WO2024082333A1 - 含螺环状化合物催化剂在催化环氧化合物和二氧化碳反应中的应用 - Google Patents

含螺环状化合物催化剂在催化环氧化合物和二氧化碳反应中的应用 Download PDF

Info

Publication number
WO2024082333A1
WO2024082333A1 PCT/CN2022/128216 CN2022128216W WO2024082333A1 WO 2024082333 A1 WO2024082333 A1 WO 2024082333A1 CN 2022128216 W CN2022128216 W CN 2022128216W WO 2024082333 A1 WO2024082333 A1 WO 2024082333A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reaction
bromide
carbon dioxide
decane
Prior art date
Application number
PCT/CN2022/128216
Other languages
English (en)
French (fr)
Inventor
郑仲天
何天虔
康媛媛
黄启悠
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Priority to US18/044,219 priority Critical patent/US20240189802A1/en
Publication of WO2024082333A1 publication Critical patent/WO2024082333A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • C07D317/38Ethylene carbonate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0267Phosphines or phosphonium compounds, i.e. phosphorus bonded to at least one carbon atom, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, the other atoms bonded to phosphorus being either carbon or hydrogen
    • B01J31/0268Phosphonium compounds, i.e. phosphine with an additional hydrogen or carbon atom bonded to phosphorous so as to result in a formal positive charge on phosphorous
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/14Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D317/26Radicals substituted by doubly bound oxygen or sulfur atoms or by two such atoms singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates

