WO2024038846A1 - 変性スチレン系エラストマー - Google Patents

変性スチレン系エラストマー Download PDF

Info

Publication number
WO2024038846A1
WO2024038846A1 PCT/JP2023/029445 JP2023029445W WO2024038846A1 WO 2024038846 A1 WO2024038846 A1 WO 2024038846A1 JP 2023029445 W JP2023029445 W JP 2023029445W WO 2024038846 A1 WO2024038846 A1 WO 2024038846A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
styrenic elastomer
modified styrenic
formula
temperature
Prior art date
Application number
PCT/JP2023/029445
Other languages
English (en)
French (fr)
Inventor
麗 佐竹
和彦 森
茂 栗本
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2024038846A1 publication Critical patent/WO2024038846A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups

Definitions

  • the present disclosure relates to modified styrenic elastomers.
  • Styrenic elastomers composed of copolymers of aromatic vinyl compounds and conjugated diene compounds, hydrogenated products thereof, etc. are used for various purposes. It is known that styrenic elastomers are modified with maleic anhydride or the like in order to impart properties such as adhesiveness and affinity (for example, see Patent Document 1).
  • An object of the present disclosure is to provide a novel modified styrenic elastomer modified with a group having a specific structure.
  • One aspect of the present disclosure relates to the following modified styrenic elastomer.
  • X represents a monovalent organic group having a phenolic hydroxyl group, an isocyanate group, a blocked isocyanate group, a maleimide group, or a benzoxazine group, and * represents a bonding portion.
  • X represents a monovalent organic group having a phenolic hydroxyl group, an isocyanate group, a blocked isocyanate group, a maleimide group, or a benzoxazine group, and * represents a bonding portion.
  • R 1 represents an alkylene group or a single bond
  • R 2 represents an alkyl group
  • m is 0 or 1
  • n is 1 or 2
  • * represents a bonding portion.
  • R 4 represents a residue of a diisocyanate compound
  • R 5 represents a residue of a blocking agent
  • * represents a bonding portion.
  • [6] The modified styrenic elastomer according to [1] or [2] above, wherein the N-substituted succinimide group containing the maleimide group has a structure represented by the following formula (5).
  • R 6 represents a residue of a diamine compound.
  • [7] The styrenic elastomer according to [1] or [2] above, wherein the N-substituted succinimide group containing the benzoxazine group has a structure represented by the following formula (6).
  • R 7 represents an alkylene group
  • R 8 represents an alkyl group, phenyl group, or allyl group
  • * represents a bonding portion.
  • a novel modified styrenic elastomer modified with a group having a specific structure can be provided.
  • the term "process” is used not only to refer to an independent process, but also to include any process that achieves the intended effect even if it cannot be clearly distinguished from other processes. It will be done.
  • the term "layer” includes not only a structure formed on the entire surface but also a structure formed on a part of the layer when observed in a plan view.
  • a numerical range indicated using "-" indicates a range that includes the numerical values written before and after "-" as the minimum and maximum values, respectively.
  • the upper limit or lower limit of the numerical range of one step may be replaced with the upper limit or lower limit of the numerical range of another step.
  • the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples.
  • Solid content refers to nonvolatile content excluding volatile substances (water, solvent, etc.) in the resin composition. That is, the “solid content” refers to components other than the solvent that remain without being volatilized during drying of the resin composition described below, and also includes components that are liquid, starch syrup-like, or wax-like at room temperature (25° C.).
  • the modified styrenic elastomer according to this embodiment has an N-substituted succinimide group containing a phenolic hydroxyl group, an isocyanate group, a blocked isocyanate group, a maleimide group, or a benzoxazine group in its side chain.
  • the modified styrene elastomer has an N-substituted succinimide group, which makes it difficult to be hydrolyzed by moisture in the air, so it has excellent stability.
  • at least one functional group selected from the group consisting of benzoxazine and benzoxazine groups it is considered that the properties of the cured product, such as heat resistance and strength, can be improved because it has reactivity.
  • the N-substituted succinimide group can be introduced by reacting a compound having a reactive group such as an amino group or an isocyanate group with the acid anhydride group of a styrene elastomer modified with maleic anhydride.
  • the styrenic elastomer may be a copolymer having a structural unit derived from a styrene compound and a structural unit derived from a conjugated diene compound.
  • styrenic compounds examples include styrene, ⁇ -methylstyrene, p-methylstyrene, and p-tert-butylstyrene.
