WO2024074076A1 - 高疲劳性氟硅混炼胶、抗疲劳剂及其制备方法 - Google Patents

高疲劳性氟硅混炼胶、抗疲劳剂及其制备方法 Download PDF

Info

Publication number
WO2024074076A1
WO2024074076A1 PCT/CN2023/109925 CN2023109925W WO2024074076A1 WO 2024074076 A1 WO2024074076 A1 WO 2024074076A1 CN 2023109925 W CN2023109925 W CN 2023109925W WO 2024074076 A1 WO2024074076 A1 WO 2024074076A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatigue
agent
fluorosilicone
parts
fluorosilicone rubber
Prior art date
Application number
PCT/CN2023/109925
Other languages
English (en)
French (fr)
Inventor
夏子祥
赵伟洁
夏金鹏
侯志伟
于佳平
田志钢
毕儒
Original Assignee
新元化学(山东)股份有限公司
威海新元新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新元化学(山东)股份有限公司, 威海新元新材料有限公司 filed Critical 新元化学(山东)股份有限公司
Publication of WO2024074076A1 publication Critical patent/WO2024074076A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium

Definitions

  • the invention relates to the technical field of fluorosilicone rubber, and in particular to a high fatigue fluorosilicone rubber compound and a preparation method thereof.
  • the main chain of fluorosilicone rubber is composed of Si-O chain segments, and its side chains are composed of CH 3 - and CF 3 CH 2 CH 2 -. It belongs to the class of organic silicone rubber. It has the characteristics of excellent performance and wide application range. It can be used in medium oil resistant at -60°C ⁇ 250°C, such as gasoline, diesel, engine oil, transformer oil and other industrial and mining environments. Therefore, fluorosilicone rubber is widely used in automobiles, ships, aerospace, engineering equipment and other aspects. However, fluorosilicone rubber has the problem of poor fatigue resistance, which leads to a reduced service life and inhibits the scope of use.
  • Chinese patent CN113999532A discloses an anti-fatigue silicone rubber and a preparation method thereof.
  • the method comprises filling modified fillers and composite silicone oil in methyl ethyl silicone rubber and natural rubber, so that the methyl ethyl silicone rubber and natural rubber form a cross-linked network, and using fillers modified by p-phenylenediamine and composite silicone oil as loads to promote dispersion in the rubber material, thereby achieving the purpose of increasing fatigue resistance.
  • the above method can improve the anti-fatigue performance of silicone rubber materials
  • the anti-fatigue rubber obtained by the above method has relatively poor oil resistance and high temperature resistance due to the limitations of the material itself, and cannot meet the requirements of some oil-resistant and high-temperature-resistant industrial and mining environments.
  • the production process of the modified filler is also cumbersome, which increases manpower and material resources and has high costs.
  • Chinese patent CN103665459A fatigue-resistant rubber provides a method of preventing the aging of rubber by using an antioxidant to increase the service life of the rubber.
  • the above method can play the role of heat resistance, anti-aging and anti-dynamic fatigue
  • the method mentioned in the patent and the antioxidant used can only be applied to natural rubber, hydrogenated nitrile and other rubbers composed of carbon-carbon chains, and cannot be applied to the field of fluorosilicone rubber composed of silicon-oxygen chains.
  • the principle of anti-aging and fatigue resistance in the patent determines that its fatigue resistance effect in low-temperature application fields is poor, the scope of application is small.
  • Chinese patent CN110628094A provides a flexible and gradual fatigue-resistant rubber and its preparation method. It uses hollow melamine microspheres, and uses the rich amine groups on the surface of the microspheres to participate in the vulcanization cross-linking of the rubber together with silicon 69 and white carbon black to form a melamine-rubber cross-linking network and increase the cross-linking density. First, this method is suitable for rubber linked by carbon-carbon bonds. Secondly, while the above method improves the fatigue resistance of the rubber, it will cause a decrease in physical and mechanical properties due to overly dense cross-linking.
  • the present invention provides a high fatigue resistance fluorosilicone rubber compound, an anti-fatigue agent and a preparation method thereof. Since fluorosilicone rubber contains trifluoropropyl, its steric hindrance is relatively large. In addition, due to the dense cross-linking points after the cross-linking and curing of the fluorosilicone rubber, when the fluorosilicone rubber is subjected to the influence of stretching, bending and other movements, it is difficult for the internal molecules to slide relative to each other, thereby causing tearing between molecules at the microscopic level, and cracking and damage of rubber products at the macroscopic level.
  • the present invention mainly increases fatigue resistance by using a fluorosilicone rubber anti-fatigue agent.
  • the anti-fatigue agent is linked to trifluoropropyl and butylene at the same silicon atom. Because of the presence of trifluoropropyl, its oil resistance is not affected. At the same time, because of the presence of butylene, the cross-linking points of the fluorosilicone rubber can be fully dispersed after vulcanization, thereby forming a more dispersed cross-linking network, making it relatively easy to slide between molecules, thereby increasing the fatigue resistance of the fluorosilicone rubber.
  • a high fatigue resistance fluorosilicone rubber compound comprising the following components in parts by weight:
  • R is an unsaturated monovalent olefin, a hydroxyl group or a methyl group
  • RF is CF3CH2CH2-
  • the anti-fatigue agent is hydroxybutyltrifluoropropylsiloxane, and its chemical structure is shown in the general formula (ii):
  • m represents the average degree of polymerization, and 1 ⁇ m ⁇ 1000.
  • the anti-fatigue agent is prepared by the following method:
  • the volume ratio of the promoter 1,2-dibromoethane to THF in step (2) is (0.1-1):100.
  • the mass ratio of the magnesium chips to THF in step (2) is 1:(1.2-2).
  • the halobutene in step (3) is 4-chloro-1-butene or 4-bromo-1-butene or 4-iodo-1-butene.
  • the mass ratio of the halogenated butylene to THF in step (3) is: 1:(1.1-2).
  • the mass ratio of magnesium to halogenated butene in step (3) is 1:(3.1-3.7).
  • the reaction time in step (3) is 2 to 4 hours, and the reaction temperature is controlled at 50 to 70°C.
  • the molar ratio of the butylene Grignard reagent to trifluoropropyltrichlorosilane in step (4) is (2-3):1.
  • the mass ratio of trifluoropropyltrichlorosilane to THF in step (4) is 1:(1.1-1.5).
  • the reaction time in step (4) is 3-4 hours. If the reaction time is insufficient, the content of trifluoropropyltrichlorosilane is high, the yield is low, and distillation is difficult.
  • the reaction temperature in step (5) is controlled at 20-50°C.
  • the pH value in step (5) is controlled between 8 and 10. Too low a pH value will result in a low degree of polymerization of the hydroxyallylbutyltrifluoropropylsiloxane, resulting in too low a viscosity.
