WO2024084968A1 - エポキシ樹脂組成物 - Google Patents

エポキシ樹脂組成物 Download PDF

Info

Publication number
WO2024084968A1
WO2024084968A1 PCT/JP2023/036177 JP2023036177W WO2024084968A1 WO 2024084968 A1 WO2024084968 A1 WO 2024084968A1 JP 2023036177 W JP2023036177 W JP 2023036177W WO 2024084968 A1 WO2024084968 A1 WO 2024084968A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
group
formula
carbon atoms
resin composition
Prior art date
Application number
PCT/JP2023/036177
Other languages
English (en)
French (fr)
Inventor
大輔 野田
秀夫 中川
真治 入船
美由紀 原田
Original Assignee
信越化学工業株式会社
学校法人 関西大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社, 学校法人 関西大学 filed Critical 信越化学工業株式会社
Publication of WO2024084968A1 publication Critical patent/WO2024084968A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin composition.
  • Epoxy resins are used in a variety of fields due to their excellent mechanical strength, electrical insulation, heat resistance, chemical resistance, water resistance, low shrinkage, and adhesive properties. In recent years, performance requirements for epoxy resins have increased, and development is underway to address the issue of epoxy resins' low toughness (Patent Documents 1 to 4).
  • Epoxy-modified silicone is a polyorganosiloxane that contains the reactive epoxy group, and is used in applications such as resin modifiers, fiber treatment agents, and paint additives that take advantage of this reactivity. It is also expected to have the effect of imparting flexibility, a characteristic of silicone, but when epoxy-modified silicone is added to epoxy resin, there is an issue that it is poorly compatible with other polar compounds such as hardeners, leading to separation.
  • Patent Document 5 describes an epoxy resin having a mesogenic group, and reports that it has excellent workability and excellent mechanical, thermal, and chemical properties. However, it was not clear how the physical properties would change when the epoxy resin having a mesogenic group was mixed with a general epoxy resin such as a bisphenol-type epoxy resin.
  • the effect of adding an epoxy resin having a mesogenic group has not been examined in detail.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an epoxy resin composition containing a polyorganosiloxane having a mesogenic group.
  • the present invention provides an epoxy resin composition
  • an epoxy resin composition comprising: (A) an epoxy resin containing two or more epoxy groups in one molecule: 100 parts by mass, (B) a mesogen group-containing polyorganosiloxane represented by the following formula (1): 5 to 20 parts by mass, (C) An epoxy resin composition comprising an epoxy resin curing agent: 1 to 20 parts by mass.
  • R 1 's each independently represent a group selected from an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms, or a hydroxyl group;
  • p represents a repeating unit of a siloxane structure and is an integer of 0 to 100;
  • R 2 's each independently represent the following formula (2) or formula (3):
  • R 3 and R 4 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • L is a linking group to the formula (1) and is a divalent hydrocarbon group having 1 to 12 carbon atoms
  • a and b each represent the number of substituents of the phenyl group in the formula (2) and the formula (3) and are integers of 0 to 4
  • G is a glycidyl group.
  • Such an epoxy resin composition will have excellent tensile shear strength and breaking elongation when cured.
  • the number average molecular weight of the mesogenic group-containing polyorganosiloxane represented by formula (1) is 500 to 100,000, calculated using polystyrene as a standard substance.
  • the epoxy groups at both ends will react with the curing agent, resulting in a molecular weight sufficient to produce a cured product.
  • the epoxy equivalent (g/mol) of the mesogen group-containing polyorganosiloxane represented by formula (1) is 300 to 5,000 g/mol.
  • the mesogen group-containing polyorganosiloxane represented by formula (1) contains hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in a total amount of 3,000 ppm or less.
  • the (A) epoxy resin is a bisphenol type epoxy resin.
  • Such an epoxy resin composition can enhance the properties of the various selected bisphenol-type epoxy resins used, resulting in an epoxy resin composition that can increase both the elongation properties and tensile shear strength compared to when the bisphenol-type epoxy resin is used alone.
  • the (C) epoxy resin curing agent is an amine-based curing agent.
  • Such an epoxy resin composition provides good curing properties.
  • the composition further contains a filler (D).
  • Such an epoxy resin composition can reinforce the mechanical strength.
  • the present invention relates to an epoxy resin composition containing a polyorganosiloxane, and a cured product obtained by reacting and curing the composition. More specifically, the present invention relates to an epoxy resin composition containing a polyorganosiloxane having epoxy groups at both ends and a mesogen group in the main chain, and a cured product obtained by reacting and curing the composition.
  • the epoxy resin composition of the present invention is highly useful because, due to its specific structure and formulation, it improves toughness when a cured product is produced, and also exhibits good adhesive strength when a cured product is produced between substrates.
  • an epoxy resin composition with a specific structure and formulation is highly useful because it improves toughness when a cured product is produced, and also shows good adhesive strength when a cured product is produced between substrates, leading to the completion of the present invention.
  • the present invention provides an epoxy resin composition, (A) an epoxy resin containing two or more epoxy groups in one molecule: 100 parts by mass, (B) a mesogen group-containing polyorganosiloxane represented by the following formula (1): 5 to 20 parts by mass, (C) An epoxy resin composition containing an epoxy resin curing agent: 1 to 20 parts by mass.
  • R 1 's each independently represent a group selected from an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms, or a hydroxyl group;
  • p represents a repeating unit of a siloxane structure and is an integer of 0 to 100;
  • R 2 's each independently represent the following formula (2) or formula (3):
  • R 3 and R 4 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • L is a linking group to the formula (1) and is a divalent hydrocarbon group having 1 to 12 carbon atoms
  • a and b each represent the number of substituents of the phenyl group in the formula (2) and the formula (3) and are integers of 0 to 4
  • G is a glycidyl group.
  • the epoxy resin composition of the present invention is an epoxy resin composition comprising (A) an epoxy resin, (B) a mesogen group-containing polyorganosiloxane, and (C) an epoxy resin curing agent, in which the amount of component (B) is 5 to 20 parts by mass per 100 parts by mass of component (A).
  • the present invention will be described in detail below, but the present invention is not limited thereto.
  • the epoxy resin (A) containing two or more epoxy groups in one molecule in the present invention may be a known epoxy resin, and is not particularly limited.
  • the epoxy resin include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin; alicyclic epoxy resins such as dicyclopentadiene type epoxy resin and 3,4-epoxycyclohexenylmethyl-3',4'-epoxycyclohexenecarboxylate; polyfunctional phenol type epoxy resins such as resorcinol type epoxy resin; stilbene type epoxy resin, triazine skeleton-containing epoxy resin, fluorene skeleton-containing epoxy resin, triphenol alkane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene type epoxy resin, and diglycidyl ether compounds of polycyclic aromatics such as anthracene.
  • the epoxy equivalent of (A) epoxy resin is not particularly limited, but from the viewpoint of pot life after mixing and strength of the cured product, it is preferably 50 to 5,000 g/eq, calculated per solid content, and more preferably 75 to 2,500 g/eq.
