WO2024055772A1 - 改性evoh树脂及其制备方法 - Google Patents

改性evoh树脂及其制备方法 Download PDF

Info

Publication number
WO2024055772A1
WO2024055772A1 PCT/CN2023/111445 CN2023111445W WO2024055772A1 WO 2024055772 A1 WO2024055772 A1 WO 2024055772A1 CN 2023111445 W CN2023111445 W CN 2023111445W WO 2024055772 A1 WO2024055772 A1 WO 2024055772A1
Authority
WO
WIPO (PCT)
Prior art keywords
evoh resin
modified evoh
hyperbranched polymer
resin according
modified
Prior art date
Application number
PCT/CN2023/111445
Other languages
English (en)
French (fr)
Inventor
盖婷婷
林兴旺
李羽航
许红丽
赵新新
Original Assignee
山东海科创新研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东海科创新研究院有限公司 filed Critical 山东海科创新研究院有限公司
Publication of WO2024055772A1 publication Critical patent/WO2024055772A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • C08L23/0861Saponified vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • This application belongs to the field of resin processing technology, and in particular relates to a modified EVOH resin and its preparation method.
  • EVOH Ethylene Vinyl Alcohol Polymer
  • EVOH resin is melt-formed into a film, sheet, bottle, cup, tube or tube, and then the resulting molded product is processed for practical use, and must undergo High temperature for a long time (general processing temperature is 200°C ⁇ 240°C), so the molding processability and heat resistance of EVOH resin are very important properties.
  • CN108473746A contacts an EVOH resin with an aqueous solution (processing liquid) containing a boric acid compound and an alkali metal salt under heating and pressure, so that at least part of the boron in the boric acid compound contained in the EVOH resin has a 4-coordinate structure.
  • processing liquid aqueous solution
  • the proportion of boron 3-coordination structure converted to 4-coordination structure is small.
  • CN1271095C is dehydrated and dried by impregnating the EVOH resin in a mixed aqueous solution of acetic acid, magnesium dihydrogen phosphate and potassium dihydrogen phosphate in different proportions in the post-processing stage.
  • the degree of improvement in this process is limited, and the improvement performance is single. It can only improve the heat resistance, but does not have a positive impact on the amount of coupling components added, and has no effect on the forming and processing performance.
  • the molding processability and heat resistance of EVOH resin can be improved by increasing the amount of boric acid compounds.
  • the boric acid compound is localized, tiny fisheyes will occur, which will lead to low quality of molded products. . Therefore, how to develop a method that can effectively improve the molding performance and heat resistance of EVOH resin without changing the original EVOH resin preparation process? will appear particularly important.
  • the present application provides a modified EVOH resin and a preparation method thereof.
  • At least one embodiment of the method utilizes hyperbranched polymers and EVOH resin to be melt-blended in the extrusion granulation step to modify the EVOH resin. Not only can it increase the branching degree of EVOH resin and increase the frequency of radiation cross-linking of EVOH resin, it can also effectively reduce the amount of boron-containing compounds added without changing the original process, and significantly improve the forming and processing performance. and heat resistance.
  • the first aspect of this application provides a modified EVOH resin.
  • the modified EVOH resin is obtained by blending the EVOH resin with a hyperbranched polymer during the extrusion granulation process and modifying the hyperbranched polymer;
  • the hyperbranched polymer is a hyperbranched polymer obtained by reacting a hybrid compound containing boron, silicon or titanium and an organic small molecule containing hydroxyl groups.
  • the hyperbranched polymer is a hyperbranched polymer obtained by reacting a boron-containing hybrid compound and a hydroxyl-containing organic small molecule.
  • the boron-containing hybrid compound is selected from at least one of the following groups: boric acid and boric acid ester.
  • the hyperbranched polymer is a hyperbranched polymer obtained by reacting a silicon-containing hybrid compound and a hydroxyl-containing organic small molecule.