  • the concentration of the ammonia water in step (5) is 25 wt %.
  • the conditions for dehydration of the oil phase under reduced pressure are: -0.095 to -0.1 MPa, 21 to 25°C.
  • the white carbon black is precipitated white carbon black or fumed white carbon black, and the BET specific surface area is 50-400 m 2 /g.
  • the dispersant is a silane or fluorosilane containing a hydroxyl group, a methoxy group or an ethoxy group, or a silazane or fluorosilazane containing a saturated or unsaturated olefin, one or more of the above.
  • the heat-resistant additive is a metal oxide such as iron oxide, cerium hydroxide, cerium oxide, etc.
  • the cross-linking agent is a peroxide cross-linking agent, such as benzoyl peroxide, 2,5-dimethyl-2,5-di-tert-butyl peroxide hexane, and the like.
  • the method for preparing the above-mentioned high fatigue fluorosilicone rubber compound comprises the following steps:
  • the temperature begins to rise and is controlled at 150-180°C.
  • a vacuum treatment is performed with a vacuum degree of -0.09 to -0.1 MPa for 2 to 4 hours;
  • the synthetic route of the anti-fatigue agent of the present invention is as follows:
  • Each silicon atom in the anti-fatigue agent molecule contains trifluoropropyl, which ensures the oil resistance of fluorosilicone rubber;
  • the anti-fatigue agent is terminated with hydroxyl groups, which can effectively improve the dispersion effect of white carbon black in fluorosilicone rubber;
  • the anti-fatigue rubber compound of the present invention is easy to prepare. As long as a small amount of the anti-fatigue agent is added during the production process of the rubber compound, the anti-fatigue effect can be greatly improved without adding additional steps and affecting production efficiency.
  • FIG1 is a hydrogen nuclear magnetic spectrum of the anti-fatigue agent prepared in Example 1.
  • R is an unsaturated monovalent olefin, a hydroxyl group or a methyl group
  • RF is CF3CH2CH2-
  • the preparation of 1# anti-fatigue agent comprises the following steps:
  • the dynamic viscosity is 240cp and the hydroxyl content is 7.1mol%.
  • the H NMR spectrum of the anti-fatigue agent prepared in this example is shown in FIG1 , in which 0.63 ppm is the chemical shift of hydrogen in -CH 2 - connected to silicon in the butyl group, 0.85 ppm is the chemical shift of hydrogen in -CH 2 - connected to silicon in the trifluoropropyl group, 2.06 ppm is the chemical shift of hydrogen in -CH 2 - connected to the carbon-carbon double bond in the butyl group, 2.12 ppm is the chemical shift of hydrogen in the middle -CH 2 - in the trifluoropropyl group, 4.32 ppm is the chemical shift of hydrogen in the silanol group, and 4.90 ppm to 5.94 ppm are the chemical shifts of hydrogen on the carbon-carbon double bond.
  • the synthesized compound characterized by NMR spectrum is hydroxybutyltrifluoropropylsiloxane, which has the structure shown in formula (ii):
  • the preparation of 2# anti-fatigue agent comprises the following steps:
  • the dynamic viscosity is 150cp and the hydroxyl content is 8.1mol%.
  • test pieces were pressed at 170°C*14min and vulcanized in two stages at 200°C*3h. Physical properties and fatigue resistance were tested (fatigue test standard: GBT 1688-2008, specimen size: type 1; test strain: 50%; test frequency: 5Hz; test temperature: 23 ⁇ 3°C; test environment: air).
  • test pieces were pressed at 170°C*14min and vulcanized in two stages at 200°C*3h. Physical properties and fatigue resistance were tested (fatigue test standard: GBT 1688-2008, specimen size: type 1; test strain: 50%; test frequency: 5Hz; test temperature: 23 ⁇ 3°C; test environment: air).
  • test pieces were pressed at 170°C*14min and vulcanized in two stages at 200°C*3h. Physical properties and fatigue resistance were tested (fatigue test standard: GBT 1688-2008, specimen size: type 1; test strain: 50%; test frequency: 5Hz; test temperature: 23 ⁇ 3°C; test environment: air).
  • test pieces were pressed at 170°C*14min and vulcanized in two stages at 200°C*3h. Physical properties and fatigue resistance were tested (fatigue test standard: GBT 1688-2008, specimen size: type 1; test strain: 50%; test frequency: 5Hz; test temperature: 23 ⁇ 3°C; test environment: air).
  • test pieces were pressed at 170°C*14min and vulcanized in two stages at 200°C*3h. Physical properties and fatigue resistance were tested (fatigue test standard: GBT 1688-2008, specimen size: type 1; test strain: 50%; test frequency: 5Hz; test temperature: 23 ⁇ 3°C; test environment: air).
  • Comparative Example 1 The difference between Comparative Example 1 and Example 3 is that the anti-fatigue agent is removed, and no anti-fatigue agent is added in Comparative Example 1.
  • the other preparation methods are the same.
  • Comparative Example 3 is different from Example 3 in that the anti-fatigue agent is removed, and 3 parts of vinyl fluorosilicone oil having a structure of OH-[(CH 2 CH 2 CF 3 )MeSiO-(CH 2 CH)MeSiO] m -H are added to replace the anti-fatigue agent, and the other preparation methods are the same.
  • Comparative Example 4 is different from Example 3 in that the anti-fatigue agent is removed, and 3 parts of vinyl fluorosilicone oil having a structure of OH-[(CH 2 CH 2 CF 3 )MeSiO-(CH 2 CHCH 2 CH 2 )MeSiO] m -H are added to replace the anti-fatigue agent, and the other preparation methods are the same.
  • Comparing Comparative Example 1 with Example 3 the fatigue resistance times of Comparative Example 1 are 4.99 million less than that of Example 3. No anti-fatigue agent is added in Comparative Example 1, which shows that the effect of the anti-fatigue agent is very significant.
  • Comparative Example 2 has a fatigue resistance of 4.9 million times less than that of Example 3. Comparative Example 2 uses a vinyl-terminated fluorosilicone oil with trifluoropropyl and methyl groups directly linked to silicon atoms. The vinyl-terminated fluorosilicone oil cannot form a more dispersed cross-linked network, making it easier for molecules to slide relative to each other, thereby increasing the fatigue resistance.
  • Comparative Example 3 Compared with Example 3, Comparative Example 3 has a fatigue resistance of 4.93 million times less than that of Example 3. Comparative Example 3 uses copolymerized hydroxy vinyl fluorosilicone oil. For the same reason, it cannot form a more dispersed cross-linked network, and the methyl and vinyl siloxane chains contained in the copolymerized fluorosilicone oil will affect the oil resistance of the fluorosilicone rubber.
  • Comparative Example 4 uses a copolymerized fluorosilicone oil containing butylene, the butylene is not linked to the same Si atom as the trifluoropropyl group, and the molar content of the butylene is not comparable to that of the homopolymerized fluorosilicone oil in which the butylene is directly linked to the trifluoropropyl group on the same Si atom. So the effect is poor, and the methyl butyl siloxane chain segments will affect the oil resistance of fluorosilicone rubber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

