WO2024001487A1 - 一种二氧化碳与环氧化合物合成环状碳酸酯的方法及其催化剂 - Google Patents

一种二氧化碳与环氧化合物合成环状碳酸酯的方法及其催化剂 Download PDF

Info

Publication number
WO2024001487A1
WO2024001487A1 PCT/CN2023/091155 CN2023091155W WO2024001487A1 WO 2024001487 A1 WO2024001487 A1 WO 2024001487A1 CN 2023091155 W CN2023091155 W CN 2023091155W WO 2024001487 A1 WO2024001487 A1 WO 2024001487A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
quaternary ammonium
ammonium salt
cyclic carbonate
nitrogen heterocyclic
Prior art date
Application number
PCT/CN2023/091155
Other languages
English (en)
French (fr)
Inventor
陈雪君
曹朝伟
王帮应
涂凯
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2024001487A1 publication Critical patent/WO2024001487A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0282Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aliphatic ring, e.g. morpholinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0285Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre also containing elements or functional groups covered by B01J31/0201 - B01J31/0274
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • C07D213/20Quaternary compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • C07D295/084Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • C07D295/088Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • C07D317/38Ethylene carbonate
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the invention relates to the technical field of green, clean and efficient catalysis, and in particular to a catalyst that catalyzes the reaction of carbon dioxide and epoxy compounds to synthesize cyclic carbonate and a method for synthesizing cyclic carbonate.
  • Carbon dioxide is the main greenhouse gas that causes global warming. It is also an inexhaustible, cheap, non-toxic, and recyclable green carbon resource on the earth; realizing the resource utilization of carbon dioxide can reduce carbon dioxide emissions, improve the environment, and reduce emissions. Humanity's dependence on fossil fuels has strategic importance.
  • the effective fixation of carbon dioxide has become one of the most challenging issues in this century, and the synthesis of cyclic carbonates is one of the good fixation approaches.
  • cyclic carbonates have been widely used as high value-added chemicals in fine chemicals, lithium battery manufacturing, and the synthesis of polycarbonate and polyurethane.
  • the preparation methods of cyclic carbonates mainly include phosgene method, transesterification method and cycloaddition method of carbon dioxide and epoxy compounds.
  • the cycloaddition of carbon dioxide and epoxy compounds to prepare cyclic carbonates is a green chemical method with 100% atom economy, which has always attracted the attention of academia and industry.
  • cyclic carbonates uses binary catalysts composed of Lewis acid metals and Lewis bases.
  • the Lewis metals used include: alkali metal halides, alkaline earth metal halides, transition metal salts, transition metal complexes or Tetradentate Schiff base metal complex; the Lewis bases used include organic bases, quaternary ammonium salts, imidazole salts, solid bases (such as metal oxides), crown ethers, molecular sieves, etc.
  • the present invention provides a new hydroxyl nitrogen heterocyclic quaternary ammonium salt as a catalyst to realize the reaction of carbon dioxide and epoxy compounds to synthesize cyclic carbonate, which has the advantages of low catalytic cost, high reaction efficiency and high selectivity. .
  • the invention provides a hydroxy nitrogen heterocyclic quaternary ammonium salt, which is a compound represented by any one of the following structural formulas:
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently selected from hydrogen atoms and C 1 -C 16 alkyl groups;
  • X is a halogen atom;
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently selected from hydrogen atoms and methyl groups.
  • X is selected from one of Cl, Br, and I.
  • X is selected from Cl and Br.
  • hydroxy nitrogen heterocyclic quaternary ammonium salt is selected from one of the compounds represented by the following structural formula:
  • the present invention also provides a method for synthesizing cyclic carbonate from carbon dioxide and epoxy compounds.
  • the method uses carbon dioxide and epoxy compounds as raw materials, and the above-mentioned hydroxyl nitrogen heterocyclic quaternary ammonium salt as a catalyst to react to synthesize cyclic carbonate. Carbonate.
  • R 1 H
  • R 2 is H, CH 3 , C 2 H 5 , CH 2 Cl, C 2 H 3 , C 4 H 9 O, C 4 H 9 , C 6 H 5 , C 7 H 7 O
  • R 1 ⁇ H the epoxy compound is epoxycyclohexane.
  • the structural formula of the epoxy compound is:
  • the molar ratio of the hydroxy nitrogen heterocyclic quaternary ammonium salt to the epoxy compound is 1 ⁇ 10 -3 -2.5 ⁇ 10 -3 :1.
  • the pressure of the reaction is 0.1-10MPa.
  • reaction temperature is 40-220°C.
  • reaction time is 0.5-6h.
  • the present invention also provides the use of the above-mentioned hydroxyl nitrogen heterocyclic quaternary ammonium salt in catalyzing the synthesis of cyclic carbonate from carbon dioxide and epoxy compounds.
  • the present invention provides a new hydroxyl nitrogen heterocyclic quaternary ammonium salt, which can be used as a single catalyst to catalyze the reaction of carbon dioxide and epoxy compounds to synthesize cyclic carbonate.
