WO2024075640A1 - 離型フィルムおよび成型品の製造方法 - Google Patents

離型フィルムおよび成型品の製造方法 Download PDF

Info

Publication number
WO2024075640A1
WO2024075640A1 PCT/JP2023/035541 JP2023035541W WO2024075640A1 WO 2024075640 A1 WO2024075640 A1 WO 2024075640A1 JP 2023035541 W JP2023035541 W JP 2023035541W WO 2024075640 A1 WO2024075640 A1 WO 2024075640A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
release
film
layer
circuit board
Prior art date
Application number
PCT/JP2023/035541
Other languages
English (en)
French (fr)
Inventor
陽介 榎本
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022161978A external-priority patent/JP7287555B1/ja
Priority claimed from JP2022161977A external-priority patent/JP7332017B1/ja
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2024075640A1 publication Critical patent/WO2024075640A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters

Definitions

  • the present invention relates to a method for producing a release film and a molded product.
  • a release film is generally used.
  • the release film When forming a flexible printed circuit board using such a release film, in other words a laminate of a flexible circuit board and a coverlay film, the release film is required to have two properties, namely, excellent embeddability and releasability.
  • a recess is formed in the flexible printed circuit board by laminating the coverlay film onto the flexible circuit board, and the release film is required to have excellent filling properties for this recess.
  • the coverlay film is laminated onto the flexible circuit board via an adhesive layer provided on the coverlay film, and during this lamination, it is required that the release film exhibits excellent embedding properties in the recesses to prevent the adhesive from seeping out of the recesses.
  • the release film when the release film is peeled off from the formed flexible printed circuit board, it is required that the release film exhibits excellent releasability with respect to the flexible printed circuit board, thereby suppressing the occurrence of creases and breaks in the flexible printed circuit board.
  • Patent Document 1 proposes a release film having a polyester-based elastomer layer and a polyester layer, with the aim of creating a release film that has excellent two of the above-mentioned properties (embedding ability and releasability).
  • the first object of the present invention is to provide a release film that can effectively suppress or prevent oxidation of the metal substrate exposed in the recess between the time the release film is embedded in the recess and the time the release film is released from the recess, and a method for manufacturing a molded product using such a release film.
  • the second object of the present invention is to provide a release film that can adequately suppress or prevent water vapor from being absorbed by the resin material contained as a constituent material of a molded product during the period from when the release film is embedded in a recess in the molded product to when the release film is released from the recess, and to provide a method for manufacturing a molded product using such a release film.
  • the first object is achieved by the present invention as described in (1) below (first invention).
  • the second object is achieved by the present invention as described in (2) below (second invention).
  • the first and second inventions may be collectively referred to as the present invention.
  • a release film having a first release layer made of a first thermoplastic resin composition and a cushion layer laminated on the first release layer A release film characterized in that the water vapor permeability of the release film, measured in accordance with JIS K 7129 (Method B), exceeds 1.0 g/ m2 ⁇ day (25°C ⁇ 90% RH).
  • thermoplastic resin composition contains a polyester-based resin.
  • the release film is a release film according to any one of (1) to (7) above, the average thickness of which is 40 ⁇ m or more and 180 ⁇ m or less.
  • Rz 10-point average roughness
  • the release film is applied to a surface of an object formed of a material including a semi-cured thermosetting resin arranged on a metal substrate.
  • the release film according to any one of (1) to (10) above, which is used by overlapping the first release layer with the surface of the first release layer being in contact with the first release layer.
  • the release film according to any one of (1) to (11) above is attached to an object so that the first release layer faces the object.
  • a method for manufacturing a molded product comprising: a step of placing the release film on the object; and a step of performing a heat press on the object on which the release film is placed, wherein in the step of placing the release film, the surface of the object on which the release film is placed is formed from a material containing a thermosetting resin in a semi-cured state.
  • the oxygen permeability of the release film measured in accordance with JIS K 7126-2 is 60.0 cc/( m2 ⁇ atm ⁇ day) or more. Therefore, for example, when a flexible printed circuit board is obtained using a flexible circuit board and a coverlay film, oxidation of the circuit of the flexible circuit board exposed in the recess between embedding the release film in the recess and releasing the release film from the recess can be appropriately suppressed or prevented. Therefore, a flexible printed circuit board having better electrical properties can be obtained.
  • the water vapor permeability of the release film measured in accordance with JIS K 7129 (method B) is more than 1.0 g/m 2 day (25°C, 90% RH). Therefore, for example, when a flexible printed circuit board is obtained using a flexible circuit board and a coverlay film, the resin material such as polyimide contained as a constituent material of the flexible printed circuit board can be appropriately suppressed or prevented from absorbing water vapor contained in the air remaining between the release film and the flexible circuit board during the period from embedding the release film in the recess to releasing the release film from the recess.
  • FIG. 1 is a side view showing the main parts of a roll-to-roll press machine used in the manufacture of flexible printed circuit boards.
  • 2A to 2C are vertical cross-sectional views showing each step in a method for producing a flexible printed circuit board using the roll-to-roll press machine shown in FIG.
  • FIG. 3 is a vertical cross-sectional view showing a hot pressing step in a method for producing a flexible printed circuit board using the roll-to-roll press machine shown in FIG.
  • FIG. 4 is a vertical cross-sectional view showing an embodiment of the release film of the present invention.
  • FIG. 5 is a partially enlarged longitudinal sectional view of the portion A of the release film shown in FIG.
  • FIG. 6 is a side view that shows a schematic diagram of a release film production apparatus for producing the release film shown in FIG.
  • Fig. 1 is a side view showing a main part of a roll-to-roll press machine used in manufacturing a flexible printed circuit board
  • Fig. 2 is a vertical cross-sectional view showing each step in a manufacturing method for a flexible printed circuit board using the roll-to-roll press machine shown in Fig. 1
  • Fig. 3 is a vertical cross-sectional view showing a heat press step in a manufacturing method for a flexible printed circuit board using the roll-to-roll press machine shown in Fig. 1.
  • the upper side in Figs. 1 to 3 will be referred to as "upper” or “upper side”
  • the lower side will be referred to as “lower” or “lower”
  • the left side will be referred to as "left”
  • the right side will be referred to as "right”.
  • the roll-to-roll press 100 (RtoR press) is equipped with a conveying means (not shown) for conveying the release film 10, the flexible printed circuit board 200 (hereinafter sometimes referred to as "FPC"), and the glass cloths 300A, 300B, a heating press means 50 for bonding the flexible circuit board 210 and the coverlay film 220 (hereinafter sometimes referred to as "CL film”) of the FPC 200 by heating and pressing the CL film 220 to the flexible circuit board 210 using the release film 10, and a releasing means 60 for releasing (peeling) the release film 10 from the FPC 200 in which the CL film 220 is bonded to the flexible circuit board 210.
  • a conveying means not shown
  • FPC flexible printed circuit board 200
  • CL film coverlay film
  • the conveying means is configured to convey the FPC 200, the release films 10A, 10B, and the glass cloths 300A, 300B, each of which is wound around a different unwinding roller, along their respective longitudinal directions by the rotation of a tensioner (tension roller), and to wind them around a take-up roller after processing by the heat press means 50 and the release means 60.
  • Each roller is made of a metal material, such as stainless steel.
  • the rotation axes (central axes) of these rollers face in the same direction and are spaced apart from each other.
  • the heat pressing means 50 has a heat pressing section 52 .
  • the thermocompression unit 52 has a pair of thermocompression plates 521.
  • the thermocompression plates 521 are transported by a transport means, and are disposed above and below the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B, which are in a superposed state.
  • the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B, which are in a superposed state pass between the thermocompression plates 521, the thermocompression plates 521 heat and press the FPC 200 through the glass cloths 300A and 300B and the release films 10A and 10B. Therefore, the curing reaction of the adhesive layer 222 of the CL film 220 progresses due to this heating, so that the overlapping flexible circuit board 210 and the CL film 220 in the FPC 200 are bonded via the adhesive layer 222 .
  • the coverlay 221 and the flexible circuit board 210 are bonded via the adhesive layer 222. Furthermore, when the FPC 200 is heated and pressurized, that is, when the coverlay 221 and the flexible circuit board 210 are bonded via the adhesive layer 222, the release film 10 is embedded in the recess 223 formed in the coverlay 221. Therefore, the seepage of adhesive originating from the adhesive layer 222 into the recess 223 is suppressed (see FIG. 2(b)).
  • the FPC 200 Before being heated and pressed by the heat-pressure bonding plate 521, the FPC 200 is in a laminated state with the flexible circuit board 210 and the CL film 220 overlapping each other, but the flexible circuit board 210 and the CL film 220 are not bonded via the adhesive layer 222 provided on the CL film 220. Then, by pressing with the heat-pressure bonding plate 521, the adhesive layer 222 provided on the CL film 220 is brought into close contact with the flexible circuit board 210, and further, in this state, by heating with the heat-pressure bonding plate 521, the curing reaction of the adhesive layer 222 progresses, and the flexible circuit board 210 and the CL film 220 are bonded via the adhesive layer 222.
  • the release means 60 is disposed downstream of the heating press means 50 in the conveying direction.
  • the release means 60 is configured to separate the FPC 200 from the release films 10A and 10B.
  • the release film 10 is embedded in the recess 223 formed in the coverlay 221, thereby bonding the release film 10 to the CL film 220 (FPC 200).
  • the release means 60 is configured to peel (release) the release film 10 from the CL film 220 (FPC 200) by the action of the release means 60 (see FIG. 2(c)). Therefore, based on the action of the release means 60, the FPC 200 in which the flexible circuit board 210 and the CL film 220 are bonded via the adhesive layer 222 is obtained in a state of being peeled off from the release film 10.
  • the above-described roll-to-roll press machine 100 can be used to manufacture a flexible printed circuit board 200 (FPC200).
  • a method for manufacturing an FPC200 using this roll-to-roll press machine is described below.
  • the method for manufacturing a molded product of the present invention is applied to the method for manufacturing the FPC200.
  • the manufacturing method of the FPC 200 includes a first step of forming a laminate in which the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B, each of which has a sheet-like shape, are stacked in this order; a second step of hot pressing the laminate to bond the coverlay 221 (CL film 220) to the flexible circuit board 210 in the FPC 200 via the adhesive layer 222; and a third step of releasing the release film 10 (10A, 10B) from the FPC 200 to obtain the FPC 200 in which the CL film 220 is bonded to the flexible circuit board 210.
  • the method of laminating each component (film) onto the laminate is not particularly limited; for example, the components may be laminated while being pressed with a roll, or may be laminated while being pressed with a press.
  • the components may also be laminated in any order. For example, all components may be laminated at the same time, or the coverlay film 220 and flexible circuit board 210 may be laminated in advance, and then the other components may be laminated at the same time.
  • the formation of the laminate in this first step constitutes the step of placing the release film 10 on the target object (FPC 200) in the method for manufacturing a molded product of the present invention.
  • the release film 10A adheres closely to the coverlay 221 and is embedded in the recesses 223 formed in the coverlay 221, thereby suppressing the seepage of adhesive from the adhesive layer 222 into the recesses 223.
  • the step formed in the recess 223 of the FPC 200 (coverlay 221) is set to a height of about 30 ⁇ m or more and 100 ⁇ m or less when the FPC 200 is used for in-vehicle applications, for example.
  • the temperature to which the FPC 200 is heated is not particularly limited, but is preferably, for example, 100°C or higher and 250°C or lower, and more preferably 150°C or higher and 200°C or lower.
  • the pressure set in the heat bonding unit 52 is not particularly limited, but is preferably set to 1 MPa or more and 14 MPa or less, and more preferably set to 5 MPa or more and 14 MPa or less.
  • the transport speed for transporting the laminate is preferably set to 40 mm/sec or more and 400 mm/sec or less, and more preferably set to 100 mm/sec or more and 350 mm/sec or less.
  • the laminate in the second step (main step), the laminate is hot-pressed using hot press means 50, and in the peeling step (next step), the adhesion time until the release film 10 is peeled off from the bonded body is preferably set to 1.0 sec or more and 10.0 sec or less, and more preferably set to 4.0 sec or more and 7.0 sec or less.
  • the second step constitutes a step of performing a heat press on the object (FPC 200) on which the release film 10 is arranged in the manufacturing method of the molded product of the present invention.
  • the coverlay 221 (insulating layer) is made of a material containing a semi-cured thermosetting resin
  • the coverlay 221 constitutes the surface of the object (FPC 200) on which the release film 10 is arranged.
  • the release film 10 Since the release film 10 is used by overlapping the surface of this coverlay 221 so that the surface on the first release layer 1 side is in contact with the surface of the coverlay 221, the release film 10 can maintain the shape of the coverlay 221 in which the recesses 223 are formed and the thermosetting resin can be cured, so that the coverlay 221 (molded product) can be molded with excellent accuracy on the flexible circuit board 210.
  • the release film 10 since the adhesion time is set within the above range, the release film 10 can promote the curing reaction of the thermosetting resin constituting the coverlay 221 while maintaining the shape of the coverlay 221 in which the recesses 223 are formed.
  • the heating means is a heat press, but this is not necessarily limited to this method.
  • heating may be performed by infrared rays or by a heating roll.
  • the third step the release film 10 is attached to the FPC 200.
  • the oxygen permeability of the release film 10 measured in accordance with JIS K 7126-2 is satisfied to be 60.0 cc/( m2 ⁇ atm ⁇ day) or more. Therefore, even if the FPC 200 is heat pressed in the second step (main step) as described above from the second step (main step) to the third step (next step) where the release film 10 is released, the circuit of the flexible circuit board 210 exposed in the recess 223 can be appropriately suppressed or prevented from oxidizing. Therefore, an FPC 200 having better electrical properties can be obtained, but a detailed description of this will be given later.
  • the water vapor transmission rate of the release film 10 measured in accordance with JIS K 7129 is more than 1.0 g/m 2 day (25° C., 90% RH).
  • the FPC 200 is heat pressed in the second step (main step) as described above during the period from the second step (main step) to the release of the release film 10 in the third step (next step), the water vapor contained in the air remaining between the release film 10 and the flexible circuit board 210 can be appropriately suppressed or prevented from being absorbed by the resin material such as polyimide contained as a constituent material of the flexible circuit board 210 and the coverlay 221. Therefore, the generation of air bubbles resulting from absorbed water vapor between the flexible circuit board 210 and the coverlay film 220 is appropriately suppressed or prevented during soldering to a circuit included in the flexible circuit board 210. As a result, a more reliable FPC 200 in which peeling between the flexible circuit board 210 and the coverlay film 220 is appropriately suppressed or prevented can be obtained, but a detailed description of this will be given later.
  • the release film 10 (10A, 10B) is released from the FPC 200. That is, the release film 10A and the release film 10B are peeled off from the bonded body of the coverlay film 220 and the flexible circuit board 210. In this way, the FPC 200 in which the CL film 220 is bonded to the flexible circuit board 210 is obtained (peeling process, see Figs. 1, 2(c) and 3).
  • the release means 60 is not particularly limited, and may be configured to perform peeling by vacuuming using a vacuum device installed on the outside, or to perform peeling by blowing air between the bonded body and the release films 10A, 10B, or to perform peeling by inserting a rod between the bonded body and the release films 10A, 10B.
  • the bonded assembly of the coverlay film 220 and the flexible circuit board 210, the glass cloth 300A, the release film 10A, the release film 10B, and the glass cloth 300B are wound up on their respective winding rollers.
  • the flexible circuit board 210 and the CL film 220 are bonded together via the adhesive layer 222 provided on the CL film 220, and the FPC 200 is continuously obtained in a state in which it is wound up on the winding roller.
  • the flexible printed circuit board 200 is manufactured continuously.
  • the process may include a step of heating the flexible printed circuit board 200 wound around the winding roller, or the wound flexible printed circuit board 200 cut into individual sheets, in an oven or the like to further promote the curing reaction of the thermosetting resin that constitutes the coverlay 221, thereby hardening the coverlay 221.
  • the release film of the present invention is applied to the release film 10 used in the manufacture of this flexible printed circuit board 200.
  • the release film 10 to which the release film of the present invention is applied is described below.
  • FIG. 4 is a longitudinal sectional view showing an embodiment of the release film of the present invention
  • FIG. 5 is a partially enlarged longitudinal sectional view showing part A of the release film shown in FIG.
  • the release film 10 is composed of a laminate in which a first release layer 1, a cushion layer 3, and a second release layer 2 are laminated in this order, and is used by overlapping it so that the surface on the first release layer 1 side is in contact with the CL film 220 provided on the FPC 200.
  • the release film 10 has an oxygen permeability of 60.0 cc/(m 2 ⁇ atm ⁇ day) or more, measured in accordance with JIS K 7126-2.
  • the manufacturing method of the flexible printed circuit board 200 using the release film 10 it is required to achieve both the embeddability of the release film 10 in the recess 223 and the releasability from the flexible printed circuit board 200, and further, it is required to manufacture an FPC 200 with better electrical properties.
  • a configuration is selected for the release film 10 in which the oxygen permeability of the release film 10 measured in accordance with JIS K 7126-2 is 60.0 cc/( m2 ⁇ atm ⁇ day) or more. That is, a configuration excellent in oxygen permeability in the thickness direction is selected for the release film 10. Therefore, as described above, during the period from the second step (main step) to the third step (next step) in which the release film 10 is released, when the FPC 200 is hot-pressed in the second step (main step), oxygen remaining between the release film 10 and the FPC 200 can be permeated through the release film 10.
  • the release film 10 has a water vapor permeability of more than 1.0 g/m 2 ⁇ day (25° C. ⁇ 90% RH) measured in accordance with JIS K 7129 (Method B).
  • the manufacturing method of the flexible printed circuit board 200 using the release film 10 it is required to achieve both embeddability of the release film 10 in the recess 223 and releasability from the flexible printed circuit board 200, and further, it is required to manufacture an FPC 200 with excellent bonding characteristics for soldering to the circuit of the flexible circuit board 210.
  • the water vapor contained in the air remaining between the release film 10 and the FPC 200 is absorbed by the resin material, such as polyimide, contained as a constituent material of the flexible circuit board 210 and the coverlay 221.
  • the resin material such as polyimide
