부틸 아크릴레이트 4 중량%, 스티렌 39.5 중량% 및 아크릴로니트릴 13.5 중량%, 알킬 아크릴레이트 커버리지 값 99 중량%, 그라프트율 77 %)
* (a-2) 평균입경 150 내지 600 nm인 알킬 아크릴레이트 고무를 포함하는 ASA 그라프트 공중합체: 유화중합 방식으로 제조된 알킬 아크릴레이트 고무의 평균입경 350 nm인 ASA 그라프트 공중합체 (코어(고무): 부틸 아크릴레이트 50 중량%, 쉘: 스티렌 37.5 중량% 및 아크릴로니트릴 12.5 중량%, 그라프트율 50 %)
* (a-3) 평균입경 80 nm 이상 내지 150 nm 미만인 알킬 아크릴레이트 고무를 포함하는 ASA 그라프트 공중합체: 유화중합 방식으로 제조된 알킬 아크릴레이트 고무의 평균입경 130 nm인 ASA 그라프트 공중합체 (코어(고무): 부틸 아크릴레이트 50 중량%, 쉘: 스티렌 37.5 중량% 및 아크릴로니트릴 12.5 중량%, 그라프트율 35%)
* (a-1-2) 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 ASA 그라프트 공중합체: 유화중합 방식으로 제조된 알킬 아크릴레이트 고무의 평균입경 65 nm인 ASA 그라프트 공중합체 (코어(고무): 부틸 아크릴레이트 43 중량%, 스티렌 3 중량%, 쉘: 부틸 아크릴레이트 4 중량%, 스티렌 37.5 중량% 및 아크릴로니트릴 12.5 중량%, 알킬 아크릴레이트 커버리지 값 77 중량%, 그라프트율 65 %)
* (b-1) 현탁 중합 방식의 PMMA 수지: 폴리메틸메타크릴레이트 수지(중량평균 분자량 80,000 g/mol)
* (b-2) 벌크 중합 방식의 SAMMA 수지: 메틸 메타크릴레이트 70 중량%, 스티렌 22.5 중량%, 및 아크릴로니트릴 7.5 중량%를 포함하여 이루어진 메틸 메타크릴레이트-스티렌-아크릴로니트릴 공중합체(중량평균 분자량 95,000 g/mol)
* (C-1) UV234(BASF社): 벤조트리아졸계 자외선 안정제(2-(2H-벤조트리아졸-2-일)-4,6-비스(1-메틸-1-페닐에틸)페놀, 분자량 447.5 g/mol, 융점 137~141 ℃)
* (C-2) UV-P(BASF社): 벤조트리아졸계 자외선 안정제(분자량 225 g/mol, 융점 128~133 ℃)
* (C-3) UV360(BASF社): 벤조트리아졸계 자외선 안정제(분자량 658.9 g/mol, 융점 195~198 ℃)
* (C-4) SONGSORB 7120 (Songwon社): 벤조에이트계 자외선 안정제(분자량 438.6 g/mol, 융점 197 ℃)
* (C-5) SEESORB 105 (Shipro Kasei Kaisha): 벤조페논계 자외선 안정제(분자량 304.3 g/mol, 융점 122 ℃)
* (D-1) UV770(BASF社): NH 타입 HALS계 자외선 안정제(분자량 480 g/mol, 융점 82~85 ℃)
* (D-2) Chimassorb994(BASF社): NH 타입 HALS계 자외선 안정제(분자량 2000~3100 g/mol, 융점 100~135 ℃)
* 첨가제
- 열안정제: 옥타데실-3-(3,5-디-t-부틸-4-하이드록시페닐)-프로피오네이트
- 활제: 에틸렌 비스 스테아르아마이드
실시예 1 내지 11 및 비교예 1 내지 9
각각 하기 표 1 및 2에 기재된 성분 및 함량과 함께 열안정제 0.3 중량부 및 활제 0.3 중량부를 이축 압출기에 투입하고 230 ℃ 및 150 rpm 하에 용융혼련 및 압출하여 펠렛을 제조하였다. 제조된 펠렛으로 사출기로 성형온도 220 ℃에서 사출하여 물성 측정용 시편을 제작하였다.
또한, 제조된 펠렛으로 T-다이 압출기(한국이엠社의 ST32HS (Twin screw, 32Τ, L/D=44))를 이용하여 압출 스크류 속도 150 rpm, 온도 210 ℃, 3축의 롤 온도 80 ℃, 롤 회전 속도 1.5 m/min으로 하여 두께 0.15 mm인 시트를 제작하여 물성을 측정하였다.
[시험예]
상기 실시예 1 내지 11 및 비교예 1 내지 9에서 제조된 펠렛 또는 시편의 특성을 하기의 방법으로 측정하였고, 그 결과를 하기의 표 1 및 2에 나타내었다.
측정방법