  • the properties of the epoxy resin are not particularly limited, but it is preferable that it is liquid at 25°C. If it is liquid, its viscosity is preferably 10 to 100,000 mPa ⁇ s, and more preferably 20 to 50,000 mPa ⁇ s. The viscosity is measured at 25°C using a B-type viscometer as described in JIS K7117-1:1999.
  • component (A) of the present invention does not have an organosiloxy group in the molecule. In this respect, it differs from component (B) described below.
  • the component (B) in the present invention is a mesogen group-containing polyorganosiloxane represented by the following formula (1).
  • R1 's each independently represent a group selected from an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms, or a hydroxyl group;
  • p represents a repeating unit of a siloxane structure and is an integer of 0 to 100; and
  • R2 's each independently represent the following formula (2) or formula (3).
  • R 1 is, independently of one another, a group selected from an alkyl group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, an aryl group having 6 to 12 carbon atoms, preferably 6 to 9 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms, preferably 7 to 10 carbon atoms, or a hydroxyl group.
  • linear or branched alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, n-nonyl, and n-decyl; cycloalkyl groups such as cyclohexyl; aryl groups such as phenyl and naphthyl; and aralkyl groups such as benzyl. Of these, a methyl group or a phenyl group is preferred.
  • R 2 is each independently the following formula (2) or (3).
  • R3 and R4 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • L is a linking group to the formula (1) and is a divalent hydrocarbon group having 1 to 12 carbon atoms
  • a and b each represent the number of substituents of the phenyl group in the formula (2) and the formula (3) and are integers of 0 to 4
  • G is a glycidyl group.
  • R 3 and R 4 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • the monovalent hydrocarbon group having 1 to 10 carbon atoms is a group selected from an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 7 to 10 carbon atoms, specific examples of which are as described above.
  • a and b represent the number of substituents on the phenyl group in formulas (2) and (3) and are integers from 0 to 4.
  • G in formulas (2) and (3) is a glycidyl group (2,3-epoxypropyl group).
  • L in formulas (2) and (3) is a linking group to formula (1) and is a divalent hydrocarbon group having 1 to 12 carbon atoms.
  • Divalent hydrocarbon groups include alkylene groups having 1 to 12 carbon atoms, arylene groups having 6 to 12 carbon atoms, and aralkylene groups having 7 to 12 carbon atoms.
  • the alkylene group having 1 to 12 carbon atoms may be linear, branched, or cyclic, and specific examples include linear or branched alkylene groups such as n-pentylene, n-hexylene, n-heptylene, n-octylene, 2-ethylhexylene, n-decylene, n-undecylene, and n-dodecylene.
  • the alkylene group may have one or more ether bonds in the middle of the molecular chain. Specifically, it is a group containing an ether bond, such as an ethyleneoxy group, a propyleneoxy group, or a butyleneoxy group, and may have multiple ether bonds.
  • arylene groups having 6 to 12 carbon atoms include o-phenylene groups, m-phenylene groups, p-phenylene groups, 3,5-tolylene groups, 2,4-tolylene groups, 2,6-tolylene groups, 1,2-naphthylene groups, 1,8-naphthylene groups, 2,3-naphthylene groups, and 4,4'-biphenylene groups.
  • Examples of aralkylene groups having 7 to 12 carbon atoms include o-xylylene groups, m-xylylene groups, and p-xylylene groups.
  • R2 in the above formula (1) is more preferably the following formula (4).
  • c represents the number of carbon atoms in the linking group to the siloxane skeleton and is an integer of 0 to 6, and the dotted line represents the linking point to formula (1).
  • R 3 , R 4 , a, and b are the same as above.
  • the mesogen group-containing polyorganosiloxane (B) in the present invention preferably has a number average molecular weight of 500 to 100,000, more preferably 500 to 50,000, and even more preferably 500 to 20,000. Within this range, the epoxy groups at both ends react with the curing agent, resulting in a molecular weight sufficient to obtain a cured product.
  • the number average molecular weight refers to the number average molecular weight calculated using polystyrene standard substances in gel permeation chromatography (GPC) measurements under the following measurement conditions.
  • the mesogenic group-containing polyorganosiloxane (B) in the present invention preferably has an epoxy equivalent (g/mol) of 300 to 5,000 g/mol, more preferably 400 to 2,500 g/mol. Within this range, the epoxy groups at both ends will react with the epoxy resin curing agent (C) described below, and the amount will be sufficient to obtain a cured product with good physical properties.
  • the epoxy equivalent (g/mol) can be calculated by adding hydrochloric acid to a specified mass of sample dissolved in 1,4-dioxane and back titrating with an aqueous sodium hydroxide solution.
  • component (B) it is preferable to use hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in a total amount of more than 0 ppm and 3,000 ppm or less, more preferably 0.1 to 2,000 ppm, and even more preferably 0.1 to 1,000 ppm.
  • D3 hexamethylcyclotrisiloxane
  • D4 octamethylcyclotetrasiloxane
  • D5 decamethylcyclopentasiloxane
  • D6 dodecamethylcyclohexasiloxane
  • the amount of the low molecular weight cyclic siloxanes (D3 to D6) is a value quantified by gas chromatography (GC) using a sample in which component (B) is extracted and diluted with an organic solvent.
  • GC gas chromatography
  • the above-mentioned "greater than 0 ppm” is considered to be “greater than 0 ppm” if even a slight peak is detected when quantified using the above-mentioned method.
  • the epoxy resin curing agent (C) in the present invention may be any known curing agent capable of reacting with and curing an epoxy resin. This curing agent is added to react reactive functional groups (amino groups, phenolic hydroxyl groups, acid anhydride groups, mercapto groups, etc.) in the curing agent molecule with epoxy groups in components (A) and (B) to form a cured product with a three-dimensional crosslinked structure.
  • reactive functional groups amino groups, phenolic hydroxyl groups, acid anhydride groups, mercapto groups, etc.
  • component (C) examples include amine-based curing agents, phenol-based curing agents, acid anhydride-based curing agents, and thiol-based curing agents.
  • amine-based curing agents are preferred, and examples of amine-based curing agents include aromatic polyamines, aliphatic polyamines, polyamidoamines, and polyether polyamines. Aromatic polyamines are even more preferred.
  • the aromatic polyamines include compounds represented by the following formulas (I) to (IV).
  • R are each independently a hydrogen atom or a monovalent alkyl group having 1 to 6 carbon atoms
  • R' are each independently a hydrogen atom, a monovalent alkyl group having 1 to 12 carbon atoms, a phenyl group, or an aminophenyl group, and two R' may be bonded to form a ring structure.
  • aromatic polyamines include aromatic diaminodiphenylmethane compounds such as 4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 3,3',5,5'-tetramethyl-4,4'-diaminodiphenylmethane, 3,3',5,5'-tetraethyl-4,4'-diaminodiphenylmethane, 2,4-diaminotoluene, 1,4-diaminobenzene, 1,3-diaminobenzene, etc. These can be used alone or in combination of two or more.
  • the amount of component (A) when the amount of component (A) is 100 parts by mass, the amount of component (B) is 5 to 20 parts by mass, preferably 10 to 20 parts by mass, and the amount of component (C) is 1 to 20 parts by mass, preferably 1 to 10 parts by mass. If the amount of component (B) or component (C) exceeds 20 parts by mass, the strength of the cured epoxy resin decreases, and sufficient adhesive strength cannot be obtained. In addition, the Tg decreases, and the heat resistance also decreases. If the amount of component (B) is less than 5 parts by mass, the desired effect of adding component (B) is reduced. If the amount of component (C) is less than 1 part by mass, the desired effect of adding component (C) is reduced.
  • the epoxy resin composition of the present invention may further contain a filler (D).