  • a configuration is selected for the release film 10 in which the water vapor permeability of the release film measured in accordance with JIS K 7129 (method B) exceeds 1.0 g/m 2 ⁇ day (25°C ⁇ 90% RH). That is, a configuration excellent in water vapor permeability in the thickness direction is selected for the release film 10. Therefore, as described above, during the period from the second step (main step) to the third step (next step) in which the release film 10 is released, when the FPC 200 is hot-pressed in the second step (main step), water vapor contained in the air remaining between the release film 10 and the FPC 200 can be transmitted through the release film 10.
  • the resin material such as polyimide contained as a constituent material of the flexible circuit board 210 and the coverlay 221 can be appropriately suppressed or prevented from absorbing water vapor under the heating of the FPC 200. Therefore, when soldering to a circuit included in the flexible circuit board 210, air bubbles resulting from absorbed water vapor are appropriately suppressed or prevented from occurring between the flexible circuit board 210 and the coverlay film 220. As a result, a more reliable FPC 200 in which peeling between the flexible circuit board 210 and the coverlay film 220 is appropriately suppressed or prevented can be obtained.
  • the cushion layer 3 is disposed as an intermediate layer between the first release layer 1 and the second release layer 2.
  • the cushion layer 3 is made of a third thermoplastic resin composition, and in the present invention, the third thermoplastic resin composition preferably contains multiple types of thermoplastic resins for the purpose of setting the oxygen permeability of the release film 10 to the lower limit value or higher while imparting embedding properties to the recesses 223, or for the purpose of setting the water vapor permeability of the release film 10 to above the lower limit value.
  • thermoplastic resins include, for example, a combination of a polyester resin and a polyolefin resin, a combination of polyolefin resins, and a combination of a polyamide resin and a polyolefin resin.
  • a combination of a polyester resin and a polyolefin resin the oxygen permeability of the release film 10 can be set relatively easily to above the lower limit.
  • the water vapor permeability of the release film 10 can be set relatively easily to above the lower limit.
  • Polyester-based resins are not particularly limited, but examples include polyethylene terephthalate (PET), polycyclohexane terephthalate (PCT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polycyclohexane dimethylene terephthalate, polypropylene terephthalate, etc., and one or more of these can be used in combination.
  • the polyester-based resin may be a blend or copolymer of these.
  • the polyester-based resin is particularly preferably polybutylene terephthalate. This can provide the cushion layer 3 with excellent conformability to the recesses 223.
  • the first thermoplastic resin composition constituting the first release layer 1 contains polybutylene terephthalate, a cushion layer 3 that exhibits excellent adhesion to the first release layer 1 can be obtained.
  • the oxygen permeability of the release film 10 can be more easily set to be equal to or higher than the lower limit.
  • the water vapor permeability of the release film 10 can be more easily set to be higher than the lower limit.
  • this polyester-based resin exhibits crystallinity, it is preferable that the crystallization is suppressed or prevented in the cushion layer 3. This makes it easier to set the oxygen permeability of the release film 10 to equal to or above the lower limit. Also, it makes it easier to set the water vapor permeability of the release film 10 to exceed the lower limit.
  • the polyolefin resin is not particularly limited, and examples thereof include ⁇ -olefin polymers such as polyethylenes, such as low-density polyethylene and high-density polyethylene, polypropylene, and ⁇ -olefin copolymers, such as copolymers of ethylene and hexene, copolymers of ethylene and octene, copolymers of ⁇ -olefins and (meth)acrylic acid esters, copolymers of ethylene and vinyl acetate, and copolymers of ethylene and (meth)acrylic acid, each of which has ethylene, propylene, butene, pentene, hexene, octene, or the like as a polymer component, and one or more of these can be used in combination.
  • ⁇ -olefin polymers such as polyethylenes, such as low-density polyethylene and high-density polyethylene, polypropylene
  • At least one of copolymers of ethylene and vinyl acetate (ethylene-vinyl acetate copolymer) and copolymers of ethylene and (meth)acrylic acid (ethylene-(meth)acrylic acid copolymer) is preferable.
  • the oxygen permeability of the release film 10 can be more easily set to be equal to or higher than the lower limit.
  • the water vapor permeability of the release film 10 can be more easily set to be higher than the lower limit.
  • the content of the polyester-based resin in this third thermoplastic resin composition is preferably 5% by weight or more, and more preferably 8% by weight or more and 40% by weight or less.
  • the oxygen permeability of the release film 10 can be more easily set to be equal to or higher than the lower limit.
  • the water vapor permeability of the release film 10 can be more easily set to be higher than the lower limit.
  • the third thermoplastic resin composition constituting the cushion layer 3 may contain additives such as antioxidants, slip agents, antiblocking agents, antistatic agents, colorants, and stabilizers in addition to the resin materials (thermoplastic resins) described above.
  • the storage modulus E' of the cushion layer 3 at 150°C is preferably 0.1 MPa or more, more preferably 0.5 MPa or more and 150 MPa or less, and even more preferably 1.0 MPa or more and 100 MPa or less.
  • the storage modulus E' of the cushion layer 3 at 150°C can be obtained, for example, in accordance with JIS K7244-4 by preparing a cushion layer 3 with a width of 4 mm and a length of 20 mm, and measuring it using a dynamic viscoelasticity measuring device (Hitachi High-Tech Science Corporation, "DMA7100") in tension mode, at a frequency of 1 Hz, and at a heating rate of 5°C/min.
  • a dynamic viscoelasticity measuring device Hitachi High-Tech Science Corporation, "DMA7100”
  • the average thickness Tk of the cushion layer 3 is preferably set to 40 ⁇ m or more and 110 ⁇ m or less, and more preferably 50 ⁇ m or more and 90 ⁇ m or less. This allows the oxygen permeability of the release film 10 to be set to above the lower limit value relatively easily. Also, the water vapor permeability of the release film 10 to be set to above the lower limit value relatively easily.
  • the first release layer 1 is laminated on one surface of the cushion layer 3.
  • the first release layer 1 has flexibility, and in the above-mentioned manufacturing method of the flexible printed circuit board 200 using the release film 10, the release film 10 is superimposed on the CL film 220 of the FPC 200 so that the first release layer 1 comes into contact with the CL film 220.
  • the first release layer 1 is a layer that is pressed into the flexible circuit board 210 and the CL film 220 in the second step of the manufacturing method when the superimposed flexible circuit board 210 and the CL film 220 are bonded via the adhesive layer 222, following the shape of the recess 223 formed by the flexible circuit board 210 and the CL film 220, and functions as a protective (buffer) material that prevents the release film 10 from breaking.
  • the first release layer 1 functions as a contact layer to exhibit excellent releasability of the release film 10 from the CL film 220 (FPC 200) in the third step.
  • the release film 10 can adequately suppress or prevent the adhesive from the adhesive layer 222 from seeping out into the recess 223 formed in the FPC 200.
  • the release film 10 is peeled off from the FPC 200 in the third step, the occurrence of elongation and breakage in the FPC 200 can be adequately suppressed or prevented.
  • the third thermoplastic resin composition constituting the cushion layer 3 contains a polyester-based resin, a first release layer 1 that exhibits excellent adhesion to the cushion layer 3 can be obtained.
  • the first release layer 1 is in contact with the CL film 220 provided on the FPC 200. Therefore, in the second step of this manufacturing method, when the FPC 200 is hot-pressed, the first release layer 1 also has the function of transmitting heat from the heat-bonding plate 521 to the CL film 220.
  • This first release layer 1 is made of a first thermoplastic resin composition. Moreover, this first thermoplastic resin composition preferably contains, for example, mainly a polyester-based resin. This makes it relatively easy to impart the above-mentioned functions to the first release layer 1. Furthermore, it is relatively easy to set the oxygen permeability of the release film 10 to equal to or higher than the lower limit. Furthermore, it is relatively easy to set the water vapor permeability of the release film 10 to exceed the lower limit.
  • the polyester resin is not particularly limited, but may be of the same type as that mentioned in the third thermoplastic resin composition described above, and polybutylene terephthalate (PBT) is particularly preferred. This allows the effects obtained by using a polyester resin to be more pronounced.
  • PBT polybutylene terephthalate
  • a first release layer 1 that exhibits excellent adhesion to the cushion layer 3 is obtained.
  • the oxygen permeability of the release film 10 can be more easily set to be equal to or higher than the lower limit.
  • the water vapor permeability of the release film 10 can be more easily set to be higher than the lower limit.
  • polyester-based resins exhibit crystallinity, but it is preferable that the crystallization of the first release layer 1 composed of this polyester-based resin is suppressed.
  • the degree of crystallinity is preferably about 10% or more and 50% or less, and more preferably about 10% or more and 35% or less. This makes it easier to set the oxygen permeability of the release film 10 to above the lower limit. Also, it makes it easier to set the water vapor permeability of the release film 10 to above the lower limit.
  • the crystallization of the resin material exhibiting crystallinity can be achieved, for example, by setting the cooling temperature when cooling the strip-shaped film 10' in a molten or softened state in the manufacturing method of the release film 10 described below, within the following range.
  • the first thermoplastic resin composition when mainly composed of a polyester-based resin, it may contain a thermoplastic resin other than a polyester-based resin.
  • a thermoplastic resin examples include polyolefin-based resins such as polyethylene, polypropylene, and poly-4-methyl-1-pentene, and polystyrene-based resins such as syndiotactic polystyrene, and one or more of these may be used in combination.
  • the first thermoplastic resin composition may further contain at least one of inorganic particles and organic particles.
  • the inorganic particles are not particularly limited, but examples include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, aluminum nitride, aluminum borate whiskers, boron nitride, crystalline silica, amorphous silica, antimony oxide, E-glass, D-glass, S-glass, etc., and one or a combination of two or more of these can be used.
  • the organic particles are not particularly limited, but examples include polystyrene particles, acrylic particles, polyimide particles, polyester particles, silicone particles, polypropylene particles, polyethylene particles, fluororesin particles, and core-shell particles, and one or more of these can be used in combination.
  • the inorganic particles and organic particles preferably have an average particle size of 3 ⁇ m or more and 20 ⁇ m or less, and more preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the 10-point average roughness (Rz) of the surface is preferably 0.1 ⁇ m or more and 20.0 ⁇ m or less, and more preferably 1.0 ⁇ m or more and 10.0 ⁇ m or less. This allows the release film 10 to be released from the FPC 200 (flexible circuit board 210) with excellent releasability.
  • the 10-point average roughness (Rz) can be measured in accordance with JIS B 0601-1994.
  • the first release layer 1 having such a configuration preferably has a storage modulus E' at 150°C of 50 MPa or more, more preferably 50 MPa or more and 1000 MPa or less, and even more preferably 50 MPa or more and 300 MPa or less. This ensures that the first release layer 1 can be given the above-mentioned function as the first release layer 1.
  • the storage modulus E' of the first release layer 1 at 150°C can be obtained in accordance with JIS K7244-4 by preparing a first release layer 1 with a width of 4 mm and a length of 20 mm, and measuring it using a dynamic viscoelasticity measuring device (Hitachi High-Tech Science Corporation, "DMA7100") in tension mode, at a frequency of 1 Hz, and at a heating rate of 5°C/min.
  • a dynamic viscoelasticity measuring device Hitachi High-Tech Science Corporation, "DMA7100”
  • the average thickness T1 of this first release layer 1 is preferably set to 7 ⁇ m or more and 38 ⁇ m or less, and more preferably set to 10 ⁇ m or more and 30 ⁇ m or less. This allows the average thickness of the first release layer 1 to be set within an appropriate range, so that the first release layer 1 can be more reliably imparted with the above-mentioned function as the first release layer 1.
  • the oxygen permeability of the release film 10 can be set relatively easily to be equal to or greater than the lower limit.
  • the water vapor permeability of the release film 10 can be set relatively easily to be greater than the lower limit.
  • the thickness of the first release layer 1 is measured at a position including the convex parts in the convex parts, and at a position including the concave parts in the concave parts.
  • the first thermoplastic resin composition constituting the first release layer 1 may contain, in addition to the resin material, inorganic particles, and organic particles described above, additives similar to those listed in the third thermoplastic resin composition.
  • the second release layer 2 is laminated on the other surface side of the cushion layer 3, that is, on the surface side of the cushion layer 3 opposite to the first release layer 1.
  • the second release layer 2 is flexible, and in the above-mentioned manufacturing method of the flexible printed circuit board 200 using the release film 10, the release film 10 is superimposed on the CL film 220 of the FPC 200 so that the first release layer 1 comes into contact with the CL film 220.
  • the second release layer 2 functions as a layer that transmits the force from the heat-pressing plate 521 to the cushion layer 3. Furthermore, the second release layer 2 functions as a contact layer to provide excellent releasability between the glass cloth 300 and the release film 10 in the third step.
  • the second release layer 2 is in contact with the heat-pressure plate 521 via the glass cloth 300. Therefore, in the second step of this manufacturing method, when the FPC 200 is hot-pressed, it also has the function of transmitting heat from the heat-pressure plate 521 to the cushion layer 3.
  • the second release layer 2 is made of a second thermoplastic resin composition.
  • this second thermoplastic resin composition preferably contains mainly a polyester-based resin. This ensures that the second release layer 2 is provided with the above-mentioned functions.
  • the oxygen permeability of the release film 10 can be set relatively easily to be equal to or higher than the lower limit.
  • the water vapor permeability of the release film 10 can be set relatively easily to be greater than the lower limit.
  • the polyester resin is not particularly limited, but may be, for example, the same type as that listed in the third thermoplastic resin composition described above, and among them, polybutylene terephthalate (PBT) is particularly preferable. This allows the effect obtained by using a polyester resin to be more significantly exhibited. Furthermore, the oxygen permeability of the release film 10 can be more easily set to be equal to or higher than the lower limit. Furthermore, the water vapor permeability of the release film 10 can be more easily set to be higher than the lower limit.
  • polyester-based resins exhibit crystallinity, but it is preferable that the second release layer 2 composed of this polyester-based resin has its crystallization suppressed. Specifically, its degree of crystallinity is preferably about 10% or more and 50% or less, and more preferably about 10% or more and 35% or less. This makes it easier to set the oxygen permeability of the release film 10 to above the lower limit. Also, it makes it easier to set the water vapor permeability of the release film 10 to above the lower limit.
  • the second thermoplastic resin composition when it is mainly composed of a polyester-based resin, it may contain a thermoplastic resin other than a polyester-based resin, and the same thermoplastic resins as those listed for the first thermoplastic resin composition can be used as this thermoplastic resin.
  • the second thermoplastic resin composition may further contain at least one of inorganic particles and organic particles.
  • the inorganic particles and organic particles are not particularly limited, but the same types as those listed for the first thermoplastic resin composition can be used.
  • the second release layer 2 having such a configuration preferably has a storage modulus E' at 150°C of 50 MPa or more, and more preferably 50 MPa or more and 1000 MPa or less. This ensures that the second release layer 2 is provided with the above-mentioned functions.
  • the average thickness T2 of this second release layer 2 is preferably set to 7 ⁇ m or more and 38 ⁇ m or less, and more preferably 10 ⁇ m or more and 30 ⁇ m or less. This makes it possible to more reliably impart the above-mentioned functions to the second release layer 2.
  • the oxygen permeability of the release film 10 can be set relatively easily to be equal to or greater than the lower limit.
  • the water vapor permeability of the release film 10 can be set relatively easily to be greater than the lower limit.
  • the second thermoplastic resin composition constituting the second release layer 2 may contain, in addition to the resin material, inorganic particles, and organic particles described above, additives similar to those listed in the third thermoplastic resin composition.
  • first thermoplastic resin composition and the second thermoplastic resin composition in the first release layer 1 and the second release layer 2 may be the same or different, but from the viewpoint of substitutability, it is preferable that they are the same or of the same quality. Furthermore, the average thickness of the first release layer 1 and the second release layer 2 may be the same or different.
  • the average thickness Tt is preferably 40 ⁇ m or more and 180 ⁇ m or less, more preferably 50 ⁇ m or more and 180 ⁇ m or less, and even more preferably 80 ⁇ m or more and 150 ⁇ m or less. This allows the oxygen permeability of the release film 10 to be set relatively easily to be equal to or more than the lower limit. Also, the water vapor permeability of the release film 10 can be set relatively easily to be greater than the lower limit.
  • the oxygen permeability of the release film 10 measured in accordance with JIS K 7126-2 may be 60.0 cc/( m2 ⁇ atm ⁇ day) or more, preferably 100.0 cc/( m2 ⁇ atm ⁇ day) or more, and more preferably 120.0 cc/( m2 ⁇ atm ⁇ day) or more and 160.0 cc/( m2 ⁇ atm ⁇ day) or less.
  • the oxygen permeability of the release film 10 is measured under conditions of a temperature of 23°C and a relative humidity of 0% RH in accordance with the isobaric method of the plastic film and sheet gas permeability test method specified in JIS K 7126-2.
  • the water vapor permeability of the release film 10 measured in accordance with JIS K 7129 (method B) is preferably more than 1.0 g/m 2 ⁇ day (25°C ⁇ 90% RH), more preferably 1.4 g/m 2 ⁇ day (25°C ⁇ 90% RH) or more, and even more preferably 1.7 g/m 2 ⁇ day (25°C ⁇ 90% RH) or more and 3.0 g/m 2 ⁇ day (25°C ⁇ 90% RH) or less.
  • the resin material such as polyimide contained as a constituent material of the flexible circuit board 210 and the coverlay 221 can be appropriately suppressed or prevented from absorbing water vapor under the heat of the FPC 200.
  • the water vapor permeability of the release film 10 measured in accordance with JIS K 7129 may be more than 1.0 g/m 2 ⁇ day (25°C ⁇ 90% RH), but is preferably 1.4 g/m 2 ⁇ day (25°C ⁇ 90% RH) or more, and more preferably 1.7 g/m 2 ⁇ day (25°C ⁇ 90% RH) or more and 3.0 g/m 2 ⁇ day (25°C ⁇ 90% RH) or less.
  • the resin material such as polyimide contained as a constituent material of the flexible circuit board 210 and the coverlay 221 can be appropriately suppressed or prevented from absorbing water vapor under the heat of the FPC 200.
  • the oxygen permeability of the release film 10 is measured in accordance with JIS K 7129 (Method B) at a temperature of 25°C and a relative humidity of 90% RH.
  • the oxygen permeability of the release film 10 measured in accordance with JIS K 7126-2 is preferably 60.0 cc/( m2 ⁇ atm ⁇ day) or more, more preferably 100.0/( m2 ⁇ atm ⁇ day) or more, and even more preferably 120.0/( m2 ⁇ atm ⁇ day) or more and 60.0 cc/( m2 ⁇ atm ⁇ day) or less.
  • the oxygen permeability of the release film 10 is measured under conditions of a temperature of 23°C and a relative humidity of 0% RH in accordance with the isobaric method of the plastic film and sheet gas permeability test method specified in JIS K 7126-2.
  • the release film 10 is composed of a laminate in which the first release layer 1, the cushion layer 3, and the second release layer 2 are laminated in this order, but is not limited to this configuration.
  • the release film 10 may be composed of a laminate that includes an intermediate layer, such as an adhesive layer, disposed at least either between the first release layer 1 and the cushion layer 3, or between the second release layer 2 and the cushion layer 3.
  • the second release layer 2 that comes into contact with the glass cloth 300 may be omitted, so long as excellent releasability can be maintained between the glass cloth 300 and the release film 10.
  • the release film 10 having the above-mentioned configuration can be manufactured, for example, by the following manufacturing method. Prior to describing the manufacturing method of the release film 10, a release film manufacturing apparatus will be described below.