* (a-1) 그라프트 공중합체의 알킬 아크릴레이트 커버리지 값(X값, 중량%): 하기 수학식 1로 산출하였다.
[수학식 1]
X = {(G-Y)/Y} * 100
(상기 수학식 1에서, G는 그라프트 공중합체 총 중량에 대하여 겔 함량(중량%), Y는 그라프트 공중합체 총 중량에 대하여 겔 내 알킬 아크릴레이트의 함량(중량%)을 나타낸다.)
여기에서 겔 내 알킬 아크릴레이트의 함량은 1NMR 분석기 또는 FT-IR을 이용하여 정량적으로 측정하였다. 구체적인 측정 조건은 하기와 같다.
1H NMR
- 장비명: Bruker 600MHz NMR(AVANCE III HD) CPP BB(1H 19F tunable and broadband, with z-gradient) Prodigy Probe
- 측정조건: 1H NMR(zg30): ns=32, d1=5s, TCE-d2, at room temp.
FT-IR
- 장비명: Agilent Cary 66
- 측정조건: ATR mode
* 겔 함량(%): 그라프트 공중합체 1 g을 아세톤 30 ml에 가한 후 상온에서 12시간 동안 교반기(Orbital Shaker, 장비명: Lab companion SKC-6075)로 210 rpm으로 12시간 교반하고 이를 원심분리기(한일과학사의 Supra R30)를 이용하여 0 ℃에서 18,000 rpm으로 3시간 동안 원심분리하여 아세톤에 녹지 않은 불용분만을 채취하여 오븐((Forced Convection Oven; 장비명: Lab companion OF-12GW)으로 85 ℃에서 12시간 동안 강제 순환 건조방식으로 건조시킨 후 무게를 측정하여, 하기 수학식 2로 산출하였다.
[수학식 2]
겔 함량(%) = [불용분(겔)의 무게(g)/시료의 무게(g)] * 100
* 그라프트율(%): 그라프트 공중합체 건조 분말 0.5 g을 아세톤 50 ml에 가한 후 상온에서 12시간 동안 교반하고 이를 원심분리하여 아세톤에 녹지 않은 불용분만을 채취하여 12시간 동안 건조시킨 후 무게를 측정하여, 하기 수학식 3으로 산출하였다.
[수학식 3]
그라프트율(%)=[그라프트된 단량체의 중량(g)/고무질 중량(g)] * 100
(상기 수학식 3에서 그라프트된 단량체의 중량(g)은 그라프트 공중합체를 아세톤에 용해시키고 원심 분리한 후의 불용성 물질(gel)의 중량에서 고무질 중량(g)을 뺀 중량이고, 고무질 중량(g)은 그라프트 공중합체 분말 중 이론상 투입된 고무질 성분의 중량(g)이다.)
구체적으로, 상기 불용성 물질(gel)의 무게는 그라프트 공중합체 건조 분말 0.5 g을 아세톤 50 ml에 가한 후 상온에서 교반기(Orbital Shaker, 장비명: Lab companion SKC-6075)로 210 rpm으로 12시간 교반하고 이를 원심분리기(한일과학사의 Supra R30)를 이용하여 0 ℃에서 18,000 rpm으로 3시간 동안 원심분리하여 아세톤에 녹지 않은 불용분만을 채취하여 오븐((Forced Convection Oven; 장비명: Lab companion OF-12GW)으로 85 ℃에서 12시간 동안 강제 순환 건조방식으로 건조시킨 후 무게를 측정하였다.
* 헤이즈(%): ASTM D1003에 의거하여 두께 0.15 mm인 시트의 헤이즈를 측정하였다.
* 전광선 투과율(%): ASTM D1003에 의거하여 두께 0.15 mm인 시트의 전광선 투과율을 측정하였다.
* 경시 변화(△E): 워더로미터(whetherometer)로 ASTM G155-1에 의거하여 두께 3 mm인 사출시편을 각각 4,000 시간 및 8,000 시간 동안 방치한 후, 색차계로 각각의 변색 정도를 측정하여 하기 수학식 4로 경시 변화(△E)를 산출하였다.
[수학식 4]
Figure PCTKR2023012324-appb-img-000005
(상기 수학식 4에서, L', a' 및 b'은 시편을 방치 후에 CIE LAB 색 좌표계로 각각 측정한 L, a 및 b 값이고, L0, a0, b0은 방치 전에 CIE LAB 색 좌표계로 각각 측정한 L, a 및 b 값이다.)
* 내백화성: 두께 0.15 mm이고 10 cm * 10 cm인 시트를 손으로 MD 방향(Machined direction) 및 TD 방향(Traverse direction)으로 접어서 절곡면에서 백화 발생을 육안으로 관찰하여 하기 기준으로 평가하였다.