一种高疲劳性氟硅混炼胶、抗疲劳剂及其制备方法,属于橡胶技术领域。该高疲劳性氟硅混炼胶按重量份组成如下:氟硅生胶100份,白炭黑30~90份,分散剂0.1~30份,耐热添加剂1~15份,交联剂0.2~5份,抗疲劳剂0.5-10份。通过添加制备的抗疲劳剂羟基烯丁基三氟丙基硅氧烷,能有效的改善各交联点的空间距离,从而形成更加分散的交联网络,使分子间的相对滑移变的容易,进而大幅增加氟硅橡胶的耐疲劳次数。

Description

高疲劳性氟硅混炼胶、抗疲劳剂及其制备方法 技术领域
本发明涉及氟硅橡胶技术领域,具体的涉及一种高疲劳性氟硅混炼胶及其制备方法。
背景技术
氟硅橡胶的主链是由Si-O链节组成,其侧链则由CH3-和CF3CH2CH2-组成。属于有机硅类橡胶。其具有性能优异,适用范围广的特点,可在-60℃~250℃耐介质油中使用,例如在汽油、柴油、机油、变压器油等工矿环境中使用,所以氟硅橡胶广泛地应用于汽车、轮船、航天航空、工程器械等方面。但是,氟硅橡胶存在耐疲劳性差的问题,导致使用寿命降低,抑制了使用范围。例如作为动态密封应用时,作为汽车发动机中由氟硅橡胶制做成的止逆阀,因其长期在油环境中反复动作,就极易损坏,更换起来也是非常麻烦,所以如何能大幅延长氟硅橡胶的耐疲劳使用寿命就成为必要迫切的工作。
中国专利CN113999532A一种抗疲劳硅橡胶及其制备方法中提供了通过在甲基乙基硅橡胶和天然胶中填充改性填料、复合硅油,使得甲基乙基硅橡胶和天然胶形成交联网络,并且利用对苯二胺改性的填料和复合硅油作为负载,促进在橡胶材料中的分散,达到增加耐疲劳性目的。上述方式虽然能够提升硅橡胶材料的抗疲劳性能,但是上述方法制得的抗疲劳橡胶,因其材料本身限制,其耐油性和耐高温性都比较差,无法满足一些耐油、耐高温的工矿环境使用,并且改性填料的制作过程也较繁琐,增加了人力物力,成本较高。
中国专利CN103665459A耐疲劳橡胶提供了一种通过使用防老剂来防止橡胶的老化从而增加橡胶的使用寿命。上述方式虽然能够起到耐热防老化、抗动态疲劳的作用,但是该专利中提到的方式以及使用的防老剂只能适用于天然胶、氢化丁腈等由碳碳链组成的橡胶,无法应用在由硅氧链组成的氟硅橡胶领域。并且由于该专利中防老化耐疲劳的原理决定了其在低温应用领域的耐疲劳效果较差,应用范围较小。
中国专利CN110628094A柔性渐变的耐疲劳橡胶及其制备方法提供了一种采用了空心蜜胺微球,利用微球表面的富胺基与硅69以及白炭黑一起参与橡胶的硫化交联,形成蜜胺-橡胶交联网络,增加交联密度。首先该方式适用于碳碳键链接的橡胶,其次上述方式在提高橡胶耐疲劳效果的同时,会因为过于密集的交联而导致物理机械性能的下降。
按照目前现有的提高橡胶耐疲劳的办法来看,要么是其应用范围受限制、要么是效果差强人意,成本也较高。针对目前这种情况,以及应用领域迫切的需求,故提出本发明。
发明内容
针对现有技术的不足,本发明提供了一种高疲劳性氟硅混炼胶、抗疲劳剂及其制备方法。因氟硅橡胶中含有三氟丙基,其空间位阻本就比较大,再加上受氟硅橡胶交联固化后各交联点比较致密的影响,导致氟硅橡胶在受到拉伸、曲挠等运动影响时,其内部分子间相对滑移困难,从而造成微观上分子间的撕裂,宏观上表现出橡胶制品的龟裂以及损坏。本发明主要是通过使用一种氟硅混炼胶抗疲劳剂,来大幅增加耐疲劳性。该抗疲劳剂同一个硅原子上同时链接了三氟丙基和烯丁基,因为三氟丙基的存在能够使得其耐油性不受影响,同时因为烯丁基的存在,又使得氟硅橡胶硫化后各交联点之间能够充分的分散开,从而形成更加分散的交联网络,使得分子间滑移相对容易,进而增加氟硅橡胶的耐疲劳性。
为实现上述目的,本发明采用的技术方案如下:
一种高疲劳性氟硅混炼胶,按重量份计,包括组成如下:
氟硅生胶100份,白炭黑30~90份,分散剂0.1~30份,耐热添加剂1~15份,交联剂0.2~5份,抗疲劳剂0.5-10份;
所述的氟硅生胶化学结构如通式(i)所示:
R-(RFMeSiO)n-(RViMeSiO)p-R   
(i)
式(i)中,R为不饱和单价烯烃、羟基或甲基,RF为CF3CH2CH2-,RVi为CH2=CH-;2000≤n≤13000,0≤p≤1200。
所述的抗疲劳剂为羟基烯丁基三氟丙基硅氧烷,化学结构如通式(ii)所示:
式(ii)中,m表示平均聚合度,1≤m≤1000。
根据本发明,优选的,所述的抗疲劳剂按如下方法制备得到:
(1)对整个反应系统和所有用到的物料进行干燥处理,确保整个反应体系在无水化中进行;
(2)将镁屑、促进剂1,2-二溴乙烷投入到四氢呋喃(THF),加入反应系统中,开启搅拌;
(3)向反应系统中滴加卤丁烯和THF的混合液,控制滴加速度,使反应保持轻微沸腾状态,持续反应,制得烯丁基格利雅试剂;
(4)将烯丁基格利雅试剂滴加入三氟丙基三氯硅烷和THF的混合物中,持续搅拌,至反应完成后,精馏得到烯丁基三氟丙基二氯硅烷;
(5)将烯丁基三氟丙基二氯硅烷滴加到浓氨水中,控制滴加速度和温度,当pH达到10以下时,持续反应1~3h;
(6)反应结束后通入水,将油相水洗至中性,后分离油相、水相,并将油相减压脱水,即得抗疲劳剂。
根据本发明,优选的,步骤(2)中所述的促进剂1,2二溴乙烷与THF的体积比为(0.1~1):100。
根据本发明,优选的,步骤(2)中所述的镁屑和THF的质量比为1:(1.2~2)。
根据本发明,优选的,步骤(3)中所述的卤丁烯为4-氯-1-丁烯或者4-溴-1-丁烯或4-碘-1-丁烯。
根据本发明,优选的,步骤(3)中所述的卤丁烯与THF的质量比为:1:(1.1~2)。
根据本发明,优选的,步骤(3)中所述的镁与卤丁烯的质量比为1:(3.1~3.7)。
根据本发明,优选的,步骤(3)中所述的反应时间2~4h,反应温度控制在50~70℃。
根据本发明,优选的,步骤(4)中所述的烯丁基格利雅试剂和三氟丙基三氯硅烷的摩尔比为(2~3):1。
根据本发明,优选的,步骤(4)中所述的三氟丙基三氯硅烷和THF的质量比为1:(1.1~1.5)。
根据本发明,优选的,步骤(4)中所述的反应时间为3-4h。若反应时间不足,三氟丙基三氯硅烷的含量较多,收率低,精馏困难。
根据本发明,优选的,步骤(5)中所述的反应温度控制在20-50℃。
根据本发明,优选的,步骤(5)中所述的pH值,控制在8-10之间,pH值过低会导致羟基烯丁基三氟丙基硅氧烷聚合度低,导致粘度过低。
根据本发明,优选的,步骤(5)中所述的氨水的浓度为25wt%。
根据本发明,优选的,步骤(6)中,油相减压脱水的条件为:-0.095~-0.1MPa,21~25℃。
根据本发明,优选的,所述的白炭黑为沉淀白炭黑或气相白炭黑,BET比表面积50-400m2/g。
根据本发明,优选的,所述的分散剂为含羟基或甲氧基或乙氧基的硅烷或氟硅烷,或含饱和或不饱和烯烃的硅氮烷或氟硅氮烷,以上其中的一种或几种。
根据本发明,优选的,所述的耐热添加剂为氧化铁、氢氧化铈、氧化铈等金属氧化物。
根据本发明,优选的,所述的交联剂为过氧化物交联剂,如过氧化苯甲酰、2,5-二甲基-2.5-二叔丁基过氧化己烷等。
根据本发明,上述高疲劳氟硅混炼胶的制备方法,包括如下步骤:
(1)按照重量比例份数,称取氟硅生胶,白炭黑,分散剂,耐热添加剂,交联剂,抗疲劳剂;
(2)使用捏合设备,按重量比例依次投入全部氟硅生胶,全部分散剂,以及全部耐热添加剂,1/4份的白炭黑以及全部的抗疲劳剂,常温常压开启搅拌,当本次进料结束时,重新再添加1/4份的白炭黑,如此循环至白炭黑全部进料完成;
(3)进料完成后,开始升温,温度控制在150~180℃,并在此温度下进行抽真空处理,真空度-0.09~-0.1MPa,持续2~4h;
(4)待处理好的混炼胶冷却后,在开炼机按照重量份数加入交联剂,并进行多次薄通,得到高疲劳性氟硅混炼胶。
本发明抗疲劳剂的合成路线如下:
本发明的技术特点及有益效果如下:
1.本发明的抗疲劳效果主要来自抗疲劳剂的使用:
(1)该抗疲劳剂分子内每一个硅原子上都含有三氟丙基,保证了氟硅橡胶的耐油性;
(2)该抗疲劳剂以羟基封端,能够有效地提高白炭黑在氟硅橡胶中的分散效果;
(3)该抗疲劳剂中烯丁基和三氟丙基是同时链接在同一个硅原子上,在保证了烯丁基三氟丙基的含量的同时,又可以保证在氟硅橡胶硫化后,可以获得更多的有效交联点,同时各交联点之间又能够充分的分散开,从而形成分散的交联网络,使得分子间滑移相对容易,进而增加氟硅橡胶的耐疲劳性。
2.本发明中抗疲劳混炼胶制作容易,只要在混炼胶生产过程中,添加少量份数的本抗疲劳剂,就可以大幅提升抗疲劳效果,不会额外增加工序,不影响生产效率。
附图说明
图1为实施例1制备的抗疲劳剂核磁氢谱谱图。
具体实施方式
为了更好的理解和解释本发明,下面通过一些具体实施例来进一步阐述本发明,但本发明不仅限于以下实施例。