  • FIG. 6 is a side view that shows a schematic diagram of a release film manufacturing apparatus that manufactures the release film 10 shown in FIG. 4.
  • the upper side in FIG. 6 will be referred to as “upper” and the lower side as “lower.”
  • the release film manufacturing apparatus 1000 shown in FIG. 6 has a film supply section 600 and a film forming section 700.
  • the film supply section 600 is composed of an extruder 610 and a T-die 620 connected via piping to the molten resin discharge section of the extruder 610.
  • the T-die 620 supplies a strip-shaped film 10' in a molten or softened state to the film forming section 700.
  • the T-die 620 is an extrusion molding section that extrudes the film 10' in a molten or softened state into a strip-shaped film using a co-extrusion method.
  • the constituent materials of each layer that makes up the release film 10 described above are loaded sequentially into the T-die 620 in a molten state, and the molten materials are extruded from the T-die 620 to continuously send out the strip-shaped film 10'.
  • the film forming section 700 has a touch roll 710, a cooling roll 720, and a rear cooling roll 730. These rolls are each configured to rotate independently by a motor (driving means) not shown, and are cooled and continuously fed out by the rotation of these rolls. By continuously feeding the film 10' in a molten or softened state into this film forming section 700, the surface of the film 10' is flattened and the film 10' is set to a desired thickness and cooled.
  • the cooled film 10' as a release film 10 composed of a laminate in which the first release layer 1, the cushion layer 3, and the second release layer 2 are laminated in this order.
  • the release film 10 is produced by the method for producing the release film 10 using the release film production apparatus 1000 as described above.
  • the method for producing the release film 10 using the release film production apparatus 1000 includes an extrusion process, a molding process, and a cooling process.
  • a strip-shaped film 10' in a molten or softened state is extruded (extrusion process).
  • the constituent materials of each layer that constitutes the release film 10 are loaded in sequence into the extruder 610.
  • the constituent materials of each layer that constitutes the release film 10 are in a molten or softened state inside the extruder 610.
  • ⁇ 2A> Next, the surface of the film 10' is flattened and the film 10' is set to a predetermined thickness (molding process). This process is carried out between the touch roll 710 and the cooling roll 720.
  • the cooling temperature at which the surface of the film 10' is cooled by the cooling roll 720 and the rear cooling roll 730 is preferably set to about 20°C or higher and 120°C or lower, and more preferably about 40°C or higher and 90°C or lower.
  • either the cooling roll 720 or the rear cooling roll 730 may be equipped with a cooling means, and the film 10' may be cooled on one of the rolls.
  • the release film of the present invention is described as being applied to a press molding method in which flexible printed circuit boards arranged between heating and cooling plates are laminated in one layer, but the number of laminated flexible printed circuit boards is not limited to one layer and may be two or more layers.
  • the release film of the present invention is intended to be applied to a flexible printed circuit board placed between heating and cooling plates using a roll-to-roll press
  • the present invention is not limited to this, and the flexible printed circuit board can be pressed, for example, using a press molding method, or even a vacuum/pressure molding method.
  • ⁇ Thermoplastic resin material Low-density polyethylene (LDPE, Ube Maruzen Co., Ltd., "R300”) Ethylene vinyl acetate copolymer (EVA, manufactured by Dow Mitsui Polychemicals, "P1403”) Polybutylene terephthalate (PBT, Chang Chun Petrochemical Co., Ltd., “1100-630S”) Copolymerized polybutylene terephthalate (PBT, manufactured by Mitsubishi Engineering Plastics Corporation, “5505S”) Polypropylene (PP, manufactured by Sumitomo Chemical Co., Ltd., "FH1016”) Glycol-modified polyethylene terephthalate (PETG, manufactured by SELENIS, "NF411”)
  • thermoplastic resin composition a first thermoplastic resin composition and a second thermoplastic resin composition each composed of polybutylene terephthalate (PBT, 1100-630S) were prepared.
  • a third thermoplastic resin composition composed of 15 parts by weight of polybutylene terephthalate (PBT, 1100-630S), 35 parts by weight of ethylene vinyl acetate copolymer (EVA, P1403), 30 parts by weight of low density polyethylene (LDPE, R300), and 20 parts by weight of polypropylene (PP, FH1016) was prepared.
  • thermoplastic resin composition the third thermoplastic resin composition, and the second thermoplastic resin composition were co-extruded into a film by a co-extrusion T-die method using the release film manufacturing apparatus 1000, thereby forming a laminate in which the first release layer 1, the cushion layer 3, and the second release layer 2 were laminated in this order, thereby obtaining the release film 10 of Example 1A.
  • the cooling temperature of the cooling roll 720 and the rear cooling roll 730 when forming the first thermoplastic resin composition, the third thermoplastic resin composition, and the second thermoplastic resin composition into films using the release film manufacturing apparatus 1000 was set to 60°C.
  • the average thickness T1 of the first release layer 1 was 20 ⁇ m
  • the average thickness Tk of the cushion layer 3 was 80 ⁇ m
  • the average thickness T2 of the second release layer 2 was 20 ⁇ m.
  • the oxygen permeability of the release film 10 was measured using an oxygen permeability measuring device (manufactured by MOCON, "OX-TRAN 2/22L") in accordance with the isobaric method of the plastic film and sheet gas permeability test method specified in JIS K 7126-2 under conditions of a temperature of 23°C and a relative humidity of 0% RH, and was found to be 100.0 cc/( m2 ⁇ atm ⁇ day).
  • the water vapor permeability of the release film 10 was measured using a water vapor permeability measuring device (manufactured by MOCON, "PERMATRAN-W3/34") in accordance with K 7129 (Method B) under conditions of a temperature of 25°C and a relative humidity of 90% RH, and was found to be 2.5 g/ m2 ⁇ day (25°C ⁇ 90% RH).
  • the storage modulus E' at 150°C of the first release layer 1 and the cushion layer 3 was measured using a dynamic viscoelasticity measuring device (Hitachi High-Tech Science Corporation, "DMA7100") in tension mode, at a frequency of 1 Hz, and at a heating rate of 5°C/min, and was found to be 160 MPa and 16 MPa, respectively.
  • DMA7100 Dynamic Viscoelasticity measuring device
  • the 10-point average roughness (Rz) of the surface exposed on the side opposite the cushion layer 3 of the first release layer 1 was measured using a surface roughness measuring device (manufactured by Mitutoyo Corporation, "SURFTST SJ-210") and found to be 5 ⁇ m.
  • the crystallinity of the first release layer 1 and the second release layer 2 was analyzed by wide-angle X-ray diffraction using a horizontal sample X-ray diffraction device for thin film evaluation (manufactured by Rigaku Corporation, "Smart Lab"), and was found to be 33% and 35%, respectively.
  • the measurement conditions in the horizontal sample X-ray diffractometer for evaluating thin films were set as follows: X-ray source: CuK ⁇ ray, tube voltage: 45 kV-200 mA, incident optical system: focusing method, measurement range: 5-80°, measurement interval: 0.02°, scanning speed: 5.0°/min, scanning method: out-of-plane method
  • Examples 2A to 4A, Comparative Example 1A The release films 10 of Examples 2A to 4A and Comparative Example 1A, in which the oxygen permeabilities of the release films 10 are as shown in Table 1, were obtained in the same manner as in Example 1A, except that the cooling temperatures by the cooling roll 720 and the rear cooling roll 730 when forming the first thermoplastic resin composition, the third thermoplastic resin composition, and the second thermoplastic resin composition into films using the release film manufacturing apparatus 1000 were changed as shown in Table 1.
  • Examples 5A, 6A, Comparative Example 2A The release films 10 of Examples 5A, 6A and Comparative Example 2A, in which the oxygen permeability in the thickness direction of the release film 10 is as shown in Table 1, were obtained in the same manner as in Example 1A, except that the first release layer 1, cushion layer 3 and second release layer 2, each having the average thickness as shown in Table 1, were formed using the first thermoplastic resin composition, the second thermoplastic resin composition and the third thermoplastic resin composition as shown in Table 1.
  • a coverlay film 220 (manufactured by Arisawa Manufacturing Co., Ltd., "CMA0525") was attached to a flexible circuit board 210 (manufactured by Nippon Steel Chemical & Material Co., Ltd., "MB12-12-12REG") with the adhesive layer 222 of the coverlay film 220 facing the flexible circuit board 210 to form an FPC 200 (laminate) having irregularities with a pitch of 50 ⁇ m, a width of 50 ⁇ m, and a height of 18 ⁇ m.
  • the release film 10 was then pressed into the laminated FPC 200 as shown in FIG.
  • the release film 10 of each of the examples and comparative examples was configured to have a width of 270 mm, and a coverlay film 220 (manufactured by Arisawa Manufacturing Co., Ltd., "CMA0525”) was attached to a flexible circuit board 210 with the adhesive layer 222 of the coverlay film 220 facing the flexible circuit board 210 to form an FPC 200 (laminate) having irregularities with a pitch of 50 ⁇ m, a width of 50 ⁇ m, and a height of 18 ⁇ m.
  • the release film 10 was then pressed into the laminated FPC 200 as shown in FIG.
  • a release means 60 was used in which a rod was sandwiched between the FPC 200 and the release film 10 to peel them off, and the conveying speed was set to 200 mm/s, the feed amount to 500 mm, and the distance from the heating and pressing plate 521 to the release means 60 to 50 mm, and the release film 10 was peeled off.
  • the FPC 200 pressed using a RtoR press was dried at 110°C for 1 hour. After that, the FPC 200 was immersed in a solder liquid heated to 260°C for 10 seconds, and then removed from the solder liquid. The presence or absence of air bubbles between the flexible circuit board 210 and the coverlay film 220 was visually confirmed, and evaluated according to the following criteria. Note that for each of the release films 10 of the examples and comparative examples, the test to obtain the FPC 200 was repeated 100 times as described above.
  • the release film 10 of each of the examples and comparative examples was configured to have a width of 270 mm, and a coverlay film 220 (manufactured by Arisawa Manufacturing Co., Ltd., "CMA0525”) was attached to a flexible circuit board 210 with the adhesive layer 222 of the coverlay film 220 facing the flexible circuit board 210 to form an FPC 200 (laminate) having irregularities with a pitch of 50 ⁇ m, a width of 50 ⁇ m, and a height of 18 ⁇ m.
  • the release film 10 was then pressed into the laminated FPC 200 as shown in FIG.
  • the release film 10 of each of the examples and comparative examples was configured to have a width of 270 mm, and a coverlay film 220 (manufactured by Arisawa Manufacturing Co., Ltd., "CMA0525”) was attached to a flexible circuit board 210 with the adhesive layer 222 of the coverlay film 220 facing the flexible circuit board 210 to form an FPC 200 (laminate) having irregularities with a pitch of 50 ⁇ m, a width of 50 ⁇ m, and a height of 18 ⁇ m.
  • the release film 10 was then pressed into the laminated FPC 200 as shown in FIG.
  • the oxygen permeability of the release film 10 was 60.0 cc/( m2 ⁇ atm ⁇ day) or more, and as a result, discoloration due to oxidation was suppressed in the circuit exposed in the recess 223 of the FPC 200.
  • the oxygen permeability of the release film 10 did not satisfy the requirement of 60.0 cc/( m2 ⁇ atm ⁇ day) or more, and as a result, discoloration due to oxidation was clearly observed in the circuit exposed in the recess 223 of the FPC 200.
  • ⁇ Thermoplastic resin material Low-density polyethylene (LDPE, Ube Maruzen Co., Ltd., "R300”) Ethylene vinyl acetate copolymer (EVA, manufactured by Dow Mitsui Polychemicals, "P1403”) Polybutylene terephthalate (PBT, Chang Chun Petrochemical Co., Ltd., “1100-630S”) Copolymerized polybutylene terephthalate (PBT, manufactured by Mitsubishi Engineering Plastics Corporation, “5505S”) Polypropylene (PP, manufactured by Sumitomo Chemical Co., Ltd., "FH1016”) Glycol-modified polyethylene terephthalate (PETG, manufactured by SELENIS, "NF411”)
  • thermoplastic resin composition a first thermoplastic resin composition and a second thermoplastic resin composition each composed of polybutylene terephthalate (PBT, 1100-630S) were prepared.
  • a third thermoplastic resin composition composed of 15 parts by weight of polybutylene terephthalate (PBT, 1100-630S), 35 parts by weight of ethylene vinyl acetate copolymer (EVA, P1403), 30 parts by weight of low density polyethylene (LDPE, R300), and 20 parts by weight of polypropylene (PP, FH1016) was prepared.
  • thermoplastic resin composition the third thermoplastic resin composition, and the second thermoplastic resin composition were co-extruded into a film by a co-extrusion T-die method using the release film manufacturing apparatus 1000, thereby forming a laminate in which the first release layer 1, the cushion layer 3, and the second release layer 2 were laminated in this order, thereby obtaining the release film 10 of Example 1B.
  • the cooling temperature of the cooling roll 720 and the rear cooling roll 730 when forming the first thermoplastic resin composition, the third thermoplastic resin composition, and the second thermoplastic resin composition into films using the release film manufacturing apparatus 1000 was set to 60°C.
  • the average thickness T1 of the first release layer 1 was 20 ⁇ m
  • the average thickness Tk of the cushion layer 3 was 80 ⁇ m
  • the average thickness T2 of the second release layer 2 was 20 ⁇ m.
  • the water vapor permeability of the release film 10 was measured using a water vapor permeability measuring device (manufactured by MOCON, "PERMATRAN-W3/34") in accordance with K 7129 (Method B) under conditions of a temperature of 25°C and a relative humidity of 90% RH, and was found to be 2.5 g/ m2 ⁇ day (25°C ⁇ 90% RH).
  • the oxygen permeability of the release film 10 was measured using an oxygen permeability measuring device ("OX-TRAN 2/22L" manufactured by MOCON) in accordance with the isobaric method of the plastic film and sheet gas permeability test method specified in JIS K 7126-2 under conditions of a temperature of 23°C and a relative humidity of 0% RH, and was found to be 100.0 cc/( m2 ⁇ atm ⁇ day).
  • the storage modulus E' at 150°C of the first release layer 1 and the cushion layer 3 was measured using a dynamic viscoelasticity measuring device (Hitachi High-Tech Science Corporation, "DMA7100") in tension mode, at a frequency of 1 Hz, and at a heating rate of 5°C/min, and was found to be 160 MPa and 16 MPa, respectively.
  • DMA7100 Dynamic Viscoelasticity measuring device
  • the 10-point average roughness (Rz) of the surface exposed on the side opposite the cushion layer 3 of the first release layer 1 was measured using a surface roughness measuring device (manufactured by Mitutoyo Corporation, "SURFTST SJ-210") and found to be 5 ⁇ m.
  • the crystallinity of the first release layer 1 and the second release layer 2 was analyzed by wide-angle X-ray diffraction using a horizontal sample X-ray diffraction device for thin film evaluation (manufactured by Rigaku Corporation, "Smart Lab"), and was found to be 33% and 35%, respectively.
  • the measurement conditions in the horizontal sample X-ray diffractometer for evaluating thin films were set as shown below.
  • X-ray source CuK ⁇ ray
  • tube voltage 45 kV-200 mA
  • incident optical system focusing method
  • measurement range 5-80°
  • measurement interval 0.02°
  • scanning speed 5.0°/min
  • scanning method out-of-plane method
  • Examples 2B to 4B, Comparative Example 1B The release films 10 of Examples 2B to 4B and Comparative Example 1B, in which the water vapor permeability of the release films 10 is as shown in Table 2, were obtained in the same manner as in Example 1B, except that the cooling temperatures by the cooling roll 720 and the rear cooling roll 730 when forming the first thermoplastic resin composition, the third thermoplastic resin composition, and the second thermoplastic resin composition into films using the release film manufacturing apparatus 1000 were changed as shown in Table 2.
  • Examples 5B to 7B, Comparative Examples 2B and 3B The release films 10 of Examples 5B to 7B and Comparative Examples 2B and 3B, which have a water vapor permeability in the thickness direction of the release film 10 as shown in Table 2, were obtained in the same manner as Example 1B, except that the first release layer 1, cushion layer 3 and second release layer 2, each having an average thickness as shown in Table 2, were formed using the compositions shown in Table 2 as the first thermoplastic resin composition, the second thermoplastic resin composition and the third thermoplastic resin composition.
  • the release film 10 of each of the examples and comparative examples was configured to have a width of 270 mm, and a coverlay film 220 (manufactured by Arisawa Manufacturing Co., Ltd., "CMA0525”) was attached to a flexible circuit board 210 (manufactured by Nippon Steel Chemical & Material Co., Ltd., "MB12-12-12REG”) with the adhesive layer 222 of the coverlay film 220 facing the flexible circuit board 210 to form an FPC 200 (laminate) having irregularities with a pitch of 50 ⁇ m, a width of 50 ⁇ m, and a height of 18 ⁇ m.
  • the release film 10 was then pressed into the laminated FPC 200 as shown in FIG. 3 using an RtoR press machine (manufactured by TRM, "RR Q-CURE 100TON CONTINUOUS LAMINATOR") under set conditions of 180° C., 110 kg/cm 2 , and 150 sec. Thereafter, a release means 60 was used in which a rod was sandwiched between the FPC 200 and the release film 10 to peel them off, and the conveying speed was set to 200 mm/s, the feed amount to 500 mm, and the distance from the heating and pressing plate 521 to the release means 60 to 50 mm, and the release film 10 was peeled off.
  • RtoR press machine manufactured by TRM, "RR Q-CURE 100TON CONTINUOUS LAMINATOR”
  • the pressed FPC 200 was dried at 110°C for 1 hour. After that, the FPC 200 was immersed in a solder liquid heated to 260°C for 10 seconds, and then removed from the solder liquid. The presence or absence of air bubbles between the flexible circuit board 210 and the coverlay film 220 was visually confirmed, and evaluated according to the following criteria. Note that for each of the release films 10 of the examples and comparative examples, the test to obtain the FPC 200 was repeated 100 times as described above.
  • a coverlay film 220 (manufactured by Arisawa Manufacturing Co., Ltd., "CMA0525") was attached to a flexible circuit board 210 (manufactured by Nippon Steel Chemical & Material Co., Ltd., "MB12-12-12REG") with the adhesive layer 222 of the coverlay film 220 facing the flexible circuit board 210 to form an FPC 200 (laminate) having irregularities with a pitch of 50 ⁇ m, a width of 50 ⁇ m, and a height of 18 ⁇ m.
  • the release film 10 was then pressed into the laminated FPC 200 as shown in FIG.
  • the release film 10 of each of the examples and comparative examples was configured to have a width of 270 mm, and a coverlay film 220 (manufactured by Arisawa Manufacturing Co., Ltd., "CMA0525”) was attached to a flexible circuit board 210 with the adhesive layer 222 of the coverlay film 220 facing the flexible circuit board 210 to form an FPC 200 (laminate) having irregularities with a pitch of 50 ⁇ m, a width of 50 ⁇ m, and a height of 18 ⁇ m.
  • the release film 10 was then pressed into the laminated FPC 200 as shown in FIG.
  • the release film 10 of each of the examples and comparative examples was configured to have a width of 270 mm, and a coverlay film 220 (manufactured by Arisawa Manufacturing Co., Ltd., "CMA0525”) was attached to a flexible circuit board 210 with the adhesive layer 222 of the coverlay film 220 facing the flexible circuit board 210 to form an FPC 200 (laminate) having irregularities with a pitch of 50 ⁇ m, a width of 50 ⁇ m, and a height of 18 ⁇ m.
  • the release film 10 was then pressed into the laminated FPC 200 as shown in FIG.
  • the water vapor permeability of the release film 10 was found to be greater than 1.0 g/ m2 ⁇ day (25°C ⁇ 90% RH), and as a result, the generation of air bubbles between the flexible circuit board 210 and the coverlay film 220 was suppressed.
  • the water vapor permeability of the release film 10 did not satisfy the requirement of exceeding 1.0 g/ m2 ⁇ day (25°C ⁇ 90% RH), and as a result, the generation of air bubbles between the flexible circuit board 210 and the coverlay film 220 was clearly observed.
  • the oxygen permeability of the release film measured in accordance with JIS K 7126-2 is 60.0 cc/( m2 ⁇ atm ⁇ day) or more. Therefore, for example, when a flexible printed circuit board is obtained using a flexible circuit board and a coverlay film, oxidation of the circuit of the flexible circuit board exposed in the recess between embedding the release film in the recess and releasing the release film from the recess can be appropriately suppressed or prevented. Therefore, a flexible printed circuit board having better electrical properties can be obtained.
  • the water vapor permeability of the release film measured in accordance with JIS K 7129 (method B) is more than 1.0 g/m 2 day (25°C, 90% RH). Therefore, for example, when a flexible printed circuit board is obtained using a flexible circuit board and a coverlay film, the resin material such as polyimide contained as a constituent material of the flexible printed circuit board can be appropriately suppressed or prevented from absorbing water vapor contained in the air remaining between the release film and the flexible circuit board during the period from embedding the release film in the recess to releasing the release film from the recess.
  • the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