  • the silicon-containing hybrid compound is selected from at least one of the following groups: divinyldimethylsilane, triethoxyvinylsilane, and tetramethyldioxysilane.
  • the hyperbranched polymer is a hyperbranched polymer obtained by reacting a titanium-containing hybrid compound and a hydroxyl-containing organic small molecule.
  • the titanium-containing hybrid compound is titanate.
  • the melt index of the modified EVOH resin is ⁇ 4.5/g/10min, and the yellowing index is ⁇ 6.8.
  • the molar content of ethylene units in the modified EVOH resin is between 20% and 50%.
  • the mass fraction ratio of the added hyperbranched polymer and EVOH resin is (0.001-1): (50-100).
  • the mass of the added hyperbranched polymer The number of parts within the above range can be 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 or any point value within the above range.
  • the EVOH resin added The mass fraction within the above range can be 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or any point value within the above range.
  • the hyperbranched polymer is prepared by the following method:
  • Dissolve hybrid compounds containing boron, silicon or titanium in polar solvents add small organic molecules containing hydroxyl groups and catalysts, and stir thoroughly;
  • the hydroxyl-containing organic small molecule is selected from at least one of the following group: 1,2-propanediol, 1,3-propanediol, 1,3-butanediol and 1,4-propanediol.
  • the polar solvent is selected from at least one of the following group: dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, sulfolane and N-methyl Pyrrolidone.
  • the catalyst is selected from at least one of the following group: hydrochloric acid, ferric chloride, potassium hydroxide, sodium hydroxide and platinum catalyst;
  • the settling agent is selected from at least one of the following group One: n-hexane, diethyl ether and petroleum ether.
  • the mass fraction ratio of the added boron-, silicon- or titanium-containing hybrid compound, hydroxyl-containing organic small molecule, catalyst and sedimentation agent is (3-5): (3-5): 1:(50-55).
  • the second aspect of this application provides a method for preparing EVOH resin according to any of the above technical solutions, including the following steps:
  • the temperatures in the three zones of the mixing device are The temperature ranges are: 70 ⁇ 100°C, 180 ⁇ 200°C and 190 ⁇ 220°C.
  • the polyethylene-vinyl alcohol (EVOH) resin and its preparation method provided by at least one embodiment of the present application are by melt-blending hyperbranched polymers and EVOH resin in the extrusion granulation stage of the EVOH resin production process, Using hyperbranched polymers to modify EVOH resin effectively increases the frequency of radiation cross-linking of EVOH resin and the degree of branching of EVOH resin.
  • This method can effectively reduce the amount of boron-containing compounds added without changing the original EVOH resin preparation process, and significantly improve the forming processing performance and heat resistance.
  • This method has the characteristics of mild conditions, simple operation, and scalability prospects.
  • EVOH resin also known as polyethylene-vinyl alcohol resin
  • EVOH resin is generally prepared by a process known to those skilled in the art, and includes the following steps:
  • Polymerization reaction steps Mix the monomer vinyl acetate, methanol and initiator in proportion. After deaeration, the mixed liquid is input into the raw material preparation kettle. The ethylene gas enters the raw material preparation kettle in proportion through the compressor to fully dissolve the ethylene gas in vinyl acetate. In ester and methanol, set the pressure of the reactor to 3.3-4.0Mpa, adjust the temperature of the reactor to be stable at 55-65°C, and control the reaction residence time to 3-8 hours to obtain a polymerization liquid.