  • a filler examples include silicas such as fused silica, crystalline silica, and cristobalite, and metal oxides such as aluminum oxide, titanium oxide, and magnesium oxide, and may be used alone or in combination of two or more. Among them, silicas are preferred from the viewpoint of availability and quality stability.
  • the average particle size is preferably 0.1 to 50 ⁇ m and can be selected depending on the application. The average particle size may be, for example, the volume average particle size measured by laser diffraction.
  • the filler is preferably surface-treated in advance with a coupling agent such as a silane coupling agent.
  • a coupling agent such as a silane coupling agent.
  • additives may be added to the epoxy resin composition of the present invention as necessary in accordance with the object of the present invention.
  • additives include reactive diluents, curing accelerators, flame retardants, ion trapping agents, antioxidants, adhesion aids, colorants, and coupling agents.
  • the composition can be obtained by simultaneously mixing, stirring, dissolving and dispersing the (A), (B) and (C) components while subjecting them to a heat treatment.
  • the composition can be obtained by mixing, stirring, dissolving and dispersing the (A), (B) or (C) components while separately subjecting them to a heat treatment.
  • the (B) and (C) components are mixed, stirred, dissolved and dispersed while being heat treated, and then the (A) component is added to obtain a composition in which the (B) component is well dispersed.
  • component (D) and/or other additives may be added. They may be added to components (A), (B), and (C), and mixed, stirred, dissolved, and dispersed while being heated simultaneously or separately. Alternatively, components (B) and (C) may be mixed, stirred, dissolved, and dispersed while being heated, and then component (D) and/or other additives may be added simultaneously with component (A).
  • the curing conditions for the epoxy resin composition of the present invention are not particularly limited, but may be, for example, heating at a temperature of 60 to 200°C, preferably 80 to 180°C, for 30 minutes to 10 hours, preferably 1 to 5 hours. In order to efficiently carry out the reaction, heating may be carried out for the above-mentioned time periods, for example, in 1 to 5 stages from low to high temperatures.
  • Bisphenol A type epoxy resin jER828EL manufactured by Mitsubishi Chemical Corporation (Epoxy equivalent: 186 g/mol, viscosity: 13,000 mPa ⁇ s) (Hereinafter referred to as DGEBA.)
  • Amine-based curing agent 4,4'-diaminodiphenylmethane (N-H equivalent: 49.6 g/mol) manufactured by Tokyo Chemical Industry Co., Ltd. (Hereinafter referred to as DDM.)
  • Synthesis Example 1 Method for Synthesizing SM Epoxy Resin 360 mL of ethanol, 17.9 g (0.164 mol) of p-aminophenol, 20 g (0.164 mol) of 4-allyloxybenzaldehyde, and a small amount of zinc chloride were added to a glass reactor, and the mixture was reacted in an oil bath at 60°C for 4 hours. The mixture was then allowed to stand in a refrigerator for 2 hours, and the precipitated crystals were separated by filtration to obtain 27 g of 4-((4-allyloxy)benzylideneamino)phenol.
  • Example 1 The degassed DGEBA and the SM epoxy resin of Synthesis Example 1 were placed in an aluminum cup and heated on a hot plate at 130°C to reduce the viscosity. A chemically equivalent amount of DDM was then placed in the other aluminum cup and stirred on a hot plate at the same temperature until completely melted. The melted DDM was then added to the aluminum cup containing the DGEBA and the SM epoxy resin of Synthesis Example 1, and stirred for 5 minutes to prepare a composition. Thereafter, the aluminum cup containing the composition was heated and cured in three stages: at 120° C. for 2 hours, at 150° C. for 2 hours, and then at 180° C. for 2 hours. The temperature rise rate was 5° C./min. The blend amounts and physical properties of the cured product are shown in Table 1.
  • Example 4 The SM epoxy resin of Synthesis Example 1 and a chemical equivalent amount of DDM to the total molten epoxy were added to an aluminum cup and stirred on a hot plate at 140°C for 15 minutes. Next, the degassed DGEBA was placed in the other aluminum cup and heated on a hot plate at the same temperature to reduce the viscosity. The DGEBA with reduced viscosity was then added to the aluminum cup containing the SM epoxy resin of Synthesis Example 1 and DDM, and heated and stirred for 2 minutes to prepare a composition. The aluminum cup containing the composition was then heated and cured in a thermostatic chamber in three stages: 2 hours at 120° C., 2 hours at 150° C., and 2 hours at 180° C. The temperature rise rate was 5° C./min. The blend amounts and physical properties of the cured product are shown in Table 1.
  • Examples 5 to 8, Comparative Example 2 [Tensile shear adhesion test] The mild steel plate was immersed in acetone and ultrasonically cleaned for 30 minutes. Next, the mild steel plate was polished with an electric sander equipped with #240 abrasive paper to remove the oxide film on the surface, and then immersed in acetone and ultrasonically cleaned for 30 minutes twice. Then, a backing plate (length 25 mm x width 25 mm x thickness 1.6 mm) was attached to a portion 62.5 mm from the end of the mild steel plate. Then, the composition prepared in each example was applied to 12.5 mm from the end of the mild steel plate, and another mild steel plate was overlapped and heated at 120 ° C.
  • Table 2 The compositions used for the evaluation and the results of the tensile shear adhesion test are shown in Table 2.
  • An epoxy resin composition comprising: (A) an epoxy resin containing two or more epoxy groups in one molecule: 100 parts by mass, (B) a mesogen group-containing polyorganosiloxane represented by the following formula (1): 5 to 20 parts by mass, (C) an epoxy resin curing agent: 1 to 20 parts by mass.
  • R 1 's each independently represent a group selected from an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms, or a hydroxyl group;
  • p represents a repeating unit of a siloxane structure and is an integer of 0 to 100;
  • R 2 's each independently represent the following formula (2) or formula (3):
  • R 3 and R 4 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • L is a linking group to the formula (1) and is a divalent hydrocarbon group having 1 to 12 carbon atoms
  • a and b each represent the number of substituents of the phenyl group in the formula (2) and the formula (3) and are integers of 0 to 4
  • G is a glycidyl group.
  • [2] The epoxy resin composition according to [1] above, characterized in that the mesogen group-containing polyorganosiloxane represented by formula (1) has a number average molecular weight, calculated as a polystyrene standard, of 500 to 100,000.
  • [4] The epoxy resin composition according to [1], [2] or [3], characterized in that the mesogen group-containing polyorganosiloxane represented by formula (1) contains hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in a total amount of 3,000 ppm or less.
  • [5] The epoxy resin composition according to the above [1], [2], [3] or [4], wherein the epoxy resin (A) is a bisphenol type epoxy resin.
  • [6] The epoxy resin composition according to [1], [2], [3], [4] or [5], wherein the epoxy resin curing agent (C) is an amine-based curing agent.
  • [7] The epoxy resin composition according to [1], [2], [3], [4], [5] or [6], further comprising (D) a filler.
  • the present invention is not limited to the above-described embodiments.
  • the above-described embodiments are merely examples, and anything that has substantially the same configuration as the technical idea described in the claims of the present invention and provides similar effects is included within the technical scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明は、(A)エポキシ基を1分子内に2つ以上含むエポキシ樹脂、(B)下記式(1)で表されるメソゲン基含有ポリオルガノシロキサン、(C)エポキシ樹脂硬化剤を含むものであるエポキシ樹脂組成物である。これにより、メソゲン基を有するポリオルガノシロキサンを含むエポキシ樹脂組成物が提供される。  (式(1)において、R1は、互いに独立して炭素数1~12のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる基又は水酸基を示し、pは、0~100の整数であり、R2は、互いに独立して下記式(2)または式(3)を示し、  式(2)及び式(3)において、R3およびR4は、互いに独立して、水素原子、又は炭素数1~10の1価の炭化水素基を示し、Lは、炭素数1~12の2価の炭化水素基であり、a及びbは、0~4の整数であり、Gは、グリシジル基である。)