第1の発明の離型フィルム10は、第1熱可塑性樹脂組成物からなる第1離型層1と、この第1離型層1に積層されたクッション層3とを有し、JIS K 7126-2に準拠して測定された、離型フィルム10の酸素透過度が60.0cc/(m・atm・day)以上であることを満足する。第2の発明の離型フィルム10は、第1熱可塑性樹脂組成物からなる第1離型層1と、この第1離型層1に積層されたクッション層3とを有し、JIS K 7129(B法)に準拠して測定された、離型フィルム10の水蒸気透過度が1.0g/m・day(25℃・90%RH)超であることを満足する。

Description

離型フィルムおよび成型品の製造方法
 本発明は、離型フィルムおよび成型品の製造方法に関する。
 回路が露出したフレキシブル回路基板に対して、カバーレイフィルムを、カバーレイフィルムが備える接着剤層を介して、加熱プレスにより接着してフレキシブルプリント回路基板すなわち積層体を形成する際に、離型フィルムが、一般的に、使用されている。
 このような離型フィルムを用いたフレキシブルプリント回路基板、換言すればフレキシブル回路基板とカバーレイフィルムとの積層体の形成の際に、離型フィルムには、2つの特性、すなわち、埋め込み性および離型性に優れることが要求されてきた。
 詳しくは、まず、フレキシブルプリント回路基板には、フレキシブル回路基板へのカバーレイフィルムの積層により、凹部が形成されるが、この凹部に対して、優れた埋め込み性を発揮することが離型フィルムに求められる。
 より具体的には、フレキシブル回路基板に対するカバーレイフィルムの積層は、カバーレイフィルムが備える接着剤層を介して行われるが、この積層の際に、凹部に対して、離型フィルムが優れた埋め込み性を発揮して、凹部内における接着剤のしみ出しが抑制されることが求められる。
 また、上記のようなフレキシブル回路基板に対するカバーレイフィルムの積層の後には、形成されたフレキシブルプリント回路基板から、優れた離型性をもって離型フィルムが剥離されることが求められる。
 より具体的には、形成されたフレキシブルプリント回路基板から、離型フィルムを剥離させる際に、フレキシブルプリント回路基板に対して、離型フィルムが優れた離型性を発揮して、フレキシブルプリント回路基板における折れシワおよび破断の発生が抑制されることが求められる。
 上記のような2つの特性(埋め込み性および離型性)に優れた離型フィルムとすることを目的に、例えば、特許文献1では、ポリエステル系エラストマー層と、ポリエステル層とを有する離型フィルムが提案されている。
 ところが、このフレキシブルプリント回路基板を、より優れた電気特性を有するように製造することを考慮した場合、次のような問題があった。具体的には、かかる構成をなす離型フィルムを用いて、フレキシブルプリント回路基板を製造すると、カバーレイフィルムを、フレキシブル回路基板に対して、加熱プレスする際に、離型フィルムとフレキシブル回路基板との間に残存する空気中に含まれる酸素に基づいて、フレキシブル回路基板が備える回路が酸化される。そのため、より優れた電気特性を有するフレキシブルプリント回路基板が得られているとはいえないのが実情であった。
 また、このような問題は、金属基板上に配置された、半硬化状態の熱硬化性樹脂を含む材料によって形成された対象物に対して、離型フィルムを貼付した状態とし、この状態で熱硬化性樹脂の硬化反応を進行させることで、対象物を用いて成型品を製造する場合等についても同様に生じている。
 上記問題とは別に、フレキシブル回路基板が備える回路に対して半田付けするボンディング特性に優れたフレキシブルプリント回路基板を製造することを考慮した場合、かかる構成をなす離型フィルムを用いて、フレキシブルプリント回路基板を製造すると、以下に示すような問題が生じるのが実情であった。すなわち、カバーレイフィルムを、フレキシブル回路基板に対して、加熱プレスする際に、離型フィルムとフレキシブル回路基板との間に残存する空気中に含まれる水蒸気が、フレキシブルプリント回路基板の構成材料として含まれるポリイミドのような樹脂材料に吸湿される。これにより、フレキシブル回路基板が備える回路に対して半田付けする際に、吸湿された水蒸気がカバーレイフィルムとフレキシブル回路基板との間に気泡として発生するため、カバーレイフィルムとフレキシブル回路基板との間において剥離が生じてしまうと言う問題があった。
 また、このような問題は、金属基板上に配置された、半硬化状態の熱硬化性樹脂を含む材料によって形成された対象物に対して、離型フィルムを貼付した状態とし、この状態で熱硬化性樹脂の硬化反応を進行させることで、対象物を用いて成型品を製造し、この成型品が備える金属基板に対して半田付けする場合等についても同様に生じている。
特開2011-88351号公報
 本発明の第1の目的は、凹部に対する離型フィルムの埋め込みから、この凹部から離型フィルムを離型させるまでの間に、この凹部で露出する金属基板が酸化するのを的確に抑制または防止することができる離型フィルム、および、かかる離型フィルムを用いた成型品の製造方法を提供することにある。
 本発明の第2の目的は、成型品が備える凹部に対する離型フィルムの埋め込みから、この凹部から離型フィルムを離型させるまでの間に、成型品に構成材料として含まれる樹脂材料に水蒸気が吸湿されるのを的確に抑制または防止することができる離型フィルム、および、かかる離型フィルムを用いた成型品の製造方法を提供することにある。
 このような目的は、下記(1)~(12)に記載の本発明により達成される。特に、第1の目的は、下記(1)に記載の本発明(第1の発明)により達成される。また、第2の目的は、下記(2)に記載の本発明(第2の発明)により達成される。なお、以下の説明では、第1の発明と、第2の発明とを併せて、本発明ということもある。
 (1) 第1熱可塑性樹脂組成物からなる第1離型層と、該第1離型層に積層されたクッション層とを有する離型フィルムであって、
 JIS K 7126-2に準拠して測定された、当該離型フィルムの酸素透過度は、60.0cc/(m・atm・day)以上であることを特徴とする離型フィルム。
 (2) 第1熱可塑性樹脂組成物からなる第1離型層と、該第1離型層に積層されたクッション層とを有する離型フィルムであって、
 JIS K 7129(B法)に準拠して測定された、当該離型フィルムの水蒸気透過度は、1.0g/m・day(25℃・90%RH)超であることを特徴とする離型フィルム。
 (3) 前記第1熱可塑性樹脂組成物は、ポリエステル系樹脂を含む上記(1)または(2)に記載の離型フィルム。
 (4) 前記ポリエステル系樹脂は、結晶性を有し、前記第1離型層は、その結晶化度が10%以上50%以下である上記(1)ないし(3)のいずれかに記載の離型フィルム。
 (5) 前記クッション層は、前記ポリエステル系樹脂と、ポリオレフィン系樹脂とを含む第3熱可塑性樹脂組成物からなる上記(1)ないし(4)のいずれかに記載の離型フィルム。
 (6) 前記第1離型層は、その平均厚さが7μm以上38μm以下である上記(1)ないし(5)のいずれかに記載の離型フィルム。
 (7) 前記クッション層は、その平均厚さが40μm以上110μm以下である上記(1)ないし(6)のいずれかに記載の離型フィルム。
 (8) 当該離型フィルムは、その平均厚さが40μm以上180μm以下である上記(1)ないし(7)のいずれかに記載の離型フィルム。
 (9) 前記第1離型層は、前記クッション層と反対側の表面における10点平均粗さ(Rz)が0.1μm以上20.0μm以下である上記(1)ないし(8)のいずれかに記載の離型フィルム。
 (10) 当該離型フィルムは、前記クッション層の前記第1離型層と反対側に積層された、第2熱可塑性樹脂組成物からなる第2離型層を有する上記(1)ないし(9)のいずれかに記載の離型フィルム。
 (11) 当該離型フィルムが、金属基板上に配置された、半硬化状態の熱硬化性樹脂を含む材料によって形成された対象物の表面に、
 前記第1離型層側の表面が接するように重ねて用いられる上記(1)ないし(10)のいずれかに記載の離型フィルム。
 (12) 上記(1)ないし(11)のいずれかに記載の離型フィルムの前記第1離型層が対象物側になるように、
 前記対象物上に前記離型フィルムを配置する工程と、前記離型フィルムが配置された前記対象物に対し、加熱プレスを行う工程と、を含み、前記離型フィルムを配置する前記工程において、前記対象物の前記離型フィルムが配置される側の面が、半硬化状態の熱硬化性樹脂を含む材料によって形成されていることを特徴とする成型品の製造方法。
 第1の発明によれば、第1熱可塑性樹脂組成物からなる第1離型層と、この第1離型層に積層されたクッション層とを有する離型フィルムにおいて、JIS K 7126-2に準拠して測定された、離型フィルムの酸素透過度が60.0cc/(m・atm・day)以上であることを満足している。そのため、例えば、フレキシブル回路基板とカバーレイフィルムとを用いてフレキシブルプリント回路基板を得る際に、凹部に対する離型フィルムの埋め込みから、この凹部から離型フィルムを離型させるまでの間に、この凹部で露出する、フレキシブル回路基板が備える回路が酸化するのを的確に抑制または防止することができる。したがって、より優れた電気特性を有するフレキシブルプリント回路基板が得られる。
 また、第2の発明によれば、第1熱可塑性樹脂組成物からなる第1離型層と、この第1離型層に積層されたクッション層とを有する離型フィルムにおいて、JIS K 7129(B法)に準拠して測定された、離型フィルムの水蒸気透過度が1.0g/m・day(25℃・90%RH)超であることを満足している。そのため、例えば、フレキシブル回路基板とカバーレイフィルムとを用いてフレキシブルプリント回路基板を得る際に、凹部に対する離型フィルムの埋め込みから、この凹部から離型フィルムを離型させるまでの間に、離型フィルムとフレキシブル回路基板との間に残存する空気中に含まれる水蒸気を、フレキシブルプリント回路基板の構成材料として含まれるポリイミドのような樹脂材料が吸湿するのを的確に抑制または防止することができる。したがって、フレキシブル回路基板が備える回路に対する半田付け時における、吸湿された水蒸気に由来する気泡のカバーレイフィルムとフレキシブル回路基板との間での発生が的確に抑制または防止される。そのため、カバーレイフィルムとフレキシブル回路基板との間における剥離の発生が的確に抑制または防止されたより信頼性に優れたフレキシブルプリント回路基板が得られる。
図1は、フレキシブルプリント回路基板の製造に用いられるロールツーロールプレス機の主要部を示す側面図である。 図2は、図1に示すロールツーロールプレス機を用いたフレキシブルプリント回路基板の製造方法における各工程を示す縦断面図である。 図3は、図1に示すロールツーロールプレス機を用いたフレキシブルプリント回路基板の製造方法における加熱プレス工程を示す縦断面図である。 図4は、本発明の離型フィルムの実施形態を示す縦断面図である。 図5は、図4に示す離型フィルムのA部を部分的に拡大した部分拡大縦断面図である。 図6は、図4に示す離型フィルムを製造する離型フィルム製造装置を模式的に示した側面図である。
 以下、本発明の離型フィルムおよび成型品の製造方法を添付図面に示す好適実施形態に基づいて詳細に説明する。
 なお、以下では、本発明の離型フィルムを用いた、フレキシブルプリント回路基板の製造を、ロールツーロールプレス機を用いて製造する場合を一例に説明する。また、本発明の離型フィルムおよび成型品の製造方法を説明するのに先立って、まず、このフレキシブルプリント回路基板の製造に用いられるロールツーロールプレス機について説明する。
 <ロールツーロールプレス機>
 図1は、フレキシブルプリント回路基板の製造に用いられるロールツーロールプレス機の主要部を示す側面図、図2は、図1に示すロールツーロールプレス機を用いたフレキシブルプリント回路基板の製造方法における各工程を示す縦断面図、図3は、図1に示すロールツーロールプレス機を用いたフレキシブルプリント回路基板の製造方法における加熱プレス工程を示す縦断面図である。なお、以下では、説明の都合上、図1~図3中の上側を「上」または「上方」、下側を「下」または「下方」と言い、左側を「左」、右側を「右」と言う。
 ロールツーロールプレス機100(RtoRプレス機)は、離型フィルム10、フレキシブルプリント回路基板200(以下「FPC」と言うこともある。)およびガラスクロス300A、300Bを搬送する搬送手段(図示せず)と、FPC200が備えるフレキシブル回路基板210とカバーレイフィルム220(以下、「CLフィルム」と言うこともある。)とにおいて、離型フィルム10を用いてフレキシブル回路基板210に対してCLフィルム220を加熱プレスすることで接合する加熱プレス手段50と、フレキシブル回路基板210に対してCLフィルム220が接合されたFPC200から、離型フィルム10を離型(剥離)させる離型手段60とを備えている。
 搬送手段は、それぞれ異なる巻出しローラに巻回されたFPC200、離型フィルム10A、10B、および、ガラスクロス300A、300Bを、それぞれ、これらの長手方向に沿って、テンショナ(テンションローラー)の回転により、搬送するとともに、加熱プレス手段50および離型手段60による処理後に、巻取りローラに巻回するように構成される。
 なお、各ローラは、それぞれ、例えば、ステンレス鋼等のような金属材料で構成されている。また、これらのローラは、回動軸(中心軸)同士が同じ方向を向いており、互いに離間して配置されている。
 加熱プレス手段50は、図1に示すように、加熱圧着部52を有している。
 加熱圧着部52は、一対の加熱圧着板521を有している。加熱圧着板521は、搬送手段により搬送されるとともに、重ね合わされた状態とされたガラスクロス300A、離型フィルム10A、FPC200、離型フィルム10Bおよびガラスクロス300Bに対向して、その上方および下方に1つずつ配置されている。そして、重ね合わされた状態とされたガラスクロス300A、離型フィルム10A、FPC200、離型フィルム10Bおよびガラスクロス300Bが、加熱圧着板521同士の間を通過する際に、加熱圧着板521により、ガラスクロス300A、300Bと、離型フィルム10A、10Bとを介して、FPC200が加熱しつつ加圧される。したがって、CLフィルム220が備える接着剤層222の硬化反応が、この加熱により進行するため、FPC200において、重ね合わされているフレキシブル回路基板210とCLフィルム220とが接着剤層222を介して接合される。
 換言すれば、カバーレイ221とフレキシブル回路基板210とが、接着剤層222を介して接合される。また、FPC200の加熱・加圧の際、すなわち、カバーレイ221とフレキシブル回路基板210との接着剤層222を介した接合の際に、カバーレイ221に形成される凹部223内に離型フィルム10が埋入されることとなる。そのため、凹部223内における、接着剤層222に由来する接着剤のしみ出しが抑制される(図2(b)参照)。
 なお、加熱圧着板521により加熱圧着される前において、FPC200は、フレキシブル回路基板210とCLフィルム220とを重ね合わせることで積層された状態となってはいるが、フレキシブル回路基板210とCLフィルム220とは、CLフィルム220が備える接着剤層222を介して接合されていない。そして、加熱圧着板521による圧着により、CLフィルム220が備える接着剤層222がフレキシブル回路基板210に密着し、さらに、この状態で、加熱圧着板521による加熱により、接着剤層222の硬化反応が進行することで、フレキシブル回路基板210とCLフィルム220とが接着剤層222を介して接合される。
 離型手段60は、図1に示すように、加熱プレス手段50に対して、搬送方向の下流側に配置されている。この離型手段60は、FPC200と離型フィルム10A、10Bとを離間させるように構成されている。ここで、加熱プレス手段50が備える加熱圧着部52において、カバーレイ221に形成される凹部223内に離型フィルム10が埋入され、これにより、CLフィルム220(FPC200)に離型フィルム10が接合されているが、この離型手段60の作用により、CLフィルム220(FPC200)から離型フィルム10を剥離(離型)させ得るように構成されている(図2(c)参照)。したがって、離型手段60による作用に基づいて、フレキシブル回路基板210とCLフィルム220とが接着剤層222を介して接合された構成をなすFPC200が、離型フィルム10から剥離された状態で得られることとなる。
 以上のようなロールツーロールプレス機100を用いて、フレキシブルプリント回路基板200(FPC200)を製造し得る。以下、このロールツーロールプレス機を用いたFPC200の製造方法について説明する。なお、このFPC200の製造方法に、本発明の成型品の製造方法が適用される。
 FPC200の製造方法は、本実施形態では、それぞれがシート状をなす、ガラスクロス300Aと、離型フィルム10Aと、FPC200と、離型フィルム10Bと、ガラスクロス300Bとを、この順で重ね合わされた状態をなす積層体とする第1の工程と、かかる積層体を加熱プレスすることで、FPC200において、フレキシブル回路基板210に対してカバーレイ221(CLフィルム220)を、接着剤層222を介して接合する第2の工程と、FPC200から離型フィルム10(10A、10B)を離型させて、フレキシブル回路基板210に対してCLフィルム220が接合されているFPC200を得る第3の工程とを有する。
 以下、これらの各工程について、順次説明する。
(第1の工程)
 まず、それぞれがシート状をなす、巻出しローラにそれぞれ巻回されたガラスクロス300Aと、離型フィルム10Aと、FPC200と、離型フィルム10Bと、ガラスクロス300Bとを、搬送手段による搬送の際に、この順で重ね合わされた状態をなす積層体とする(離型フィルム配置工程、図1、図2(a)、図3参照。)。
 なお、各部材(フィルム)を積層体に積層する方法は特に限定されず、例えば、ロールにより押し付けながら積層してもよいし、プレスにより押し付けながら積層してもよい。また、各部材を積層する順番も、任意に行うことが出来る。例えば、すべての部材を同時に積層してもよいし、カバーレイフィルム220とフレキシブル回路基板210を事前に積層しておき、その後その他の部材を同時に積層してもよい。
 また、この第1の工程における前記積層体の形成により、本発明の成型品の製造方法における、対象物(FPC200)上に離型フィルム10を配置する工程が構成される。
(第2の工程)
 次に、ガラスクロス300Aと、離型フィルム10Aと、FPC200と、離型フィルム10Bと、ガラスクロス300Bとが、この順で重ね合わされた積層体を、加熱プレス手段50(加熱圧着部52)を用いて、加圧しつつ加熱(加熱プレス)することで、接着剤層222がフレキシブル回路基板210に密着した状態で、接着剤層222の硬化反応が進行する(接着剤層222が硬化する)ことから、FPC200において、フレキシブル回路基板210に対してカバーレイ221(CLフィルム220)が、接着剤層222を介して接合された接合体が形成される(加熱プレス工程、図1、図2(b)、図3参照。)。
 そして、この際に、カバーレイ221に離型フィルム10Aが密着しつつ、カバーレイ221に形成される凹部223内に離型フィルム10Aが埋入されることから、凹部223内における、接着剤層222に由来する接着剤のしみ出しが抑制される。
 なお、FPC200(カバーレイ221)の凹部223に形成される段差は、例えば、FPC200が車載用の用途に適用された場合には、その高さが30μm以上100μm以下程度の大きさに設定される。
 この第2の工程(加熱プレス工程)において、FPC200を加熱する温度は、特に限定されないが、例えば、100℃以上250℃以下であることが好ましく、150℃以上200℃以下であることがより好ましい。
 また、第2の工程において、FPC200を加圧する際に、加熱圧着部52において設定される圧力は、特に限定されないが、1MPa以上14MPa以下であることが好ましく、より好ましくは5MPa以上14MPa以下に設定される。
 さらに、前記積層体を搬送する搬送速度は、40mm/sec以上400mm/sec以下であることが好ましく、より好ましくは100mm/sec以上350mm/sec以下に設定される。換言すれば、第2の工程(本工程)において、前記積層体を、加熱プレス手段50を用いて加熱プレスし、剥離工程(次工程)において、前記接合体から離型フィルム10が剥離されるまでの密着時間は、好ましくは1.0sec以上10.0sec以下、より好ましくは4.0sec以上7.0sec以下に設定される。前記搬送速度すなわち前記密着時間を、かかる範囲内に設定することで、効率よくFPC200が製造されているといえる。すなわち、FPC200が優れた生産性をもって製造されているといえる。
 なお、第2の工程により、本発明の成型品の製造方法における、離型フィルム10が配置された対象物(FPC200)に対し、加熱プレスを行う工程が構成される。また、カバーレイ221(絶縁層)が、半硬化状態の熱硬化性樹脂を含む材料で構成される場合には、対象物(FPC200)の離型フィルム10が配置される側の面を、カバーレイ221が構成する。そして、このカバーレイ221の表面に、第1離型層1側の表面が接するように離型フィルム10が重ねて用いられているため、離型フィルム10により、凹部223が形成されたカバーレイ221の形状を維持して、熱硬化性樹脂を硬化させ得ることから、フレキシブル回路基板210上に、カバーレイ221(成型品)を優れた精度で成型することができる。また、前記密着時間が前記範囲内に設定されているため、離型フィルム10により、凹部223が形成されたカバーレイ221の形状を維持した状態で、カバーレイ221を構成する熱硬化性樹脂の硬化反応を進行させることができる。
 さらに、本実施形態においては加熱プレスにより加熱する手段を示したが、必ずしもこの方法に限定されず、例えば赤外線により加熱してもよいし、加熱ロールによる加熱を行ってもよい。
 このような第2の工程(加熱プレス工程)から、次工程である第3の工程(離型工程)におけるFPC200からの離型フィルム10の離型までの間において、FPC200に対して離型フィルム10が貼付される。このとき、第1の発明では、JIS K 7126-2に準拠して測定された、離型フィルム10の酸素透過度が60.0cc/(m・atm・day)以上であることを満足している。したがって、第2の工程(本工程)から第3の工程(次工程)において離型フィルム10を離型させるまでの間に、上記の通り、第2の工程(本工程)おいて、FPC200が加熱プレスされたとしても、凹部223で露出する、フレキシブル回路基板210が備える回路が酸化するのを的確に抑制または防止することができる。このため、より優れた電気特性を有するFPC200が得られるが、その詳細な説明は後に行うこととする。