  • styrene examples include styrene, ⁇ -methylstyrene, p-methylstyrene, and p-tert-butylstyrene.
  • styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferred, and styrene is more preferred.
  • conjugated diene compound examples include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 1,3-pentadiene (piperylene), 1-phenyl-1,3-butadiene, and 2,3-butadiene.
  • Dimethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 3,4-dimethyl-1,3-hexadiene, and 4,5-diethyl-1,3-octadiene are mentioned.
  • 1,3-butadiene and isoprene are preferred from the viewpoint of availability and productivity.
  • the styrenic elastomer may be a hydrogenated styrenic elastomer in which at least a portion of the structural units derived from a conjugated diene compound are hydrogenated.
  • hydrogenated styrenic elastomers include hydrogenated products of styrene-butadiene-styrene block copolymers (SEBS) and hydrogenated products of styrene-isoprene-styrene block copolymers.
  • SEBS Commercial products of SEBS include, for example, the Tuftec (registered trademark) H series and M series manufactured by Asahi Kasei Corporation, the Septon (registered trademark) series manufactured by Kuraray Co., Ltd., and the Kraton (registered trademark) G manufactured by Clayton Polymer Japan Co., Ltd. Examples include polymer series.
  • Styrenic elastomer or hydrogenated styrenic elastomer modified with maleic anhydride can be produced by reacting styrene or hydrogenated styrenic elastomer with maleic anhydride. It may be produced or a commercially available product may be used.
  • Maleic anhydride-modified styrenic elastomer can be produced by, for example, adding a radical generator to a mixture of styrene elastomer and maleic anhydride dissolved in a solvent under a nitrogen atmosphere to cause the styrene elastomer to react with maleic anhydride. It can be made with The reaction temperature may be 20-150°C. After the reaction, unreacted maleic anhydride is preferably removed by extraction from the viewpoint of suppressing side reactions.
  • organic peroxides for example, organic peroxides, azo compounds, etc. can be used.
  • organic peroxides include dicumyl peroxide, benzoyl peroxide, 2-butanone peroxide, tert-butyl perbenzoate, di-tert-butyl peroxide, and 2,5-dimethyl-2,5-dimethyl peroxide.
  • the azo compound include 2,2'-azobis(2-methylpropanenitrile), 2,2'-azobis(2-methylbutanenitrile), and 1,1'-azobis(cyclohexanecarbonitrile).
  • the solvent examples include butyl cellosolve, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, toluene, xylene, mesitylene, methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, and ethyl acetate. . These may be used alone or in combination of two or more. Among these, toluene, xylene, and propylene glycol monomethyl ether are preferred from the viewpoint of solubility.
  • the N-substituted succinimide group may be a group having a structure represented by the following formula (1).
  • X represents a monovalent organic group having a phenolic hydroxyl group, an isocyanate group, a blocked isocyanate group, a maleimide group, or a benzoxazine group, and * represents a bonding portion.
  • the N-substituted succinimide group containing a phenolic hydroxyl group may be a group having a structure represented by the following formula (2).
  • R 1 represents an alkylene group or a single bond
  • R 2 represents an alkyl group
  • m is 0 or 1
  • n is 1 or 2
  • * represents a bonding portion.
  • Examples of the alkylene group for R 1 include a methylene group, an ethylene group, and a propylene group.
  • Examples of the alkyl group for R 2 include a methyl group, an ethyl group, and a propyl group.
  • a modified styrenic elastomer having an N-substituted succinimide group containing a phenolic hydroxyl group in its side chain (hereinafter referred to as "phenolic hydroxyl group-containing succinimide-modified styrenic elastomer”) is a combination of a maleic anhydride-modified styrenic elastomer and a phenolic styrene elastomer. It may be a reaction product with an amine compound having a hydroxyl group. Examples of amine compounds having a phenolic hydroxyl group include tyramine, dopamine, 4-aminophenol, and 5-amino-o-cresol.
  • the N-substituted succinimide group containing an isocyanate group may be a group having a structure represented by the following formula (3).
  • R 3 represents an aliphatic hydrocarbon group, a hydrocarbon group having an aromatic ring, or an organic group having a urethane bond, and * represents a bonding portion.
  • a modified styrenic elastomer having an N-substituted succinimide group containing an isocyanate group in its side chain is a combination of a maleic anhydride-modified styrenic elastomer and a diisocyanate compound. It may be a reaction product, or a reaction product of a maleic anhydride-modified styrenic elastomer, an amine compound having an alcoholic hydroxyl group, and a diisocyanate compound.