  • Monomer removal step Input the above obtained polymerization liquid into the decompression buffer kettle. After the residual ethylene monomer is discharged from the upper pressure reducing valve, the polymerization liquid enters the gas-liquid separator and then flows into the monomer removal tower. The bottom of the tower Methanol vapor is continuously introduced to take away the residual vinyl acetate. The vinyl acetate and methanol solvent collected at the top of the tower enter the reuse tank, and the demononization polymerization liquid is obtained at the bottom of the tower.
  • Alcoholysis reaction steps Dissolve a certain amount of catalyst and boron-containing compound in methanol, continuously inject the demonopolymerization liquid into the premixer from a centrifugal pump, and continuously add the methanol solution of catalyst and boron-containing compound in proportion, and use centrifugal
  • the pump continuously injects the polymer liquid configured in the premixer into the upper part of the alcoholysis tower and the bottom part of the alcoholysis tower.
  • Methanol vapor is continuously introduced into the tower, and the residence time of the demonomerization polymerization liquid in the tower is controlled at 30min-120min.
  • Post-processing steps After the reaction, add a certain amount of acetic acid to the alcoholysis solution to adjust the pH of the system, inject the neutralized alcoholysis solution into the precipitation kettle, add aqueous solution, stir and precipitate, filter, wash with water, filter, and dry. After drying, a polymer is obtained.
  • Extrusion granulation step Put the dried polymer and conventional additives into a mixer and mix. After mixing evenly, it goes through a twin-screw extruder, melts and circulates, and is extruded into strips and then enters the pelletizer for pelletizing.
  • the technical solution provided by this application can improve the molding processing performance and heat resistance of EVOH resin without changing the above-mentioned original preparation process of EVOH resin.
  • the specific method is to use hyperbranched polymers and EVOH resin to melt and blend in the extrusion granulation step to modify the EVOH resin, which can not only increase the branching degree of the EVOH resin but also increase the frequency of radiation cross-linking of the EVOH resin. , it can also effectively reduce the amount of boron-containing compounds added without changing the original process, and significantly improve the forming performance and heat resistance.
  • hyperbranched polymers are mixed with 100 parts of EVOH resin (ethylene molar content 38%, boron compound mass 100 ppm based on EVOH resin) and conventional additives in a blender and then added to a twin-screw extruder.
  • the three-zone temperatures are set at 100°C, 190°C and 210°C respectively. After 10 minutes of mixing and melting, the mixture is extruded and pelletized in a pelletizer to obtain a hyperbranched polymer modified EVOH resin.
  • the general preparation method of EVOH resin includes the above-mentioned polymerization reaction step, monomer removal step, alcoholysis reaction step, post-treatment step and extrusion granulation step. It is generally the same as Example 1, except that in the extrusion granulation step The hyperbranched polymer of the present application is not added to modify the EVOH resin, and the amount of boron-containing compound added in the alcoholysis reaction step is 300 ppm.
  • the general preparation method of EVOH resin includes the above-mentioned polymerization reaction step, monomer removal step, alcoholysis reaction step, post-treatment step and extrusion granulation step. It is generally the same as Example 1, except that in the extrusion granulation step The hyperbranched polymer of the present application is not added to modify the EVOH resin, and the amount of boron-containing compound added in the alcoholysis reaction step is 200 ppm.
  • the EVOH resins prepared in the above Examples 1-3 and Comparative Examples 1-2 were dried in an oven respectively. Dry for 1 hour. After taking it out, test the melt index of the material for comparison. The melt index of the material is tested according to ISO 1133 (190°C/2.16g).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本申请提供了一种改性EVOH树脂,通过EVOH树脂在挤出造粒过程中与超支化高分子共混,经由超支化高分子改性得到;其中,所述超支化高分子为由含硼、硅或钛的杂化化合物与含有羟基的有机小分子反应得到的超支化高分子。所述改性EVOH树脂不仅可增加EVOH树脂的支化度、提高EVOH树脂的辐射交联的频率,还可在不改变原有工艺的基础上,有效降低了含硼化合物的添加量,且明显地改善的成形加工性能及耐热性能。