 このような第2の工程(加熱プレス工程)から、次工程である第3の工程(離型工程)におけるFPC200からの離型フィルム10の離型までの間において、FPC200に対して離型フィルム10が貼付されるとき、第2の発明では、JIS K 7129(B法)に準拠して測定された、離型フィルム10の水蒸気透過度が1.0g/m・day(25℃・90%RH)超であることを満足している。したがって、第2の工程(本工程)から第3の工程(次工程)において離型フィルム10を離型させるまでの間に、上記の通り、第2の工程(本工程)おいて、FPC200が加熱プレスされたとしても、離型フィルム10とフレキシブル回路基板210との間に残存する空気中に含まれる水蒸気を、フレキシブル回路基板210やカバーレイ221の構成材料として含まれるポリイミドのような樹脂材料が吸湿するのを的確に抑制または防止することができる。したがって、フレキシブル回路基板210が備える回路に対する半田付け時における、吸湿された水蒸気に由来する気泡のフレキシブル回路基板210とカバーレイフィルム220との間での発生が的確に抑制または防止される。そのため、フレキシブル回路基板210とカバーレイフィルム220との間における剥離の発生が的確に抑制または防止されたより信頼性に優れたFPC200が得られるが、その詳細な説明は後に行うこととする。
(第3の工程)
 次に、離型手段60において、FPC200から離型フィルム10(10A、10B)を離型させる。すなわち、カバーレイフィルム220とフレキシブル回路基板210との接合体から、離型フィルム10Aと離型フィルム10Bとを剥離する。これにより、フレキシブル回路基板210に対してCLフィルム220が接合されているFPC200を得る(剥離工程、図1、図2(c)図3参照。)。
 なお、離型手段60としては、特に限定されず、例えば、外側に真空装置を設置し、真空引きすることで剥離する構成であってもよいし、前記接合体と離型フィルム10A、10Bの間に空気を送り込むことで剥離する構成であってもよいし、接合体と離型フィルム10A、10Bの間に棒を挟みこみ剥離する構成であってもよい。
 その後、カバーレイフィルム220とフレキシブル回路基板210の接合体と、ガラスクロス300A、離型フィルム10A、離型フィルム10B、ガラスクロス300Bをそれぞれの巻取りローラにて巻き取る。
 このような巻取りにより、フレキシブル回路基板210とCLフィルム220とが、CLフィルム220が備える接着剤層222を介して接合されたFPC200として、巻取りローラに巻き取られた状態で連続的に得られることとなる。
 以上のように、離型フィルム10を用いたロールツーロールプレス機100による、フレキシブルプリント回路基板200の製造方法を適用することで、連続的にフレキシブルプリント回路基板200が製造される。
 なお、上記第3の工程の後に、巻取りローラに巻き取られた状態のフレキシブルプリント回路基板200、または巻き取られたフレキシブルプリント回路基板200を個々の状態に切断した枚葉の状態で、オーブンなどで加熱することにより、カバーレイ221を構成する熱硬化性樹脂の硬化反応をさらに進行させて、カバーレイ221を硬化させる工程を含んでいてもよい。
 このフレキシブルプリント回路基板200の製造に用いられる離型フィルム10に、本発明の離型フィルムが適用される。以下、本発明の離型フィルムが適用された、離型フィルム10について、説明する。
 <離型フィルム10>
 図4は、本発明の離型フィルムの実施形態を示す縦断面図、図5は、図4に示す離型フィルムのA部を部分的に拡大した部分拡大縦断面図である。
 離型フィルム10は、図4に示すように、本実施形態において、第1離型層1と、クッション層3と、第2離型層2とがこの順で積層された積層体で構成されており、FPC200が備えるCLフィルム220に対して、第1離型層1側の表面が接するように重ねて用いられる。
 そして、この離型フィルム10は、第1の発明では、JIS K 7126-2に準拠して測定された、離型フィルム10の酸素透過度が60.0cc/(m・atm・day)以上である。
 ここで、前述したように、離型フィルム10を用いたフレキシブルプリント回路基板200の製造方法では、離型フィルム10の凹部223に対する埋め込み性と、フレキシブルプリント回路基板200からの離型性との両立が図られることが求められ、さらに、より優れた電気特性を有するFPC200が製造されることが求められる。
 しかしながら、第2の工程(本工程)から第3の工程(次工程)において離型フィルム10を離型させるまでの間に、上記の通り、第2の工程(本工程)おいて、FPC200を加熱プレスする際に、離型フィルム10とFPC200との間に残存する空気中に含まれる酸素に基づいて、フレキシブル回路基板210が備える回路が酸化されるため、より優れた電気特性を有するFPC200を得ることができないという問題があった。
 かかる問題点に対応して、第1の発明では、離型フィルム10として、上記の通り、JIS K 7126-2に準拠して測定された、離型フィルム10の酸素透過度が60.0cc/(m・atm・day)以上である構成が選択されている。すなわち、離型フィルム10として、厚さ方向に対する酸素透過度に優れた構成が選択されている。したがって、第2の工程(本工程)から第3の工程(次工程)において離型フィルム10を離型させるまでの間に、上記の通り、第2の工程(本工程)おいて、FPC200を加熱プレスする際に、離型フィルム10とFPC200との間に残存する酸素を、この離型フィルム10を介して透過させることができる。そのため、FPC200の加熱プレスの際に、FPC200が加熱されたとしても、凹部223で露出する、フレキシブル回路基板210が備える回路が酸化するのを的確に抑制または防止することができる。したがって、より優れた電気特性を有するFPC200が得られる。
 また、この離型フィルム10は、第2の発明では、JIS K 7129(B法)に準拠して測定された、離型フィルムの水蒸気透過度が1.0g/m・day(25℃・90%RH)超である。
 ここで、前述したように、離型フィルム10を用いたフレキシブルプリント回路基板200の製造方法では、離型フィルム10の凹部223に対する埋め込み性と、フレキシブルプリント回路基板200からの離型性との両立が図られることが求められ、さらに、フレキシブル回路基板210が備える回路に対して半田付けするボンディング特性に優れたFPC200が製造されることが求められる。
 しかしながら、第2の工程(本工程)から第3の工程(次工程)において離型フィルム10を離型させるまでの間に、上記の通り、第2の工程(本工程)おいて、FPC200を加熱プレスする際に、離型フィルム10とFPC200との間に残存する空気中に含まれる水蒸気が、フレキシブル回路基板210やカバーレイ221の構成材料として含まれるポリイミドのような樹脂材料に吸湿される。これにより、フレキシブル回路基板210が備える回路に対して半田付けする際に、吸湿された水蒸気がフレキシブル回路基板210とカバーレイフィルム220との間に気泡として発生するため、この気泡がフレキシブル回路基板210とカバーレイフィルム220との間における剥離の発生に影響を及ぼしてしまうという問題があった。
 かかる問題点に対応して、第2の発明では、離型フィルム10として、上記の通り、JIS K 7129(B法)に準拠して測定された、離型フィルムの水蒸気透過度が1.0g/m・day(25℃・90%RH)超である構成が選択されている。すなわち、離型フィルム10として、厚さ方向に対する水蒸気透過度に優れた構成が選択されている。したがって、第2の工程(本工程)から第3の工程(次工程)において離型フィルム10を離型させるまでの間に、上記の通り、第2の工程(本工程)おいて、FPC200を加熱プレスする際に、離型フィルム10とFPC200との間に残存する空気中に含まれる水蒸気を、この離型フィルム10を介して透過させることができる。そのため、FPC200の加熱プレスの際に、FPC200の加熱下において、フレキシブル回路基板210やカバーレイ221の構成材料として含まれるポリイミドのような樹脂材料が、水蒸気を吸湿するのを的確に抑制または防止し得る。したがって、フレキシブル回路基板210が備える回路に対する半田付け時において、吸湿された水蒸気に由来する気泡がフレキシブル回路基板210とカバーレイフィルム220との間で発生するのが、的確に抑制または防止される。そのため、フレキシブル回路基板210とカバーレイフィルム220との間における剥離の発生が的確に抑制または防止されたより信頼性に優れたFPC200が得られる。
 以下、この離型フィルム10を構成する各層について説明する。
<クッション層3>
 まず、クッション層3について説明する。このクッション層3は、第1離型層1と第2離型層2との間の中間層として配置されている。
 このクッション層3は、第3熱可塑性樹脂組成物からなり、この第3熱可塑性樹脂組成物は、離型フィルム10に凹部223に対する埋め込み性を付与しつつ、離型フィルム10の酸素透過度を前記下限値以上に設定することを目的に、または、離型フィルム10の水蒸気透過度を前記下限値超に設定することを目的に、本発明では、複数種の熱可塑性樹脂を含有している構成が好ましく用いられる。
 複数種の熱可塑性樹脂の組み合わせとしては、例えば、ポリエステル系樹脂とポリオレフィン系樹脂との組み合わせ、ポリオレフィン系樹脂同士の組み合わせ、および、ポリアミド系樹脂とポリオレフィン系樹脂との組み合わせ等が挙げられるが、中でも、ポリエステル系樹脂とポリオレフィン系樹脂との組み合わせを選択することで、離型フィルム10の酸素透過度を比較的容易に前記下限値以上に設定することができる。また、ポリエステル系樹脂とポリオレフィン系樹脂との組み合わせを選択することで、離型フィルム10の水蒸気透過度を比較的容易に前記下限値超に設定することができる。
 ポリエステル系樹脂としては、特に限定されないが、例えば、ポリエチレンテレフタレート(PET)、ポリシクロヘキサンテレフタレート(PCT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリシクロヘキサンジメチレンテレフタレート、ポリプロピレンテレフタレート等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。なお、これらのうちの2種以上を組み合わせて用いる場合、このポリエステル系樹脂は、これらのブレンド体であってもよいし、共重合体であってもよい。これらの中でも、ポリエステル系樹脂は、特に、ポリブチレンテレフタレートであるのが好ましい。これにより、クッション層3に優れた凹部223に対する追従性を付与することができる。また、第1離型層1を構成する第1熱可塑性樹脂組成物に、ポリブチレンテレフタレートが含まれる場合、第1離型層1に対して優れた密着性を発揮するクッション層3が得られる。さらに、離型フィルム10の酸素透過度をより容易に前記下限値以上に設定することができる。加えて、離型フィルム10の水蒸気透過度をより容易に前記下限値超に設定することができる。
 さらに、このポリエステル系樹脂は、結晶性を示すが、クッション層3において、その結晶化が抑制または防止されていることが好ましい。これにより、離型フィルム10の酸素透過度をより容易に前記下限値以上に設定することができる。また、離型フィルム10の水蒸気透過度をより容易に前記下限値超に設定することができる。
 また、ポリオレフィン系樹脂としては、特に限定されず、例えば、低密度ポリエチレン、高密度ポリエチレンのようなポリエチレン、ポリプロプレン等のα-オレフィン系重合体、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、オクテン等を重合体成分として有する、エチレンとヘキセンとの共重合体、エチレンとオクテンとの共重合体、α-オレフィンと(メタ)アクリル酸エステルとの共重合体、エチレンと酢酸ビニルとの共重合体、エチレンと(メタ)アクリル酸との共重合体のようなα-オレフィン系共重合体等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらの中でも、エチレンと酢酸ビニルとの共重合体(エチレン酢酸ビニル共重合体)およびエチレンと(メタ)アクリル酸との共重合体(エチレン(メタ)アクリル酸共重合体)のうちの少なくとも1種であるのが好ましい。これにより、クッション層3に優れた凹部223に対する追従性を付与することができる。また、離型フィルム10の酸素透過度をより容易に前記下限値以上に設定することができる。また、離型フィルム10の水蒸気透過度をより容易に前記下限値超に設定することができる。
 ポリエステル系樹脂とポリオレフィン系樹脂との組み合わせとする場合、この第3熱可塑性樹脂組成物における、ポリエステル系樹脂の含有量は、5重量%以上であることが好ましく、8重量%以上40重量%以下であることがより好ましい。これにより、離型フィルム10に優れた凹部223に対する追従性を付与することができる。また、離型フィルム10の酸素透過度をより容易に前記下限値以上に設定することができる。また、離型フィルム10の水蒸気透過度をより容易に前記下限値超に設定することができる。
 また、クッション層3を構成する第3熱可塑性樹脂組成物には、前述した樹脂材料(熱可塑性樹脂)の他に、酸化防止剤、スリップ剤、アンチブロッキング剤、帯電防止剤、着色剤、安定剤のような添加剤が含まれていてもよい。
 さらに、このクッション層3の150℃における貯蔵弾性率E’は、0.1MPa以上であるのが好ましく、0.5MPa以上150MPa以下であるのがより好ましく、1.0MPa以上100MPa以下であるのがさらに好ましい。クッション層3の150℃における貯蔵弾性率E’を、上記のように設定することで、前記第2の工程における、凹部223に対する離型フィルム10の埋め込みの際に、離型フィルム10の縁部から、クッション層3の一部がはみ出し、FPC200に付着するのを、的確に抑制または防止することができる。したがって、FPC200の汚染を、的確に抑制または防止することができる。また、前記第3の工程における、離型フィルム10の引き剥がしを、容易に行うことが可能となる。
 なお、クッション層3の150℃における貯蔵弾性率E’は、例えば、JIS K7244-4に準拠して、幅4mm、長さ20mmのクッション層3を用意し、動的粘弾性測定装置(日立ハイテクサイエンス社製、「DMA7100」)を用いて、引っ張りモード、周波数1Hz、昇温速度5℃/minとして測定することで得ることができる。
 さらに、このクッション層3は、その平均厚さTkが40μm以上110μm以下であることが好ましく、より好ましくは50μm以上90μm以下に設定される。これにより、離型フィルム10の酸素透過度を、比較的容易に前記下限値以上に設定することができる。また、離型フィルム10の水蒸気透過度を、比較的容易に前記下限値超に設定することができる。
 <第1離型層1>
 次に、第1離型層1について説明する。この第1離型層1は、クッション層3の一方の面側に積層されている。
 第1離型層1は、可撓性を備え、前述した、離型フィルム10を用いたフレキシブルプリント回路基板200の製造方法において、FPC200が備えるCLフィルム220に対して、この第1離型層1が接触するように、離型フィルム10が重ね合わされる。そして、第1離型層1は、この製造方法の前記第2の工程において、重ね合わされているフレキシブル回路基板210とCLフィルム220とを、接着剤層222を介して接合する際に、フレキシブル回路基板210とCLフィルム220とで形成される凹部223の形状に追従して、押し込まれる層であり、離型フィルム10が破断するのを防止する保護(緩衝)材として機能する。さらに、第1離型層1は、前記第3の工程において、CLフィルム220(FPC200)からの離型フィルム10の優れた離型性を発揮させるための接触層としての機能を有している。
 したがって、離型フィルム10を、前記第2の工程において、FPC200に形成された凹部223に、接着剤層222に由来する接着剤がしみ出すのを的確に抑制または防止することができる。また、前記第2の工程における、フレキシブル回路基板210とCLフィルム220とが、CLフィルム220が備える接着剤層222を介して接合されたFPC200の形成の後に、前記第3の工程において、FPC200から離型フィルム10を剥離させる際に、FPC200に、伸びおよび破断が生じるのを的確に抑制または防止することができる。また、クッション層3を構成する第3熱可塑性樹脂組成物に、ポリエステル系樹脂が含まれる場合、クッション層3に対して優れた密着性を発揮する第1離型層1が得られる。
 また、第1離型層1は、フレキシブルプリント回路基板200の製造方法において、FPC200が備えるCLフィルム220に対して、この第1離型層1が接触している。したがって、この製造方法の前記第2の工程において、FPC200を加熱プレスする際に、加熱圧着板521からの熱を、CLフィルム220に伝達する機能をも有している。
 この第1離型層1は、第1熱可塑性樹脂組成物からなる。また、この第1熱可塑性樹脂組成物は、例えば、主としてポリエステル系樹脂を含有することが好ましい。これにより、第1離型層1に、前述した機能を比較的容易に付与することができる。さらに、離型フィルム10の酸素透過度を比較的容易に前記下限値以上に設定することができる。また、離型フィルム10の水蒸気透過度を比較的容易に前記下限値超に設定することができる。
 また、ポリエステル系樹脂としては、特に限定されないが、例えば、前述した第3熱可塑性樹脂組成物で挙げたのと同様の種類を用いることができ、中でも、特に、ポリブチレンテレフタレート(PBT)であるのが好ましい。これにより、ポリエステル系樹脂を用いることにより得られる効果をより顕著に発揮させることができる。また、クッション層3を構成する第3熱可塑性樹脂組成物に、ポリブチレンテレフタレートが含まれる場合、クッション層3に対して優れた密着性を発揮する第1離型層1が得られる。さらに、離型フィルム10の酸素透過度をより容易に前記下限値以上に設定することができる。また、離型フィルム10の水蒸気透過度をより容易に前記下限値超に設定することができる。
 さらに、ポリエステル系樹脂は、結晶性を示すが、このポリエステル系樹脂で構成される第1離型層1は、その結晶化が抑制されていることが好ましく、具体的には、その結晶化度が10%以上50%以下程度であることが好ましく、10%以上35%以下程度であることがより好ましい。これにより、離型フィルム10の酸素透過度をより容易に前記下限値以上に設定することができる。また、離型フィルム10の水蒸気透過度をより容易に前記下限値超に設定することができる。
 なお、離型層1、2およびクッション層3におけるポリエステル系樹脂のような結晶性を示す樹脂材料の結晶化は、例えば、後述する離型フィルム10の製造方法において、溶融状態または軟化状態の帯状のフィルム10’を冷却する際の冷却温度を、下記範囲内に設定することで行うことができる。
 また、第1熱可塑性樹脂組成物は、主としてポリエステル系樹脂で構成される場合、ポリエステル系樹脂以外の熱可塑性樹脂が含まれていてもよく、この熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ4-メチル1-ペンテンのようなポリオレフィン系樹脂、シンジオタクチックポリスチレンのようなポリスチレン系樹脂等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 また、第1熱可塑性樹脂組成物は、前述した熱可塑性樹脂の他に、さらに、無機粒子および有機粒子のうちの少なくとも1種を含んでいてもよい。
 無機粒子としては、特に限定されないが、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ、窒化アルミニウム、ホウ酸アルミニウムウイスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ、アンチモン酸化物、Eガラス、Dガラス、Sガラス等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 また、有機粒子としては、特に限定されないが、例えば、ポリスチレン粒子、アクリル粒子、ポリイミド粒子、ポリエステル粒子、シリコーン粒子、ポリプロピレン粒子、ポリエチレン粒子、フッ素樹脂粒子およびコアシェル粒子等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 さらに、無機粒子および有機粒子は、その平均粒子径が3μm以上20μm以下であるのが好ましく、5μm以上20μm以下であるのがより好ましい。これにより、第1熱可塑性樹脂組成物中に、無機粒子および有機粒子のうちの少なくとも一方が含まれる場合に、第1離型層1のクッション層3と反対側の表面における表面粗さを、後述する範囲内に比較的容易に設定することができる。
 第1離型層1は、その表面に凹凸形状を有する場合、前記表面における10点平均粗さ(Rz)が0.1μm以上20.0μm以下であることが好ましく、1.0μm以上10.0μm以下であることがより好ましい。これにより、離型フィルム10を、FPC200(フレキシブル回路基板210)から離型させる際に、この離型を優れた離型性をもって実施することができる。なお、前記10点平均粗さ(Rz)は、JIS B 0601-1994に準拠して測定することができる。
 また、かかる構成をなす第1離型層1は、その150℃における貯蔵弾性率E’が50MPa以上であるのが好ましく、50MPa以上1000MPa以下であるのがより好ましく、50MPa以上300MPa以下であるのがさらに好ましい。これにより、第1離型層1に、前述した第1離型層1としての機能を確実に付与することができる。
 なお、第1離型層1の150℃における貯蔵弾性率E’は、JIS K7244-4に準拠して、幅4mm、長さ20mmの第1離型層1を用意し、動的粘弾性測定装置(日立ハイテクサイエンス社製、「DMA7100」)を用いて、引っ張りモード、周波数1Hz、昇温速度5℃/minとして測定することで得ることができる。