  • the inventor innovatively discovered that the type of substituents on the hydroxyl nitrogen heterocyclic quaternary ammonium salt will affect its catalytic effect, and further studied and obtained the hydroxyl nitrogen heterocyclic quaternary ammonium salt with the structural formula of the present invention.
  • the hydroxyl nitrogen heterocyclic quaternary ammonium salt contains specific types of substituents, and the catalytic performance is significantly improved.
  • the selectivity of the prepared cyclic carbonate can be as high as 99.8%, and the yield can be as high as 99%.
  • the synthesis method of the cyclic carbonate of the present invention can efficiently synthesize the cyclic carbonate under milder reaction conditions by using the hydroxyl azacyclic quaternary ammonium salt as a catalyst, and the hydroxyl aza Cyclic quaternary ammonium salts have low cost, high selectivity, good thermal stability, and can be reused.
  • Figure 1 is the gas chromatography analysis result of the product obtained in Example 2 of the present invention.
  • hydroxyl nitrogen heterocyclic quaternary ammonium salt of the present invention is selected from the compounds represented by any one of the following structural formulas:
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently selected from hydrogen atoms and C 1 -C 16 alkyl groups;
  • X is a halogen atom;
  • m and n are each independently selected from 1 ,2,3.
  • the synthesis method of the hydroxy nitrogen heterocyclic quaternary ammonium salt is to synthesize For example, include the following steps:
  • the method for synthesizing cyclic carbonate from carbon dioxide and epoxy compounds of the present invention has a general reaction formula:
  • R 1 and R 2 are substituents on the epoxy compound ring.
  • R 1 H
  • R 2 is H (ethylene oxide), CH 3 (propylene oxide), C 2 H 5 (epoxy Butane), CH 2 Cl (epichlorohydrin), C 2 H 3 (epoxybutylene), C 4 H 9 O (2-propoxymethyl oxirane), C 4 H 9 (cyclohexane)
  • the structural formula of the epoxy compound is:
  • the molar ratio of the hydroxyl nitrogen heterocyclic quaternary ammonium salt and the epoxy compound is 1 ⁇ 10 -3 -2.5 ⁇ 10 -3 :1, the reaction pressure is 0.1-10MPa, the temperature is 40-220°C, and the reaction time is 0.5 Cyclic carbonates were synthesized under the conditions of -6h.
  • the reaction conditions of the method are mild, and the hydroxyl nitrogen heterocyclic quaternary ammonium salt used is a single-component catalyst, which has the advantages of low cost, high selectivity and good thermal stability.
  • Example 3 In a 25mL stainless steel autoclave lined with PTFE, add the epoxy compound and catalyst in the amounts shown in Example 3 in Table 2, seal the reaction kettle, fill it with an appropriate amount of carbon dioxide, and slowly heat the reaction kettle. to 140°C, then control the carbon dioxide pressure to 2MPa, react for 0.7 hours, cool to room temperature, release the pressure, absorb the carbon dioxide with saturated sodium bicarbonate solution, distill the resulting liquid under reduced pressure to obtain the product, analyze by gas chromatography, the peak time of the product is the same as The standard samples are consistent, indicating that the product is ethylene carbonate, and the product properties are shown in Table 2.
  • Example 6 In a 25mL stainless steel autoclave lined with PTFE, add the epoxy compound and catalyst in the amounts shown in Example 6 in Table 2, seal the reaction kettle, fill it with an appropriate amount of carbon dioxide, and slowly heat the reaction kettle. to 120°C, then control the carbon dioxide pressure to 5MPa, react for 0.2 hours, cool to room temperature, release the pressure, absorb the carbon dioxide with saturated sodium bicarbonate solution, distill the resulting liquid under reduced pressure to obtain the product, analyze by gas chromatography, the peak time of the product is the same as The standard samples are consistent, indicating that the product is ethylene carbonate, and the product properties are shown in Table 2.
  • Example 7 In a 25mL stainless steel autoclave lined with PTFE, add the epoxy compound and catalyst in the amounts shown in Example 7 in Table 2, seal the reaction kettle, fill it with an appropriate amount of carbon dioxide, and slowly heat the reaction kettle. to 120°C, then control the carbon dioxide pressure to 6MPa, react for 0.2 hours, cool to room temperature, release the pressure, absorb the carbon dioxide with saturated sodium bicarbonate solution, distill the resulting liquid under reduced pressure to obtain the product, analyze by gas chromatography, the peak time of the product is the same as The standard samples are consistent, indicating that the product is ethylene carbonate, and the product properties are shown in Table 2.
  • Example 8 In a 25mL stainless steel autoclave lined with PTFE, add the epoxy compound and catalyst in the amounts shown in Example 8 in Table 2, seal the reaction kettle, fill it with an appropriate amount of carbon dioxide, and slowly heat the reaction kettle. to 130°C, then control the carbon dioxide pressure to 2MPa, react for 2 hours, cool to room temperature, release the pressure, absorb the carbon dioxide with saturated sodium bicarbonate solution, and distill the resulting liquid under reduced pressure to obtain the product. Analyze by gas chromatography. The peak time of the product is consistent with the standard. The samples are consistent, indicating that the product is ethylene carbonate, and the product properties are shown in Table 2.