实施例中所述的氟硅生胶化学结构如通式(i)所示:
R-(RFMeSiO)n-(RViMeSiO)p-R   
(i)
式(i)中,R为不饱和单价烯烃、羟基、甲基,RF为CF3CH2CH2-,RVi为CH2=CH-;2000≤n≤13000,0≤p≤1200。
实施例1
1#抗疲劳剂的制备,包括如下步骤:
(1)对整个反应系统和所有用到的物料进行干燥处理,确保整个反应体系在无水化中进行。将360g镁屑、3g促进剂1,2-二溴乙烷投入到540ml的THF中,开启搅拌,并向其中滴加由1260g的4-氯-1丁烯和1890ml的THF的混合液,控制滴加速度,使反应保持轻微沸腾状态,持续反应一段时间,制得烯丁基格利雅试剂1430g。
(2)将制得的烯丁基格利雅试剂滴加入1166g的三氟丙基三氯硅烷和4720ml的THF的混合物中,持续搅拌,至反应完成后,精馏得到烯丁基三氟丙基二氯硅烷882g。
(3)将制得的烯丁基三氟丙基二氯硅烷滴加到浓氨水中,控制滴加速度和温度,控制PH在8-9之间,持续反应2h。
(4)反应结束后通入水,将油相水洗至中性,后分离油相、水相,并将油相减压脱水得 羟基烯丁基三氟丙基硅氧烷452g。
动力粘度为240cp,羟基含量7.1mol%。
本实施例制备的抗疲劳剂的核磁氢谱谱图如图1所示,谱图中0.63ppm为烯丁基中与硅相连的-CH2-中氢的化学位移,0.85ppm为三氟丙基中与硅相连的-CH2-中氢的化学位移,2.06ppm为烯丁基中与碳碳双键相连的-CH2-中氢的化学位移,2.12ppm为三氟丙基中中间-CH2-中氢的化学位移,4.32ppm为硅羟基氢的化学位移,4.90ppm~5.94ppm为碳碳双键上氢的化学位移。
核磁图谱表征合成的化合物为羟基烯丁基三氟丙基硅氧烷,具有式(ii)所示结构:
实施例2
2#抗疲劳剂的制备,包括如下步骤:
(1)对整个反应系统和所有用到的物料进行干燥处理,确保整个反应体系在无水化中进行。将320g镁屑、3g促进剂1,2-二溴乙烷投入到520ml的THF中,开启搅拌,并向其中滴加由1180g的4-氯-1丁烯和1920ml的THF的混合液,控制滴加速度,使反应保持轻微沸腾状态,持续反应一段时间,制得烯丁基格利雅试剂1320g。
(2)将制得的烯丁基格利雅试剂滴加入1260g的三氟丙基三氯硅烷和4420ml的THF的混合物中,持续搅拌,至反应完成后,精馏得到烯丁基三氟丙基二氯硅烷814g。
(3)将制得的烯丁基三氟丙基二氯硅烷滴加到浓氨水中,控制滴加速度和温度,控制PH在7-8之间,持续反应2h。
(4)反应结束后通入水,将油相水洗至中性,后分离油相、水相,并将油相减压脱水得羟基烯丁基三氟丙基硅氧烷387g。
动力粘度为150cp,羟基含量8.1mol%。
实施例3
取乙烯基含量0.2mol%的氟硅生胶100份,投入捏合机中,同时分批次加入预混的气相白炭黑32份,羟基氟硅油6份,六甲基二硅氮烷1份,1#抗疲劳剂3份,氧化铈2份,待物料混合均匀后,持续搅拌并加热升温至175℃,-0.097MPa负压真空热处理3h。待热处理好的生胶冷却后,在开炼机上添加0.5份2,5-二甲基-2,5-双过氧化叔丁基己烷,薄通均匀,下片。
在170℃*14min的条件下压制2mm厚试片,并在200℃*3h条件下二段硫化。测试物理性能和耐疲劳次数(疲劳测试标准:GBT 1688-2008,试样尺寸:1型;试验应变:50%;试验频率:5Hz;试验温度:23±3℃;试验环境:空气)。
实施例4
取乙烯基含量0.3mol%的氟硅生胶100份,投入捏合机中,同时分批次加入预混的气相白炭黑40份,羟基氟硅油8份,六甲基二硅氮烷1.5份,1#抗疲劳剂4份,氧化铈2份,待物料混合均匀后,持续搅拌并加热升温至175℃,-0.097MPa负压真空热处理3h。待热处理好的生胶冷却后,在开炼机上添加0.5份2,5-二甲基-2,5-双过氧化叔丁基己烷,薄通均匀,下片。
在170℃*14min的条件下压制2mm厚试片,并在200℃*3h条件下二段硫化。测试物理性能和耐疲劳次数(疲劳测试标准:GBT 1688-2008,试样尺寸:1型;试验应变:50%;试验频率:5Hz;试验温度:23±3℃;试验环境:空气)。
实施例5