Definitions

  • the invention belongs to the technical field of chemical synthesis, and in particular relates to the application of a catalyst containing a spirocyclic compound in catalyzing the reaction of an epoxy compound and carbon dioxide.
  • Carbon dioxide is the main greenhouse gas causing global warming, and it is also an inexhaustible, cheap, non-toxic, and recyclable green carbon resource on the earth. Realizing the resource utilization of carbon dioxide is of great strategic significance for reducing carbon dioxide emissions, improving the environment, and reducing human dependence on fossil fuels.
  • the effective fixation of carbon dioxide has become one of the most challenging topics of this century, and the synthesis of cyclic carbonates is one of the good fixation methods.
  • cyclic carbonates have been widely used as high-value-added chemicals in the fields of fine chemicals, lithium battery manufacturing, and the synthesis of polycarbonates and polyurethanes.
  • the preparation of cyclic carbonates by cycloaddition of carbon dioxide and epoxides is a green chemical method with nearly 100% atomic economy, which has always attracted the attention of academia and industry.
  • a binary catalyst composed of a Lewis acid metal and a Lewis base
  • the Lewis metals used include: alkali metal halides, alkaline earth metal halides, transition metal salts, transition metal complexes or tetradentate Schiff base metal complexes
  • the Lewis bases used include organic bases, ammonium salts, imidazole salts, solid bases (such as metal oxides), crown ethers and molecular sieves, etc.
  • the purpose of the present invention is to provide a catalyst containing a spirocyclic compound for use in catalyzing the reaction of epoxy compounds and carbon dioxide.
  • the spirocyclic compound can catalyze the addition reaction of epoxy compounds and carbon dioxide more efficiently and gently, and has the advantage of a long service life.
  • the present invention adopts the following technical solution.
  • a catalyst in catalyzing the reaction of an epoxy compound and carbon dioxide is characterized in that the catalyst comprises a spirocyclic compound, and the spirocyclic compound comprises at least one of the compounds shown in structural formula 1:
  • Ra1 to Ra8 , Rb1 to Rb10 , Rc1 to Rc12 , and Rd1 to Rd14 are independently selected from H and C1 to C5 alkyl.
  • Y is selected from Cl, Br, I.
  • At least one of A and B is selected from structural formula a.
  • the spirocyclic compound comprises at least one of the following compounds: 5-azoniaspiro[4.6]undecane chloride; 5-azoniaspiro[4.6]undecane bromide; 5-azoniaspiro[4.6]undecane iodide; 5-azoniaspiro[4.4]nonane chloride; 5-azoniaspiro[4.4]nonane bromide; 5-azoniaspiro[4.4]nonane iodide; 5-phosphaspiro[4.5]decane chloride; 5-Phosphophiro[4.5]decane bromide; 5-Phosphophiro[4.5]decane iodide; 8,8-dimethyl-5-azoniaspiro[4.5]decane chloride; 8,8-dimethyl-5-azoniaspiro[4.5]decane bromide; 8,8-dimethyl-5-azoniaspiro[4.5]decane iodide; 8,8
  • the catalyst further comprises at least one of water and alcohol; the concentration of water in the catalyst is below 2000 ppm; the concentration of alcohol in the catalyst is below 2000 ppm.
  • the alcohol is selected from at least one of methanol, ethanol, propanol, isopropanol, and n-butanol.
  • the epoxy compound is selected from at least one of ethylene oxide and propylene oxide.
  • the reaction includes the following steps: dissolving the catalyst in a cyclic carbonate to obtain a mixed solution, then adding an epoxy compound to the mixed solution, and then introducing carbon dioxide to adjust the pressure of the reaction system to allow the epoxy compound to react with the carbon dioxide.
  • the mass percentage concentration of the spirocyclic compound in the mixed solution is 0.5-10%; preferably, the mass percentage concentration of the spirocyclic compound in the mixed solution is 1-5%.
  • the reaction temperature is 100-200° C.; and/or, the reaction pressure is 0.5-10 MPa; and/or, the reaction time is 0.3-20 h.
  • the present invention provides the application of a catalyst containing a spirocyclic compound as shown in structural formula 1 in catalyzing the reaction of epoxy compounds and carbon dioxide.
  • the inventors have found, in combination with their own experience and a large number of studies, that compared with traditional non-spirocyclic catalysts or Lewis acid metal catalysts, the spirocyclic compound shown in structural formula 1 has better catalytic effect and more stable catalytic performance when catalyzing the reaction of epoxy compounds and carbon dioxide to generate cyclic carbonates, and can still maintain high catalytic activity and selectivity after multiple cycles of use, and has a longer service life.
  • the reaction system is more stable at high temperatures when the spirocyclic compound of the present invention is used as a catalyst, the reverse reaction rate is lower, the reverse reaction rate rises slowly with the increase of the reaction temperature, and the catalyst reaction system has high stability.
  • the presence of an appropriate amount of water and/or alcohol does not affect the catalytic effect of the spirocyclic compound.
  • the catalyst containing the spirocyclic compound shown in structural formula 1 requires mild reaction conditions when used to catalyze the reaction of epoxy compounds with carbon dioxide, has the advantages of low cost, high selectivity, environmental protection, good thermal stability and long catalyst service life, and has broad application prospects.
  • FIG1 is a test result of the reverse reaction of ethylene oxide and carbon dioxide to produce EC catalyzed by 5-azoniaspiro[4.4]nonane bromide and tetra-n-butylammonium bromide.
  • FIG. 2 is a test result of the reverse reaction of ethylene oxide and carbon dioxide to produce EC catalyzed by 5-azoniaspiro[4.6]undecane bromide and lithium bromide.
  • the term “plurality” refers to two or more than two.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • One aspect of the present invention provides a use of a catalyst in catalyzing the reaction of an epoxy compound and carbon dioxide, wherein the catalyst comprises a spirocyclic compound, wherein the spirocyclic compound comprises at least one of the compounds represented by structural formula 1:
  • X is selected from nitrogen and phosphorus; Y is selected from halogen elements; A and B are independently selected from any one of the following structures, and the * represents the bonding position:
  • Ra1 to Ra8 , Rb1 to Rb10 , Rc1 to Rc12 , and Rd1 to Rd14 are independently selected from H and C1 to C5 alkyl.
  • At least one of A and B is selected from structural formula a
  • Y is selected from Cl, Br, I; preferably, Y is selected from Cl, Br.
  • the spirocyclic compounds include but are not limited to the following compounds:
  • the reaction formula is as follows:
  • the non-aqueous solvent includes one or more of ethanol, methanol, isopropanol, n-butanol, dimethyl carbonate, and acetonitrile, and the dissolution temperature is between room temperature and 200°C, preferably between 30 and 90°C.
  • the method for separating the by-product potassium salt D can be one of centrifuge rejection and filter filtration.
  • the decolorization method can be one of an activated carbon decolorization method, a hydrogen peroxide decolorization method, and a sodium hypochlorite decolorization method.
  • the concentration equipment in the concentrated crystallization method, can be one of a reactor, an evaporator, a drum dryer, and a rake dryer.
  • the drying method may use a rotary drum dryer or a vacuum oven for drying.
  • (5-Azoniaspiro[4.6]undecane bromide) can be prepared by the following method:
  • potassium carbonate was fully dissolved in water. Under magnetic stirring, 72g of tetrahydropyrrole, 244g of 1,6-dibromohexane and 244g of ethanol were added to the potassium carbonate aqueous solution solvent. After heating at 60°C for 15 hours, the temperature was raised and concentrated and evaporated to dryness. The obtained solid was dissolved in isopropanol. After dissolution, 0.4g of activated carbon was added and stirred for 1h to decolorize. After decolorization, the activated carbon was filtered out. After decolorization, the solution was concentrated, recrystallized and filtered. After drying, a white powder solid (purity 99.9%, yield 85%) was obtained.
  • catalysts containing spirocyclic compounds shown in structural formula 1 have better catalytic effects and more stable catalytic performance when used to catalyze the reaction of epoxy compounds and carbon dioxide to produce cyclic carbonates, and can still maintain high catalytic activity and selectivity after multiple cycles of use.
  • the catalyst further comprises at least one of water and alcohol; the concentration of water in the catalyst is below 2000 ppm; the concentration of alcohol in the catalyst is below 2000 ppm.
  • concentration of water in the catalyst is below 2000 ppm; the concentration of alcohol in the catalyst is below 2000 ppm.
  • the alcohol is selected from at least one of methanol, ethanol, propanol, isopropanol and n-butanol.
  • the epoxy compound is selected from at least one of the compounds shown in Structural Formula 2:
  • the epoxy compound is preferably at least one of ethylene oxide and propylene oxide.
  • the initial concentration of the epoxy compound in the system is 1 to 15% (wt).
  • the reaction includes the following steps: dissolving the catalyst in the cyclic carbonate to obtain a mixed solution, then adding the epoxy compound to the mixed solution, and then introducing carbon dioxide to adjust the pressure of the reaction system, so that the epoxy compound reacts with carbon dioxide to generate the cyclic carbonate.
  • the mass percentage concentration of the spirocyclic compound in the mixed solution is 0.5-10%; preferably, the mass percentage concentration of the spirocyclic compound in the mixed solution is 1-5%.
  • the mass percentage concentration of the spirocyclic compound in the mixed solution can be 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.5%, 2.7%, 3%, 3.3%, 3.6%, 4%, 4.25%, 4.5%, 4.75%, 5%, 5.5%, 6%, 7.5%, 8%, 8.5%, 9.2%, 9.5%, or 10%.
  • the reaction temperature is 100-200°C; preferably, the reaction temperature is 120-170°C.
  • the reaction pressure is 0.5-10 MPa; preferably, the reaction pressure is 1-5 MPa.
  • the reaction time is 0.3 to 20 hours; preferably, the reaction time is 0.5 to 15 hours.
  • the catalyst catalyzes the reaction of epoxy compounds and carbon dioxide with a general reaction formula of:
  • This embodiment provides a method for preparing a cyclic carbonate, wherein 5-azoniaspiro[4.4]nonane bromide is used as a catalyst, and the reaction formula is as follows:
  • This embodiment provides a method for preparing a cyclic carbonate, wherein 5-azoniaspiro[4.6]undecane bromide is used as a catalyst, and the reaction formula is the same as that of Example 1.
  • This embodiment provides a method for preparing a cyclic carbonate, wherein 1,6-dimethyl-5-azaspiro[4.6]undecane iodide and 2000 ppm of water are used as catalysts, and the reaction formula is as follows:
  • the catalyst and the target product propylene carbonate are pre-configured into a solution with a 1,6-dimethyl-5-azaspiro[4.6]undecane iodide concentration of 2% (wt), 2.4 ml of propylene oxide is added to a 25 mL stainless steel autoclave with a tetrafluoroethylene liner, the autoclave is sealed, and carbon dioxide with an appropriate pressure is introduced, the autoclave is slowly heated to 130° C., and then the carbon dioxide pressure is controlled to 2.8 MPa, the reaction is carried out for 1 hour, the reaction is cooled to room temperature, the pressure is released, the carbon dioxide is absorbed by a saturated sodium carbonate solution, the reaction liquid composition is analyzed by gas chromatography and the added value of the target product is calculated, the single-pass conversion rate of propylene oxide is 85%, the product selectivity is>99%, and the yield is 84%.