 また、この第1離型層1は、その平均厚さT1が好ましくは7μm以上38μm以下に設定され、より好ましくは10μm以上30μm以下に設定される。これにより、第1離型層1の平均厚さが適切な範囲内に設定されるため、第1離型層1に、前述した第1離型層1としての機能をより確実に付与することができる。また、離型フィルム10の酸素透過度を、比較的容易に前記下限値以上に設定することができる。また、離型フィルム10の水蒸気透過度を、比較的容易に前記下限値超に設定することができる。
 なお、第1離型層1の厚さは、上記の通り、第1離型層1のクッション層3と反対側の表面が凹凸形状を有する場合、凸部では凸部を含む位置、また、凹部では凹部を含む位置で、それぞれ、その厚さを測定することとする。
 また、第1離型層1を構成する第1熱可塑性樹脂組成物には、前述した樹脂材料、無機粒子、有機粒子の他に、前記第3熱可塑性樹脂組成物で挙げたのと同様の添加剤が含まれていてもよい。
 <第2離型層2>
 次に、第2離型層2について説明する。この第2離型層2は、クッション層3の他方の面側、すなわち、クッション層3の第1離型層1と反対の面側に積層されている。
 第2離型層2は、可撓性を備え、前述した、離型フィルム10を用いたフレキシブルプリント回路基板200の製造方法において、FPC200が備えるCLフィルム220に対して、第1離型層1が接触するように、離型フィルム10が重ね合わされ、そして、この製造方法の前記第2の工程において、重ね合わされているフレキシブル回路基板210とCLフィルム220とを、接着剤層222を介して接合する際に、加熱圧着板521からの力を、クッション層3に伝達する層として機能する。さらに、第2離型層2は、前記第3の工程において、ガラスクロス300と離型フィルム10との間で優れた離型性を発揮させるための接触層としての機能を有している。
 また、フレキシブルプリント回路基板200の製造方法において、加熱圧着板521に対して、第2離型層2がガラスクロス300を介して接触している。したがって、この製造方法の前記第2の工程において、FPC200を加熱プレスする際に、加熱圧着板521からの熱を、クッション層3に伝達する機能をも有している。
 第2離型層2は、第2熱可塑性樹脂組成物からなる。また、この第2熱可塑性樹脂組成物は、前記第1熱可塑性樹脂組成物と同様に、主としてポリエステル系樹脂を含有することが好ましい。これにより、第2離型層2に、前述した機能を確実に付与することができる。さらに、離型フィルム10の酸素透過度を比較的容易に前記下限値以上に設定することができる。また、離型フィルム10の水蒸気透過度を比較的容易に前記下限値超に設定することができる。
 また、ポリエステル系樹脂としては、特に限定されないが、例えば、前述した第3熱可塑性樹脂組成物で挙げたのと同様の種類を用いることができ、中でも、特に、ポリブチレンテレフタレート(PBT)であるのが好ましい。これにより、ポリエステル系樹脂を用いることにより得られる効果をより顕著に発揮させることができる。さらに、離型フィルム10の酸素透過度をより容易に前記下限値以上に設定することができる。また、離型フィルム10の水蒸気透過度をより容易に前記下限値超に設定することができる。
 さらに、ポリエステル系樹脂は、結晶性を示すが、このポリエステル系樹脂で構成される第2離型層2は、その結晶化が抑制されていることが好ましく、具体的には、その結晶化度が10%以上50%以下程度であることが好ましく、10%以上35%以下程度であることがより好ましい。これにより、離型フィルム10の酸素透過度をより容易に前記下限値以上に設定することができる。また、離型フィルム10の水蒸気透過度をより容易に前記下限値超に設定することができる。
 なお、第2熱可塑性樹脂組成物は、主としてポリエステル系樹脂で構成される場合、ポリエステル系樹脂以外の熱可塑性樹脂が含まれていてもよく、この熱可塑性樹脂としては、前記第1熱可塑性樹脂組成物で挙げたのと同様のものを用いることができる。
 また、第2熱可塑性樹脂組成物は、前述した熱可塑性樹脂の他に、さらに、無機粒子および有機粒子のうちの少なくとも1種を含んでいてもよい。
 無機粒子および有機粒子としては、特に限定されないが、前記第1熱可塑性樹脂組成物で挙げたのと同様の種類を用いることができる。
 かかる構成をなす第2離型層2は、その150℃における貯蔵弾性率E’が50MPa以上であるのが好ましく、50MPa以上1000MPa以下であるのがより好ましい。これにより、第2離型層2に、前述した機能を確実に付与することができる。
 また、この第2離型層2は、その平均厚さT2が好ましくは7μm以上38μm以下に設定され、より好ましくは10μm以上30μm以下に設定される。これにより、第2離型層2に、前述した機能をより確実に付与することができる。また、離型フィルム10の酸素透過度を、比較的容易に前記下限値以上に設定することができる。また、離型フィルム10の水蒸気透過度を、比較的容易に前記下限値超に設定することができる。
 さらに、第2離型層2を構成する第2熱可塑性樹脂組成物には、前述した樹脂材料、無機粒子、有機粒子の他に、前記第3熱可塑性樹脂組成物で挙げたのと同様の添加剤が含まれていてもよい。
 また、第1離型層1と第2離型層2とにおいて、第1熱可塑性樹脂組成物と第2熱可塑性樹脂組成物とは、同一であっても異なっていても良いが、代替性を有すると言う観点からは、同一もしくは同質であることが好ましい。さらに、第1離型層1と第2離型層2とにおいて、その平均厚さは、同一であっても異なっていてもよい。
 以上のような第1離型層1とクッション層3と第2離型層2とが積層された構成をなす離型フィルム10において、その平均厚さTtは、40μm以上180μm以下であることが好ましく、50μm以上180μm以下であることがより好ましく、80μm以上150μm以下であることがさらに好ましい。これにより、離型フィルム10の酸素透過度を、比較的容易に前記下限値以上に設定することができる。また、離型フィルム10の水蒸気透過度を、比較的容易に前記下限値超に設定することができる。
 ここで、第1の発明において、JIS K 7126-2に準拠して測定された、離型フィルム10の酸素透過度は、60.0cc/(m・atm・day)以上であればよいが、100.0cc/(m・atm・day)以上であることが好ましく、120.0cc/(m・atm・day)以上160.0cc/(m・atm・day)以下であることがより好ましい。離型フィルム10の酸素透過度を、上記の通り設定することで、第2の工程から第3の工程において離型フィルム10を離型させるまでの間に、第2の工程おいて、FPC200を加熱プレスする際に、離型フィルム10とFPC200との間に残存する酸素を、この離型フィルム10を介して透過させることができる。そのため、FPC200の加熱プレスの際に、FPC200が加熱されたとしても、凹部223で露出する、フレキシブル回路基板210が備える回路が酸化するのを的確に抑制または防止することができる。
 第1の発明において、離型フィルム10の酸素透過度は、JIS K 7126-2に規定されたプラスチック-フィルム及びシート-ガス透過度試験方法の等圧法に準拠して、温度23℃、相対湿度0%RHの条件下で測定される。
 また、第1の発明において、JIS K 7129(B法)に準拠して測定された、離型フィルム10の水蒸気透過度は、1.0g/m・day(25℃・90%RH)超であるのが好ましく、1.4g/m・day(25℃・90%RH)以上であることがより好ましく、1.7g/m・day(25℃・90%RH)以上3.0g/m・day(25℃・90%RH)以下であることがさらに好ましい。離型フィルム10の水蒸気透過度を、上記の通り設定することで、第2の工程から第3の工程において離型フィルム10を離型させるまでの間に、第2の工程おいて、FPC200を加熱プレスする際に、離型フィルム10とFPC200との間に残存する空気中に含まれる水蒸気を、この離型フィルム10を介して透過させることができる。そのため、FPC200の加熱プレスの際に、FPC200の加熱下において、フレキシブル回路基板210やカバーレイ221の構成材料として含まれるポリイミドのような樹脂材料が、水蒸気を吸湿するのを的確に抑制または防止し得る。したがって、フレキシブル回路基板210が備える回路に対する半田付け時において、吸湿された水蒸気に由来する気泡がフレキシブル回路基板210とカバーレイフィルム220との間で発生するのが、的確に抑制または防止される。そのため、フレキシブル回路基板210とカバーレイフィルム220との間における剥離の発生が的確に抑制または防止されたより信頼性に優れたFPC200が得られる。
 また、第2の発明において、JIS K 7129(B法)に準拠して測定された、離型フィルム10の水蒸気透過度は、1.0g/m・day(25℃・90%RH)超であればよいが、1.4g/m・day(25℃・90%RH)以上であることが好ましく、1.7g/m・day(25℃・90%RH)以上3.0g/m・day(25℃・90%RH)以下であることがより好ましい。離型フィルム10の水蒸気透過度を、上記の通り設定することで、第2の工程から第3の工程において離型フィルム10を離型させるまでの間に、第2の工程おいて、FPC200を加熱プレスする際に、離型フィルム10とFPC200との間に残存する空気中に含まれる水蒸気を、この離型フィルム10を介して透過させることができる。そのため、FPC200の加熱プレスの際に、FPC200の加熱下において、フレキシブル回路基板210やカバーレイ221の構成材料として含まれるポリイミドのような樹脂材料が、水蒸気を吸湿するのを的確に抑制または防止し得る。したがって、フレキシブル回路基板210が備える回路に対する半田付け時において、吸湿された水蒸気に由来する気泡がフレキシブル回路基板210とカバーレイフィルム220との間で発生するのが、的確に抑制または防止される。そのため、フレキシブル回路基板210とカバーレイフィルム220との間における剥離の発生が的確に抑制または防止されたより信頼性に優れたFPC200が得られる。
 第2の発明において、離型フィルム10の酸素透過度は、JIS K 7129(B法)に準拠して、温度25℃、相対湿度90%RHの条件下で測定される。
 また、第2の発明において、JIS K 7126-2に準拠して測定された、離型フィルム10の酸素透過度は、60.0cc/(m・atm・day)以上であるのが好ましく、100.0/(m・atm・day)以上であることがより好ましく、120.0/(m・atm・day)以上60.0cc/(m・atm・day)以下であることがさらに好ましい。離型フィルム10の酸素透過度を、上記の通り設定することで、第2の工程から第3の工程において離型フィルム10を離型させるまでの間に、第2の工程おいて、FPC200を加熱プレスする際に、離型フィルム10とFPC200との間に残存する空気中に含まれる酸素を、この離型フィルム10を介して透過させることができる。そのため、FPC200の加熱プレスの際に、FPC200が加熱されたとしても、凹部223で露出する、フレキシブル回路基板210が備える回路が酸化するのを的確に抑制または防止することができる。したがって、より優れた電気特性を有するFPC200が得られる。
 また、離型フィルム10の酸素透過度は、JIS K 7126-2に規定されたプラスチック-フィルム及びシート-ガス透過度試験方法の等圧法に準拠して、温度23℃、相対湿度0%RHの条件下で測定される。
 なお、離型フィルム10は、本実施形態では、第1離型層1と、クッション層3と、第2離型層2とが、この順で積層された積層体で構成されるが、かかる構成に限定されない。例えば、離型フィルム10は、第1離型層1とクッション層3との間、および、第2離型層2とクッション層3との間の少なくとも一方に配置された、接着剤層のような中間層を備える積層体で構成されてもよい。
 また、離型フィルム10は、前記第3の工程において、ガラスクロス300と離型フィルム10との間で優れた離型性を維持し得るのであれば、ガラスクロス300に接触する第2離型層2が、省略されてもよい。
 <離型フィルム10の製造方法>
 上述した構成をなす離型フィルム10は、例えば、以下のような製造方法により製造し得る。以下、離型フィルム10の製造方法の説明に先立って、まずは、離型フィルム製造装置について説明する。
 図6は、図4に示す離型フィルム10を製造する離型フィルム製造装置を模式的に示した側面図ある。なお、以下の説明では、図6中の上側を「上」、下側を「下」と言う。
 図6に示す離型フィルム製造装置1000は、フィルム供給部600と、フィルム成形部700とを有している。
 フィルム供給部600は、本実施形態では、押出機610と、押出機610の溶融樹脂吐出部に配管を介して接続されたTダイ620とで構成されている。このTダイ620により、溶融状態または軟化状態の帯状のフィルム10’がフィルム成形部700に供給される。
 Tダイ620は、共押出法で溶融状態または軟化状態のフィルム10’を帯状のフィルムとした状態で押し出す押出成形部である。Tダイ620には、前述した離型フィルム10を構成する各層の構成材料が溶融状態で、順次装填されることなり、この溶融状態の材料をTダイ620から押し出すことで、帯状をなすフィルム10’が連続的に送り出される。
 フィルム成形部700は、タッチロール710と、冷却ロール720と、後段冷却ロール730とを有している。これらのロールは、それぞれ図示しないモータ(駆動手段)により、それぞれ単独回転するように構成されており、これらのロールの回転により、冷却され、連続的に送り出されるようになっている。このフィルム成形部700に、溶融状態または軟化状態のフィルム10’を連続的に送り込むことにより、フィルム10’の表面が平坦化されるとともに、フィルム10’が所望の厚さに設定されて冷却される。そして、押出機610(Tダイ620)に装填する、離型フィルム10を構成する各層の構成材料を適宜選択することにより、冷却されたフィルム10’として、第1離型層1と、クッション層3と、第2離型層2とがこの順で積層された積層体で構成された離型フィルム10を得ることができる。
 以上のような離型フィルム製造装置1000を用いた離型フィルム10の製造方法により、離型フィルム10が製造される。
 離型フィルム製造装置1000を用いた離型フィルム10の製造方法は、押出工程と、成形工程と、冷却工程とを有している。
 <1A>まず、帯状をなす溶融状態または軟化状態のフィルム10’を押し出す(押出工程)。
 この押出工程では、押出機610に、離型フィルム10を構成する各層の構成材料が順次装填される。また、離型フィルム10を構成する各層の構成材料は、押出機610内において、溶融または軟化した状態となっている。
 <2A>次に、フィルム10’の表面を平坦化するとともに、フィルム10’を所定の厚さに設定する(成形工程)。本工程は、タッチロール710と、冷却ロール720との間で行われる。
 <3A>次に、フィルム10’の表面を冷却する(冷却工程)。本工程は、冷却ロール720と、後段冷却ロール730との間で行われる。
 これら冷却ロール720および後段冷却ロール730で、フィルム10’の表面を冷却する冷却温度は、好ましくは20℃以上120℃以下程度、より好ましくは40℃以上90℃以下程度に設定される。これにより、第1離型層1、クッション層3および第2離型層2に、それぞれ、ポリエステル系樹脂のような結晶性を示す樹脂材料が含まれる場合、この樹脂材料の結晶化を的確に抑制または防止することができる。
 なお、冷却ロール720と、後段冷却ロール730とは、いずれか一方が冷却手段を備えており、一方のロールにおいて、フィルム10’が冷却される構成をなしていてもよい。
 以上のような工程<1A>~工程<3A>について、押出機610に装填する、離型フィルム10を構成する各層の構成材料を適宜選択して実施することで、第1離型層1と、クッション層3と、第2離型層2とがこの順で積層された積層体で構成された離型フィルム10を得ることができる。
 以上、本発明の離型フィルムおよび成型品の製造方法について説明したが、本発明は、これらに限定されない。
 例えば、前記実施形態では、本発明の離型フィルムを、加熱冷却板同士の間に配置されたフレキシブルプリント回路基板を1段に積層して製造するプレス成型法に適用する場合について説明したが、積層されるフレキシブルプリント回路基板の数は、1段に限定されず、2段以上であってもよい。
 また、本発明の離型フィルムを、加熱冷却板同士の間に配置されたフレキシブルプリント回路基板に対してロールツーロールプレス機を用いて加圧する場合に適用されることとしたが、これに限定されず、フレキシブルプリント回路基板に対する加圧は、例えば、プレス成型法を用いて実施することもできるし、さらには、真空圧空成形法を用いて実施することもできる。
 以下、本発明(第1の発明)を実施例に基づいて詳細に説明するが、本発明はこれに限定されない。
1.原材料の準備
 離型フィルムを製造するための原材料として、それぞれ、以下の原材料を用意した。
・熱可塑性樹脂材料
 低密度ポリエチレン(LDPE、宇部丸善社製、「R300」)
 エチレン酢酸ビニル共重合体(EVA、三井ダウポリケミカル社製、「P1403」)
 ポリブチレンテレフタレート(PBT、長春石油化学社製、「1100-630S」)
 共重合ポリブチレンテレフタレート(PBT、三菱エンジニアリングプラスチック社製、「5505S」)
 ポリプロピレン(PP、住友化学社製、「FH1016」)
 グリコール変性ポリエチレンテレフタレート(PETG、SELENIS社製、「NF411」)
2.離型フィルムの製造
 <実施例1A>
 まず、ポリブチレンテレフタレート(PBT、1100-630S)でそれぞれ構成される第1熱可塑性樹脂組成物および第2熱可塑性樹脂組成物を用意した。また、ポリブチレンテレフタレート(PBT、1100-630S)15重量部と、エチレン酢酸ビニル共重合体(EVA、P1403)35重量部と、低密度ポリエチレン(LDPE、R300)30重量部と、ポリプロピレン(PP、FH1016)20重量部とで構成される第3熱可塑性樹脂組成物を用意した。
 次いで、離型フィルム製造装置1000を用いた共押出Tダイ法により、第1熱可塑性樹脂組成物、第3熱可塑性樹脂組成物および第2熱可塑性樹脂組成物を共押し出ししてフィルム化することにより、第1離型層1とクッション層3と第2離型層2とがこの順で積層された積層体を形成することで実施例1Aの離型フィルム10を得た。
 なお、離型フィルム製造装置1000を用いて、第1熱可塑性樹脂組成物、第3熱可塑性樹脂組成物および第2熱可塑性樹脂組成物をフィルム化する際の冷却ロール720および後段冷却ロール730による冷却温度は、60℃に設定した。
 また、得られた離型フィルム10において、第1離型層1の平均厚さT1は20μm、クッション層3の平均厚さTkは80μm、第2離型層2の平均厚さT2は20μmであった。
 さらに、離型フィルム10について、その酸素透過度を、酸素透過率測定装置(MOCON社製、「OX-TRAN 2/22L」)を用いて、JIS K 7126-2に規定されたプラスチック-フィルム及びシート-ガス透過度試験方法の等圧法に準拠して、温度23℃、相対湿度0%RHの条件下で測定したところ100.0cc/(m・atm・day)であった。
 また、離型フィルム10について、その水蒸気透過度を、水蒸気透過率測定装置(MOCON社製、「PERMATRAN-W3/34」)を用いて、K 7129(B法)に準拠して、温度25℃、相対湿度90%RHの条件下で測定したところ2.5g/m・day(25℃・90%RH)であった。
 さらに、第1離型層1、およびクッション層3について、それぞれ、150℃における貯蔵弾性率E’を、動的粘弾性測定装置(日立ハイテクサイエンス社製、「DMA7100」)を用いて、引っ張りモード、周波数1Hz、昇温速度5℃/minとして測定したところ160MPaおよび16MPaであった。
 また、第1離型層1について、クッション層3と反対側で露出する表面における10点平均粗さ(Rz)を、表面粗さ測定装置(ミツトヨ社製、「SURFTST SJ-210」)を用いて測定したところ5μmであった。
 また、第1離型層1、および第2離型層2について、それぞれ、結晶化度を、薄膜評価用試料水平型X線回折装置(リガク社製、「Smart  Lab」)を用いて、広角X線回折法により分析したところ33%および35%であった。
 なお、広角X線回折法による分析に基づく、第1離型層1および第2離型層2の結晶化度の算出は、以下のようにして行った。すなわち、薄膜評価用試料水平型X線回折装置により測定された回折測定プロットに、2θ=12.0°~28.18°の範囲内において直線状のベースラインを引いた後に、結晶質相および非晶質相に対してそれぞれガウス関数としてフィッティングを行い、これにより得られた結晶質相のピーク総面積および非晶質相のピーク総面積に基づいて、下記式Aを用いることで、第1離型層1および第2離型層2の結晶化度を算出した。
 結晶化度(%)=
   結晶質相のピーク総面積/
     (結晶質相のピーク総面積+非晶質相のピーク総面積)×100 … A
 また、薄膜評価用試料水平型X線回折装置における測定条件は、以下に示すように設定した。
 X線源…CuKα線、管電圧…45kV-200mA、入射光学系…集中法、測定範囲…5-80°、測定間隔…0.02°、走査速度…5.0°/min、走査方法…Out-of-Plane法
 <実施例2A~4A、比較例1A>
 離型フィルム製造装置1000を用いて、第1熱可塑性樹脂組成物、第3熱可塑性樹脂組成物および第2熱可塑性樹脂組成物をフィルム化する際の冷却ロール720および後段冷却ロール730による冷却温度を、表1のように変更したこと以外は、前記実施例1Aと同様にして、離型フィルム10の酸素透過度が表1に示すようになっている実施例2A~4A、比較例1Aの離型フィルム10を得た。
 <実施例5A、6A、比較例2A>
 第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物および第3熱可塑性樹脂組成物として、表1に示す構成を用いて、平均厚さが表1に示すようになっている、第1離型層1、クッション層3および第2離型層2を成膜したこと以外は、前記実施例1Aと同様にして、離型フィルム10の厚さ方向における酸素透過度が表1に示すようになっている実施例5A、6A、比較例2Aの離型フィルム10を得た。
3.評価
 各実施例および各比較例の離型フィルム10について、それぞれ、以下の評価を行った。
3-1.回路の酸化に基づく変色性