  • diisocyanate compound examples include diphenylmethane diisocyanate, toluene diisocyanate, hexamethylene diisocyanate, and hexamethylene diisocyanate having a urethane bond.
  • amine compound having an alcoholic hydroxyl group is hydroxyethylamine.
  • the N-substituted succinimide group containing a blocked isocyanate group may be a group having a structure represented by the following formula (4).
  • R 4 represents a residue of a diisocyanate compound
  • R 5 represents a residue of a blocking agent
  • * represents a bonding portion.
  • residue refers to the structure of a portion of a raw material component from which a functional group provided for bonding has been removed.
  • a modified styrenic elastomer having an N-substituted succinimide group containing a blocked isocyanate group in its side chain (hereinafter referred to as "succinimide-modified styrenic elastomer containing a blocked isocyanate group”) is an isocyanate of the above-mentioned isocyanate group-containing succinimide-modified styrenic elastomer. The group is protected with a blocking agent.
  • blocking agent compounds generally known as blocking agents for isocyanate groups can be used.
  • blocking agents include methanol, methyl ethyl ketone oxime, and dimethyl pyrazole.
  • the N-substituted succinimide group containing a maleimide group may be a group having a structure represented by the following formula (5).
  • R 6 represents a residue of a diamine compound.
  • a modified styrenic elastomer having an N-substituted succinimide group containing a maleimide group in its side chain (hereinafter referred to as "succinimide-modified styrenic elastomer containing a maleimide group”) comprises a maleic anhydride-modified styrenic elastomer, a diamine compound, It may be a reaction product with maleic anhydride.
  • diamine compounds include aliphatic diamines such as polyoxypropylene diamine; and 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, and 3,3'-diaminodiphenyl.
  • the N-substituted succinimide group containing a benzoxazine group may be a group having a structure represented by the following formula (6).
  • R 7 represents an alkylene group
  • R 8 represents an alkyl group, phenyl group, or allyl group
  • * represents a bonding portion.
  • R 8 is the residue of a monoamine compound. good.
  • a modified styrenic elastomer having an N-substituted succinimide group containing a benzoxazine group in its side chain (hereinafter referred to as "benzoxazine group-containing succinimide-modified styrenic elastomer”) is the same as the above-mentioned phenolic hydroxyl group-containing succinimide-modified styrenic elastomer. , a reaction product of paraformaldehyde and a monoamine compound.
  • monoamine compounds include aromatic amines such as aniline, and aliphatic amines such as allylamine.
  • a resin composition can be produced by mixing the modified styrenic elastomer according to this embodiment with other components (for example, a thermosetting resin, a curing accelerator, a filler, a flame retardant, etc.).
  • the modified styrenic elastomer according to the present embodiment has reactivity with thermosetting resins, and the cured product of the resin composition has excellent heat resistance, strength, and the like.
  • thermosetting resin examples include epoxy resin, cyanate ester resin, acrylic resin, silicone resin, phenol resin, maleimide resin, thermosetting polyimide resin, polyurethane resin, melamine resin, and urea resin. These can be used alone or in combination of two or more.
  • epoxy resin examples include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac epoxy resin, cresol novolak epoxy resin, Bisphenol A novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolac type epoxy resin, naphthalene skeleton-containing epoxy resin such as naphthol aralkyl type epoxy resin, difunctional biphenyl type epoxy resin, biphenylaralkyl type epoxy resin, dicyclopentadiene type Examples include epoxy resins and dihydroanthracene type epoxy resins.
  • curing accelerator examples include various imidazole compounds that are latent thermosetting agents, BF 3 amine complexes, phosphorus curing accelerators, and the like.
  • imidazole compounds and phosphorus curing accelerators are preferred from the viewpoints of storage stability of the resin composition, handleability of the semi-cured resin composition, and soldering heat resistance of the cured product.
  • fillers examples include silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, aluminum silicate, and calcium carbonate. , calcium silicate, magnesium silicate, silicon nitride, boron nitride, calcined clay, talc, aluminum borate, and silicon carbide. These may be used alone or in combination of two or more.
  • the particle size of the filler may be, for example, 0.01 to 20 ⁇ m or 0.1 to 10 ⁇ m.
  • the particle size refers to the average particle size, and refers to the particle size at a point corresponding to 50% of the volume when a cumulative frequency distribution curve based on the particle size is determined with the total volume of the particles as 100%.