○: 백화 미발생
△: 백화 발생이 보통
X: 백화 발생이 많음
* 인장강도(kgf/cm2) 및 신율(%): 두께 0.15 mm인 시트의 길이 방향(Machine direction; MD) 및 폭 방향(transverse direction; TD) 각각에 대하여 ASTM D412에 의거하여 인장속도 10 mm/min인 조건 하에 측정하였다.
* 인열강도(kgf/cm): 두께 0.15 mm인 시트의 길이 방향(Machine direction; MD) 및 폭 방향(transverse direction; TD) 각각에 대하여 ASTM D624에 의거하여 인장속도 10 mm/min인 조건 하에 측정하였다.
구 분 실 시 예
1 2 3 4 5 6 7 8 9 10 11
(a-1-1) ASA 70 60 70 70 70 70 70
(a-2) ASA 25 15
(a-3) ASAS 60 15
(a-1-2) ASA 70
(b-1) PMMA 30 30 30 30 30 75 40 35 30 30 30
(b-2) SAMMA 10 35
(C-1) UV234 1.5 2.0 1 2.5 1.5 1.5 1.5 1.5 1.5
(C-4) SONGSORB 7120 1.5
(C-5) SEESORB 105 1.5
(D-1) UV770 1.0 0.7 0.7 0.7 1.5 1.0 1.0 1.0 1.0 1.0 1.0
(a-1) ASA의
X값(중량%)
99 99 99 99 99 - - - 77 99 99
(a-1) ASA의
그라프트율(%)
77 77 77 77 77 - - - 65 77 77
물 성
전광선 투과율
(%)
91.4 90.9 91.4 91.1 91.2 86.7 88.8 84.3 89.8 90.9 89.2
헤이즈(%) 5.6 4.2 5.0 5.8 5.5 7.5 6.2 9.7 7.8 4.7 8.1
내백화성 X X X
4,000 hr 후
경시변화(△E)
1.07 0.98 1.25 1.21 0.98 0.93 1.28 1.46 1.17 1.92 1.70
8,000 hr 후
경시변화(△E)
1.79 1.56 2.57 2.41 1.52 1.18 2.01 2.64 1.93 2.69 2.51
인장강도(MD, kgf/cm2) 305 327 311 301 312 552 323 448 346 304 308
신율(MD, %) 70 46 68 72 69 10 32 15 44 72 65
인열강도(MD, kgf/cm) 82 76 73 69 82 122 73 101 83 79 82
인장강도(TD, kgf/cm2) 250 259 249 245 248 483 267 396 236 250 248
신율(TD, %) 62 44 64 63 65 16 23 14 43 67 59
인열강도(TD, kgf/cm) 66 66 64 65 67 80 58 90 76 68 65
구분 비교예
1 2 3 4 5 6 7 8 9
(a-1-1) ASA 70 70 70 70 70 70 70 70 70
(a-2) ASA
(a-3) ASA
(a-1-2) ASA
(b-1) PMMA 30 30 30 30 30 30 30 30 30
(b-2) SAMMA
(C-1) UV234 2.5 1.5 1.5 4.5 0.1 1.5 1.5
(C-2) UV-P 1.5
(C-3) UV360 1.5
(D-1) UV770 0.5 1.0 1.0 1.0 1.0 3.0 0.1
(D-2) Chimassorb994 1.0 0.5
(a-1) ASA의 X값(중량%) 99 99 99 99 99 99 99 99 99
(a-1) ASA의 그라프트율(%) 77 77 77 77 77 77 77 77 77
물성
전광선 투과율
(%)
91.5 91.3 91.3 91.3 91.2 85.4 91.3 86.7 91.5
헤이즈(%) 5.5 3.3 3.4 3.2 3.7 12.7 5.5 11.3 5.3
내백화성
4,000 hr 후
경시 변화(△E)
0.90 4.21 3.22 3.08 4.06 3.78 4.47 2.25 1.59
8,000 hr 후
경시 변화(△E)
6.73 6.78 4.87 4.69 6.42 4.51 6.55 4.19 6.02