Description

改性EVOH树脂及其制备方法
本申请要求在2022年09月15日提交中国专利局、申请号为202211120797X、发明名称为“一种改性EVOH树脂及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于树脂加工技术领域,尤其涉及一种改性EVOH树脂及其制备方法。
背景技术
EVOH(Ethylene Vinyl Alcohol Polymer)树脂通过熔融成形为膜状、片状、瓶状、杯状、管状或管,再将所得的成形品加工用于实际用途,并且在熔融成形及加工过程中必须经过长时间的高温(一般加工温度在200℃~240℃),因此EVOH树脂的成形加工性和耐热性是非常重要的性质。
CN108473746A在加温和加压下EVOH树脂与包含硼酸类化合物和碱金属盐的水溶液(处理液)接触,使EVOH树脂包含的硼酸类化合物中的硼的至少一部分为4配位结构。此过程硼3配位结构向4配位结构转化的比例较少,虽然改变硼酸类化合物的配位结构可改善EVOH树脂的成形加工性能,但需要对原有工艺的工艺条件做出改变,提高了对原有工艺条件要求,增加生产成本及安全风险。
CN1271095C通过在后处理阶段将EVOH树脂在不同比例的乙酸、磷酸二氢镁及磷酸二氢钾的混合水溶液中浸渍,在脱水干燥处理。然而此过程改善的程度有限,且改善性能单一,仅能提高耐热性能,未对偶联成分的添加量有积极影响,对成形加工性能没有改善作用。
此外,还有通过增加硼酸类化合物的用量来改善EVOH树脂的成形加工性能和耐热性能,但添加量过多或者硼酸类化合物局部化,会发生微小的鱼眼,将引起成型品的品质低下。因此,如何开发一种在不改变原有EVOH树脂制备工艺的前提下,有效改善EVOH树脂的成形加工性能及耐热性能 将显得尤为重要。
发明内容
本申请提供了一种改性EVOH树脂及其制备方法,该方法中的至少一种实施例利用超支化高分子与EVOH树脂在挤出造粒步骤中熔融共混,对EVOH树脂进行改性,不仅可增加EVOH树脂的支化度、提高EVOH树脂的辐射交联的频率,还可在不改变原有工艺的基础上,有效降低了含硼化合物的添加量,且明显地改善的成形加工性能及耐热性能。
本申请第一方面提供了一种改性EVOH树脂,所述改性EVOH树脂是通过EVOH树脂在挤出造粒过程中与超支化高分子共混,经由超支化高分子改性得到;
其中,所述超支化高分子为由含硼、硅或钛的杂化化合物与含有羟基的有机小分子反应得到的超支化高分子。
进一步,所述超支化高分子为由含硼的杂化化合物与含有羟基的有机小分子反应得到的超支化高分子。其中,含硼的杂化化合物选自以下组中的至少一种:硼酸、硼酸酯。
进一步,所述超支化高分子为由含硅的杂化化合物与含有羟基的有机小分子反应得到的超支化高分子。其中,含硅的杂化化合物选自以下组中的至少一种:二乙烯基二甲基硅烷、三乙氧基乙烯基硅烷、四甲基二氧硅烷。
进一步,所述超支化高分子为由含钛的杂化化合物与含有羟基的有机小分子反应得到的超支化高分子。其中,含钛的杂化化合物为钛酸酯。
在一种实施方式中,所述改性EVOH树脂的熔融指数≤4.5/g/10min,黄变指数≤6.8。
在一种实施方式中,所述改性EVOH树脂中乙烯单元的摩尔含量在20%-50%。
在一种实施方式中,所加入的超支化高分子与EVOH树脂的质量份数比为(0.001-1):(50-100)。
在一种实施方式中,根据实际反应需要,所加入的超支化高分子的质量 份数在上述范围内可以是0.001、0.005、0.01、0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0或上述范围内的任意点值,所加入的EVOH树脂的质量份数在上述范围内可以是55、60、65、70、75、80、85、90、95、100或上述范围内的任意点值。
在一种实施方式中,所述超支化高分子通过以下方法制备得到:
将含硼、硅或钛的杂化化合物溶解于极性溶剂中,加入含有羟基的有机小分子及催化剂,充分搅拌;