  • the average particle size can be measured using a particle size distribution measuring device using a laser diffraction scattering method.
  • a coupling agent can be used in combination for the purpose of improving filler dispersibility and adhesion with organic components.
  • the coupling agent is not particularly limited, and for example, various silane coupling agents, titanate coupling agents, etc. can be used. These may be used alone or in combination of two or more.
  • the amount of the coupling agent used is not particularly limited, and may be, for example, 0.1 to 5 parts by weight or 0.5 to 3 parts by weight based on 100 parts by weight of the filler used. Within this range, there will be little deterioration in various properties, and it will be easier to effectively exhibit the features achieved by using the filler.
  • a so-called integral blend processing method may be used, in which the filler is blended into the resin composition and then the coupling agent is added.
  • a method using a surface-treated filler is preferred. By using this method, the characteristics of the filler described above can be expressed more effectively.
  • the flame retardant is not particularly limited, but brominated flame retardants, phosphorus flame retardants, metal hydroxides, and the like are preferably used.
  • the brominated flame retardant include brominated epoxy resins, brominated additive flame retardants, and brominated flame retardants containing unsaturated double bond groups.
  • the phosphorus flame retardant include aromatic phosphate esters, phosphonic esters, phosphinic esters, phosphazene compounds, and the like.
  • metal hydroxide flame retardants include magnesium hydroxide, aluminum hydroxide, and the like.
  • the resin composition may be diluted with a solvent if necessary.
  • the solvent is not particularly limited, but can be determined by considering volatility during film formation, etc. from the boiling point.
  • Examples of the solvent include relatively low boiling point solvents such as methanol, ethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, toluene, and xylene.
  • One kind of solvent can be used alone or two or more kinds can be used in combination.
  • the resin composition of this embodiment can be obtained by uniformly dispersing and mixing the above-mentioned components, and the preparation means, conditions, etc. are not particularly limited. For example, after stirring and mixing a predetermined amount of various ingredients sufficiently uniformly using a mixer, etc., kneading them using a mixing roll, extruder, kneader, roll, extruder, etc., and then cooling and mixing the resulting kneaded product. An example is a method of pulverizing. Note that the kneading format is not particularly limited either.
  • a resin film can be produced using the resin composition according to this embodiment. Note that the resin film refers to an uncured or semi-cured film-like resin composition.
  • the method for producing the resin film is not limited, but it can be obtained, for example, by applying a resin composition onto a supporting base material and drying the formed resin layer. Specifically, after applying the resin composition onto a supporting substrate using a kiss coater, roll coater, comma coater, etc., the resin composition is heated at a temperature of, for example, 70 to 250°C, preferably 70 to 200°C, in a heating drying oven or the like. It may be dried for 1 to 30 minutes, preferably for 3 to 15 minutes. Thereby, a resin film in which the resin composition is semi-cured can be obtained.
  • the resin film can be thermally cured by further heating the semi-cured resin film in a heating furnace, for example, at a temperature of 170 to 250°C, preferably 185 to 230°C, for 60 to 150 minutes.
  • the thickness of the resin film according to this embodiment is not particularly limited, but is preferably 1 to 200 ⁇ m, more preferably 2 to 180 ⁇ m, and even more preferably 3 to 150 ⁇ m. By setting the thickness of the resin film within the above range, it is easy to make the printed wiring board obtained using the resin film according to this embodiment both thinner and have good high frequency characteristics.
  • the supporting base material is not particularly limited, but is preferably at least one selected from the group consisting of glass, metal foil, and PET film.
  • the resin film according to this embodiment can take the form of a support with a resin layer, which includes a resin layer containing the resin composition according to this embodiment and a support base material, and when used, the resin film has a support base material. It may be peeled off from the base material.
  • a prepreg can be produced using the resin composition according to this embodiment.
  • a prepreg can be obtained by applying the resin composition according to this embodiment to a fiber base material that is a reinforcing base material and drying the applied resin composition. Further, the prepreg may be obtained by impregnating a fiber base material with the resin composition according to the present embodiment and then drying the impregnated resin composition. Specifically, the fiber base material to which the resin composition is attached is heated and dried in a drying oven at a temperature of 80 to 200°C for 1 to 30 minutes to obtain a prepreg to which the resin composition is semi-cured. It will be done. From the viewpoint of good moldability, it is preferable to apply or impregnate the fiber base material so that the amount of the resin composition adhered to the fiber base material is 30 to 90% by mass as the resin content in the prepreg after drying.