  • Example 9 In a 25mL stainless steel autoclave lined with PTFE, add the epoxy compound and catalyst in the amounts shown in Example 9 in Table 2, seal the reaction kettle, fill it with an appropriate amount of carbon dioxide, and slowly heat the reaction kettle. to 130°C, then control the carbon dioxide pressure to 3MPa, react for 3 hours, cool to room temperature, release the pressure, absorb the carbon dioxide with saturated sodium bicarbonate solution, and distill the resulting liquid under reduced pressure to obtain the product. Analyze by gas chromatography. The peak time of the product is consistent with the standard. The samples are consistent, indicating that the product is ethylene carbonate, and the product properties are shown in Table 2.
  • Example 12 In a 25mL stainless steel autoclave lined with PTFE, add the epoxy compound and catalyst in the amounts shown in Example 12 in Table 2, seal the reaction kettle, fill it with an appropriate amount of carbon dioxide, and slowly heat the reaction kettle. to 130°C, then control the carbon dioxide pressure to 3MPa, react for 0.3 hours, cool to room temperature, release the pressure, absorb the carbon dioxide with saturated sodium bicarbonate solution, distill the resulting liquid under reduced pressure to obtain the product, analyze by gas chromatography, the peak time of the product is the same as The standard samples are consistent, indicating that the product is ethylene carbonate, and the product properties are shown in Table 2.
  • Example 14 In a 25mL stainless steel autoclave lined with PTFE, add the epoxy compound and catalyst in the amounts shown in Example 14 in Table 2, seal the reaction kettle, fill it with an appropriate amount of carbon dioxide, and slowly heat the reaction kettle. to 120°C, then control the carbon dioxide pressure to 10MPa, react for 0.1 hour, cool to room temperature, release the pressure, absorb the carbon dioxide with saturated sodium bicarbonate solution, distill the resulting liquid under reduced pressure to obtain the product, analyze by gas chromatography, the peak time of the product is the same as The standard samples are consistent, indicating that the product is ethylene carbonate, and the product properties are shown in Table 2.
  • Examples 15-18 include most of the operating steps in Example 1, and the only difference lies in the addition of catalyst as shown in Examples 15-18 in Table 2. According to gas chromatography analysis, the peak time of the product is consistent with that of the standard sample, indicating that the product is ethylene carbonate. The product properties are shown in Table 2.
  • Comparative Example 1-2 includes most of the operating steps in Example 1, and the only difference is that the catalyst is added as shown in Comparative Example 1-2 in Table 2. According to gas chromatography analysis, the peak time of the product is consistent with that of the standard sample, indicating that the product is ethylene carbonate. The product properties are shown in Table 2.
  • the catalysts used in each embodiment and comparative example are compounds shown in the structural formulas in Table 1.
  • Comparative Examples 1-14 and Comparative Examples 1-2 show that using carbon dioxide and epoxy compounds as raw materials and using the hydroxyl nitrogen heterocyclic quaternary ammonium salt of the present invention as a catalyst, cyclic carbonic acid can be prepared under mild reaction conditions. ester, and the prepared cyclic carbonate has higher selectivity and yield. It shows that the catalytic performance of the hydroxyl nitrogen heterocyclic quaternary ammonium salt containing specific types of substituents of the present invention is significantly improved, and it can catalyze the synthesis of cyclic carbonate esters through cycloaddition reaction of carbon dioxide and epoxy compounds in an environmentally friendly, efficient and highly selective manner, and is effective Improve the selectivity and yield of cyclic carbonates.
  • Example 1 Comparing the test results of Example 1 and Examples 15-18, it can be seen that when the molar ratio of the catalyst hydroxyl nitrogen heterocyclic quaternary ammonium salt and the epoxy compound is within a wide range, high selectivity and yield can be obtained. cyclic carbonates; especially moles of both When the ratio is in the range of 1 ⁇ 10 -3 -2.5 ⁇ 10 -3 , the catalytic effect is better.
  • the present invention uses a new hydroxyl nitrogen heterocyclic quaternary ammonium salt as a catalyst to achieve efficient and highly selective synthesis of cyclic carbonate from carbon dioxide and epoxy compounds through cycloaddition reaction under mild reaction conditions. Moreover, the yield of the obtained cyclic carbonate is high and the catalytic effect is obvious.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及绿色、清洁、高效催化技术领域,尤其涉及一种二氧化碳与环氧化合物通过催化反应合成环状碳酸酯的方法以及对应的催化剂。本发明以羟基氮杂环季铵盐为催化剂,用于催化二氧化碳与环氧化合物反应合成环状碳酸酯。本发明选用全新的羟基氮杂环季铵盐做催化剂,可在较温和的反应条件下高效、高选择性的合成环状碳酸酯,且催化剂成本低、选择性高、热稳定性好,并可重复使用。