 各実施例および各比較例の離型フィルム10について、それぞれ、幅270mmの構成とし、そして、フレキシブル回路基板210(日鉄ケミカル&マテリアル社製、「MB12-12-12REG」)に、カバーレイフィルム220(有沢製作所社製、「CMA0525」)を、このカバーレイフィルム220が備える接着剤層222をフレキシブル回路基板210側にして貼付することで形成される、ピッチ50μm、幅50μm、高さ18μmの凹凸を備えるFPC200(積層体)とした後に、離型フィルム10を、図3に示すように積層されたFPC200に対して、RtoRプレス機(TRM社製、「RR Q-CURE 100TON CONTINUOUS LAMINATOR」)を用いて、180℃、110kg/cm、150secの設定条件で押し込んだ。その後、離型手段60としてFPC200と離型フィルム10の間に棒を挟み込み剥離する構成を適用し、搬送速度200mm/s、送り量500mm、加熱圧着板521から離型手段60までの距離を50mmとし、離型フィルム10を引き剥がした。そして、FPC200の凹部223で露出する回路の酸化に基づく変色の程度を目視にて確認し、以下の基準に従って評価した。
 [評価基準]
  A:回路に酸化に基づく変色が認められない。
  B:回路に酸化に基づく変色が若干認められるが、
             回路の電気特性に影響をおよぼさない。
  C:回路に酸化に基づく明らかな変色が認められ、
             回路の電気特性に影響をおよぼす。
3-2.ポリイミド基板の半田耐性
 各実施例および各比較例の離型フィルム10について、それぞれ、幅270mmの構成とし、そして、フレキシブル回路基板210に、カバーレイフィルム220(有沢製作所社製、「CMA0525」)を、このカバーレイフィルム220が備える接着剤層222をフレキシブル回路基板210側にして貼付することで形成される、ピッチ50μm、幅50μm、高さ18μmの凹凸を備えるFPC200(積層体)とした後に、離型フィルム10を、図3に示すように積層されたFPC200に対して、RtoRプレス機(TRM社製、「RR Q-CURE 100TON CONTINUOUS LAMINATOR」)を用いて、180℃、110kg/cm、150secの設定条件で押し込んだ。その後、離型手段60としてFPC200と離型フィルム10の間に棒を挟み込み剥離する構成を適用し、搬送速度200mm/s、送り量500mm、加熱圧着板521から離型手段60までの距離を50mmとし、離型フィルム10を引き剥がした。
 次いで、JPCA規格JPCA-DG04に準拠して、RtoRプレス機を用いてプレスしたFPC200を、110℃、1hrの条件下で乾燥させた。その後、FPC200を、260℃に加熱された半田液中に10sec間浸漬させた後に、半田液中から取り出した。そして、フレキシブル回路基板210とカバーレイフィルム220との間における気泡の発生の有無を目視にて確認し、以下の基準に従って評価した。なお、各実施例および各比較例の離型フィルム10について、それぞれ、上記の通りとして、FPC200を得る試験を、100回繰り返して実施した。
 [評価基準]
 A:  フレキシブル回路基板210とカバーレイフィルム220との間に気泡が発生しない。
 B:  フレキシブル回路基板210とカバーレイフィルム220との間に気泡が発生する確率が1%未満である。
 C:  フレキシブル回路基板210とカバーレイフィルム220との間に気泡が発生する確率が1%以上である。
3-3.離型フィルムの埋め込み性
 各実施例および各比較例の離型フィルム10について、それぞれ、幅270mmの構成とし、そして、フレキシブル回路基板210に、カバーレイフィルム220(有沢製作所社製、「CMA0525」)を、このカバーレイフィルム220が備える接着剤層222をフレキシブル回路基板210側にして貼付することで形成される、ピッチ50μm、幅50μm、高さ18μmの凹凸を備えるFPC200(積層体)とした後に、離型フィルム10を、図3に示すように積層されたFPC200に対して、RtoRプレス機(TRM社製、「RR Q-CURE 100TON CONTINUOUS LAMINATOR」)を用いて、180℃、110kg/cm、150secの設定条件で押し込んだ。その後、FPC200と離型フィルム10との積層体とした状態で、この積層体を厚さ方向に裁断(カット)した後に、離型フィルム10の一端を持ち離型フィルム10を引き剥がした。離型フィルム10の一端を把持して引き剥がした際の、FPC200の凹部における平面視での接着剤の最大しみ出し量を測定し、以下の基準に従って評価した。
 [評価基準]
  A:最大しみ出し量が55mm未満である。
  B:最大しみ出し量が55以上65mm未満である。
  C:最大しみ出し量が65mm以上である。
3-4.離型フィルムの離型性
 各実施例および各比較例の離型フィルム10について、それぞれ、幅270mmの構成とし、そして、フレキシブル回路基板210に、カバーレイフィルム220(有沢製作所社製、「CMA0525」)を、このカバーレイフィルム220が備える接着剤層222をフレキシブル回路基板210側にして貼付することで形成される、ピッチ50μm、幅50μm、高さ18μmの凹凸を備えるFPC200(積層体)とした後に、離型フィルム10を、図3に示すように積層されたFPC200に対して、RtoRプレス機(TRM社製、「RR Q-CURE 100TON CONTINUOUS LAMINATOR」)を用いて、180℃、110kg/cm、150secの設定条件で押し込んだ。その後、離型手段60としてFPC200と離型フィルム10の間に棒を挟み込み剥離する構成を適用し、搬送速度200mm/s、送り量500mm、加熱圧着板521から離型手段60までの距離を50mmとし、離型フィルム10を引き剥がした。その際の、離型フィルム10の引き剥がし易さ(離型性)について、以下の基準に従って評価した。
 [評価基準]
  A:離型フィルム引き剥がし時に、剥離可能である。
  B:離型フィルム引き剥がし時に、クッション層同士が融着して剥離が困難である。
3-5.まとめ
 前記3-1.回路の酸化に基づく変色性、前記3-2.ポリイミド基板の半田耐性、前記3-3.離型フィルムの埋め込み性、および前記3-4.離型フィルムの離型性、において得られた評価結果を表1に示す。
 表1に示すように、各実施例では、離型フィルム10の酸素透過度が60.0cc/(m・atm・day)以上であることを満足しており、その結果、FPC200の凹部223で露出する回路における、酸化に基づく変色が抑制されている結果を示した。
 これに対して、各比較例では、離型フィルム10の酸素透過度が60.0cc/(m・atm・day)以上であることを満足しておらず、これに起因して、FPC200の凹部223で露出する回路において、酸化に基づく変色が明らかに認められる結果を示した。
 以下、本発明(第2の発明)を別の実施例に基づいて詳細に説明するが、本発明はこれに限定されない。
1.原材料の準備
 離型フィルムを製造するための原材料として、それぞれ、以下の原材料を用意した。
・熱可塑性樹脂材料
 低密度ポリエチレン(LDPE、宇部丸善社製、「R300」)
 エチレン酢酸ビニル共重合体(EVA、三井ダウポリケミカル社製、「P1403」)
 ポリブチレンテレフタレート(PBT、長春石油化学社製、「1100-630S」)
 共重合ポリブチレンテレフタレート(PBT、三菱エンジニアリングプラスチック社製、「5505S」)
 ポリプロピレン(PP、住友化学社製、「FH1016」)
 グリコール変性ポリエチレンテレフタレート(PETG、SELENIS社製、「NF411」)
2.離型フィルムの製造
 <実施例1B>
 まず、ポリブチレンテレフタレート(PBT、1100-630S)でそれぞれ構成される第1熱可塑性樹脂組成物および第2熱可塑性樹脂組成物を用意した。また、ポリブチレンテレフタレート(PBT、1100-630S)15重量部と、エチレン酢酸ビニル共重合体(EVA、P1403)35重量部と、低密度ポリエチレン(LDPE、R300)30重量部と、ポリプロピレン(PP、FH1016)20重量部とで構成される第3熱可塑性樹脂組成物を用意した。
 次いで、離型フィルム製造装置1000を用いた共押出Tダイ法により、第1熱可塑性樹脂組成物、第3熱可塑性樹脂組成物および第2熱可塑性樹脂組成物を共押し出ししてフィルム化することにより、第1離型層1とクッション層3と第2離型層2とがこの順で積層された積層体を形成することで実施例1Bの離型フィルム10を得た。
 なお、離型フィルム製造装置1000を用いて、第1熱可塑性樹脂組成物、第3熱可塑性樹脂組成物および第2熱可塑性樹脂組成物をフィルム化する際の冷却ロール720および後段冷却ロール730による冷却温度は、60℃に設定した。
 また、得られた離型フィルム10において、第1離型層1の平均厚さT1は20μm、クッション層3の平均厚さTkは80μm、第2離型層2の平均厚さT2は20μmであった。
 さらに、離型フィルム10について、その水蒸気透過度を、水蒸気透過率測定装置(MOCON社製、「PERMATRAN-W3/34」)を用いて、K 7129(B法)に準拠して、温度25℃、相対湿度90%RHの条件下で測定したところ2.5g/m・day(25℃・90%RH)であった。
 また、離型フィルム10について、その酸素透過度を、酸素透過率測定装置(MOCON社製、「OX-TRAN 2/22L」)を用いて、JIS K 7126-2に規定されたプラスチック-フィルム及びシート-ガス透過度試験方法の等圧法に準拠して、温度23℃、相対湿度0%RHの条件下で測定したところ100.0cc/(m・atm・day)であった。
 さらに、第1離型層1、およびクッション層3について、それぞれ、150℃における貯蔵弾性率E’を、動的粘弾性測定装置(日立ハイテクサイエンス社製、「DMA7100」)を用いて、引っ張りモード、周波数1Hz、昇温速度5℃/minとして測定したところ160MPaおよび16MPaであった。
 また、第1離型層1について、クッション層3と反対側で露出する表面における10点平均粗さ(Rz)を、表面粗さ測定装置(ミツトヨ社製、「SURFTST SJ-210」)を用いて測定したところ5μmであった。
 また、第1離型層1、および第2離型層2について、それぞれ、結晶化度を、薄膜評価用試料水平型X線回折装置(リガク社製、「Smart  Lab」)を用いて、広角X線回折法により分析したところ33%および35%であった。
 なお、広角X線回折法による分析に基づく、第1離型層1および第2離型層2の結晶化度の算出は、以下のようにして行った。すなわち、薄膜評価用試料水平型X線回折装置により測定された回折測定プロットに、2θ=12.0°~28.18°の範囲内において直線状のベースラインを引いた後に、結晶質相および非晶質相に対してそれぞれガウス関数としてフィッティングを行い、これにより得られた結晶質相のピーク総面積および非晶質相のピーク総面積に基づいて、下記式Aを用いることで、第1離型層1および第2離型層2の結晶化度を算出した。
 結晶化度(%)=
   結晶質相のピーク総面積/
     (結晶質相のピーク総面積+非晶質相のピーク総面積)×100 … A
 また、薄膜評価用試料水平型X線回折装置における測定条件は、以下に示すように設定した。
 X線源…CuKα線、管電圧…45kV-200mA、入射光学系…集中法、測定範囲…5-80°、測定間隔…0.02°、走査速度…5.0°/min、走査方法…Out-of-Plane法
 <実施例2B~4B、比較例1B>
 離型フィルム製造装置1000を用いて、第1熱可塑性樹脂組成物、第3熱可塑性樹脂組成物および第2熱可塑性樹脂組成物をフィルム化する際の冷却ロール720および後段冷却ロール730による冷却温度を、表2のように変更したこと以外は、前記実施例1Bと同様にして、離型フィルム10の水蒸気透過度が表2に示すようになっている実施例2B~4B、比較例1Bの離型フィルム10を得た。
 <実施例5B~7B、比較例2B、3B>
 第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物および第3熱可塑性樹脂組成物として、表2に示す構成を用いて、平均厚さが表2に示すようになっている、第1離型層1、クッション層3および第2離型層2を成膜したこと以外は、前記実施例1Bと同様にして、離型フィルム10の厚さ方向における水蒸気透過度が表2に示すようになっている実施例5B~7B、比較例2B、3Bの離型フィルム10を得た。
3.評価
 各実施例および各比較例の離型フィルム10について、それぞれ、以下の評価を行った。
3-1.ポリイミド基板の半田耐性
 各実施例および各比較例の離型フィルム10について、それぞれ、幅270mmの構成とし、そして、フレキシブル回路基板210(日鉄ケミカル&マテリアル社製、「MB12-12-12REG」)に、カバーレイフィルム220(有沢製作所社製、「CMA0525」)を、このカバーレイフィルム220が備える接着剤層222をフレキシブル回路基板210側にして貼付することで形成される、ピッチ50μm、幅50μm、高さ18μmの凹凸を備えるFPC200(積層体)とした後に、離型フィルム10を、図3に示すように積層されたFPC200に対して、RtoRプレス機(TRM社製、「RR Q-CURE 100TON CONTINUOUS LAMINATOR」)を用いて、180℃、110kg/cm、150secの設定条件で押し込んだ。その後、離型手段60としてFPC200と離型フィルム10の間に棒を挟み込み剥離する構成を適用し、搬送速度200mm/s、送り量500mm、加熱圧着板521から離型手段60までの距離を50mmとし、離型フィルム10を引き剥がした。
 そして、JPCA規格JPCA-DG04に準拠して、プレスしたFPC200を、110℃、1hrの条件下で乾燥させた。その後、FPC200を、260℃に加熱された半田液中に10sec間浸漬させた後に、半田液中から取り出した。そして、フレキシブル回路基板210とカバーレイフィルム220との間における気泡の発生の有無を目視にて確認し、以下の基準に従って評価した。なお、各実施例および各比較例の離型フィルム10について、それぞれ、上記の通りとして、FPC200を得る試験を、100回繰り返して実施した。
 [評価基準]
  A: フレキシブル回路基板210とカバーレイフィルム220との間に気泡が発生しない。
  B: フレキシブル回路基板210とカバーレイフィルム220との間に気泡が発生する確率が1%未満である。
  C: フレキシブル回路基板210とカバーレイフィルム220との間に気泡が発生する確率が1%以上である。
3-2.回路の酸化に基づく変色性
 各実施例および各比較例の離型フィルム10について、それぞれ、幅270mmの構成とし、そして、フレキシブル回路基板210(日鉄ケミカル&マテリアル社製、「MB12-12-12REG」)に、カバーレイフィルム220(有沢製作所社製、「CMA0525」)を、このカバーレイフィルム220が備える接着剤層222をフレキシブル回路基板210側にして貼付することで形成される、ピッチ50μm、幅50μm、高さ18μmの凹凸を備えるFPC200(積層体)とした後に、離型フィルム10を、図3に示すように積層されたFPC200に対して、RtoRプレス機(TRM社製、「RR Q-CURE 100TON CONTINUOUS LAMINATOR」)を用いて、180℃、110kg/cm、150secの条件で押し込んだ。その後、離型手段60としてFPC200と離型フィルム10の間に棒を挟み込み剥離する構成を適用し、搬送速度200mm/s、送り量500mm、加熱圧着板521から離型手段60までの距離を50mmとし、離型フィルム10を引き剥がした。そして、FPC200の凹部223で露出する回路の酸化に基づく変色の程度を目視にて確認し、以下の基準に従って評価した。
 [評価基準]
  A:回路に酸化に基づく変色が認められない。
  B:回路に酸化に基づく変色が若干認められるが、
             回路の電気特性に影響をおよぼさない。
  C:回路に酸化に基づく明らかな変色が認められ、
             回路の電気特性に影響をおよぼす。
3-3.離型フィルムの埋め込み性
 各実施例および各比較例の離型フィルム10について、それぞれ、幅270mmの構成とし、そして、フレキシブル回路基板210に、カバーレイフィルム220(有沢製作所社製、「CMA0525」)を、このカバーレイフィルム220が備える接着剤層222をフレキシブル回路基板210側にして貼付することで形成される、ピッチ50μm、幅50μm、高さ18μmの凹凸を備えるFPC200(積層体)とした後に、離型フィルム10を、図3に示すように積層されたFPC200に対して、RtoRプレス機(TRM社製、「RR Q-CURE 100TON CONTINUOUS LAMINATOR」)を用いて、180℃、110kg/cm、150secの設定条件で押し込んだ。その後、FPC200と離型フィルム10との積層体とした状態で、この積層体を厚さ方向に裁断(カット)した後に、離型フィルム10の一端を持ち離型フィルム10を引き剥がした。離型フィルム10の一端を把持して引き剥がした際の、FPC200の凹部における平面視での接着剤の最大しみ出し量を測定し、以下の基準に従って評価した。
 [評価基準]
  A:最大しみ出し量が55mm未満である。
  B:最大しみ出し量が55以上65mm未満である。
  C:最大しみ出し量が65mm以上である。
3-4.離型フィルムの離型性
 各実施例および各比較例の離型フィルム10について、それぞれ、幅270mmの構成とし、そして、フレキシブル回路基板210に、カバーレイフィルム220(有沢製作所社製、「CMA0525」)を、このカバーレイフィルム220が備える接着剤層222をフレキシブル回路基板210側にして貼付することで形成される、ピッチ50μm、幅50μm、高さ18μmの凹凸を備えるFPC200(積層体)とした後に、離型フィルム10を、図3に示すように積層されたFPC200に対して、RtoRプレス機(TRM社製、「RR Q-CURE 100TON CONTINUOUS LAMINATOR」)を用いて、180℃、110kg/cm、150secの設定条件で押し込んだ。その後、離型手段60としてFPC200と離型フィルム10の間に棒を挟み込み剥離する構成を適用し、搬送速度200mm/s、送り量500mm、加熱圧着板521から離型手段60までの距離を50mmとし、離型フィルム10を引き剥がした。その際の、離型フィルム10の引き剥がし易さ(離型性)について、以下の基準に従って評価した。
 [評価基準]
  A:離型フィルム引き剥がし時に、剥離可能である。
  B:離型フィルム引き剥がし時に、クッション層同士が融着して剥離が困難である。
(0156)
3-5.まとめ
 前記3-1.ポリイミド基板の半田耐性、前記3-2.回路の酸化に基づく変色性、前記3-3.離型フィルムの埋め込み性、および前記3-4.離型フィルムの離型性、において得られた評価結果を表2に示す。
 表2に示すように、各実施例では、離型フィルム10の水蒸気透過度が1.0g/m・day(25℃・90%RH)超であることを満足しており、その結果、フレキシブル回路基板210とカバーレイフィルム220との間における気泡の発生が抑制されている結果を示した。
 これに対して、各比較例では、離型フィルム10の水蒸気透過度が1.0g/m・day(25℃・90%RH)超であることを満足しておらず、これに起因して、フレキシブル回路基板210とカバーレイフィルム220との間における気泡の発生が明らかに認められる結果を示した。
 第1の発明によれば、第1熱可塑性樹脂組成物からなる第1離型層と、この第1離型層に積層されたクッション層とを有する離型フィルムにおいて、JIS K 7126-2に準拠して測定された、離型フィルムの酸素透過度が60.0cc/(m・atm・day)以上であることを満足している。そのため、例えば、フレキシブル回路基板とカバーレイフィルムとを用いてフレキシブルプリント回路基板を得る際に、凹部に対する離型フィルムの埋め込みから、この凹部から離型フィルムを離型させるまでの間に、この凹部で露出する、フレキシブル回路基板が備える回路が酸化するのを的確に抑制または防止することができる。したがって、より優れた電気特性を有するフレキシブルプリント回路基板が得られる。
 また、第2の発明によれば、第1熱可塑性樹脂組成物からなる第1離型層と、この第1離型層に積層されたクッション層とを有する離型フィルムにおいて、JIS K 7129(B法)に準拠して測定された、離型フィルムの水蒸気透過度が1.0g/m・day(25℃・90%RH)超であることを満足している。そのため、例えば、フレキシブル回路基板とカバーレイフィルムとを用いてフレキシブルプリント回路基板を得る際に、凹部に対する離型フィルムの埋め込みから、この凹部から離型フィルムを離型させるまでの間に、離型フィルムとフレキシブル回路基板との間に残存する空気中に含まれる水蒸気を、フレキシブルプリント回路基板の構成材料として含まれるポリイミドのような樹脂材料が吸湿するのを的確に抑制または防止することができる。したがって、フレキシブル回路基板が備える回路に対する半田付け時における、吸湿された水蒸気に由来する気泡のカバーレイフィルムとフレキシブル回路基板との間での発生が的確に抑制または防止される。そのため、カバーレイフィルムとフレキシブル回路基板との間における剥離の発生が的確に抑制または防止されたより信頼性に優れたフレキシブルプリント回路基板が得られる。
 したがって、本発明は、産業上の利用可能性を有する。
1       第1離型層
2       第2離型層
3       クッション層
10      離型フィルム
10A     離型フィルム
10B     離型フィルム
10’     フィルム
50      加熱プレス手段
52      加熱圧着部
60      離型手段
100     ロールツーロールプレス機
200     フレキシブルプリント回路基板(FPC)
210     フレキシブル回路基板
220     カバーレイフィルム(CLフィルム)
221     カバーレイ
222     接着剤層
223     凹部
300A    ガラスクロス
300B    ガラスクロス
521     加熱圧着板
600     フィルム供給部
610     押出機
620     Tダイ
700     フィルム成形部
710     タッチロール
720     冷却ロール
730     後段冷却ロール
1000    離型フィルム製造装置
T1      第1離型層の平均厚さ
T2      第2離型層の平均厚さ
Tk      クッション層の平均厚さ
Tt      離型フィルムの平均厚さ