向上述反应体系中通入氮气0.5-1h后,升温至50℃-220℃进行反应6-10h;
反应结束后加入沉降剂,过滤、洗涤至滤液澄清后,真空干燥22-24h,得到超支化高分子。
在一种实施方式中,所述含有羟基的有机小分子选自以下组中的至少一种:1,2-丙二醇、1,3-丙二醇、1,3-丁二醇和1,4-丙二醇。
在一种实施方式中,所述极性溶剂选自以下组中的至少一种:二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、环丁砜和N-甲基吡咯烷酮。
在一种实施方式中,所述催化剂选自以下组中的至少一种:盐酸、三氯化铁、氢氧化钾、氢氧化钠和铂类催化剂;所述沉降剂选自以下组中的至少一种:正己烷、乙醚和石油醚。
在一种实施方式中,所加入的含硼、硅或钛的杂化化合物、含有羟基的有机小分子、催化剂和沉降剂的质量份数比为(3-5):(3-5):1:(50-55)。
本申请第二方面提供了一种根据上述任一项技术方案所述的EVOH树脂的制备方法,包括如下步骤:
在EVOH树脂生产过程中的挤出造粒阶段,将质量份数比为(0.001-1):(50-100)的超支化高分子和EVOH树脂放入搅拌机中,混合均匀后,于双螺杆挤出机熔融共混0.1-1h后挤出造粒,经真空干燥后,得到超支化高分子改性EVOH树脂。
在一种实施方式中,于双螺杆挤出机熔融共混时,混炼装置的三区的温 度范围分别为:70~100℃、180~200℃和190~220℃。
与现有技术相比,本申请的优点和积极效果在于:
本申请至少一种实施方式提供的聚乙烯-乙烯醇(EVOH)树脂及其制备方法,该方法通过将超支化高分子与EVOH树脂在EVOH树脂生产过程中的挤出造粒阶段熔融共混,利用超支化高分子对EVOH树脂进行改性,有效提高了EVOH树脂的辐射交联的频率以及EVOH树脂的支化度。该方法可在不改变原有EVOH树脂制备工艺的前提下,有效降低了含硼化合物的添加量,且明显地改善的成形加工性能及耐热性能。该方法具有条件温和,操作简单,可规模化前景的特点。
具体实施方式
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
EVOH树脂,又称聚乙烯-乙烯醇树脂,本领域技术人员已知晓其一般制备过程,包括如下步骤:
聚合反应步骤:将单体醋酸乙烯酯、甲醇和引发剂按比例混合,除氧后将混合液输入原料配制釜,乙烯气体经过压缩机按比例进入原料配制釜,使乙烯气体充分溶解于醋酸乙烯酯和甲醇中,设定反应釜压力3.3-4.0Mpa,调节反应釜温度稳定在55-65℃,控制反应停留时间在3-8h,得到聚合液。
脱单体步骤:将上述所得聚合液输入减压缓存釜内,由上部的减压阀排出残留的乙烯单体后,聚合液进入气液分离器,随后通入脱单体塔内,塔底不断通入甲醇蒸汽带走残留的醋酸乙烯脂,塔顶收集的醋酸乙烯酯和甲醇溶剂进入回用槽,塔底得到脱单聚合液。
醇解反应步骤:将一定量的催化剂和含硼化合物溶解在甲醇中,将脱单聚合液由离心泵持续注入预混器内,并按比例持续加入催化剂、含硼化合物的甲醇溶液,用离心泵将预混器内配置好的聚合液持续注入醇解塔上部,底 部持续通入甲醇蒸汽,脱单聚合液在塔内停留时间控制在30min-120min。
后处理步骤:反应结束后,将醇解液内加入一定量乙酸调节体系pH,将中和后的醇解液注入到析出釜内并加入水溶液搅拌后析出,过滤,经水洗涤,过滤,烘干后得到聚合物。
挤出造粒步骤:将烘干的聚合物及常规添加剂放入搅拌机中混合,混合均匀后,经过双螺杆挤出机,熔融循环,挤出成条后进入切粒机切粒。
本申请提供的技术方案可在不改变EVOH树脂上述原有制备工艺的前提下,提高EVOH树脂成形加工性能与耐热性能。具体方法则是在挤出造粒步骤中,利用超支化高分子与EVOH树脂熔融共混,对EVOH树脂进行改性,不仅可增加EVOH树脂的支化度、提高EVOH树脂的辐射交联的频率,还可在不改变原有工艺的基础上,有效降低了含硼化合物的添加量,且明显地改善的成形加工性能及耐热性能。