Description

一种二氧化碳与环氧化合物合成环状碳酸酯的方法及其催化剂 技术领域
本发明涉及绿色、清洁、高效催化技术领域,尤其涉及催化二氧化碳与环氧化合物反应合成环状碳酸酯的催化剂及合成环状碳酸酯的方法。
背景技术
二氧化碳是导致全球气候变暖的主要温室气体,也是地球上取之不竭、廉价、无毒、可循环再生的的绿色碳资源;实现二氧化碳的资源化利用对二氧化碳的减排、改善环境和降低人类对化石燃料的依赖具有重要的战略意义。二氧化碳的有效固定已经成为本世纪最具挑战性的课题之一,而合成环状碳酸酯就是其中一种很好的固定途径。近年来环状碳酸酯作为高附加值化学品在精细化工、锂电池制造、聚碳酸酯和聚氨酯的合成领域获得了广泛应用。环状碳酸酯的制备方法主要有光气法、酯交换法和二氧化碳与环氧化合物环加成法。而二氧化碳与环氧化合物环加成制备环状碳酸酯是一种具有100%原子经济性的绿色化学方法,一直备受学术界和工业界的关注。
在自然条件下,二氧化碳和环氧化合物将难以发生反应,或者二者反应生成环状碳酸酯的效率较低。因此,选择合适的催化剂能有效提高二氧化碳和环氧化合物反应生成环状碳酸酯的效率。目前已报道的生产环状碳酸酯大多使用路易斯酸金属和路易斯碱组成的二元催化剂,其中所使用的路易斯金属有:碱金属卤化物,碱土金属卤化物,过渡金属盐,过渡金属配合物或四齿希夫碱金属配合物;所用的路易斯碱有有机碱,季铵盐,咪唑盐,固体碱(如金属氧化物),冠醚,分子筛等等。这些催化剂体系或多或少的存在催化活性不高,稳定性不好,反应条件苛刻,使用毒性很强的有机溶剂,催化剂成本高等问题。而用单组份催化剂催化合成环状碳酸酯的方法很少,故本发明以开发廉价,高效,组分简单,稳定性好,环境友好的催化剂为目的。
发明内容
本发明针对以上技术问题,提供了一种全新的羟基氮杂环季铵盐作为催化剂,来实现二氧化碳和环氧化合物反应合成环状碳酸酯,具有催化成本低、反应高效、高选择性的优点。
本发明解决上述技术问题所采用的技术方案如下:
本发明提供了一种羟基氮杂环季铵盐,所述羟基氮杂环季铵盐为下述结构式中的任一种所示的化合物:
其中,R3、R4、R5、R6、R7、R8各自独立地选自氢原子和C1-C16的烷基;X为卤素原子;m和n各自独立的选自1、2、3;且当n=1时,m=2或3;当n=2时,m=2;当n=3时,m=1。
进一步的,R3、R4、R5、R6、R7、R8各自独立地选自氢原子和甲基。
进一步的,X选自Cl、Br、I中的一种。
进一步的,X选自Cl、Br中的一种。
进一步的,所述羟基氮杂环季铵盐选自下述结构式所示化合物中的一种:



另一方面,本发明还提供一种二氧化碳与环氧化合物合成环状碳酸酯的方法,所述方法以二氧化碳和环氧化合物为原料,上述羟基氮杂环季铵盐为催化剂,反应合成环状碳酸酯。
进一步的,所述环氧化合物的结构式为:
其中,当R1=H时,R2为H、CH3、C2H5、CH2Cl、C2H3、C4H9O、C4H9、C6H5、C7H7O的一种;当R1≠H时,所述环氧化合物为环氧环己烷。
具体的,所述环氧化合物的结构式为:
进一步的,所述羟基氮杂环季铵盐与环氧化合物的摩尔比为1×10-3-2.5×10-3:1。
进一步的,所述反应的压力为0.1-10MPa。
进一步的,所述反应的温度为40-220℃。
进一步的,所述反应的时间为0.5-6h。
本发明还提供上述羟基氮杂环季铵盐在催化二氧化碳与环氧化合物合成环状碳酸酯中的应用。
本发明具有如下有益效果:
(1)本发明提供了一种新的羟基氮杂环季铵盐,其可作为催化二氧化碳和环氧化合物反应合成环状碳酸酯的单一催化剂。发明人创新性地发现羟基氮杂环季铵盐上取代基的种类会影响其催化效果,并进一步研究获得了本发明结构式的羟基氮杂环季铵盐。所述羟基氮杂环季铵盐含有特定类型的取代基,催化性能得到明显改善,可环保、高效、高选择性地催化二氧化碳和环氧化合物通过环加成反应合成环状碳酸酯,有效提高环状碳酸酯的选择性和收率,制备得到的环状碳酸酯选择性可高达99.8%,收率可高达到99%。
(2)本发明的环状碳酸酯的合成方法,通过使用所述羟基氮杂环季铵盐为催化剂,可在较温和的反应条件下高效地合成环状碳酸酯,且所述羟基氮杂环季铵盐成本低、选择性高、热稳定性好,并可重复使用。
附图说明
为了更清楚的说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见的,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1为本发明实施例2所得产品的气相色谱分析结果。
具体实施方式
下面将结合具体实施例,对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通的技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明的保护范围。
本发明所述羟基氮杂环季铵盐选自以下结构式中任一种所示的化合物:

其中,R3、R4、R5、R6、R7、R8各自独立的选自氢原子和C1-C16的烷基;X为卤素原子;m和n各自独立的选自1、2、3。
具体的,所述羟基氮杂环季铵盐的合成方法,以合成为例,包括以下步骤:
在磁力搅拌下,将5.2g 1-甲基咪唑(62.5mmol,5mL)和6.5g 2,2-双(溴甲基)-1,3-丙二醇(25mmol)的混合物在150℃加热8小时。冷却至室温后,所得固体用乙腈洗涤3次,残渣在100℃烘箱中干燥2h,得到10.14g 2,2-双[(1-甲基咪唑-3-基)甲基]丙烷-1,3-二醇,为白色粉末(收率:95.25%,熔点=150℃)。再将2,2-双[(1-甲基咪唑-3-基)甲基]丙烷-1,3-二醇与一定含量的氢溴酸反应,即得对应季铵盐。
本发明的二氧化碳与环氧化合物合成环状碳酸酯的方法,其反应通式为:
其中,R1、R2为环氧化合物环上的取代基,当R1=H时,R2为H(环氧乙烷)、CH3(环氧丙烷)、C2H5(环氧丁烷)、CH2Cl(环氧氯丙烷)、C2H3(环氧丁烯)、C4H9O(2-丙氧基甲基环氧乙烷)、C4H9(环氧己烷)、C6H5(环氧苯乙烷)、C7H7O(2-(苯氧基甲基)环氧乙烷)的一种;当R1≠H时,所述环氧化合物为环氧环己烷。
具体的,所述环氧化合物的结构式为:
所述羟基氮杂环季铵盐与环氧化合物的摩尔比为1×10-3-2.5×10-3:1,在反应压力为0.1-10MPa,温度为40-220℃,反应时间为0.5-6h的条件下合成环状碳酸酯。所述方法反应条件温和,所用所述羟基氮杂环季铵盐为单组分催化剂,具有成本低、选择性高、热稳定性好的优点。
下面将结合具体实施例对本发明的环状碳酸酯合成方法做进一步说明。
实施例1
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例1所示添加量的环氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至120℃,然后控制二氧化碳压力为3MPa,反应0.5h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例2
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例2所示添加量的环氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至130℃,然后控制二氧化碳压力为4MPa,反应0.6h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致(图1),说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例3
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例3所示添加量的环氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至140℃,然后控制二氧化碳压力为2MPa,反应0.7h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例4
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例4所示添加量的环氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至120℃,然后控制二氧化碳压力为3MPa,反应0.5h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例5
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例5所示添加量的环 氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至120℃,然后控制二氧化碳压力为3MPa,反应0.5h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例6
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例6所示添加量的环氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至120℃,然后控制二氧化碳压力为5MPa,反应0.2h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例7
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例7所示添加量的环氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至120℃,然后控制二氧化碳压力为6MPa,反应0.2h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例8
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例8所示添加量的环氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至130℃,然后控制二氧化碳压力为2MPa,反应2h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例9
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例9所示添加量的环氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至130℃,然后控制二氧化碳压力为3MPa,反应3h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例10
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例10所示添加量的环氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至140℃, 然后控制二氧化碳压力为3MPa,反应2.5h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例11
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例11所示添加量的环氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至120℃,然后控制二氧化碳压力为3MPa,反应4h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例12
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例12所示添加量的环氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至130℃,然后控制二氧化碳压力为3MPa,反应0.3h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例13
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例13所示添加量的环氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至130℃,然后控制二氧化碳压力为8MPa,反应0.3h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例14
在带有四氟内衬的25mL不锈钢高压釜中,依次加入按表2中实施例14所示添加量的环氧化合物和催化剂,密闭反应釜,充入适量压力的二氧化碳,将反应釜缓慢升温至120℃,然后控制二氧化碳压力为10MPa,反应0.1h,冷却至室温,泄压,二氧化碳用饱和碳酸氢钠溶液吸收,将所得的液体减压蒸馏得产品,气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
实施例15-18
实施例15-18包括实施例1中大部分的操作步骤,区别仅在于按表2中实施例15-18所示的催化剂添加。气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
对比例1-2
对比例1-2包括实施例1中大部分的操作步骤,区别仅在于按表2中对比例1-2所示的催化剂添加。气相色谱分析,产品出峰时间与标样一致,说明产品为碳酸乙烯酯,产品性质如表2所示。
各实施例及对比例中所用催化剂分别为如表1中结构式所示的化合物。
表1