  • This embodiment provides a method for preparing a cyclic carbonate, wherein 5-phosphaspiro[4.5]decane bromide is used as a catalyst, and the reaction formula is the same as that of Example 3.
  • This embodiment provides a method for preparing a cyclic carbonate, wherein 2-butyl-5-phosphaspiro[4.4]nonane bromide and 1000 ppm of water are used as catalysts, and the reaction formula is the same as that of Example 3.
  • the catalyst and the target product propylene carbonate are pre-configured into a solution with a 2.0% (wt) concentration of 2-butyl-5-phosphaspiro[4.4]nonane bromide.
  • 3.3 ml of propylene oxide is added to a 25 mL stainless steel autoclave with a tetrafluoroethylene liner.
  • the autoclave is sealed and filled with carbon dioxide at an appropriate pressure.
  • the autoclave is slowly heated to 150° C., and then the carbon dioxide pressure is controlled to 3.5 MPa.
  • the reaction is carried out for 0.8 h, cooled to room temperature, and the pressure is released.
  • the carbon dioxide is absorbed by a saturated sodium carbonate solution.
  • the composition of the reaction solution is analyzed by gas chromatography and the added value of the target product is calculated.
  • the single-pass conversion rate of propylene oxide is 86%, the product selectivity is >99%, and the yield is 85%.
  • This embodiment provides a method for preparing a cyclic carbonate, wherein 8,8-dimethyl-5-azoniaspiro[4.5]decane bromide is used as a catalyst, and the reaction formula is the same as that of Example 1:
  • This embodiment provides a method for preparing a cyclic carbonate, wherein 5-azaspiro[4.5]decane bromide and 2000 ppm ethanol are used as catalysts, and the reaction formula is the same as that of Example 1.
  • the catalyst and the target product ethylene carbonate are pre-configured into a solution with a 5-azaspiro[4.5]decane bromide concentration of 10% (wt), 3.3 ml of ethylene oxide is added to a 25 mL stainless steel autoclave with a tetrafluoroethylene liner, the reactor is sealed, and carbon dioxide with an appropriate pressure is introduced. The reactor is slowly heated to 105° C., and then the carbon dioxide pressure is controlled to 5 MPa. The reaction is carried out for 10 hours, cooled to room temperature, and the pressure is released. The carbon dioxide is absorbed by a saturated sodium carbonate solution. The composition of the reaction solution is analyzed by gas chromatography and the added value of the target product is calculated. The single-pass conversion rate of ethylene oxide is 87%, the product selectivity is >99%, and the yield is 83%.
  • This embodiment provides a method for preparing a cyclic carbonate, wherein 6-azaspiro[5.5]undecane bromide, 500 ppm water and 1000 ppm isopropanol are used as catalysts, and the reaction formula is the same as that of Example 3.
  • the catalyst and the target product propylene carbonate are pre-configured into a solution with a 6-azaspiro[5.5]undecane bromide concentration of 5% (wt), and 3.3 ml of propylene oxide is added to a 25 mL stainless steel autoclave with a tetrafluoroethylene liner.
  • the autoclave is sealed and filled with carbon dioxide at an appropriate pressure.
  • the autoclave is slowly heated to 120° C., and then the carbon dioxide pressure is controlled to be 1.5 MPa.
  • the reaction is carried out for 8 hours, cooled to room temperature, and the pressure is released.
  • the carbon dioxide is absorbed by a saturated sodium carbonate solution.
  • the composition of the reaction solution is analyzed by gas chromatography and the added value of the target product is calculated.
  • the single-pass conversion rate of propylene oxide is 87%, the product selectivity is >99%, and the yield is 84%.
  • This embodiment provides a method for preparing a cyclic carbonate, wherein 7,9-dimethyl-5-phosphaspiro[4.5]decane iodide is used as a catalyst, and the reaction formula is the same as that of Example 3.
  • the temperature of the autoclave is slowly raised to 170° C., and then the carbon dioxide pressure is controlled to 2.5 MPa, the reaction is carried out for 3 hours, the reaction is cooled to room temperature, the pressure is released, the carbon dioxide is absorbed by a saturated sodium carbonate solution, the composition of the reaction liquid is analyzed by gas chromatography and the added value of the target product is calculated, the single-pass conversion rate of propylene oxide is 86%, the product selectivity is>99%, and the yield is 85%.
  • This embodiment provides a method for preparing a cyclic carbonate, wherein 1,6-dimethyl-5-azaspiro[4.6]undecane chloride, 2000 ppm water and 2000 ppm methanol are used as catalysts, and the reaction formula is the same as that of Example 3.
  • the catalyst and the target product propylene carbonate are pre-configured into a solution with a catalyst 1,6-dimethyl-5-azaspiro[4.6]undecane chloride concentration of 6.5% (wt), 3.3 ml of propylene oxide is added to a 25 mL stainless steel autoclave with a tetrafluoroethylene liner, the reactor is sealed, and carbon dioxide with an appropriate pressure is filled into the reactor.
  • the reactor is slowly heated to 140° C., and then the carbon dioxide pressure is controlled to 8 MPa, the reaction is carried out for 15 hours, the reactor is cooled to room temperature, the pressure is released, the carbon dioxide is absorbed by a saturated sodium carbonate solution, the reaction liquid composition is analyzed by gas chromatography and the added value of the target product is calculated, the single-pass conversion rate of propylene oxide is 85%, the product selectivity is>99%, and the yield is 85%.
  • Example 11 The specific experimental methods and steps of Examples 11 to 15 are the same as those of Example 2. After the newly generated ethylene carbonate is separated, ethylene oxide and carbon dioxide are introduced into the reaction system again for reaction. The number of times the catalyst is repeatedly used is shown in Table 1:
  • This comparative example provides a method for preparing a cyclic carbonate, wherein tetra-n-butylphosphonium bromide is used as a catalyst.
  • Tetra-n-butylphosphonium bromide and target product ethylene carbonate are prepared into a solution with a catalyst concentration of 1.5% (wt) in advance, 3 ml of ethylene oxide is added to a 25 mL stainless steel autoclave with a tetrafluoroethylene liner, the autoclave is sealed, and carbon dioxide with an appropriate pressure is filled into the autoclave, the temperature of the autoclave is slowly raised to 140° C., and then the carbon dioxide pressure is controlled to be 3 MPa, the reaction is carried out for 1 hour, the reaction is cooled to room temperature, the pressure is released, the carbon dioxide is absorbed by a saturated sodium carbonate solution, the composition of the reaction liquid is analyzed by gas chromatography and the added value of the target product is calculated, the single-pass conversion rate of ethylene oxide is 75%, the product selectivity is 97%, and the yield is 73%.
  • This comparative example provides a method for preparing a cyclic carbonate, wherein lithium bromide is used as a catalyst.
  • lithium bromide and target product ethylene carbonate are pre-prepared into a solution with a catalyst concentration of 1.5% (wt); 3 ml of ethylene oxide is added to a 25 mL stainless steel autoclave with a polytetrafluoroethylene liner; the autoclave is sealed and filled with carbon dioxide at an appropriate pressure; the autoclave is slowly heated to 145° C., and then the carbon dioxide pressure is controlled to be 3 MPa, the reaction is carried out for 1 hour, the reaction is cooled to room temperature, the pressure is released, the carbon dioxide is absorbed by a saturated sodium carbonate solution, the composition of the reaction liquid is analyzed by gas chromatography and the added value of the target product is calculated; the single-pass conversion rate of ethylene oxide is 52%, the product selectivity is 75%, and the yield is 39%.
  • This comparative example provides a method for preparing a cyclic carbonate, wherein zinc bromide and hexabutylguanidine bromide are used as catalysts.
  • Implementation method Preliminarily prepare a composite catalyst of zinc bromide and hexabutylguanidine bromide (the molar ratio of zinc bromide to hexabutylguanidine bromide is 1:6) and the target product propylene carbonate into a solution with a catalyst concentration of 2% (wt), put 2.4 ml of propylene oxide in a 25 mL stainless steel autoclave with a tetrafluoroethylene liner, seal the reactor, fill it with carbon dioxide at an appropriate pressure, slowly heat the reactor to 130° C., then control the carbon dioxide pressure to 2.8 MPa, react for 1 hour, cool to room temperature, release the pressure, absorb the carbon dioxide with a saturated sodium carbonate solution, analyze the composition of the reaction liquid by gas chromatography and calculate the added value of the target product, the single-pass conversion rate of propylene oxide is 78%, the product selectivity is 99%, and the yield is 77%.
  • This comparative example provides a method for preparing a cyclic carbonate, wherein tetrapropylammonium bromide is used as a catalyst.
  • Tetrapropylammonium bromide and target product ethylene carbonate are prepared into a solution with a catalyst concentration of 1.5% (wt) in advance, 3 ml of ethylene oxide is added to a 25 mL stainless steel autoclave with a polytetrafluoroethylene liner, the autoclave is sealed, and carbon dioxide with an appropriate pressure is filled into the autoclave.
  • the temperature of the autoclave is slowly raised to 145° C., and then the carbon dioxide pressure is controlled to 3 MPa, the reaction is carried out for 1 hour, the reaction is cooled to room temperature, the pressure is released, the carbon dioxide is absorbed by a saturated sodium carbonate solution, the composition of the reaction liquid is analyzed by gas chromatography and the added value of the target product is calculated, the single-pass conversion rate of propylene oxide is 72%, the product selectivity is 95%, and the yield is 68%.
  • the spirocyclic compound of the present invention has better epoxide single-pass conversion rate, selectivity and yield when used to catalyze the reaction of epoxides and carbon dioxide to generate cyclic carbonates, and has better catalytic activity.
  • the presence of an appropriate amount of water and/or alcohol does not affect the catalytic effect of the spirocyclic compound.
  • the catalyst of the present invention has a more stable catalytic effect than the existing non-spiro structure catalyst, and can still maintain a high catalytic activity, selectivity and yield after multiple cycles of use, and the catalytic activity has no obvious change; while the non-spiro structure catalyst has a significant decrease in catalytic activity, selectivity and yield after repeated use. This shows that the spiro structure of the present invention can make the catalyst catalytic effect more stable and have a longer service life.
  • the catalyst provided by the present invention includes a compound with a spirocyclic structure, which is more stable in structure than a conventional non-spirocyclic catalyst or a Lewis acid metal catalyst, and can still maintain a high catalytic activity, yield and selectivity after multiple cycles.
  • the reaction system is more stable at high temperatures, and the reverse reaction rate is lower than other conventional catalysts, and the reverse reaction rate rises slowly with the increase of the reaction temperature.
  • the spirocyclic compound of the present invention has a higher catalytic activity and better stability when used to catalyze the synthesis of cyclic carbonates from epoxides and carbon dioxide, and the synthesis method of the cyclic carbonate involved has both high efficiency and safety, and has broad application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