实施例1
按摩尔分数加入10份的硼酸溶解于环丁砜中,加入10份的1,2-丙二醇于和2份的盐酸,充分搅拌;向反应体系中通入氮气0.5h后,升温至220℃反应8h;反应结束后加入100份正己烷,过滤、洗涤至滤液澄清后,在真空烘箱中90℃干燥24h,得到超支化高分子。
在EVOH树脂生产过程中的挤出造粒阶段,将0.005份超支化高分子与100份EVOH树脂(乙烯摩尔含量38%,含硼化合物质量以EVOH树脂计100ppm)及常规添加剂一起放入搅拌机中混合均匀后,加入到双螺杆挤出机中,设定三区温度分别为100℃,190℃及210℃,经过混炼熔融10分钟后挤出成型,在切粒机中切粒,得到超支化高分子改性EVOH树脂。
实施例2
按摩尔分数加入10份的钛酸酯溶解于N-甲基吡咯烷酮中,加入10份的1,3-丙二醇于和2份的盐酸,充分搅拌;向反应体系中通入氮气0.8h后,升温至160℃反应8h;反应结束后加入100份正己烷,过滤、洗涤至滤液澄清后,在真空烘箱中90℃干燥20h,得到超支化高分子。
在EVOH树脂生产过程中的挤出造粒阶段,将0.01份超支化高分子与100份EVOH树脂(乙烯摩尔含量38%,含硼化合物质量以EVOH树脂计100ppm)及常规添加剂一起放入搅拌机中混合均匀后,加入到双螺杆挤出机中,设定三区温度分别为70℃,180℃及210℃,经过混炼熔融20分钟后挤出成型,在切粒机中切粒,得到超支化高分子改性EVOH树脂。
实施例3
按摩尔分数加入10份的二乙烯基二甲基硅烷溶解于二甲基亚砜中,加入10份的1,3-丁二醇和2份的铂催化剂,充分搅拌;向反应体系中通入氮气1h后,升温至50℃反应10h;反应结束后加入100份正己烷,过滤、洗涤至滤液澄清后,在真空烘箱中85℃干燥22h,得到超支化高分子。
在EVOH树脂生产过程中的挤出造粒阶段,将0.05份超支化高分子与100份EVOH树脂(乙烯摩尔含量38%,含硼化合物质量以EVOH树脂计50ppm)及常规添加剂一起放入搅拌机中混合均匀后,加入到双螺杆挤出机中,设定三区温度分别为90℃,190℃及220℃,经过混炼熔融30分钟后挤出成型,在切粒机中切粒,得到超支化高分子改性EVOH树脂。
对比例1
采用EVOH树脂的一般制备方法,包括上述的聚合反应步骤、脱单体步骤、醇解反应步骤、后处理步骤和挤出造粒步骤,大体与实施例1相同,区别在于挤出造粒步骤中不加入本申请的超支化高分子对EVOH树脂进行改性,以及醇解反应步骤中加入的含硼化合物的用量为300ppm。
对比例2
采用EVOH树脂的一般制备方法,包括上述的聚合反应步骤、脱单体步骤、醇解反应步骤、后处理步骤和挤出造粒步骤,大体与实施例1相同,区别在于挤出造粒步骤中不加入本申请的超支化高分子对EVOH树脂进行改性,以及醇解反应步骤中加入的含硼化合物的用量为200ppm。
性能测试
将上述实施例1-3及对比例1-2中制备的EVOH树脂分别在烘箱中干 燥1h,取出后,测试材料的熔融指数进行对比,其中,材料的熔融指数依据ISO 1133(190℃/2.16g)进行测试。
分别取10g上述实施例1-3及对比例1-2中制备的EVOH树脂放置于10*10*5聚四氟乙烯表面皿上,放于烘箱中,203℃烘30分钟后取出冷却,测定EVOH树脂的黄变指数进行对比,其中材料经过耐热性实验后的黄变指数依据GB/T 39822-2021进行测试。
表1 EVOH树脂改性前后的性能指标
结合表1数据可知,采用是本申请所提出的在挤出造粒步骤中,利用超支化高分子与EVOH树脂熔融共混,对EVOH树脂进行改性,不仅可增加EVOH树脂的支化度、提高EVOH树脂的辐射交联的频率,还可在不改变原有工艺的基础上,有效降低了含硼化合物的添加量,且明显地改善的成形加工性能及耐热性能,即相比于对比例1-2,实施例1-3的熔融指数和黄变指数均有了明显提升,达到了熔融指数≤4.5/g/10min,黄变指数≤6.8的优异水平。