取乙烯基含量0.3mol%的氟硅生胶100份,投入捏合机中,同时分批次加入预混的气相白炭黑37份,羟基氟硅油7份,六甲基二硅氮烷2份,1#抗疲劳剂2.5份,氧化铈2份,待物料混合均匀后,持续搅拌并加热升温至175℃,-0.097MPa负压真空热处理3h。待热处理好的生胶冷却后,在开炼机上添加0.5份2,5-二甲基-2,5-双过氧化叔丁基己烷,薄通均匀,下片。
在170℃*14min的条件下压制2mm厚试片,并在200℃*3h条件下二段硫化。测试物理性能和耐疲劳次数(疲劳测试标准:GBT 1688-2008,试样尺寸:1型;试验应变:50%;试验频率:5Hz;试验温度:23±3℃;试验环境:空气)。
实施例6
取乙烯基含量0.3mol%的氟硅生胶100份,投入捏合机中,同时分批次加入预混的气相白炭黑42份,羟基氟硅油8份,六甲基二硅氮烷2份,1#抗疲劳剂3.5份,氧化铈2份,待物料混合均匀后,持续搅拌并加热升温至175℃,-0.097MPa负压真空热处理3h。待热处理 好的生胶冷却后,在开炼机上添加0.5份2,5-二甲基-2,5-双过氧化叔丁基己烷,薄通均匀,下片。
在170℃*14min的条件下压制2mm厚试片,并在200℃*3h条件下二段硫化。测试物理性能和耐疲劳次数(疲劳测试标准:GBT 1688-2008,试样尺寸:1型;试验应变:50%;试验频率:5Hz;试验温度:23±3℃;试验环境:空气)。
实施例7
取乙烯基含量0.3mol%的氟硅生胶100份,投入捏合机中,同时分批次加入预混的气相白炭黑34份,羟基氟硅油6份,六甲基二硅氮烷2.5份,1#抗疲劳剂1.5份,2#抗疲劳剂1.5份,氧化铈2份,待物料混合均匀后,持续搅拌并加热升温至175℃,-0.097MPa负压真空热处理3h。待热处理好的生胶冷却后,在开炼机上添加0.5份2,5-二甲基-2,5-双过氧化叔丁基己烷,薄通均匀,下片。
在170℃*14min的条件下压制2mm厚试片,并在200℃*3h条件下二段硫化。测试物理性能和耐疲劳次数(疲劳测试标准:GBT 1688-2008,试样尺寸:1型;试验应变:50%;试验频率:5Hz;试验温度:23±3℃;试验环境:空气)。
对比例1
对比例1和实施例3相比,不同之处在于:将抗疲劳剂去除,对比例1中没有添加抗疲劳剂,其他制备方式相同。
对比例2
对比例2和实施例3相比,不同之处在于:将抗疲劳剂去除,同时添加结构为CH2=CH-[(CH2CH2CF3)MeSiO]m-CH=CH2的乙烯基氟硅油3份替代抗疲劳剂,其他制备方式相同。
对比例3
对比例3和实施例3相比,不同之处在于:将抗疲劳剂去除,同时添加结构为OH-[(CH2CH2CF3)MeSiO-(CH2CH)MeSiO]m-H的乙烯基氟硅油3份替代抗疲劳剂,其他制备方式相同。
对比例4
对比例4和实施例3相比,不同之处在于:将抗疲劳剂去除,同时添加结构为OH-[(CH2CH2CF3)MeSiO-(CH2CHCH2CH2)MeSiO]m-H的乙烯基氟硅油3份替代抗疲劳剂,其他制备方式相同。
试验例
实施例及对比例测试数据如下表1所示:
表1 实施例与对比例测试数据
从表1中数据来看,实施列3-7表明抗疲劳剂的添加极大的增加了耐疲劳次数,并且对回弹和压缩变形有所提升。
对比例1和实施例3相比,对比例1比实施例3的耐疲劳次数少499万次。对比例1中没有添加抗疲劳剂,由此可见抗疲劳剂的作用非常大。
对比例2和实施例3相比,对比例2比实施例3的耐疲劳次数少490万次。对比例2使用的是硅原子上直接链接三氟丙基和甲基的乙烯基封端的氟硅油,封端的乙烯基并不能形成更加分散的交联网络,使分子间相对滑移容易,从而增加耐疲劳次数。
对比例3和实施例3相比,对比例3比实施例3的耐疲劳次数相少493万次。对比例3使用了共聚的羟基乙烯基氟硅油,同样的道理,其无法形成更加分散的交联网络,并且共聚氟硅油中含有的甲基、乙烯基硅氧链节会影响下氟硅橡胶的耐油性。
对比例4和实施例3相比,对比例4比实施例3的耐疲劳次数相差379万次,对比例4虽然使用了含有烯丁基的共聚氟硅油,但是其烯丁基并非和三氟丙基链接在同一个Si原子上,其烯丁基的摩尔含量无法和烯丁基直接和三幅丙基链接在同一个Si原子上的均聚的氟硅油相 比,所以效果较差,并且甲基烯丁基硅氧链节会影响氟硅橡胶耐油性。
以上实施例仅为优选举例说明,不能完全代表本发明。对本发明中相关技术特征进行整合重组,也属于本发明保护范围内。