Description

エポキシ樹脂組成物
 本発明は、エポキシ樹脂組成物に関する。
 エポキシ樹脂は、その優れた機械的強度、電気絶縁性、耐熱性、耐薬品性、耐水性、低収縮性、接着性により、様々な分野で利用されている。近年、エポキシ樹脂における性能要求が高まっており、エポキシ樹脂の課題である靭性の低さについて開発が進められている(特許文献1~4)。
 エポキシ変性シリコーンは、反応性基であるエポキシ基を有したポリオルガノシロキサンであり、その反応性を利用した樹脂改質剤、繊維処理剤、塗料添加剤等の用途に使用されている。また、シリコーンの特性である柔軟性付与の効果も期待されるが、エポキシ樹脂に対してエポキシ変性シリコーンを添加する場合には、硬化剤などの他の極性化合物との相溶性が悪く、分離してしまうという課題があった。
 特許文献5では、メソゲン基を有するエポキシ樹脂について記載されており、作業性に優れ、機械的特性、熱的特性、化学的特性に優れた特性を有することが報告されている。しかしながら、前記メソゲン基を有するエポキシ樹脂とビスフェノール型エポキシ樹脂などの一般的なエポキシ樹脂とを混合した際、各物性がどのように変化するかは明らかではなかった。
特開2008-239890号公報 特表2014-505761号公報 特表2017-536440号公報 国際公開第2018/008741号 特開2008-214599号公報
 メソゲン基を有するエポキシ樹脂を添加した際の影響について、詳細な検討はなされていない。
 本発明は、このような事情に鑑みてなされたものであり、メソゲン基を有するポリオルガノシロキサンを含むエポキシ樹脂組成物を提供することを目的とする。
 上記課題を解決するために、本発明では、エポキシ樹脂組成物であって、
(A)エポキシ基を1分子内に2つ以上含むエポキシ樹脂:100質量部、
(B)下記式(1)で表されるメソゲン基含有ポリオルガノシロキサン:5~20質量部、
(C)エポキシ樹脂硬化剤:1~20質量部
を含むものであるエポキシ樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-C000004
(前記式(1)において、Rは、互いに独立して炭素数1~12のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる基又は水酸基を示し、pは、シロキサン構造の繰り返し単位を示し、0~100の整数であり、Rは、互いに独立して下記式(2)または式(3)を示し、
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
前記式(2)及び前記式(3)において、RおよびRは、互いに独立して、水素原子、又は炭素数1~10の1価の炭化水素基を示し、Lは、前記式(1)との連結基であって、炭素数1~12の2価の炭化水素基であり、a及びbは、前記式(2)及び前記式(3)におけるフェニル基の置換基の数を表し、0~4の整数であり、Gは、グリシジル基である。)
 このようなエポキシ樹脂組成物であれば、硬化物とした際に引張せん断強度と破断伸びに優れたものとなる。
 また、本発明では、前記式(1)で表される前記メソゲン基含有ポリオルガノシロキサンのポリスチレン標準物質換算における数平均分子量が、500~100,000であることが好ましい。
 このような分子量であれば、両末端のエポキシ基が硬化剤と反応し、硬化物を得るのに十分な分子量となる。
 また、本発明では、前記式(1)で表される前記メソゲン基含有ポリオルガノシロキサンのエポキシ当量(g/モル)が、300~5,000g/モルであることが好ましい。
 このようなエポキシ当量であれば、両末端のエポキシ基が(C)エポキシ樹脂硬化剤と反応し、良好な物性の硬化物を得るのに十分な量となる。
 また、本発明では、前記式(1)で表される前記メソゲン基含有ポリオルガノシロキサンが、ヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)を総量で3,000ppm以下含むものであることが好ましい。
 これら環状低分子シロキサンを低減することで、低分子成分が硬化物表面にブリードアウトすることによる接着性の低下や、低分子成分の揮発による周辺環境の汚染などを回避することができる。
 また、本発明では、前記(A)エポキシ樹脂が、ビスフェノール型エポキシ樹脂であることが好ましい。
 このようなエポキシ樹脂組成物であれば、各種選択されて使用されているビスフェノール型エポキシ樹脂の特性を強化でき、ビスフェノール型エポキシ樹脂単体で用いる場合よりも、伸び特性と引張剪断強度の両方を増大させることができるエポキシ樹脂組成物となる。
 また、本発明では、前記(C)エポキシ樹脂硬化剤が、アミン系硬化剤であることが好ましい。
 このようなエポキシ樹脂組成物であれば、良好な硬化特性が得られる。
 また、本発明では、さらに(D)充填剤を含むものであることが好ましい。
 このようなエポキシ樹脂組成物であれば、機械強度を補強することができる。
 本発明は、ポリオルガノシロキサンを含むエポキシ樹脂組成物、及び該組成物を反応させ硬化させた硬化物に関するもので、さらに詳しくは、両末端にエポキシ基を有し、主鎖にメソゲン基を有するポリオルガノシロキサンを含むエポキシ樹脂組成物及び該組成物を反応させ硬化させた硬化物に関するものである。
 本発明のエポキシ樹脂組成物は、所定の構造と配合により、硬化物を作製した際に、靭性を向上させ、また基材間で硬化物を作製した場合には良好な接着力を示すため、有用性が高い。
 上述のように、メソゲン基を有するポリオルガノシロキサンを含むエポキシ樹脂組成物の開発が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、所定の構造と配合のエポキシ樹脂組成物であれば、硬化物を作製した際に、靭性が向上し、また基材間で硬化物を作製した場合には良好な接着力を示すため、有用性が高いことを見出し、本発明を完成させた。
 即ち、本発明は、エポキシ樹脂組成物であって、
(A)エポキシ基を1分子内に2つ以上含むエポキシ樹脂:100質量部、
(B)下記式(1)で表されるメソゲン基含有ポリオルガノシロキサン:5~20質量部、
(C)エポキシ樹脂硬化剤:1~20質量部
を含むものであるエポキシ樹脂組成物である。
Figure JPOXMLDOC01-appb-C000007
(前記式(1)において、Rは、互いに独立して炭素数1~12のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる基又は水酸基を示し、pは、シロキサン構造の繰り返し単位を示し、0~100の整数であり、Rは、互いに独立して下記式(2)または式(3)を示し、
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
前記式(2)及び前記式(3)において、RおよびRは、互いに独立して、水素原子、又は炭素数1~10の1価の炭化水素基を示し、Lは、前記式(1)との連結基であって、炭素数1~12の2価の炭化水素基であり、a及びbは、前記式(2)及び前記式(3)におけるフェニル基の置換基の数を表し、0~4の整数であり、Gは、グリシジル基である。)
[エポキシ樹脂組成物]
 本発明のエポキシ樹脂組成物は、(A)エポキシ樹脂、(B)メソゲン基含有ポリオルガノシロキサン、及び(C)エポキシ樹脂硬化剤を含む、エポキシ樹脂組成物であり、(A)成分を100質量部とした場合の(B)成分が5~20質量部である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
[(A)エポキシ樹脂]
 本発明における(A)エポキシ基を1分子内に2つ以上含むエポキシ樹脂は、公知のエポキシ樹脂を用いることができ、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレートなどの脂環式エポキシ樹脂;レゾルシノール型エポキシ樹脂などの多官能フェノール型エポキシ樹脂;スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールアルカン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂及びアントラセン等の多環芳香族類のジグリシジルエーテル化合物、等が挙げられる。これらは1種単独で又は2種以上を併用して用いることができる。好ましくは、ビスフェノール型エポキシ樹脂である。
 (A)エポキシ樹脂のエポキシ当量については、特に限定されるものではないが、混合後における可使時間や硬化物の強度などの観点から、固形分当りの換算で、50~5,000g/eqが好ましく、75~2,500g/eqがより好ましい。
 (A)エポキシ樹脂の性状については、特に限定されるものではないが、25℃で液状であることが好ましい。液状である場合は、その粘度が10~100,000mPa・sが好ましく、より好ましくは20~50,000mPa・sである。なお、粘度はJIS K7117-1:1999に記載のB型粘度計を用いた方法により、25℃で測定された値である。
 なお、本発明の(A)成分は、上記例示からも明らかなように、分子中にオルガノシロキシ基を有さない。この点で以下に説明する(B)成分とは異なるものである。
[(B)メソゲン基含有ポリオルガノシロキサン]
 本発明における(B)成分は、下記式(1)で表されるメソゲン基含有ポリオルガノシロキサンである。
Figure JPOXMLDOC01-appb-C000010
(前記式(1)において、Rは、互いに独立して炭素数1~12のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる基又は水酸基を示し、pは、シロキサン構造の繰り返し単位を示し、0~100の整数であり、Rは、互いに独立して下記式(2)または式(3)を示す。)