提供了一种催化剂在催化环氧化合物和二氧化碳反应中的应用;所述催化剂包含螺环状化合物,所述螺环状化合物包括结构式(1)所示化合物中的至少一种:其中,X选自氮元素、磷元素;Y选自卤素元素;A和B独立地选自结构式a~d中的任一种。与传统的非螺环结构催化剂或路易斯酸金属催化剂相比,含结构式1所示的螺环状化合物的催化剂在用于催化环氧化合物与二氧化碳反应时具有催化效果更好、性能更稳定和使用寿命更长的优点,兼具了高效和安全性,具有广阔的应用前景。

Description

含螺环状化合物催化剂在催化环氧化合物和二氧化碳反应中的应用 技术领域
本发明属于化学合成技术领域,具体涉及一种含螺环状化合物催化剂在催化环氧化合物和二氧化碳反应中的应用。
背景技术
二氧化碳是导致全球气候变暖的主要温室气体,也是地球上取之不竭、廉价、无毒、可循环再生的的绿色碳资源。实现二氧化碳的资源化利用对二氧化碳的减排、改善环境和降低人类对化石燃料的依赖具有重要的战略意义。二氧化碳的有效固定已经成为本世纪最具挑战性的课题之一,而合成环状碳酸酯就是其中一种很好的固定途径。近年来环状碳酸酯作为高附加值化学品在精细化工、锂电池制造、聚碳酸酯和聚氨酯的合成领域获得了广泛应用。而二氧化碳与环氧化合物环加成制备环状碳酸酯是一种接近100%原子经济性的绿色化学方法,一直备受学术界和工业界的关注。
目前已报道的生产环状碳酸酯大多使用路易斯酸金属和路易斯碱组成的二元催化剂,其中所使用的路易斯金属有:碱金属卤化物、碱土金属卤化物、过渡金属盐、过渡金属配合物或四齿希夫碱金属配合物;所用的路易斯碱有有机碱、铵盐、咪唑盐、固体碱(如金属氧化物)、冠醚和分子筛等等。这些催化剂体系或多或少的存在催化活性不高、稳定性不好、反应条件苛刻、使用毒性很强的有机溶剂和催化剂成本高等问题。
发明内容
基于此,本发明的目的在于提供含螺环状化合物催化剂在催化环氧化合物和二氧化碳反应中的应用,所述螺环状化合物可以更高效温和地催化环氧化合物与二氧化碳发生加成反应,且具有使用寿命长的优点。
为达到上述目的,本发明采用如下技术方案。
催化剂在催化环氧化合物和二氧化碳反应中的应用,其特征在于,所述催化剂包含螺环状化合物,所述螺环状化合物包括结构式1所示化合物中的至少一种:
Figure PCTCN2022128216-appb-000001
其中,X选自氮元素、磷元素;Y选自卤素元素;A和B独立地选自以下结构式中的任一种,*号代表键合位置:
Figure PCTCN2022128216-appb-000002
R a1~R a8、R b1~R b10、R c1~R c12、R d1~R d14独立地选自H、C1~C5的烷基。
在一些实施例中,Y选自Cl、Br、I。
在一些实施例中,所述A和B中至少有一个选自结构式a。
在一些优选的实施例中,所述螺环状化合物包括以下化合物中的至少一种:5-氮鎓螺[4.6]十一烷氯化物;5-氮鎓螺[4.6]十一烷溴化物;5-氮鎓螺[4.6]十一烷碘化物;5-氮鎓螺[4.4]壬烷氯化物;5-氮鎓螺[4.4]壬烷溴化物;5-氮鎓螺[4.4]壬烷碘化物;5-磷杂螺[4.5]癸烷氯化物; 5-磷杂螺[4.5]癸烷溴化物;5-磷杂螺[4.5]癸烷碘化物;8,8-二甲基-5-氮鎓螺[4.5]葵烷氯化物;8,8-二甲基-5-氮鎓螺[4.5]葵烷溴化物;8,8-二甲基-5-氮鎓螺[4.5]葵烷碘化物;7,9-二甲基-5-磷杂螺[4.5]癸烷氯化物;7,9-二甲基-5-磷杂螺[4.5]癸烷溴化物;7,9-二甲基-5-磷杂螺[4.5]癸烷碘化物;2-丁基-5-磷杂螺[4.4]壬烷氯化物;2-丁基-5-磷杂螺[4.4]壬烷溴化物;2-丁基-5-磷杂螺[4.4]壬烷碘化物;1,6-二甲基-5-氮杂螺[4.6]十一烷氯化物;1,6-二甲基-5-氮杂螺[4.6]十一烷溴化物;1,6-二甲基-5-氮杂螺[4.6]十一烷碘化物;5-氮杂螺[4.5]癸烷溴化物;6-氮杂螺[5.5]十一烷溴化物。
在一些实施例中,所述催化剂还包含水和醇中的至少一种;所述水在所述催化剂中的浓度在2000ppm以下;所述醇在所述催化剂中的浓度在2000ppm以下。
在一些实施例中,所述醇选自甲醇、乙醇、丙醇、异丙醇和正丁醇中的至少一种。
在一些实施例中,所述环氧化合物选自环氧乙烷和环氧丙烷中的至少一种。
在一些实施例中,所述反应包括以下步骤:将所述催化剂溶解于环状碳酸酯中得到混合溶液,然后将环氧化合物加入所述混合溶液中,再通入二氧化碳调节反应体系压力,使环氧化合物与二氧化碳发生反应。
在一些实施例中,所述混合溶液中所述螺环状化合物的质量百分浓度为0.5~10%;优选地,所述混合溶液中所述螺环状化合物的质量百分浓度为1~5%。
在一些实施例中,所述反应的温度为100~200℃;和/或,所述反应的压力为0.5~10Mpa;和/或,所述反应的时间为0.3~20h。
本发明提供了如含结构式1所示螺环状化合物的催化剂在催化环氧化合物和二氧化碳反应中的应用。发明人结合自身经验以及大量的研究发现,与传统的非螺环结构催化剂或路易斯酸金属催化剂相比,结构式1所示的螺环状化合物在催化环氧化合物与二氧化碳反应生成环状碳酸酯时催化效果更好、催化性能更稳定,且多次循环使用后仍可保持较高的催化活性和选择性,使用寿命更长。此外,与现有催化剂相比,本发明螺环状化合物作为催化剂时高温下反应体系更稳定,逆向反应速率更低,逆向反应速率随反应温度升高上升平缓,催化剂反应体系稳定性高。并且,适量水和/或醇的存在并不会影响所述螺环状化合物的催化效果。
如含结构式1所示螺环状化合物的催化剂在用于催化环氧化合物与二氧化碳反应时需要的反应条件温和,具有成本低、选择性高、环保、热稳定性好和催化剂使用寿命长等优点,应用前景广阔。
附图说明
图1为5-氮鎓螺[4.4]壬烷溴化物和四正丁基溴化铵催化环氧乙烷和二氧化碳生成EC的 逆向反应检测结果。
图2为5-氮鎓螺[4.6]十一烷溴化物和溴化锂催化环氧乙烷和二氧化碳生成EC的逆向反应检测结果。
具体实施方式
本发明下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。实施例中所用到的各种常用化学试剂,均为市售产品。
除非另有定义,本发明所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不用于限制本发明。
本发明的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤的过程、方法、装置、产品或设备没有限定于已列出的步骤或模块,而是可选地还包括没有列出的步骤,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤。
在本发明中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本发明的一方面提供了一种催化剂在催化环氧化合物和二氧化碳反应中的应用,所述催化剂包含螺环状化合物,所述螺环状化合物包括结构式1所示化合物中的至少一种:
Figure PCTCN2022128216-appb-000003
其中,X选自氮元素、磷元素;Y选自卤素元素;A和B独立地选自以下结构中的任一种,*号代表键合位置:
Figure PCTCN2022128216-appb-000004
R a1~R a8、R b1~R b10、R c1~R c12、R d1~R d14独立地选自H、C1~C5的烷基。
在一些实施例中,所述A和B中至少有一个选自结构式a
在一些实施例中,Y选自Cl、Br、I;优选地,Y选自Cl、Br。
在一些实施例中,所述螺环状化合物包括但不限于以下化合物:
Figure PCTCN2022128216-appb-000005
Figure PCTCN2022128216-appb-000006