인장강도(MD, kgf/cm2) 299 257 300 300 302 301 309 293 298
신율(MD, %) 65 59 69 70 69 72 60 73 66
인열강도
(MD, kgf/cm)
62 75 70 70 73 73 75 70 79
인장강도
(TD, kgf/cm2)
238 215 245 240 242 244 241 235 240
신율(TD, %) 52 49 65 63 66 68 63 68 59
인열강도
(TD, kgf/cm)
63 63 62 63 57 69 67 62 62
(상기 표 1 및 2에서 (a-1-1), (a-2), (a-3), (a-1-2), (b-1) 및 (b-2)의 각 함량은 이들 총 중량을 기준으로 한 중량%이며, (C-1), (C-2), (C-3), (C-4), (C-5), (D-1) 및 (D-2)의 각 함량은 상기 (a-1-1), (a-2), (a-3), (a-1-2), (b-1) 및 (b-2)의 총 중량 100 중량부를 기준으로 한 중량부이다.)
상기 표 1 내지 2에 나타낸 바와 같이, 본 발명에 따라 제조된 실시예 1 내지 11의 열가소성 수지 조성물은 본 발명의 범위를 벗어난 비교예 1 내지 9 대비, 전광선 투과율 및 헤이즈가 동등 이상이면서 4,000 시간 방치 후 경시 변화(△E), 특히 8,000 시간 방치 후 경시 변화(△E)가 감소되어 색상 안정성이 매우 뛰어나고 인장강도, 신율 및 인열강도는 유사 내지 동등 이상인 효과를 확인할 수 있었다. 여기에서, (a-1-1) ASA 그라프트 공중합체를 포함한 실시예 1 내지 5, 10, 11 및 (a-1-2) ASA 그라프트 공중합체를 포함한 실시예 9는 절곡 가공 시 백화 발생이 감소된 효과가 있었다. 또한, (C-1) 벤조트리아졸계 자외선 안정제를 포함한 실시예 1 내지 9은 4,000 시간 방치 후 경시 변화(△E) 및 8,000 시간 방치 후 경시 변화(△E)가 보다 적었다.
구체적으로, (D-1) UV770을 포함하지 않은 비교예 1은 8000 시간 방치 후 경시 변화(△E)가 커졌고, (D-1) UV770 대신 (D-2) Chimassorb994를 포함한 비교예 2, (D-2) Chimassorb994를 포함하고 (D-1) UV770을 소량으로 포함한 비교예 3, 및 (C-1) UV234 대신 (C-2) UV-P 및 (C-3) UV360을 각각 포함한 비교예 4 및 5는 4000 시간 및 8000 시간 방치 후 경시 변화(△E)가 모두 열악하였다.
또한, (C-1) UV234의 함량이 본 발명의 범위를 벗어난 비교예 6 및 7은 4000 시간 및 8000 시간 방치 후 경시 변화(△E)가 모두 열악하고, 비교예 6은 헤이즈까지 불량하고 시트 가공 시 다이 입구 및 시트에 디포지트가 발생되었다.
또한, (D-1) UV770를 과량으로 포함한 비교예 8은 헤이즈, 및 4000 시간 및 8000 시간 방치 후 경시 변화(△E)가 모두 열악할뿐 아니라 시트 가공 시 다이 입구 및 시트에 디포지트가 발생되고, (D-1) UV770를 소량으로 포함한 비교예 9는 8000 시간 방치 후 경시 변화(△E)가 컸다.
결론적으로, 본 발명에 따라 소정 평균입경을 갖는 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 3종 중 1종 이상, 및 (메트)아크릴산 알킬 에스테르 중합체 및 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체 중 1종 이상을 포함하는 기본 수지에 소정 분자량을 갖고, 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상 및 NH 타입 HALS계 자외선 안정제를 소정 함량비로 포함하는 열가소성 수지 조성물은, 기계적 물성, 투명성 및 내후성이 우수하면서 우수한 내후성에 따라 경시 변화가 감소되어 색상 안정성이 뛰어나고 미려한 외관을 갖는 효과를 확인할 수 있었다. 나아가 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체의 알킬 아크릴레이트 커버리지 값을 소정 범위 내로 조정하면, 절곡 가공 시 백화 발생이 감소되는 효과도 얻을 수 있었다.