Claims (10)

  1. 一种改性EVOH树脂,其中,所述改性EVOH树脂是通过EVOH树脂在挤出造粒过程中与超支化高分子共混,经由超支化高分子改性得到;
    其中,所述超支化高分子为由含硼、硅或钛的杂化化合物与含有羟基的有机小分子反应得到的超支化高分子。
  2. 根据权利要求1所述的改性EVOH树脂,其中,所述改性EVOH树脂的熔融指数≤4.5/g/10min,黄变指数≤6.8。
  3. 根据权利要求1所述的改性EVOH树脂,其中,所述改性EVOH树脂中乙烯单元的摩尔含量在20%-50%。
  4. 根据权利要求1-3任一项所述的改性EVOH树脂,其中,所加入的超支化高分子与EVOH树脂的质量份数比为(0.001-1):(50-100)。
  5. 根据权利要求1-4任一项所述的改性EVOH树脂,其中,所述超支化高分子通过以下方法制备得到:
    将含硼、硅或钛的杂化化合物溶解于极性溶剂中,加入含有羟基的有机小分子及催化剂,充分搅拌;
    向上述反应体系中通入氮气0.5-1h后,升温至50℃-220℃进行反应6-10h;
    反应结束后加入沉降剂,过滤、洗涤至滤液澄清后,真空干燥22-24h,得到超支化高分子。
  6. 根据权利要求5任一项所述的改性EVOH树脂,其中,所述含硼、硅或钛的杂化化合物选自以下组中的至少一种:硼酸、硼酸酯、二乙烯基二甲基硅烷、三乙氧基乙烯基硅烷、四甲基二氧硅烷和钛酸酯。
  7. 根据权利要求5任一项所述的改性EVOH树脂,其中,所述含有羟基的有机小分子选自以下组中的至少一种:1,2-丙二醇、1,3-丙二醇、1,3-丁二醇和1,4-丙二醇。
  8. 根据权利要求5所述的改性EVOH树脂,其中,所述极性溶剂选自 以下组中的至少一种:二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、环丁砜和N-甲基吡咯烷酮;
    所述催化剂选自以下组中的至少一种:盐酸、三氯化铁、氢氧化钾、氢氧化钠和铂类催化剂;所述沉降剂选自以下组中的至少一种:正己烷、乙醚和石油醚。
  9. 根据权利要求5所述的改性EVOH树脂,其中,所加入的含硼、硅或钛的杂化化合物、含有羟基的有机小分子、催化剂和沉降剂的质量份数比为(3-5):(3-5):1:(50-55)。
  10. 根据权利要求1-9任一项所述的改性EVOH树脂的制备方法,其中,包括如下步骤:
    在EVOH树脂生产过程中的挤出造粒阶段,将质量份数比为(0.001-1):(50-100)的超支化高分子和EVOH树脂放入搅拌机中,混合均匀后,于双螺杆挤出机熔融共混0.1-1h后挤出造粒,经真空干燥后,得到超支化高分子改性EVOH树脂。
PCT/CN2023/111445 2022-09-15 2023-08-07 改性evoh树脂及其制备方法 WO2024055772A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211120797.XA CN115368668B (zh) 2022-09-15 2022-09-15 一种改性evoh树脂及其制备方法
CN202211120797.X 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024055772A1 true WO2024055772A1 (zh) 2024-03-21

Family

ID=84071211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111445 WO2024055772A1 (zh) 2022-09-15 2023-08-07 改性evoh树脂及其制备方法

Country Status (2)