1A:5-氮鎓螺[4.6]十一烷氯化物;1B:5-氮鎓螺[4.6]十一烷溴化物;1C:5-氮鎓螺[4.6]十一烷碘化物;2A:5-氮鎓螺[4.4]壬烷氯化物;2B:5-氮鎓螺[4.4]壬烷溴化物;2C:5-氮鎓螺[4.4]壬烷碘化物;3A:5-磷杂螺[4.5]癸烷氯化物;3B:5-磷杂螺[4.5]癸烷溴化物;3C:5-磷杂螺[4.5] 癸烷碘化物;4A:8,8-二甲基-5-氮鎓螺[4.5]葵烷氯化物;4B:8,8-二甲基-5-氮鎓螺[4.5]葵烷溴化物;4C:8,8-二甲基-5-氮鎓螺[4.5]葵烷碘化物;5A:7,9-二甲基-5-磷杂螺[4.5]癸烷氯化物;5B:7,9-二甲基-5-磷杂螺[4.5]癸烷溴化物;5C:7,9-二甲基-5-磷杂螺[4.5]癸烷碘化物;6A:2-丁基-5-磷杂螺[4.4]壬烷氯化物;6B:2-丁基-5-磷杂螺[4.4]壬烷溴化物;6C:2-丁基-5-磷杂螺[4.4]壬烷碘化物;7A:1,6-二甲基-5-氮杂螺[4.6]十一烷氯化物;7B:1,6-二甲基-5-氮杂螺[4.6]十一烷溴化物;7C:1,6-二甲基-5-氮杂螺[4.6]十一烷碘化物;8A:5-氮杂螺[4.5]癸烷溴化物;8B:6-氮杂螺[5.5]十一烷溴化物。
本领域技术人员在知晓结构式I所示的化合物的结构式的情况下,根据化学合成领域的公知常识可以知晓上述化合物的制备方法。例如,可通过以下方法制成:在水中将M与N在碳酸钾中进行亲核取代反应,生成C(结构式1所示化合物)和D。将C和D中的混合溶剂蒸干,再用非水溶剂溶解过滤,脱色处理、浓缩结晶、干燥后得到高纯度产物C。反应式如下:
Figure PCTCN2022128216-appb-000007
在一些实施例中,所述非水溶剂包括乙醇、甲醇、异丙醇、正丁醇、碳酸二甲酯、乙腈中的一种或多种,所述溶解温度为常温~200℃,优选溶解温度为30~90℃。
在一些实施例中,其分离副产物钾盐D的方法,可以是离心机甩料、过滤器过滤中的其中一种。
在一些实施例中,所述脱色处理的方法可以是活性炭脱色法、双氧水脱色法、次氯酸钠脱色法的其中一种。
在一些实施例中,所述浓缩结晶的方法中,浓缩设备可以是反应釜、蒸发器、转鼓干燥器、耙式干燥机中的其中一种。
在一些实施例中,所述干燥的方法中可以使用转鼓干燥机、真空烘烤箱中的其中一种进行干燥。
具体地,例如
Figure PCTCN2022128216-appb-000008
(5-氮鎓螺[4.6]十一烷溴化物)可通过以下方法制成:
先将碳酸钾充分溶解于水中,将在磁力搅拌下,将72g四氢吡咯和244g 1,6-二溴己烷、244g乙醇投入到碳酸钾水溶液中溶剂中,60℃加热反应15小时后升温浓缩蒸干,所得固体用异丙醇溶解,溶解后加入0.4g活性炭搅拌1h脱色后过滤掉活性炭,脱色后将溶液浓缩,重结晶、过滤。干燥后得到白色粉末固体(纯度99.9%,收率85%)。
发明人经过大量的研究发现,与传统的非螺环结构催化剂或路易斯酸金属催化剂相比,含结构式1所示的螺环状化合物的催化剂在用于催化环氧化合物与二氧化碳反应生成环状碳酸酯时催化效果更好且催化性能更稳定,多次循环使用后仍可保持较高的催化活性和选择性。
在一些实施例中,所述催化剂还包含水和醇中的至少一种;所述水在所述催化剂中的浓度在2000ppm以下;所述醇在所述催化剂中的浓度在2000ppm以下。适量水和/或醇的存在并不会影响所述螺环状化合物的催化效果。
在一些优选的实施例中,所述醇选自甲醇、乙醇、丙醇、异丙醇和正丁醇中的至少一种。
在一些实施例中,所述环氧化合物选自结构式2所示化合物中的至少一种:
Figure PCTCN2022128216-appb-000009
其中,当R1=H时,R2为H(环氧乙烷)、CH 3(环氧丙烷)、CH 2Cl(环氧氯丙烷)、C 2H 3(环氧丁烯)、C 4H 9O(2-丙氧基甲基环氧乙烷)、C 4H 9(环氧己烷)、C 6H 5(环氧苯乙烷)、C 8H 7O(2-(苯氧基甲基)环氧乙烷)的一种;当R1≠H时,所用环氧化合物为环氧环己烷。
从反应效率、经济效益等方面考虑,所述环氧化合物优选环氧乙烷、环氧丙烷中的至少一种。
所述环氧化合物在体系中的初始浓度为1~15%(wt)。
在一些实施例中,所述反应包括以下步骤:将所述催化剂溶解于环状碳酸酯中得到混合溶液,然后将环氧化合物加入所述混合溶液中,再通入二氧化碳调节反应体系压力,使环氧化合物与二氧化碳反应生成环状碳酸酯。
在一些实施例中,所述混合溶液中所述螺环状化合物的质量百分浓度为0.5~10%;优选地,所述混合溶液中所述螺环状化合物的质量百分浓度为1~5%。
具体地,所述混合溶液中所述螺环状化合物的质量百分浓度可以为0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.5%、2.7%、3%、3.3%、3.6%、4%、4.25%、4.5%、4.75%、5%、5.5%、6%、7.5%、8%、8.5%、9.2%、9.5%、10%。
在一些实施例中,所述反应的温度为100~200℃;优选地,所述反应的温度为120~170℃。
在一些实施例中,所述反应的压力为0.5~10Mpa;优选地,所述反应的压力为1~5Mpa。
在一些实施例中,所述反应的时间为0.3~20h;优选地,所述反应的时间为0.5~15h。
在一些实施例中,所述催化剂催化环氧化合物和二氧化碳反应的反应通式为:
Figure PCTCN2022128216-appb-000010
下面结合具体实施例进行说明。
实施例1
本实施例提供一种环状碳酸酯的制备方法,所述方法以5-氮鎓螺[4.4]壬烷溴化物作为催化剂,反应式如下:
Figure PCTCN2022128216-appb-000011
实施方法:预先将5-氮鎓螺[4.4]壬烷溴化物与目标产物碳酸乙烯酯配置成催化剂浓度为1%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,加入2ml环氧乙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至140℃,然后控制二氧化碳压力为3MPa,反应1h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧乙烷单程转化率95%,产品选择性>99%,收率为94%。
实施例2
本实施例提供一种环状碳酸酯的制备方法,所述方法以5-氮鎓螺[4.6]十一烷溴化物作为催化剂,反应式同实施例1。
实施方法:预先将5-氮鎓螺[4.6]十一烷溴化物与目标产物碳酸乙烯酯配置成催化剂浓度为1.5%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,加入3ml环氧乙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至145℃,然后控制二氧化碳压力为3MPa,反应1h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧乙烷单程转化率92%,产品选择性为>99%,收率为91%。
实施例3
本实施例提供一种环状碳酸酯的制备方法,所述方法以1,6-二甲基-5-氮杂螺[4.6]十一烷碘化物和2000ppm水作为催化剂,反应式如下:
Figure PCTCN2022128216-appb-000012
实施方法:预先将催化剂与目标产物碳酸丙烯酯配置成1,6-二甲基-5-氮杂螺[4.6]十一烷碘化物浓度为2%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,加入2.4ml环氧丙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至130℃,然后控制二氧化碳压力为2.8MPa,反应1h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧丙烷单程转化率85%,产品选择性>99%,收率为84%。
实施例4
本实施例提供一种环状碳酸酯的制备方法,所述方法以5-磷杂螺[4.5]癸烷溴化物作为催化剂,反应式同实施例3。
实施方法:预先将5-磷杂螺[4.5]癸烷溴化物与目标产物碳酸丙烯酯配置成催化剂浓度为1.8%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,加入2.6ml环氧丙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至135℃,然后控制二氧化碳压力为2.8MPa,反应1h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧丙烷单程转化率88%,产品选择性>99%,收率为87%。