Claims (16)

  1. (A) (a-1) 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, (a-2) 평균입경 150 내지 600 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, 및 (a-3) 평균입경 80 nm 이상 내지 150 nm 미만인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체로 이루어진 군으로부터 선택된 1종 이상, 및 (B) (b-1) (메트)아크릴산 알킬 에스테르 중합체 및 (b-2) (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는 기본 수지 100 중량부;
    (C) 분자량이 280 내지 600 g/mol이고, 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상 0.5 내지 3.5 중량부; 및
    (D) 분자량이 300 내지 700 g/mol인 NH 타입 HALS계 자외선 안정제 0.6 중량부 초과 내지 2 중량부 이하;를 포함하고,
    상기 (a-1) 그라프트 공중합체는 하기 화학식 1로 계산한 알킬 아크릴레이트 커버리지(X) 값이 65 중량% 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
    [수학식 1]
    X = {(G-Y)/Y} * 100
    (상기 수학식 1에서, G는 그라프트 공중합체 총 중량에 대하여 겔 함량(중량%), Y는 그라프트 공중합체 총 중량에 대하여 겔 내 알킬 아크릴레이트의 함량(중량%)을 나타낸다.)
  2. 제1항에 있어서,
    상기 (C) 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상은 융점이 100 내지 200 ℃인 것을 특징으로 하는
    열가소성 수지 조성물.
  3. 제1항에 있어서,
    상기 벤조트리아졸계 자외선 안정제는 2-(2H-벤조트리아졸-2-일)-4,6-비스(1-메틸-1-페닐에틸)페놀(2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol; UV234), 및 2-[2-하이드록시-3-디메틸벤질페닐-5-(1,1,3,3-테트라메틸부틸)]-2H-벤조트리아졸(2-[2-hydroxy-3-dimethylbenzylphenyl-5-(1,1,3,3-tertamethylbutyl)]-2H-benzotriazole)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  4. 제1항에 있어서,
    상기 벤조에이트계 자외선 안정제는 2,4-디-터트-부틸페닐 3,5-디-터트-부틸-4-하이드록시벤조에이트(2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate), 헥사데실 3,5-디-터트-부틸-4-하이드록시벤조에이트(Hexadecyl 3,5-di-tert-butyl-4- hydroxybenzoate), 또는 이들의 혼합인 것을 특징으로 하는
    열가소성 수지 조성물.
  5. 제1항에 있어서,
    상기 벤조페논계 자외선 안정제는 2-하이드록시-4-옥토시벤조페논(2-Hydroxy-4-octoxybenzophenone), 4-벤질옥시-2-하이드록시벤조페논(4-benzyloxy-2-hydroxybenzophenone), 2-하이드록시-4-메톡시벤조페논-5-술폰산(2-Hydroxy-4-methoxybenzophenone-5-sulfonic acid), 2,2'-디하이드록시-4,4'-디메톡시벤조페논-5,5'-디술폰산(2,2'-Dihydroxy-4,4'-Dimethoxybenzophenone-5,5'-Disulfonic Acid), 및 2,2'-디하이드록시-4,4'-디메톡시벤조페논-5,5'-디술폰산 디소듐 염(2,2'-Dihydroxy-4,4'-Dimethoxybenzophenone-5,5'-Disulfonic Acid Disodium Salt)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  6. 제1항에 있어서,
    상기 (D) NH 타입의 HALS계 자외선 안정제는 융점이 60 내지 120 ℃인 것을 특징으로 하는
    열가소성 수지 조성물.
  7. 제1항에 있어서,
    상기 (D) NH 타입 HALS계 자외선 안정제는 비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이트) 및 비스(1,2,2,6,6-펜타메틸-4-피페리딜)세바케이트로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  8. 제1항에 있어서,
    상기 (a-1) 그라프트 공중합체는 이의 총 중량에 대하여 알킬 아크릴레이트 고무 20 내지 60 중량% 및 이를 감싸는 방향족 비닐 화합물-비닐시안 화합물 공중합체 40 내지 80 중량%를 포함하여 이루어진 것을 특징으로 하는
    열가소성 수지 조성물.
  9. 제1항에 있어서,
    상기 (a-1) 그라프트 공중합체, (a-2) 그라프트 공중합체, 및 (a-3) 그라프트 공중합체의 중량의 합은 기본 수지 총 중량에 대하여 15 내지 80 중량%인 것을 특징으로 하는