各实施例及对比例中所用催化剂及用量以及环状碳酸酯产物性质如表2所示。
表2

对比实施例1-14和对比例1-2的测试结果可知,以二氧化碳和环氧化合物为原料,以本发明羟基氮杂环季铵盐为催化剂,可在温和反应条件下制备得到环状碳酸酯,且制备得到的环状碳酸酯具有更高的选择性和收率。说明本发明含有特定类型取代基的羟基氮杂环季铵盐的催化性能得到明显改善,可环保、高效、高选择性地催化二氧化碳和环氧化合物通过环加成反应合成环状碳酸酯,有效提高环状碳酸酯的选择性和收率。
对比实施例1、实施例15-18的测试结果可知,当催化剂羟基氮杂环季铵盐与环氧化合物的摩尔比在较大范围内时,均可得到具有较高选择性和收率的环状碳酸酯;尤其是二者摩尔 比在1×10-3-2.5×10-3范围内时,催化效果更佳。
由上可知,本发明通过全新的羟基氮杂环季铵盐做催化剂,可实现在温和反应条件下,高效、高选择性的由二氧化碳和环氧化合物通过环加成反应合成环状碳酸酯,且得到的环状碳酸酯的收率高,催化效果明显。
以上借助具体实施例对本申请做了进一步描述,但是应该理解的是,这里具体的描述,不应理解为对本申请的实质和范围的限定,本领域内的普通技术人员在阅读本说明书后对上述实施例做出的各种修改,都属于本申请所保护的范围。

Claims (10)

  1. 一种羟基氮杂环季铵盐,其特征在于,所述羟基氮杂环季铵盐为下述结构式中的任一种所示的化合物:
    其中,R3、R4、R5、R6、R7、R8各自独立地选自氢原子和C1-C16的烷基;X为卤素原子;m和n各自独立的选自1、2、3;且当n=1时,m=2或3;当n=2时,m=2;当n=3时,m=1。
  2. 根据权利要求1所述的羟基氮杂环季铵盐,其特征在于,R3、R4、R5、R6、R7、R8各自独立地选自氢原子和甲基。
  3. 根据权利要求1所述的羟基氮杂环季铵盐,其特征在于,X选自Cl、Br、I中的一种。
  4. 根据权利要求1所述的羟基氮杂环季铵盐,其特征在于,所述羟基氮杂环季铵盐选自下述结构式所示化合物中的一种:


  5. 一种二氧化碳与环氧化合物合成环状碳酸酯的方法,其特征在于,以二氧化碳和环氧化合物为原料,权利要求1-4中任一项所述的羟基氮杂环季铵盐为催化剂,反应合成环状碳酸酯。
  6. 根据权利要求5所述的二氧化碳与环氧化合物合成环状碳酸酯的方法,其特征在于,所述环氧化合物的结构式为:
    其中,当R1=H时,R2为H、CH3、C2H5、CH2Cl、C2H3、C4H9O、C4H9、C6H5、C7H7O的一种;当R1≠H时,所述环氧化合物为环氧环己烷。
  7. 根据权利要求5所述的二氧化碳与环氧化合物合成环状碳酸酯的方法,其特征在于,所述羟基氮杂环季铵盐与环氧化合物的摩尔比为1×10-3-2.5×10-3:1。
  8. 根据权利要求5所述的二氧化碳与环氧化合物合成环状碳酸酯的方法,其特征在于,反应的压力为0.1-10MPa;和/或,反应的温度为40-220℃。
  9. 根据权利要求5所述的二氧化碳与环氧化合物合成环状碳酸酯的方法,其特征在于,反应的时间为0.5-6h的条件下合成环状碳酸酯。
  10. 权利要求1-4任一项所述的羟基氮杂环季铵盐在催化二氧化碳与环氧化合物合成环状碳酸酯中的应用。
PCT/CN2023/091155 2022-06-27 2023-04-27 一种二氧化碳与环氧化合物合成环状碳酸酯的方法及其催化剂 WO2024001487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210743782.2 2022-06-27
CN202210743782.2A CN115160232B (zh) 2022-06-27 2022-06-27 一种二氧化碳与环氧化合物合成环状碳酸酯的方法及其催化剂

Publications (1)

Publication Number Publication Date
WO2024001487A1 true WO2024001487A1 (zh) 2024-01-04

Family

ID=83489097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091155 WO2024001487A1 (zh) 2022-06-27 2023-04-27 一种二氧化碳与环氧化合物合成环状碳酸酯的方法及其催化剂

Country Status (2)

Country Link
CN (1) CN115160232B (zh)
WO (1) WO2024001487A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160232B (zh) * 2022-06-27 2023-09-08 深圳新宙邦科技股份有限公司 一种二氧化碳与环氧化合物合成环状碳酸酯的方法及其催化剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107930690A (zh) * 2017-10-25 2018-04-20 中国科学院宁波材料技术与工程研究所 一种超细纤维状高分子固载型催化剂及其制备方法和应用
CN108440487A (zh) * 2018-05-08 2018-08-24 武汉艾奥立化学科技有限公司 一种基于低温常压下合成环状碳酸酯的催化剂的应用方法
CN108602983A (zh) * 2015-12-28 2018-09-28 Hrl实验室有限责任公司 可逆的化学或环境响应性聚合物、以及含有此类聚合物的涂层
CN112940475A (zh) * 2021-02-05 2021-06-11 合肥工业大学 一种阻燃复合材料及其制备方法
CN115160232A (zh) * 2022-06-27 2022-10-11 深圳新宙邦科技股份有限公司 一种二氧化碳与环氧化合物合成环状碳酸酯的方法及其催化剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602983A (zh) * 2015-12-28 2018-09-28 Hrl实验室有限责任公司 可逆的化学或环境响应性聚合物、以及含有此类聚合物的涂层
CN107930690A (zh) * 2017-10-25 2018-04-20 中国科学院宁波材料技术与工程研究所 一种超细纤维状高分子固载型催化剂及其制备方法和应用
CN108440487A (zh) * 2018-05-08 2018-08-24 武汉艾奥立化学科技有限公司 一种基于低温常压下合成环状碳酸酯的催化剂的应用方法
CN112940475A (zh) * 2021-02-05 2021-06-11 合肥工业大学 一种阻燃复合材料及其制备方法
CN115160232A (zh) * 2022-06-27 2022-10-11 深圳新宙邦科技股份有限公司 一种二氧化碳与环氧化合物合成环状碳酸酯的方法及其催化剂