实施例5
本实施例提供一种环状碳酸酯的制备方法,所述方法以2-丁基-5-磷杂螺[4.4]壬烷溴化物和1000ppm水作为催化剂,反应式同实施例3。
实施方法:预先将催化剂与目标产物碳酸丙烯酯配置成2-丁基-5-磷杂螺[4.4]壬烷溴化物浓度为2.0%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,加入3.3ml环氧丙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至150℃,然后控制二氧化碳压力为3.5MPa,反应0.8h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧丙烷单程转化率86%,产品选择性>99%,收率为85%。
实施例6
本实施例提供一种环状碳酸酯的制备方法,所述方法以8,8-二甲基-5-氮鎓螺[4.5]葵烷溴化物作为催化剂,反应式同实施例1:
实施方法:预先将8,8-二甲基-5-氮鎓螺[4.5]葵烷溴化物与目标产物碳酸乙烯酯配置成催化剂浓度为1.8%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,加入3.2ml环氧乙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至160℃,然后控制二氧化碳压力为3.0MPa,反应0.8h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧乙烷单程转化率87%,产品选择性>99%,收率为86%。
实施例7
本实施例提供一种环状碳酸酯的制备方法,所述方法以5-氮杂螺[4.5]癸烷溴化物和2000ppm乙醇作为催化剂,反应式同实施例1。
实施方法:预先将催化剂与目标产物碳酸乙烯酯配置成5-氮杂螺[4.5]癸烷溴化物浓度为10%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,加入3.3ml环氧乙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至105℃,然后控制二氧化碳压力为5MPa,反应10h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧乙烷单程转化率87%,产品选择性>99%,收率为83%。
实施例8
本实施例提供一种环状碳酸酯的制备方法,所述方法以6-氮杂螺[5.5]十一烷溴化物、500ppm水和1000ppm异丙醇作为催化剂,反应式同实施例3。
实施方法:预先将催化剂与目标产物碳酸丙烯酯配置成6-氮杂螺[5.5]十一烷溴化物浓度为5%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,加入3.3ml环氧丙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至120℃,然后控制二氧化碳压力为1.5MPa,反应8h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧丙烷单程转化率87%,产品选择性>99%,收率为84%。
实施例9
本实施例提供一种环状碳酸酯的制备方法,所述方法以7,9-二甲基-5-磷杂螺[4.5]癸烷碘化物作为催化剂,反应式同实施例3。
实施方法:预先将7,9-二甲基-5-磷杂螺[4.5]癸烷碘化物与目标产物碳酸丙烯酯配置成催化剂浓度为5%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,加入3.3ml环氧丙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至170℃,然后控制二氧化碳压力为2.5MPa,反应3h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧丙烷单程转化率86%,产品选择性>99%,收率为85%。
实施例10
本实施例提供一种环状碳酸酯的制备方法,所述方法以1,6-二甲基-5-氮杂螺[4.6]十一烷氯化物、2000ppm水和2000ppm甲醇作为催化剂,反应式同实施例3。
实施方法:预先将催化剂与目标产物碳酸丙烯酯配置成催化剂1,6-二甲基-5-氮杂螺[4.6]十一烷氯化物浓度为6.5%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,加入3.3ml环氧丙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至140℃,然后控制二氧化碳压力为8MPa,反应15h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧丙烷单程转化率85%,产品选择性>99%,收率为85%。
实施例11~15
实施例11~15具体实验方法与步骤同实施例2,在分离掉新生成的碳酸乙烯酯后,向反应体系中再次通入环氧乙烷和二氧化碳进行反应。催化剂反复使用次数如表1所示:
表1催化剂反复使用次数
Figure PCTCN2022128216-appb-000013
对比例1
本对比例提供一种环状碳酸酯的制备方法,所述方法以四正丁基溴化膦作为催化剂。
实施方法:预先将四正丁基溴化膦与目标产物碳酸乙烯酯配置成催化剂浓度为1.5%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,加入3ml环氧乙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至140℃,然后控制二氧化碳压力为3MPa,反应1h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧乙烷单程转化率75%,产品选择性为97%,收率为73%。
对比例2
本对比例提供一种环状碳酸酯的制备方法,所述方法以溴化锂作为催化剂。
实施方法:预先将溴化锂与目标产物碳酸乙烯酯配置成催化剂浓度为1.5%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,加入3ml环氧乙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至145℃,然后控制二氧化碳压力为3MPa,反应1h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧乙烷单程转化率52%,产品选择性为75%,收率为39%。
对比例3
本对比例提供一种环状碳酸酯的制备方法,所述方法以溴化锌与六丁基胍溴盐作为催化 剂。
实施方法:预先将溴化锌与六丁基胍溴盐的复合催化剂(溴化锌与六丁基胍溴盐的摩尔比为1:6)与目标产物碳酸丙烯酯配置成催化剂浓度为2%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,2.4ml环氧丙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至130℃,然后控制二氧化碳压力为2.8MPa,反应1h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧丙烷单程转化率78%,产品选择性为99%,收率为77%。
对比例4
本对比例提供一种环状碳酸酯的制备方法,所述方法以四丙基溴化铵作为催化剂。
实施方法:预先将四丙基溴化铵与目标产物碳酸乙烯酯配置成催化剂浓度为1.5%(wt)的溶液,在带有四氟内衬的25mL不锈钢高压釜中,加入3ml环氧乙烷,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至145℃,然后控制二氧化碳压力为3MPa,反应1h,冷却至室温,泄压,二氧化碳用饱和碳酸钠溶液吸收,气相色谱分析反应液组成并计算目标产物增加值,环氧丙烷单程转化率72%,产品选择性为95%,收率为68%。