    열가소성 수지 조성물.
  10. 제1항에 있어서,
    상기 (b-1) 중합체 및 (b-2) 공중합체의 중량의 합은 기본 수지 총 중량에 대하여 20 내지 85 중량%인 것을 특징으로 하는
    열가소성 수지 조성물.
  11. 제1항에 있어서,
    상기 (b-1) (메트)아크릴산 알킬 에스테르 중합체는 (메트)아크릴산 메틸 에스테르, (메트)아크릴산 에틸 에스테르, (메트)아크릴산 프로필 에스테르, (메트)아크릴산 2-에틸 헥실 에스테르, (메트)아크릴산 데실 에스테르, 및 (메트)아크릴산 라우릴 에스테르로 이루어지는 군으로부터 선택되는 1종 이상을 포함하여 이루어진 것을 특징으로 하는
    열가소성 수지 조성물.
  12. 제1항에 있어서,
    상기 (b-2) 공중합체는 알킬 (메트)아크릴레이트 60 내지 85 중량%, 방향족 비닐 화합물 10 내지 35 중량%, 및 비닐시안 화합물 1 내지 20 중량%를 포함하여 이루어진 것을 특징으로 하는
    열가소성 수지 조성물.
  13. 제1항에 있어서,
    상기 (b-1) 중합체 및 (b-2) 공중합체는 각각 중량평균 분자량이 50,000 내지 150,000 g/mol인 것을 특징으로 하는
    열가소성 수지 조성물.
  14. 제1항에 있어서,
    상기 열가소성 수지 조성물은 워더로미터(whetherometer)로 ASTM G155-1에 의거하여 두께 3 mm인 사출시편을 8,000 시간 동안 방치한 후, 색차계로 변색 정도를 측정하여 하기 수학식 4로 산출한 경시 변화(△E)가 3 이하인 것을 특징으로 하는
    열가소성 수지 조성물.
    [수학식 4]
    Figure PCTKR2023012324-appb-img-000006
    (상기 수학식 4에서, L', a' 및 b'은 시편을 방치 후에 CIE LAB 색 좌표계로 각각 측정한 L, a 및 b 값이고, L0, a0, b0은 방치 전에 CIE LAB 색 좌표계로 각각 측정한 L, a 및 b 값이다.)
  15. (A) (a-1) 평균입경 50 내지 120 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, (a-2) 평균입경 150 내지 600 nm인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체, 및 (a-3) 평균입경 80 nm 이상 내지 150 nm 미만인 알킬 아크릴레이트 고무를 포함하는 알킬 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체로 이루어진 군으로부터 선택된 1종 이상, 및 (B) (b-1) (메트)아크릴산 알킬 에스테르 중합체 및 (b-2) (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는 기본 수지 100 중량부; (C) 분자량이 280 내지 600 g/mol이고, 벤조트리아졸계 자외선 안정제, 벤조에이트계 자외선 안정제 및 벤조페논계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상 0.5 내지 3.5 중량부; 및 (D) 분자량이 300 내지 700 g/mol인 NH 타입 HALS계 자외선 안정제 0.6 중량부 초과 내지 2 중량부 이하;를 포함하여 200 내지 300 ℃ 및 100 내지 500 rpm 조건 하에 혼련 및 압출하는 단계;를 포함하되,
    상기 (a-1) 그라프트 공중합체는 하기 화학식 1로 계산한 알킬 아크릴레이트 커버리지(X) 값이 65 중량% 이상인 것을 특징으로 하는
    열가소성 수지 조성물의 제조방법.
    [수학식 1]
    X = {(G-Y)/Y} * 100
    (상기 수학식 1에서, G는 그라프트 공중합체 총 중량에 대하여 겔 함량(중량%), Y는 그라프트 공중합체 총 중량에 대하여 겔 내 알킬 아크릴레이트의 함량(중량%)을 나타낸다.)
  16. 제1항 내지 제14항 중 어느 한 항의 열가소성 수지 조성물을 포함하는 것을 특징으로 하는
    성형품.
PCT/KR2023/012324 2022-10-20 2023-08-21 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품 WO2024085404A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23869301.4A EP4397709A1 (en) 2022-10-20 2023-08-21 Thermoplastic resin composition, method for producing same, and molded article including same
CN202380013889.4A CN118234800A (zh) 2022-10-20 2023-08-21 热塑性树脂组合物、制备该组合物的方法和包含该组合物的模制品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0135356 2022-10-20
KR20220135356 2022-10-20
KR1020230108416A KR20240055631A (ko) 2022-10-20 2023-08-18 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR10-2023-0108416 2023-08-18