Claims (12)

  1.  第1熱可塑性樹脂組成物からなる第1離型層と、該第1離型層に積層されたクッション層とを有する離型フィルムであって、
     JIS K 7126-2に準拠して測定された、当該離型フィルムの酸素透過度は、60.0cc/(m・atm・day)以上であることを特徴とする離型フィルム。
  2. [規則91に基づく訂正 27.11.2023]
     第1熱可塑性樹脂組成物からなる第1離型層と、該第1離型層に積層されたクッション層とを有する離型フィルムであって、
     JIS K 7129(B法)に準拠して測定された、当該離型フィルムの水蒸気透過度は、1.0g/m・day(25℃・90%RH)超であることを特徴とする離型フィルム。
  3.  前記第1熱可塑性樹脂組成物は、ポリエステル系樹脂を含む請求項1または2に記載の離型フィルム。
  4.  前記ポリエステル系樹脂は、結晶性を有し、前記第1離型層は、その結晶化度が10%以上50%以下である請求項3に記載の離型フィルム。
  5.  前記クッション層は、前記ポリエステル系樹脂と、ポリオレフィン系樹脂とを含む第3熱可塑性樹脂組成物からなる請求項4に記載の離型フィルム。
  6.  前記第1離型層は、その平均厚さが7μm以上38μm以下である請求項5に記載の離型フィルム。
  7.  前記クッション層は、その平均厚さが40μm以上110μm以下である請求項6に記載の離型フィルム。
  8.  当該離型フィルムは、その平均厚さが40μm以上180μm以下である請求項7に記載の離型フィルム。
  9.  前記第1離型層は、前記クッション層と反対側の表面における10点平均粗さ(Rz)が0.1μm以上20.0μm以下である請求項1または2に記載の離型フィルム。
  10.  当該離型フィルムは、前記クッション層の前記第1離型層と反対側に積層された、第2熱可塑性樹脂組成物からなる第2離型層を有する請求項1または2に記載の離型フィルム。
  11.  当該離型フィルムが、半硬化状態の熱硬化性樹脂を含む材料によって形成された対象物の表面に、
     前記第1離型層側の表面が接するように重ねて用いられる請求項1または2に記載の離型フィルム。
  12.  請求項1または2に記載の離型フィルムの前記第1離型層が対象物側になるように、
     前記対象物上に前記離型フィルムを配置する工程と、前記離型フィルムが配置された前記対象物に対し、加熱プレスを行う工程と、を含み、前記離型フィルムを配置する前記工程において、前記対象物の前記離型フィルムが配置される側の面が、半硬化状態の熱硬化性樹脂を含む材料によって形成されていることを特徴とする成型品の製造方法。
PCT/JP2023/035541 2022-10-06 2023-09-28 離型フィルムおよび成型品の製造方法 WO2024075640A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022161978A JP7287555B1 (ja) 2022-10-06 2022-10-06 離型フィルムおよび成型品の製造方法
JP2022161977A JP7332017B1 (ja) 2022-10-06 2022-10-06 離型フィルムおよび成型品の製造方法
JP2022-161978 2022-10-06
JP2022-161977 2022-10-06

Publications (1)

Publication Number Publication Date
WO2024075640A1 true WO2024075640A1 (ja) 2024-04-11

Family

ID=90608352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035541 WO2024075640A1 (ja) 2022-10-06 2023-09-28 離型フィルムおよび成型品の製造方法

Country Status (1)

Country Link
WO (1) WO2024075640A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080637A (ja) * 2001-09-10 2003-03-19 Sumitomo Bakelite Co Ltd 高分子シートの製造方法およびこれを用いた表示素子用基板
JP2008115245A (ja) * 2006-11-02 2008-05-22 Toyobo Co Ltd 耐熱離型シート
JP2009248453A (ja) * 2008-04-07 2009-10-29 Dainippon Printing Co Ltd 医療用離型フィルム
JP2012066447A (ja) * 2010-09-22 2012-04-05 Shin Etsu Polymer Co Ltd 離型用フィルム
JP2016112729A (ja) * 2014-12-12 2016-06-23 住友ベークライト株式会社 離型フィルム
JP2016168688A (ja) * 2015-03-11 2016-09-23 住友ベークライト株式会社 離型フィルム
JP2017177890A (ja) * 2016-03-28 2017-10-05 住友ベークライト株式会社 タイヤインナーライナー用シートおよびタイヤ
JP2019035061A (ja) * 2017-08-21 2019-03-07 リンテック株式会社 粘着シートおよび表示体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080637A (ja) * 2001-09-10 2003-03-19 Sumitomo Bakelite Co Ltd 高分子シートの製造方法およびこれを用いた表示素子用基板
JP2008115245A (ja) * 2006-11-02 2008-05-22 Toyobo Co Ltd 耐熱離型シート
JP2009248453A (ja) * 2008-04-07 2009-10-29 Dainippon Printing Co Ltd 医療用離型フィルム
JP2012066447A (ja) * 2010-09-22 2012-04-05 Shin Etsu Polymer Co Ltd 離型用フィルム
JP2016112729A (ja) * 2014-12-12 2016-06-23 住友ベークライト株式会社 離型フィルム
JP2016168688A (ja) * 2015-03-11 2016-09-23 住友ベークライト株式会社 離型フィルム
JP2017177890A (ja) * 2016-03-28 2017-10-05 住友ベークライト株式会社 タイヤインナーライナー用シートおよびタイヤ
JP2019035061A (ja) * 2017-08-21 2019-03-07 リンテック株式会社 粘着シートおよび表示体

Similar Documents

Publication Publication Date Title
JP2619034B2 (ja) 積層体からなる離型フィルム
WO2008001682A1 (fr) Film et film de démoulage
TWI609755B (zh) 離型薄膜及使用其之印刷佈線基板之製造方法
TW201922495A (zh) 多層脫模膜、多層脫模膜的製造方法及柔性印刷電路板的製造方法
WO2024075640A1 (ja) 離型フィルムおよび成型品の製造方法
CN116348297B (zh) 脱模膜和成型品的制造方法
JP7287555B1 (ja) 離型フィルムおよび成型品の製造方法
JP7332017B1 (ja) 離型フィルムおよび成型品の製造方法
JP2010194841A (ja) 離型フィルム及びその製造方法
CN116133848B (zh) 脱模膜及成型品的制造方法
WO2024071185A1 (ja) 離型フィルムおよび成型品の製造方法
JP7343030B1 (ja) 離型フィルムおよび成型品の製造方法
JP7343029B1 (ja) 離型フィルム
JP7283639B2 (ja) 離型フィルムおよび成型品の製造方法
JP2016129980A (ja) 離型フィルム
TW202432371A (zh) 脫模薄膜及成形品之製造方法
JP2006212954A (ja) 離型フィルム
WO2022260003A1 (ja) 離型フィルムおよび成型品の製造方法
WO2022085241A1 (ja) 離型フィルムおよび成型品の製造方法
CN114080866B (zh) 脱模膜及成型品的制造方法
TWI857236B (zh) 脫模薄膜以及成形品之製造方法
WO2023095453A1 (ja) 離型フィルムおよび成型品の製造方法
JP2023046645A (ja) 成型品の製造方法
JP2023046646A (ja) 離型フィルム及び成型品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874767

Country of ref document: EP

Kind code of ref document: A1