 式(1)において、Rは、互いに独立して炭素数1~12、好ましくは炭素数1~8のアルキル基、炭素数6~12、好ましくは6~9のアリール基、及び炭素数7~12、好ましくは7~10のアラルキル基から選ばれる基、又は水酸基が挙げられる。その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基等の直鎖又は分岐鎖アルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、ナフチル基等のアリール基;ベンジル基等のアラルキル基等が挙げられる。中でも、メチル基又はフェニル基が好ましい。
 pは、シロキサン構造の繰り返し単位を示し、0~100の整数、好ましくは0~40、さらに好ましくは0~10であり、p=1が特に好ましい。
 式(1)において、Rは、互いに独立して下記式(2)または(3)である。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(前記式(2)及び前記式(3)において、RおよびRは、互いに独立して、水素原子、又は炭素数1~10の1価の炭化水素基を示し、Lは、前記式(1)との連結基であって、炭素数1~12の2価の炭化水素基であり、a及びbは、前記式(2)及び前記式(3)におけるフェニル基の置換基の数を表し、0~4の整数であり、Gは、グリシジル基である。)
 式(2)及び(3)において、RおよびRは、互いに独立して、水素原子、又は炭素数1~10の1価の炭化水素基を示す。
 炭素数1~10の1価の炭化水素基としては、炭素数1~10のアルキル基、炭素数6~10のアリール基、及び炭素数7~10のアラルキル基から選ばれる基であり、その具体例は前述のものが挙げられる。
 a及びbは、式(2)及び(3)におけるフェニル基の置換基の数を表し、0~4の整数を示す。
 式(2)及び(3)におけるGは、グリシジル基(2,3-エポキシプロピル基)である。
 式(2)及び(3)におけるLは、式(1)との連結基であって、炭素数1~12の2価の炭化水素基である。
 2価の炭化水素基としては、炭素数1~12のアルキレン基、炭素数6~12のアリーレン基、及び炭素数7~12のアラルキレン基が挙げられる。
 炭素数1~12のアルキレン基としては、直鎖、分岐鎖、環状のいずれでもよく、その具体例としては、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基、2-エチルヘキシレン基、n-デシレン基、n-ウンデシレン基、n-ドデシレン基等の直鎖又は分岐鎖アルキレン基が挙げられる。
 また、前記アルキレン基は、分子鎖の途中に1個以上のエーテル結合を有してもよい。具体的には、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基等のエーテル結合を含む基であり、エーテル結合が複数あってもよい。
 炭素数6~12のアリーレン基としては、o-フェニレン基、m-フェニレン基、p-フェニレン基、3,5-トリレン基、2,4-トリレン基、2,6-トリレン基、1,2-ナフチレン基、1,8-ナフチレン基、2,3-ナフチレン基、4,4’-ビフェニレン基等が挙げられる。
 炭素数7~12のアラルキレン基としては、o-キシリレン基、m-キシリレン基、p-キシリレン基等が挙げられる。
 上記式(1)におけるRは、さらに好ましくは下記式(4)である。
Figure JPOXMLDOC01-appb-C000013
(式(4)において、cは、シロキサン骨格との連結基の炭素数を示し、0~6の整数であり、点線は、式(1)との連結箇所を示す。R、R、a、及びbは前記と同じである。)
 cは、式(4)におけるシロキサン骨格との連結基の炭素数を示し、0~6の整数であり、好ましくはc=1である。
 点線は、式(1)との連結箇所を示す。
 本発明における(B)メソゲン基含有ポリオルガノシロキサンは、数平均分子量が500~100,000であることが好ましく、より好ましくは500~50,000であり、500~20,000がさらに好ましい。この範囲であれば、両末端のエポキシ基が硬化剤と反応し、硬化物を得るのに十分な分子量となる。なお、前記数平均分子量とは、以下の測定条件によるゲル浸透クロマトグラフィー(GPC)測定においてポリスチレン標準物質換算における数平均分子量を指すものとする。
[測定条件]
 展開溶媒:テトラヒドロフラン(THF)
 流量:0.6mL/min
 検出器:示差屈折率検出器(RI)
 カラム:TSK Guardcolumn SuperH-H
 TSKgel SuperHM-N(6.0mmI.D.×15cm×1)
 TSKgel SuperH2500(6.0mmI.D.×15cm×1)
 (いずれも東ソー社製)
 カラム温度:40℃
 試料注入量:50μL(濃度0.3質量%のTHF溶液)
 本発明における(B)メソゲン基含有ポリオルガノシロキサンは、エポキシ当量(g/モル)が、300~5,000g/モルが好ましく、400~2,500g/モルがより好ましい。この範囲であれば、両末端のエポキシ基が後述する(C)エポキシ樹脂硬化剤と反応し、良好な物性の硬化物を得るのに十分な量となる。エポキシ当量(g/モル)は、1,4-ジオキサンに溶解させた所定質量の試料に塩酸を加え、水酸化ナトリウム水溶液を用いて逆滴定することで算出できる。
 低分子環状シロキサン類については、国際公開第2016/111104号等に記載されているように、様々な不具合が生じる可能性があり、低減することが好ましい。(B)成分において、好ましくは、ヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)を総量で0ppmを超え、3,000ppm以下含むもの、より好ましくは0.1~2,000ppm、さらに好ましくは0.1~1,000ppm含むものが使用できる。
 上記低分子環状シロキサン類(D3~D6)の量は、(B)成分を有機溶媒によって抽出及び希釈した試料を用いて、ガスクロマトグラフィー(GC)によって定量した値である。また、前記「0ppmを超え」とは、前記方法で定量した際に、わずかでもピークとして検出された場合「0ppmを超え」とみなす。
[(C)エポキシ樹脂硬化剤]
 本発明における(C)エポキシ樹脂硬化剤は、エポキシ樹脂と反応し硬化させることが可能な公知の硬化剤を用いることができる。この硬化剤は、硬化剤の分子中の反応性官能基(アミノ基、フェノール性水酸基、酸無水物基、メルカプト基など)と、(A)成分及び(B)成分中のエポキシ基とを反応させ、三次元架橋構造の硬化物とするために添加される。
 (C)成分としては、例えば、アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤、チオール系硬化剤等が挙げられる。
 これらの中でも、アミン系硬化剤が好ましく、アミン系硬化剤としては、例えば、芳香族ポリアミン、脂肪族ポリアミン、ポリアミドアミン、ポリエーテルポリアミンなどが挙げられる。さらに好ましくは、芳香族ポリアミンである。
 芳香族ポリアミンとしては、下記式(I)~(IV)の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
(式(I)~(IV)中、Rは、互いに独立に、水素原子、又は炭素数1~6の1価のアルキル基であり、R’は、互いに独立に、水素原子、炭素数1~12の1価のアルキル基、フェニル基、又はアミノフェニル基であり、2つのR’が結合して環構造を形成してもよい。)
 芳香族ポリアミンの具体例としては、4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジフェニルメタン等の芳香族ジアミノジフェニルメタン化合物、2,4-ジアミノトルエン、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン等が挙げられる。これらを1種単独で又は2種以上を併用して用いることができる。
 本発明において、(A)成分を100質量部とした場合、(B)成分は5~20質量部であり、好ましくは10~20質量部であり、(C)成分は1~20質量部、好ましくは1~10質量部である。(B)成分又は(C)成分の質量部が20質量部を超えると、エポキシ樹脂の硬化物としての強度が低下し、接着力が十分に得られなくなる。また、Tgが低下するため、耐熱性も低下する。(B)成分の質量部が5質量部未満であると、所望の(B)成分添加効果が小さくなる。(C)成分の質量部が1質量部未満であると所望の(C)成分添加効果が小さくなる。
[その他の成分]
 本発明のエポキシ樹脂組成物は、さらに(D)充填剤を含めてもよい。充填剤としては、例えば、溶融シリカ、結晶性シリカ、クリストバライト等のシリカ類、酸化アルミニウム、酸化チタン、酸化マグネシウム等の金属酸化物類などが挙げられ、1種単独でも2種以上を併用してもよい。中でも、入手容易性や品質の安定性の観点から、好ましくはシリカ類である。平均粒径は、好ましくは0.1~50μmであり、用途に応じて選択することができる。平均粒径は、例えばレーザー回折法で測定される体積平均粒径であればよい。
 上記充填剤は、シランカップリング剤等のカップリング剤で予め表面処理されることが好ましい。なお、表面処理に用いるカップリング剤の配合量及び表面処理方法については特に制限されるものではない。
 本発明のエポキシ樹脂組成物は、必要に応じて本発明の目的に従い、その他の添加剤を添加することができる。添加剤としては、反応性希釈剤、硬化促進剤、難燃剤、イオントラップ剤、酸化防止剤、接着助剤、着色剤、及びカップリング剤等が挙げられる。
 本発明におけるエポキシ樹脂組成物の製造方法は、例えば、(A)成分、(B)成分、及び(C)成分を、加熱処理を行いながら、同時に混合、攪拌、溶解及び分散させることにより組成物を得ることができる。また、(A)成分、(B)成分、または(C)成分を、別々に加熱処理を行いながら、混合、攪拌、溶解及び分散させることにより、組成物を得ることができる。好ましくは、(B)成分及び(C)成分を加熱処理しながら、混合、攪拌、溶解及び分散させ、その後(A)成分を加えることにより(B)成分がよく分散した組成物を得ることができる。