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LI XIAN-MEI, FAN FAN, LU JING-SONG, XUE SAI-FENG, ZHANG YUN-QIAN, ZHU QIAN-JIANG, TAO ZHU, LAWRANCE GEOFFEREY A., WEI GANG: "Host–guest complexes of cucurbit[8]uril with some pentaerythritol derivative guests", NEW JOURNAL OF CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 35, no. 5, 1 January 2011 (2011-01-01), GB , pages 1088, XP093127029, ISSN: 1144-0546, DOI: 10.1039/c0nj00752h *
LIU HAI-YAN, GU DA-MING, LIU GUO-YU, YANG GANG, ZHAO XIU-LI, CHEN CHENG: "The synthesis,characterization and properties of branched Gemini imidazolium surfactants", HA'ERBIN GONGYE DAXUE XUEBAO - JOURNAL OF HARBIN INSTITUTE OFTECHNOLOGY, GAI-KAN BIANJIBU, HA'ERBIN, CN, 31 December 2012 (2012-12-31), CN , pages 84 - 88+99, XP093126998, ISSN: 0367-6234 *
RUAN JIAWEI, YE XIANGZHU, CHEN LIFANG, QI ZHIWEN: "Recent progress in synthesis of organic carbonates from carbon dioxide catalyzed by ionic liquids and deep eutectic solvents", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY, MEMBER OF CHINESE ACADEMY OF ENGINEERING, PROFESSOR, CHINA, vol. 41, no. 3, 1 January 2022 (2022-01-01), pages 1176 - 1186, XP093127035, ISSN: 1000-6613, DOI: 10.16085/j.issn.1000-6613.2021-2276 *
XUE LI, XU-FENG NI,ZHEN-HUA LIANG,ZHI-QUAN SHEN: "PREPARATION OF Fe3O4/CdTe/POLYURETHANE NANOCOMPOSITES AND THEIR PROPERTIES", ACTA POLYMERICA SINICA, KEXUE CHUBANSHE, BEIJING, CN, no. 06, 1 June 2012 (2012-06-01), CN , pages 606 - 612, XP093127031, ISSN: 1000-3304 *
YANG GUANG, SONG YADUO, DENG LONGJIANG: "Polyaddition enabled functional polymer/inorganic hybrid electrolytes for lithium metal batteries", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 9, no. 11, 23 March 2021 (2021-03-23), GB , pages 6881 - 6889, XP093127032, ISSN: 2050-7488, DOI: 10.1039/D0TA11730G *

Also Published As

Publication number Publication date
CN115160232B (zh) 2023-09-08
CN115160232A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN107433205B (zh) 共价有机框架负载钴催化剂及其制备和应用
CN109776480B (zh) 一种用于合成环状碳酸酯的催化剂、制备方法以及环状碳酸酯的制备方法
CN109970700B (zh) 一种季鏻型低共熔离子液体催化二氧化碳与环氧化物耦合制备环状碳酸酯的方法
WO2024001487A1 (zh) 一种二氧化碳与环氧化合物合成环状碳酸酯的方法及其催化剂
CN109970699B (zh) 一种新型低共熔离子液体常温常压条件下化学固定二氧化碳合成环状碳酸酯的方法
WO2019104841A1 (zh) 制备环碳酸酯的方法
CN106279094B (zh) 一种硫脲类离子液体催化制备环状碳酸酯的方法
CN108129392B (zh) 质子化羧基咪唑类离子液体及用其催化合成环状碳酸酯的方法
CN111909094A (zh) 多活性中心离子液体、制备方法以及利用其催化合成环状碳酸酯的方法
WO2024001497A1 (zh) 一种用于合成环状碳酸酯的催化剂及环状碳酸酯的合成方法
KR20090027297A (ko) 글리세롤 카보네이트의 제조방법
CN114437364B (zh) 金属耦合三嗪多孔有机框架及其构筑方法和催化co2与环氧化物耦合制备环状碳酸酯应用
CN112409190A (zh) 胺盐类离子液体高效催化合成环状碳酸酯的方法
CN112250656B (zh) 一种基于多活性中心型离子液体催化合成环状碳酸酯的方法
CN113912805A (zh) 一种催化环氧化物与二氧化碳环加成的有机多孔聚合物
CN115108912B (zh) 一种强碱性离子液体催化co2合成碳酸二甲酯的方法
CN103204840A (zh) 一种功能化胍盐离子液体制备环状碳酸酯的方法
CN113816852B (zh) 有机胺卤盐催化甘油和二氧化碳合成碳酸甘油酯的方法
CN114276322A (zh) 一种光引发聚合离子液体材料催化制备环状碳酸酯的方法
CN108586344A (zh) 羟基功能化吡唑离子液体及利用其催化合成环状碳酸酯的方法
CN113416147A (zh) 一种席夫碱-金属有机配合物及其制备方法与应用
CN107552091A (zh) N,n‑二烷基不对称吡唑离子液体及利用其催化合成环状碳酸酯的方法
CN106694038B (zh) 四甲基铵二锌-钒氧簇催化剂、制备方法及其用途
CN116768921A (zh) 一种杂环胺类金属催化剂、制备方法及其应用
CN113289683B (zh) 一种聚合物作为氢键供体催化二氧化碳合成环碳酸酯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829673

Country of ref document: EP

Kind code of ref document: A1