Publications (1)

Publication Number Publication Date
WO2024085404A1 true WO2024085404A1 (ko) 2024-04-25

Family

ID=90737757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012324 WO2024085404A1 (ko) 2022-10-20 2023-08-21 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품

Country Status (2)

Country Link
EP (1) EP4397709A1 (ko)
WO (1) WO2024085404A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056961A (ja) * 2004-08-19 2006-03-02 Nippon A & L Kk 熱可塑性樹脂組成物およびそれからなる樹脂成形品。
KR20080020994A (ko) * 2005-06-03 2008-03-06 테크노 폴리머 가부시키가이샤 열가소성 수지 및 그의 제조 방법 및 성형품
KR20090073702A (ko) * 2007-12-31 2009-07-03 제일모직주식회사 내스크래치성과 착색성이 우수한 고내후 열가소성 수지조성물
KR20190006027A (ko) * 2016-05-30 2019-01-16 스미또모 가가꾸 가부시키가이샤 수지 적층체, 표시 장치 및 편광판
KR20220106409A (ko) * 2021-01-22 2022-07-29 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR20220135356A (ko) 2021-03-30 2022-10-07 대영전기 주식회사 자동차 컴프레서용 균형추 제조방법 및 그로써 제조된 균형추
KR20230108416A (ko) 2022-01-11 2023-07-18 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056961A (ja) * 2004-08-19 2006-03-02 Nippon A & L Kk 熱可塑性樹脂組成物およびそれからなる樹脂成形品。
KR20080020994A (ko) * 2005-06-03 2008-03-06 테크노 폴리머 가부시키가이샤 열가소성 수지 및 그의 제조 방법 및 성형품
KR20090073702A (ko) * 2007-12-31 2009-07-03 제일모직주식회사 내스크래치성과 착색성이 우수한 고내후 열가소성 수지조성물
KR20190006027A (ko) * 2016-05-30 2019-01-16 스미또모 가가꾸 가부시키가이샤 수지 적층체, 표시 장치 및 편광판
KR20220106409A (ko) * 2021-01-22 2022-07-29 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR20220135356A (ko) 2021-03-30 2022-10-07 대영전기 주식회사 자동차 컴프레서용 균형추 제조방법 및 그로써 제조된 균형추
KR20230108416A (ko) 2022-01-11 2023-07-18 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광소자

Also Published As

Publication number Publication date
EP4397709A1 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022019581A1 (ko) 열가소성 수지 및 이의 제조방법
WO2020091370A1 (ko) 열가소성 수지 조성물
WO2020032505A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 이를 포함하는 열가소성 수지 성형품
WO2018004288A2 (ko) 폴리에스테르 다층필름
WO2019151776A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 열가소성 수지 성형품
WO2019059664A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 열가소성 수지 성형품
WO2023055099A1 (ko) 열가소성 수지 및 이로부터 제조된 성형품
WO2022158709A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022158720A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2024085404A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2024085398A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022035071A1 (ko) 투명 열가소성 수지 및 이의 제조방법
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2020080735A1 (ko) 그라프트 공중합체 분말의 제조방법
WO2020159086A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2020050544A1 (ko) 그라프트 공중합체의 제조방법 및 그라프트 공중합체
WO2022085998A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022158708A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2021246851A1 (ko) 폴리에스테르 이형 필름 및 이의 제조 방법
WO2022019411A1 (ko) 열가소성 수지 조성물 및 이의 성형품
WO2022019410A1 (ko) 열가소성 수지 조성물 및 이의 성형품
WO2020091336A1 (ko) 열가소성 수지 조성물
WO2022124817A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023869301

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202417028314

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2023869301

Country of ref document: EP

Effective date: 20240404

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869301

Country of ref document: EP

Kind code of ref document: A1