 また、必要に応じて、(D)成分及び/またはその他添加剤を加えてもよい。(A)成分、(B)成分、及び(C)成分に追加して、同時にまたは別々に加熱処理を行いながら、混合、攪拌、溶解及び分散してもよい。または、(B)成分、及び(C)成分を加熱処理しながら、混合、攪拌、溶解及び分散させ、その後(A)成分と同時に(D)成分及び/またはその他添加剤を加えてもよい。
 本発明におけるエポキシ樹脂組成物の硬化条件は特に制限されないが、例えば60~200℃、好ましくは80~180℃の温度で、30分~10時間、好ましくは1~5時間加熱すればよい。また、反応を効率的に行うために、例えば、1~5段階に分けて低い温度から高い温度で上記の時間加熱してもよい。
 以下、実施例、比較例、及び合成例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
ビスフェノールA型エポキシ樹脂:三菱ケミカル社製 jER828EL
(エポキシ当量:186g/mol、粘度:13,000mPa・s)
(以下、DGEBAとする。)
アミン系硬化剤:東京化成工業社製 4、4’-ジアミノジフェニルメタン
               (N-H当量:49.6g/mol)
(以下、DDMとする。)
[合成例1]SMエポキシ樹脂の合成方法
 ガラス製反応機にエタノール360mL、p-アミノフェノール17.9g(0.164mol)、4-アリルオキシベンズアルデヒド20g(0.164mol)と少量の塩化亜鉛を加え、60℃のオイルバスで4時間反応後、冷蔵庫で2時間静置して析出した結晶をろ別し、4-((4-アリルオキシ)ベンジリデンアミノ)フェノール27gを得た。
 次に、500mlセパラブルフラスコに、得られた4-((4-アリルオキシ)ベンジリデンアミノ)フェノール7g(0.033mol)、ジメチルスルホキシド5mL、37gのエピクロルヒドリン(0.394mol)、少量のテトラ-n-ブチル塩化アンモニウムを加え、60℃で2時間反応させた後、50%水酸化ナトリウム水溶液3.16g(0.04mol)を1時間かけて滴下し、更に3時間反応させた。得られた溶液を冷却して析出した結晶をろ別し、蒸留水で充分に洗浄した後、乾燥させ、4-((4-アリルオキシ)ベンジリデンアミノ)フェノールグリシジルエーテル3.9gを得た。
 4-((4-アリルオキシ)ベンジリデンアミノ)フェノールグリシジルエーテル2g(6.5mmol)をセパラブルフラスコに取り、40mLの1,4-ジオキサンに溶解させた。さらに、1,1,3,3,5,5-ヘキサメチルトリシロキサン0.667g(3.24mmol)と1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン白金錯体0.02g(0.06mmol)を加え、オイルバスの温度を90℃に上昇させて6時間加熱攪拌した。
 反応溶液を冷却し、析出した結晶をろ別してメタノールで充分洗浄して、白色の結晶を得た。得られたSMエポキシ樹脂の低分子環状シロキサン類(D3~D6)の量を測定したところ、いずれも検出限界以下であった。
[実施例1~3]
 脱泡処理したDGEBA、合成例1のSMエポキシ樹脂をアルミカップに入れ、粘度の低下を目的として130℃のホットプレート上で加熱した。続いて、化学当量のDDMをもう一方のアルミカップに入れ、同温度のホットプレート上で完全融解するまで攪拌した。その後、融解させたDDMを、DGEBA及び合成例1のSMエポキシ樹脂の入ったアルミカップに加え、5分間攪拌して組成物を作製した。
 その後、上記組成物の入ったアルミカップを120℃で2時間、150℃で2時間、さらに180℃で2時間の3段階で加熱硬化させた。なお、昇温速度は5℃/minとした。配合量及び硬化物の物性を表1に記載した。
[実施例4]
 合成例1のSMエポキシ樹脂及び融解させた全エポキシに対して化学当量のDDMをアルミカップに加え、140℃のホットプレート上で15分間攪拌した。続いて、脱泡処理したDGEBAをもう一方のアルミカップに入れ、粘度の低下を目的として、同温度のホットプレート上で加熱した。その後、粘度低下したDGEBAを、合成例1のSMエポキシ樹脂及びDDMの入ったアルミカップに加え、2分間加熱攪拌し、組成物を作製した。
 その後、上記組成物の入ったアルミカップを恒温槽にて、120℃で2時間、150℃で2時間、さらに180℃で2時間の3段階で加熱硬化させた。なお、昇温速度は5℃/minとした。配合量及び硬化物の物性を表1に記載した。
[比較例1]
 脱泡処理したDGEBAをアルミカップに入れ、粘度の低下を目的として130℃のホットプレート上で加熱した。続いて、化学当量のDDMをもう一方のアルミカップに入れ、同温度のホットプレート上で完全融解するまで攪拌した。その後、融解させたDDMをDGEBAの入ったアルミカップに加え、5分間攪拌し、組成物を作製した。
 その後、上記組成物の入ったアルミカップを恒温槽にて、120℃で2時間、150℃で2時間、さらに180℃で2時間の3段階で加熱硬化させた。なお、昇温速度は5℃/minとした。配合量及び硬化物の物性を表1に記載した。
[動的粘弾性測定]
 実施例1~4及び比較例1の硬化物を、長さ30mm×幅4.0mm×厚さ0.40mmの試験片サイズにカットし、UBM社製Rheogel-E40000にて、温度範囲-150~250℃、正弦波、昇温速度2.5℃/min、引張モード、周波数10Hzの条件で測定した。得られた結果に対して、損失弾性率(G”)/貯蔵弾性率(G’)である損失正接tanδのピークトップをTgとした。
[引張試験]
 実施例1~4及び比較例1の硬化物を、長さ30mm×幅2.0mm×厚さ2.0mmの試験片サイズにカットした。島津製作所社製AGS-Jにて、ヘッドスピード2mm/minの条件で、その試験片の破断強度及び破断伸びを測定した。破断強度及び破断伸びは、N=5の平均値とした。
Figure JPOXMLDOC01-appb-T000015
[実施例5~8、比較例2]
[引張せん断接着試験]
 軟鋼板をアセトンに浸して、30分間超音波洗浄した。次に、軟鋼板を#240の研磨紙を取り付けた電動サンダで研磨して表面の酸化膜を取り除き、アセトンに浸して30分間の超音波洗浄を2回行った。その後、軟鋼板の端から62.5mmの部分にあて板(長さ25mm×幅25mm×厚さ1.6mm)を張り付けた。そして、各実施例にて調製した組成物を軟鋼板の端から12.5mmまで塗布し、もう1枚の軟鋼板を重ね合わせて、ホットプレスを用いて5MPaで120℃、2時間加熱した。その後、恒温槽にて試験片に重り(重さ:1700g、圧力:960Pa)を乗せ、150℃で2時間加熱後に、5℃/minの昇温速度で180℃まで昇温し、180℃で2時間加熱硬化して試験片を作成した。徐冷後、試験片を取り出し、接合部からはみ出た樹脂をカッターナイフで取り除いた。
 得られた試験片は、島津製作所社製AGS-Xにて、JIS K6850:1999に記載の方法により、ヘッドスピード50mm/minの条件で引張せん断接着試験を行った。引張せん断強度及び破断伸びは、N=5の平均値とした。破壊形態は目視によって確認した。評価に用いた組成物及び引張せん断接着試験の結果を表2に記載した。
Figure JPOXMLDOC01-appb-T000016
 実施例5~8では、比較例2と比べて、本発明のエポキシ樹脂組成物からなる硬化物において引張せん断接着試験による引張せん断強度と破断伸びの増加が見られたことから、本発明のエポキシ樹脂組成物の有用性が示された。
 本明細書は以下の態様を包含する。
 [1]:エポキシ樹脂組成物であって、
(A)エポキシ基を1分子内に2つ以上含むエポキシ樹脂:100質量部、
(B)下記式(1)で表されるメソゲン基含有ポリオルガノシロキサン:5~20質量部、
(C)エポキシ樹脂硬化剤:1~20質量部
を含むものであることを特徴とするエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000017
(前記式(1)において、Rは、互いに独立して炭素数1~12のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる基又は水酸基を示し、pは、シロキサン構造の繰り返し単位を示し、0~100の整数であり、Rは、互いに独立して下記式(2)または式(3)を示し、
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
前記式(2)及び前記式(3)において、RおよびRは、互いに独立して、水素原子、又は炭素数1~10の1価の炭化水素基を示し、Lは、前記式(1)との連結基であって、炭素数1~12の2価の炭化水素基であり、a及びbは、前記式(2)及び前記式(3)におけるフェニル基の置換基の数を表し、0~4の整数であり、Gは、グリシジル基である。)
 [2]:前記式(1)で表される前記メソゲン基含有ポリオルガノシロキサンのポリスチレン標準物質換算における数平均分子量が、500~100,000であることを特徴とする上記[1]のエポキシ樹脂組成物。
 [3]:前記式(1)で表される前記メソゲン基含有ポリオルガノシロキサンのエポキシ当量(g/モル)が、300~5,000g/モルであることを特徴とする上記[1]又は上記[2]のエポキシ樹脂組成物。
 [4]:前記式(1)で表される前記メソゲン基含有ポリオルガノシロキサンが、ヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)を総量で3,000ppm以下含むものであることを特徴とする上記[1]、上記[2]又は上記[3]のエポキシ樹脂組成物。
 [5]:前記(A)エポキシ樹脂が、ビスフェノール型エポキシ樹脂であることを特徴とする上記[1]、上記[2]、上記[3]又は上記[4]のエポキシ樹脂組成物。
 [6]:前記(C)エポキシ樹脂硬化剤が、アミン系硬化剤であることを特徴とする上記[1]、上記[2]、上記[3]、上記[4]又は上記[5]のエポキシ樹脂組成物。
 [7]:さらに(D)充填剤を含むものであることを特徴とする上記[1]、上記[2]、上記[3]、上記[4]、上記[5]又は上記[6]のエポキシ樹脂組成物。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (7)