Country Link
CN (1) CN115368668B (zh)
WO (1) WO2024055772A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368668B (zh) * 2022-09-15 2023-07-21 山东海科创新研究院有限公司 一种改性evoh树脂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030212173A1 (en) * 2002-05-13 2003-11-13 The Procter & Gamble Company Compositions of polyolefins and hyperbranched polymers with improved tensile properties
CN101041718A (zh) * 2007-04-27 2007-09-26 西安交通大学 一种超支化硼酸酯的制备方法
CN108473746A (zh) * 2015-12-25 2018-08-31 日本合成化学工业株式会社 乙烯-乙烯基酯系共聚物皂化物组合物及其制造方法
CN114437493A (zh) * 2022-02-21 2022-05-06 广东安拓普聚合物科技有限公司 一种高导热弹性体及其制备方法
CN115368668A (zh) * 2022-09-15 2022-11-22 山东海科创新研究院有限公司 一种改性evoh树脂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336171A (ja) * 1999-05-26 2000-12-05 Mitsubishi Chemicals Corp ホール伝導性を有する超分岐高分子
CN101362820A (zh) * 2008-09-04 2009-02-11 南昌航空大学 以吡唑啉单元为核的蓝色超支化高分子电致发光材料及其制备方法
CN108264372B (zh) * 2016-12-30 2021-08-24 四川大学 高强度、低导热的a级不燃气凝胶型泡沫及其制备和应用
KR20230088777A (ko) * 2020-10-15 2023-06-20 차이나 페트로리움 앤드 케미컬 코포레이션 에틸렌-비닐 알코올 공중합체 조성물 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030212173A1 (en) * 2002-05-13 2003-11-13 The Procter & Gamble Company Compositions of polyolefins and hyperbranched polymers with improved tensile properties
CN101041718A (zh) * 2007-04-27 2007-09-26 西安交通大学 一种超支化硼酸酯的制备方法
CN108473746A (zh) * 2015-12-25 2018-08-31 日本合成化学工业株式会社 乙烯-乙烯基酯系共聚物皂化物组合物及其制造方法
CN114437493A (zh) * 2022-02-21 2022-05-06 广东安拓普聚合物科技有限公司 一种高导热弹性体及其制备方法
CN115368668A (zh) * 2022-09-15 2022-11-22 山东海科创新研究院有限公司 一种改性evoh树脂及其制备方法

Also Published As

Publication number Publication date
CN115368668B (zh) 2023-07-21
CN115368668A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2024055772A1 (zh) 改性evoh树脂及其制备方法
CN108003332B (zh) 一种易水解聚酯及其合成方法
KR101409431B1 (ko) 투명성이 우수한 폴리에스터 중합체 및 이의 제조방법
CN113667103B (zh) 一种pbat树脂的制备方法
JPS63234002A (ja) メタクリルイミド単位含有メタクリル樹脂組成物およびその製法
CN105492473B (zh) (甲基)丙烯酸系树脂
CN113956458B (zh) 高折射率、高耐热性和高耐候性的共聚碳酸酯、制备方法及其应用
CN115785626B (zh) 一种改性塑料粒子及其制备方法
CN102311516B (zh) 悬浮法制造聚氯乙烯的聚乙烯醇辅助分散剂的制备方法
CN111675904B (zh) 一种芳族砜组合物、奶瓶及其制备方法和应用
CN113512161A (zh) 磺酸盐酚醛树脂及其制备方法和应用
WO2023202616A1 (zh) 一种具有宽分子量分布的聚芳醚酮及其制备方法
CN116285284B (zh) 一种co2基生物可降解共聚物的组合物及其制备方法和应用
CN116836480A (zh) 一种阻燃型聚丙烯复合塑料及其制造工艺
CN113999394B (zh) 一种砜聚合物及其制备方法和应用
CN114149586B (zh) 一种扩链聚硫酸酯及其制备方法
CN115894923A (zh) 一种低色泽、高透明度的聚砜类树脂聚合物材料及其制备方法
CN108440693B (zh) 一种高熔融指数树脂及其制备方法
CN110272546B (zh) 一种合成聚醚砜树脂的方法
CN113583228A (zh) 一种耐高温膜用聚酯切片的合成方法
JP2018188610A (ja) ポリアリーレンスルフィド樹脂組成物の製造方法
CN113234212A (zh) 一种连续制备高品质pbat的方法及其装置
JP2010083957A (ja) ポリブチレンテレフタレートの製造方法
JP5751604B2 (ja) ポリブチレンテレフタレート樹脂の製造方法
CN110590979B (zh) 一种具有高缩醛率的pvb树脂粉的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864506

Country of ref document: EP

Kind code of ref document: A1