Claims (19)

  1. 一种氟硅混炼胶用抗疲劳剂,其特征在于,所述的抗疲劳剂为羟基烯丁基三氟丙基硅氧烷,其通式如式(ii)所示:
    式(ii)中m表示平均聚合度,1≤m≤1000。
  2. 根据权利要求1所述的氟硅混炼胶用抗疲劳剂,其特征在于,所述的抗疲劳剂的动力粘度为100~1500cp,羟基含量2~10%。
  3. 权利要求1所述的氟硅混炼胶用抗疲劳剂的制备方法,包括步骤如下:
    (1)对整个反应系统和所有用到的物料进行干燥处理,确保整个反应体系在无水化中进行;
    (2)将镁屑、促进剂1,2-二溴乙烷投入到THF,加入反应系统中,开启搅拌;
    (3)向反应系统中滴加卤丁烯和THF的混合液,控制滴加速度,使反应保持轻微沸腾状态,持续反应,制得烯丁基格利雅试剂;
    (4)将烯丁基格利雅试剂滴加入三氟丙基三氯硅烷和THF的混合物中,持续搅拌,至反应完成后,精馏得到烯丁基三氟丙基二氯硅烷;
    (5)将烯丁基三氟丙基二氯硅烷滴加到浓氨水中,控制滴加速度和温度,当pH达到10以下时,持续反应1~3h;
    (6)反应结束后通入水,将油相水洗至中性,后分离油相、水相,并将油相减压脱水,即得抗疲劳剂。
  4. 根据权利要求3所述的氟硅混炼胶用抗疲劳剂的制备方法,其特征在于,步骤(2)所述的促进剂1,2二溴乙烷与THF的体积比为(0.1~1):100,镁屑和THF的质量比为1:(1.2~2)。
  5. 根据权利要求3所述的氟硅混炼胶用抗疲劳剂的制备方法,其特征在于,步骤(3) 中所述的卤丁烯为4-氯-1-丁烯或者4-溴-1-丁烯或4-碘-1-丁烯。
  6. 根据权利要求3所述的氟硅混炼胶用抗疲劳剂的制备方法,其特征在于,步骤(3)中所述的卤丁烯与THF的质量比为:1:(1.1~2),所述的镁与卤丁烯的质量比为1:(3.1~3.7)。
  7. 根据权利要求3所述的氟硅混炼胶用抗疲劳剂的制备方法,其特征在于,步骤(3)中所述的反应时间2~4h,反应温度控制在50~70℃。
  8. 根据权利要求3所述的氟硅混炼胶用抗疲劳剂的制备方法,其特征在于,步骤(4)中所述的烯丁基格利雅试剂和三氟丙基三氯硅烷的摩尔比为(2~3):1,所述的三氟丙基三氯硅烷和THF的质量比为1:(1.1~1.5)。
  9. 根据权利要求3所述的氟硅混炼胶用抗疲劳剂的制备方法,其特征在于,步骤(5)中反应温度控制在20-50℃。
  10. 根据权利要求3所述的氟硅混炼胶用抗疲劳剂的制备方法,其特征在于,步骤(5)中pH值控制在8-10之间。
  11. 根据权利要求3所述的氟硅混炼胶用抗疲劳剂的制备方法,其特征在于,步骤(6)中,油相减压脱水的条件为:-0.095~-0.1MPa,21~25℃。
  12. 一种高疲劳性氟硅混炼胶,包括使用权利要求1或2所述的抗疲劳剂,其特征在于:按重量份计,组成如下:
    氟硅生胶100份,白炭黑30~90份,分散剂0.1~30份,耐热添加剂1~15份,交联剂0.2~5份,抗疲劳剂0.5-10份。
  13. 根据权利要求12所述的高疲劳性氟硅混炼胶,其特征在于,所述的氟硅生胶通式如式(i)所示:
    R-(RFMeSiO)n-(RViMeSiO)p-R
    (i)
    式(i)中,R为不饱和单价烯烃、羟基或甲基,RF为CF3CH2CH2-,RVi为CH2=CH-;2000≤n≤13000,0≤p≤1200。
  14. 根据权利要求12所述的高疲劳性氟硅混炼胶,其特征在于,所述的白炭黑为沉淀白炭黑或气相白炭黑,BET比表面积50-400m2/g。
  15. 根据权利要求12所述的高疲劳性氟硅混炼胶,其特征在于,所述的分散剂为含羟基或甲氧基或乙氧基的硅烷或氟硅烷,或含饱和或不饱和烯烃的硅氮烷或氟硅氮烷,以上其中的一种或几种。
  16. 根据权利要求12所述的高疲劳性氟硅混炼胶,其特征在于,所述的耐热添加剂为氧 化铁、氢氧化铈或氧化铈。
  17. 根据权利要求12所述的高疲劳性氟硅混炼胶,其特征在于,所述的交联剂为过氧化物交联剂。
  18. 根据权利要求17所述的高疲劳性氟硅混炼胶,其特征在于,所述的过氧化物交联剂为过氧化苯甲酰或2,5-二甲基-2.5-二叔丁基过氧化己烷。
  19. 权利要求12所述的高疲劳性氟硅混炼胶的制备方法,包括如下步骤:
    (1)按照重量比例份数,称取氟硅生胶,白炭黑,分散剂,耐热添加剂,交联剂,抗疲劳剂;
    (2)使用捏合设备,按重量比例依次投入全部氟硅生胶,全部分散剂,以及全部耐热添加剂,1/4份的白炭黑以及全部的抗疲劳剂,常温常压开启搅拌,当本次进料结束时,重新再添加1/4份的白炭黑,如此循环至白炭黑全部进料完成;
    (3)进料完成后,开始升温,温度控制在150~180℃,并在此温度下进行抽真空处理,真空度-0.09~-0.1MPa,持续2~4h;
    (4)待处理好的混炼胶冷却后,在开炼机按照重量份数加入交联剂,并进行多次薄通,得到高疲劳性氟硅混炼胶。
PCT/CN2023/109925 2022-10-08 2023-07-28 高疲劳性氟硅混炼胶、抗疲劳剂及其制备方法 WO2024074076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211223518.2A CN115403773B (zh) 2022-10-08 2022-10-08 一种高疲劳性氟硅混炼胶、抗疲劳剂及其制备方法
CN202211223518.2 2022-10-08