  1.  エポキシ樹脂組成物であって、
    (A)エポキシ基を1分子内に2つ以上含むエポキシ樹脂:100質量部、
    (B)下記式(1)で表されるメソゲン基含有ポリオルガノシロキサン:5~20質量部、
    (C)エポキシ樹脂硬化剤:1~20質量部
    を含むものであることを特徴とするエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(1)において、Rは、互いに独立して炭素数1~12のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる基又は水酸基を示し、pは、シロキサン構造の繰り返し単位を示し、0~100の整数であり、Rは、互いに独立して下記式(2)または式(3)を示し、
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    前記式(2)及び前記式(3)において、RおよびRは、互いに独立して、水素原子、又は炭素数1~10の1価の炭化水素基を示し、Lは、前記式(1)との連結基であって、炭素数1~12の2価の炭化水素基であり、a及びbは、前記式(2)及び前記式(3)におけるフェニル基の置換基の数を表し、0~4の整数であり、Gは、グリシジル基である。)
  2.  前記式(1)で表される前記メソゲン基含有ポリオルガノシロキサンのポリスチレン標準物質換算における数平均分子量が、500~100,000であることを特徴とする請求項1に記載のエポキシ樹脂組成物。
  3.  前記式(1)で表される前記メソゲン基含有ポリオルガノシロキサンのエポキシ当量(g/モル)が、300~5,000g/モルであることを特徴とする請求項1に記載のエポキシ樹脂組成物。
  4.  前記式(1)で表される前記メソゲン基含有ポリオルガノシロキサンが、ヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)を総量で3,000ppm以下含むものであることを特徴とする請求項1に記載のエポキシ樹脂組成物。
  5.  前記(A)エポキシ樹脂が、ビスフェノール型エポキシ樹脂であることを特徴とする請求項1に記載のエポキシ樹脂組成物。
  6.  前記(C)エポキシ樹脂硬化剤が、アミン系硬化剤であることを特徴とする請求項1に記載のエポキシ樹脂組成物。
  7.  さらに(D)充填剤を含むものであることを特徴とする請求項1から請求項6のいずれか1項に記載のエポキシ樹脂組成物。
PCT/JP2023/036177 2022-10-18 2023-10-04 エポキシ樹脂組成物 WO2024084968A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022166877A JP2024059283A (ja) 2022-10-18 2022-10-18 エポキシ樹脂組成物
JP2022-166877 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024084968A1 true WO2024084968A1 (ja) 2024-04-25