对比例5~9
具体实验方法与步骤同对比例4,分离掉新生成的碳酸乙烯酯后,向对比例4中再次通入环氧乙烷和二氧化碳进行反应。催化剂反复使用次数如表2所示:
表2催化剂反复使用次数
Figure PCTCN2022128216-appb-000014
对以上实施例和对比例制备方法中催化剂的催化活性进行检测。
实施例1~10和对比例1~4催化剂活性检测结果如表3所示:
表3催化剂活性检测结果
Figure PCTCN2022128216-appb-000015
Figure PCTCN2022128216-appb-000016
实施例11~15催化剂活性检测结果如表4所示:
表4催化剂活性检测结果
Figure PCTCN2022128216-appb-000017
对比例5~9催化剂活性检测结果如表5所示:
表5催化剂活性检测结果
Figure PCTCN2022128216-appb-000018
对比实施例1~10和对比例1~4的催化剂活性结果可知,本发明螺环状化合物在用于催化环氧化合物和二氧化碳反应生成环状碳酸酯时具有更好的环氧化物单程转化率、选择性和收率,催化活性更好。且适量水和/或醇的存在并不会影响所述螺环状化合物的催化效果。
对比实施例11~15和对比例5~9的检测结果可知,本发明催化剂较现有非螺环结构催化剂催化效果更稳定,多次循环使用后仍能保持较高的催化活性、选择性和收率,催化活性无明显变化;而非螺环结构催化剂在重复使用后催化活性、选择性和收率下降明显。说明本发明螺环状结构可使催化剂催化效果更稳定,使用寿命更长。
对比例10催化剂体系稳定性对比1
以催化环氧乙烷和二氧化碳生成EC的逆向反应为例(即检测催化剂体系中EC的分解情况)。
实施方法:将5-氮鎓螺[4.4]壬烷溴化物和四正丁基溴化铵分别溶入碳酸乙烯酯中,通过在不同的温度加热5~10h,途中收集产生的气体并使用气相色谱检测加热后反应液体系中及收集的气体中环氧乙烷的浓度,计算不同催化剂反应体系中碳酸乙烯酯的分解速率。
结果如图1所示,以5-氮鎓螺[4.4]壬烷溴化物作为催化剂时,高温下反应体系较稳定, 逆向反应速率较以四正丁基溴化铵为催化剂时更低,且逆向反应速率随反应温度升高上升平缓,说明5-氮鎓螺[4.4]壬烷溴化物催化剂反应体系稳定性更高。
对比例11催化剂体系稳定性对比2
以催化环氧乙烷和二氧化碳生成EC的逆向反应为例(即检测催化剂体系中EC的分解情况)
实施方法:将5-氮鎓螺[4.6]十一烷溴化物和溴化锂分别溶入碳酸乙烯酯中,通过在不同的温度加热5~10h,途中收集产生的气体并使用气相色谱检测加热后反应液体系中及收集的气体中环氧乙烷的浓度,计算不同催化剂反应体系中碳酸乙烯酯的分解速率。
结果如图2所示,与溴化锂催化体系相比,5-氮鎓螺[4.6]十一烷溴化物催化体系高温下较稳定,逆向反应速率更低,且逆向反应速率随反应温度升高上升平缓,说明5-氮鎓螺[4.6]十一烷溴化物催化剂反应体系稳定性更高。
综上所述,本发明提供的催化剂中包含具有螺环状结构的化合物,其与传统的非螺环结构催化剂或路易斯酸金属催化剂相比,结构更稳定,多次循环使用后仍可保持较高的催化活性、收率和选择性。且高温下反应体系也更稳定,逆向反应速率相比其它传统催化剂较低,逆向反应速率随反应温度升高上升平缓。说明本发明螺环状化合物用于催化环氧化物和二氧化碳合成环状碳酸酯时催化活性更高,稳定性更好,涉及的环状碳酸酯的合成方法兼具了高效和安全性,具有广阔的应用前景。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对以上实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种催化剂在催化环氧化合物和二氧化碳反应中的应用,其特征在于,所述催化剂包含螺环状化合物,所述螺环状化合物包括结构式1所示化合物中的至少一种:
    Figure PCTCN2022128216-appb-100001
    其中,X选自氮元素、磷元素;Y选自卤素元素;A和B独立地选自以下结构式中的任一种,*号代表键合位置:
    Figure PCTCN2022128216-appb-100002
    R a1~R a8、R b1~R b10、R c1~R c12、R d1~R d14独立地选自H、C1~C5的烷基。
  2. 如权利要求1所述的应用,其特征在于,所述Y选自Cl、Br、I。
  3. 如权利要求1所述的应用,其特征在于,所述A和B中至少有一个选自结构式a。
  4. 如权利要求1所述的应用,其特征在于,所述螺环状化合物包括以下化合物中的至少 一种:5-氮鎓螺[4.6]十一烷氯化物;5-氮鎓螺[4.6]十一烷溴化物;5-氮鎓螺[4.6]十一烷碘化物;5-氮鎓螺[4.4]壬烷氯化物;5-氮鎓螺[4.4]壬烷溴化物;5-氮鎓螺[4.4]壬烷碘化物;5-磷杂螺[4.5]癸烷氯化物;5-磷杂螺[4.5]癸烷溴化物;5-磷杂螺[4.5]癸烷碘化物;8,8-二甲基-5-氮鎓螺[4.5]葵烷氯化物;8,8-二甲基-5-氮鎓螺[4.5]葵烷溴化物;8,8-二甲基-5-氮鎓螺[4.5]葵烷碘化物;7,9-二甲基-5-磷杂螺[4.5]癸烷氯化物;7,9-二甲基-5-磷杂螺[4.5]癸烷溴化物;7,9-二甲基-5-磷杂螺[4.5]癸烷碘化物;2-丁基-5-磷杂螺[4.4]壬烷氯化物;2-丁基-5-磷杂螺[4.4]壬烷溴化物;2-丁基-5-磷杂螺[4.4]壬烷碘化物;1,6-二甲基-5-氮杂螺[4.6]十一烷氯化物;1,6-二甲基-5-氮杂螺[4.6]十一烷溴化物;1,6-二甲基-5-氮杂螺[4.6]十一烷碘化物;5-氮杂螺[4.5]癸烷溴化物;6-氮杂螺[5.5]十一烷溴化物。
  5. 如权利要求1所述的应用,其特征在于,所述催化剂还包含水和醇中的至少一种;所述水在所述催化剂中的浓度在2000ppm以下;所述醇在所述催化剂中的浓度在2000ppm以下。
  6. 如权利要求5所述的应用,其特征在于,所述醇选自甲醇、乙醇、丙醇、异丙醇和正丁醇中的至少一种。
  7. 如权利要求1所述的应用,其特征在于,所述环氧化合物选自环氧乙烷和环氧丙烷中的至少一种。
  8. 如权利要求1~7任一项所述的应用,其特征在于,所述反应包括以下步骤:将所述催化剂溶解于环状碳酸酯中得到混合溶液,然后将环氧化合物加入所述混合溶液中,再通入二氧化碳调节反应体系压力,使环氧化合物与二氧化碳反应生成环状碳酸酯。
  9. 如权利要求8所述的应用,其特征在于,所述混合溶液中所述螺环状化合物的质量百分浓度为0.5~10%;优选地,所述混合溶液中所述螺环状化合物的质量百分浓度为1~5%。
  10. 如权利要求8所述的应用,其特征在于,所述反应的温度为100~200℃;和/或,所述反应的压力为0.5~10Mpa;和/或,所述反应的时间为0.3~20h。
PCT/CN2022/128216 2022-10-21 2022-10-28 含螺环状化合物催化剂在催化环氧化合物和二氧化碳反应中的应用 WO2024082333A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/044,219 US20240189802A1 (en) 2022-10-21 2022-10-28 Spirocyclic compound containing catalyst for use in catalyzing reaction of epoxide compound and carbon dioxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211291150.3 2022-10-21
CN202211291150.3A CN115417850B (zh) 2022-10-21 2022-10-21 含螺环状化合物催化剂在催化环氧化合物和二氧化碳反应中的应用