Publications (1)

Publication Number Publication Date
WO2024074076A1 true WO2024074076A1 (zh) 2024-04-11

Family

ID=84167845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109925 WO2024074076A1 (zh) 2022-10-08 2023-07-28 高疲劳性氟硅混炼胶、抗疲劳剂及其制备方法

Country Status (2)

Country Link
CN (1) CN115403773B (zh)
WO (1) WO2024074076A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403773B (zh) * 2022-10-08 2023-09-19 新元化学(山东)股份有限公司 一种高疲劳性氟硅混炼胶、抗疲劳剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1333676A1 (ru) * 1985-02-21 1987-08-30 Волгоградский Политехнический Институт @ , @ -Дигидроолигодиалкилсилоксаны в качестве модификаторов резиновых смесей на основе изопренового каучука,повышающих усталостную выносливость вулканизатов при многократных деформаци х
CN102627665A (zh) * 2012-04-13 2012-08-08 阜新恒通氟化学有限公司 全氟己基乙基-乙烯基-二甲氧基硅烷及制备方法和应用
CN104761907A (zh) * 2014-08-12 2015-07-08 安徽中鼎密封件股份有限公司 一种高抗撕裂、高抗疲劳的排气管吊耳及其制备方法
CN111606941A (zh) * 2020-06-28 2020-09-01 威海新元化工有限公司 一种新型氟硅橡胶助剂及其制备方法与应用
CN115403773A (zh) * 2022-10-08 2022-11-29 新元化学(山东)股份有限公司 一种高疲劳性氟硅混炼胶、抗疲劳剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220014B (zh) * 2011-06-01 2013-04-03 山东大学 一种高强度氟硅橡胶混炼胶及其制备方法
CN109912966B (zh) * 2019-03-15 2020-07-31 中南大学 一种氟硅烷改性聚丁二烯型聚氨酯水声透声材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1333676A1 (ru) * 1985-02-21 1987-08-30 Волгоградский Политехнический Институт @ , @ -Дигидроолигодиалкилсилоксаны в качестве модификаторов резиновых смесей на основе изопренового каучука,повышающих усталостную выносливость вулканизатов при многократных деформаци х
CN102627665A (zh) * 2012-04-13 2012-08-08 阜新恒通氟化学有限公司 全氟己基乙基-乙烯基-二甲氧基硅烷及制备方法和应用
CN104761907A (zh) * 2014-08-12 2015-07-08 安徽中鼎密封件股份有限公司 一种高抗撕裂、高抗疲劳的排气管吊耳及其制备方法
CN111606941A (zh) * 2020-06-28 2020-09-01 威海新元化工有限公司 一种新型氟硅橡胶助剂及其制备方法与应用
CN115403773A (zh) * 2022-10-08 2022-11-29 新元化学(山东)股份有限公司 一种高疲劳性氟硅混炼胶、抗疲劳剂及其制备方法

Also Published As

Publication number Publication date
CN115403773B (zh) 2023-09-19
CN115403773A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2024074076A1 (zh) 高疲劳性氟硅混炼胶、抗疲劳剂及其制备方法
US2541137A (en) Siloxane elastomers
CN109762346B (zh) 一种氟硅橡胶组合物及制备方法
CN1152590A (zh) 基于氧化硅和含硅烷醇端基的官能化二烯聚合物的橡胶组合物
CN109867965A (zh) 一种耐高温硅橡胶材料及其制备方法与应用
CN101177486A (zh) 氟硅橡胶基础胶的制备方法
CN110499032A (zh) 一种自润滑加成型液体硅橡胶及其制备方法和应用
CN110016187A (zh) 一种耐高温及低低温压缩变形epdm橡胶
CN112175210A (zh) 一种基于多酚化合物交联的有机硅弹性体的制备方法
CN111073304A (zh) 一种氟硅橡胶组合物及其制备方法
CN111423731B (zh) 高强度共聚氟硅橡胶组合物、制备方法
CN105622943A (zh) 一种同时含腈基和乙烯基的高分子量聚硅氧烷的合成及加成型热硫化腈硅橡胶的制备方法
CN112300579A (zh) 一种与硅橡胶具有粘接性的氟硅橡胶及其制备方法
CN114456605B (zh) 一种耐机油低压变加成型液体氟硅橡胶及其制备方法
CN102775795A (zh) 一种过氧化型硫化橡胶
CN110408218A (zh) 一种耐高温硅橡胶及其制备方法
CN105778105A (zh) 一种同时含腈基和乙烯基的硅氧烷的合成及室温加成型腈硅橡胶的制备方法
CN105646565B (zh) 一种含腈基硅氧烷的合成及室温缩合型腈硅橡胶的制备方法
CN111303639B (zh) 一种低硬度高抗撕自润滑加成型液体硅橡胶及其制备方法与应用
CN102775619A (zh) 一种过氧化型硫化橡胶的制备方法
CN110982282B (zh) 一种氟硅橡胶组合物及制备方法
CN113698708A (zh) 一种三元乙丙橡胶组合物及其制备方法
CN115368646B (zh) 一种低滚阻、抗湿滑、高耐磨的橡胶复合材料及制法和应用
CN117186654A (zh) 减少压缩永久变形的添加剂、氟硅橡胶组合物及制备方法
CN114517016B (zh) 一种高回弹低压变混炼胶及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874268

Country of ref document: EP

Kind code of ref document: A1