Family

ID=90737379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036177 WO2024084968A1 (ja) 2022-10-18 2023-10-04 エポキシ樹脂組成物

Country Status (2)

Country Link
JP (1) JP2024059283A (ja)
WO (1) WO2024084968A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214599A (ja) * 2007-02-05 2008-09-18 Asahi Kasei Corp 液晶性エポキシ樹脂およびその組成物
JP2015048400A (ja) * 2013-08-30 2015-03-16 学校法人 関西大学 エポキシ樹脂、エポキシ樹脂組成物およびエポキシ樹脂の製造方法
JP2021178888A (ja) * 2020-05-11 2021-11-18 学校法人 関西大学 ポリオルガノシルセスキオキサン、それを含む硬化性組成物、及びその硬化物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214599A (ja) * 2007-02-05 2008-09-18 Asahi Kasei Corp 液晶性エポキシ樹脂およびその組成物
JP2015048400A (ja) * 2013-08-30 2015-03-16 学校法人 関西大学 エポキシ樹脂、エポキシ樹脂組成物およびエポキシ樹脂の製造方法
JP2021178888A (ja) * 2020-05-11 2021-11-18 学校法人 関西大学 ポリオルガノシルセスキオキサン、それを含む硬化性組成物、及びその硬化物

Also Published As

Publication number Publication date
JP2024059283A (ja) 2024-05-01

Similar Documents

Publication Publication Date Title
JPS63170411A (ja) 分散相内にゴムを有する多相エポキシ熱硬化物
JP6891901B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
US8507618B2 (en) Siloxane mixtures containing epoxide resins and method for the preparation thereof and use thereof
JP4577716B2 (ja) 加熱硬化型エポキシ樹脂組成物及びその硬化接着層を有する物品
JP5871326B2 (ja) コーティング組成物
CN1662581A (zh) 氨基-官能化聚硅氧烷及其在涂料中的用途
CN102558508B (zh) 低温可固化环氧组合物
JP5676474B2 (ja) 真空樹脂インフュージョン成形用ジビニルアレーンジオキシド配合物
JP6667843B1 (ja) エポキシ樹脂組成物
WO2018070053A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2015048400A (ja) エポキシ樹脂、エポキシ樹脂組成物およびエポキシ樹脂の製造方法
JP6886786B2 (ja) 一液型シアン酸エステル−エポキシ複合樹脂組成物
WO2024084968A1 (ja) エポキシ樹脂組成物
WO2024111447A1 (ja) エポキシ樹脂組成物
US20120283356A9 (en) Thermosettable resin compositions
JP2012087192A (ja) 熱硬化性エポキシ樹脂組成物
Li et al. Synthesis and properties of silicone‐epoxy polymer with long silicone chain
JP2024014410A (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物、及びエポキシ接着剤
WO2024062968A1 (ja) 環状オルガノポリシロキサン、シリコーン組成物、接着助剤、及び接着剤
TW201936692A (zh) 環氧樹脂、環氧樹脂組成物、環氧樹脂硬化物及複合材料
WO2024062973A1 (ja) 環状オルガノポリシロキサン、シリコーン組成物、接着助剤、及び接着剤
KR20140047627A (ko) 하이브리드 에폭시 수지
JPS6140318A (ja) エポキシ樹脂用硬化剤
JP7003998B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243091B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879615

Country of ref document: EP

Kind code of ref document: A1