Publications (1)

Publication Number Publication Date
WO2024082333A1 true WO2024082333A1 (zh) 2024-04-25

Family

ID=84207655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128216 WO2024082333A1 (zh) 2022-10-21 2022-10-28 含螺环状化合物催化剂在催化环氧化合物和二氧化碳反应中的应用

Country Status (3)

Country Link
US (1) US20240189802A1 (zh)
CN (1) CN115417850B (zh)
WO (1) WO2024082333A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024158344A1 (en) * 2023-01-27 2024-08-02 Agency For Science, Technology And Research Catalysts for solvolysis of polyester

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816540A (zh) * 2003-06-30 2006-08-09 国际壳牌研究有限公司 碳酸亚丙酯的制备方法
CN102532090A (zh) * 2010-12-29 2012-07-04 武汉艾奥立化学科技有限公司 含吗啉类离子型化合物作为合成环状碳酸酯的催化剂的用途
CN109776480A (zh) * 2019-03-08 2019-05-21 中国科学院过程工程研究所 一种用于合成环状碳酸酯的催化剂、制备方法以及环状碳酸酯的制备方法
CN113292530A (zh) * 2021-04-30 2021-08-24 深圳新宙邦科技股份有限公司 一种季磷盐制备环状碳酸酯的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696123A (zh) * 2005-06-03 2005-11-16 中国科学院长春应用化学研究所 一种合成环状碳酸酯的方法
CN1817877A (zh) * 2006-03-17 2006-08-16 中国科学院过程工程研究所 一种环状碳酸酯的合成方法
CN100478338C (zh) * 2006-12-27 2009-04-15 中国科学院过程工程研究所 一种制备环状碳酸酯的方法
KR20210018443A (ko) * 2018-06-11 2021-02-17 에보니크 오퍼레이션즈 게엠베하 에폭시드와 함께 co₂ 첨가에 의한 카르보네이트의 제조 방법
CN109867654B (zh) * 2019-02-19 2021-06-29 胜华新能源科技(东营)有限公司 一种用于环氧烷烃和二氧化碳制备碳酸亚烷基酯的方法
CN111253360A (zh) * 2020-03-31 2020-06-09 南京工业大学 一种环状碳酸酯的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816540A (zh) * 2003-06-30 2006-08-09 国际壳牌研究有限公司 碳酸亚丙酯的制备方法
CN102532090A (zh) * 2010-12-29 2012-07-04 武汉艾奥立化学科技有限公司 含吗啉类离子型化合物作为合成环状碳酸酯的催化剂的用途
CN109776480A (zh) * 2019-03-08 2019-05-21 中国科学院过程工程研究所 一种用于合成环状碳酸酯的催化剂、制备方法以及环状碳酸酯的制备方法
CN113292530A (zh) * 2021-04-30 2021-08-24 深圳新宙邦科技股份有限公司 一种季磷盐制备环状碳酸酯的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIN-QUAN WANG: "Insights into quaternary ammonium salts-catalyzed fixation carbon dioxide with epoxides", CATALYSIS SCIENCE & TECHNOLOGY, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 2, no. 7, 1 January 2012 (2012-01-01), UK , pages 1480, XP093162880, ISSN: 2044-4753, DOI: 10.1039/c2cy20103h *
LIPING GUO: "Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates", GREEN CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 23, no. 1, 18 January 2021 (2021-01-18), GB , pages 77 - 118, XP093162878, ISSN: 1463-9262, DOI: 10.1039/D0GC03465G *
MATTHEW T CLOUGH, KAROLIN GEYER, PATRICIA A HUNT, ALASTAIR J S MCINTOSH, REBECCA ROWE, TOM WELTON, ANDREW J P WHITE: "Azoniaspiro salts: towards bridging the gap between room-temperature ionic liquids and molten salts", © THE ROYAL SOCIETY OF CHEMISTRY PHYS. CHEM. PHYS. CHEM, 1 January 2012 (2012-01-01), pages 1 - 12, XP055597179 *
RUNTAO LI: "Studies on cyclic quaternary ammonium salts Ⅲ.synthesis and phase transfer catalytic action of DCAS", CHEMICAL REAGENTS, vol. 17, no. 1, 31 December 1995 (1995-12-31), pages 7 - 8, XP093162882, DOI: 10.13822j.cnki.hxsj.1995.01.003 *

Also Published As

Publication number Publication date
CN115417850A (zh) 2022-12-02
CN115417850B (zh) 2023-04-18
US20240189802A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
CN108373142B (zh) 一种高纯度双氟磺酰亚胺锂盐的制备方法
Ji et al. Conversion of CO 2 into cyclic carbonates by a Co (ii) metal–organic framework and the improvement of catalytic activity via nanocrystallization
WO2024082333A1 (zh) 含螺环状化合物催化剂在催化环氧化合物和二氧化碳反应中的应用
CN109134420B (zh) 一种环碳酸酯的制备方法
WO2019104841A1 (zh) 制备环碳酸酯的方法
WO2024001487A1 (zh) 一种二氧化碳与环氧化合物合成环状碳酸酯的方法及其催化剂
CN101265253A (zh) 一种环状碳酸酯的多相催化合成方法
CN101108843A (zh) 含水体系环状碳酸酯的合成方法
CN110433845B (zh) 一种碳包覆氮化铜纳米线催化剂电催化加氢制取2,5-呋喃二甲醇的方法
CN113292724B (zh) 一种富含吡啶的阳离子共价三嗪聚合物的制备方法
CN108129392B (zh) 质子化羧基咪唑类离子液体及用其催化合成环状碳酸酯的方法
CN112409190A (zh) 胺盐类离子液体高效催化合成环状碳酸酯的方法
CN110078702A (zh) 一种聚离子液体框架催化剂制备环状碳酸酯的方法
Chang et al. Pyrene-based ammonium bromides combined with gC 3 N 4 for the synergistically enhanced fixation reaction of CO 2 and epoxides
KR101368349B1 (ko) 금속유기골격체를 촉매로 사용한 글리세롤카보네이트의 제조방법
CN115155656B (zh) 一种用于合成环状碳酸酯的催化剂及环状碳酸酯的合成方法
CN106831595B (zh) 一种苄基咪唑盐离子液体及利用其催化合成环状碳酸酯的方法
CN102416348A (zh) 一种聚合物负载的咪唑类离子催化剂及其制备方法与应用
CN113045533B (zh) 一种环状碳酸酯的合成方法
CN115636791A (zh) 一种非卤素离子液体对co2吸收-原位转化合成碳酸酯的方法
CN115108912A (zh) 一种强碱性离子液体催化co2合成碳酸二甲酯催化剂的方法
CN112844473A (zh) 一种氧化铝负载聚离子液体催化剂及其制备方法和应用
CN108117564B (zh) 一种制备穴醚222的工艺方法
CN113307789B (zh) 一种金属卟啉离子框架催化尿素与二元醇合成环状碳酸酯的方法
CN112778153A (zh) 酰胺基桥连六羧酸配体和金属有机框架材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862355

Country of ref document: EP

Kind code of ref document: A1