  • the reinforcing base material for the prepreg is not limited, but a sheet-like fiber base material is preferred.
  • the sheet-like fiber base material include inorganic fibers such as E glass, NE glass, S glass, and Q glass; organic fibers such as polyimide, polyester, and tetrafluoroethylene.
  • the sheet-like fiber base material those having shapes such as woven fabric, non-woven fabric, chopped strand mat, etc. can be used.
  • laminate board it is possible to provide a laminate having a resin layer containing a cured product of the above-described resin composition and a conductor layer.
  • a metal-clad laminate can be manufactured using the resin film or the prepreg.
  • the method for manufacturing the metal-clad laminate is not limited, but for example, one or more resin films or prepregs according to the present embodiment are stacked, a metal foil serving as a conductive layer is arranged on at least one surface, and By heating and pressurizing at a temperature of 250° C., preferably 185 to 230° C., and a pressure of 0.5 to 5.0 MPa for 60 to 150 minutes, a metal foil is formed on at least one surface of the resin layer or prepreg that will become an insulating layer. A metal-clad laminate with the following properties is obtained.
  • Heating and pressurization can be carried out, for example, at a vacuum degree of 10 kPa or less, preferably 5 kPa or less, and from the viewpoint of increasing efficiency, it is preferable to carry out in vacuum. Heating and pressurization are preferably carried out for 30 minutes from the start until the end of molding.
  • Multilayer printed wiring board it is possible to provide a multilayer printed wiring board including a resin layer containing a cured product of the above-described resin composition and a circuit layer.
  • the upper limit of the number of circuit layers is not particularly limited, and may be 3 to 20 layers.
  • a multilayer printed wiring board can also be manufactured using, for example, the above resin film, prepreg, or metal-clad laminate.
  • the method for manufacturing a multilayer printed wiring board is not particularly limited, but for example, first, a resin film is placed on one or both sides of a core board on which a circuit has been formed, or a resin film is placed between a plurality of core boards. After arranging and adhering each layer by pressure and heat lamination molding, or pressure and heat press molding, perform circuit formation processing by laser drilling, drilling, metal plating, metal etching, etc. With this, a multilayer printed wiring board can be manufactured. If the resin film has a support base material, the support base material may be peeled off before the resin film is placed on or between the core substrates, or after the resin layer is attached to the core substrate. Can be peeled off.
  • Example A-1 150 g of a maleic anhydride-modified hydrogenated styrenic thermoplastic elastomer (manufactured by Asahi Kasei Corporation, trade name "Tuftec M1913”) and 656 g of toluene were placed in a 1 L flask, and the temperature was raised to 80° C. in about 0.5 hours while stirring. , and kept warm for 1 hour to dissolve "Tuftec M1913".
  • the FT-IR spectrum of (A-1) was measured using an FT-IR spectrum (manufactured by Shimadzu Corporation, trade name "IRSpirit”), and the peak derived from the acid anhydride group around 1780 cm -1 disappeared. , it was confirmed that there was a peak derived from the imide group around 1700 cm ⁇ 1 .
  • Example A-2 150 g of "Tuftec M1913" and 636 g of toluene were charged into a 1 L flask, and the temperature was raised to 80° C. in about 0.5 hours while stirring, and then kept warm for 1 hour to dissolve "Tuftec M1913". Next, the temperature was lowered to 40° C., and a solution of 5.0 g of dopamine (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) dissolved in 95.0 g of PGME was added dropwise. Thereafter, the temperature was raised to 60° C. over about 0.5 hours while stirring, and then the temperature was kept for 1 hour. Further, the temperature was raised to 110° C.
  • dopamine manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • Example B-1 150 g of "Tuftec M1913" and 656 g of xylene were placed in a 1 L flask, and the temperature was raised to 80° C. in about 0.5 hours while stirring, and then kept warm for 1 hour to dissolve "Tuftec M1913". Next, the temperature was lowered to 40° C., and a solution of 3.6 g of diphenylmethane diisocyanate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) dissolved in 68.4 g of xylene was added dropwise. Thereafter, the temperature was raised to 60° C. over about 0.5 hours while stirring, and then the temperature was kept for 1 hour. Further, the temperature was raised to 135° C.
  • Example B-2 150 g of "Tuftec M1913" and 607 g of xylene were charged into a 1 L flask, and the temperature was raised to 80° C. over about 0.5 hours while stirring, and then kept warm for 1 hour to dissolve "Tuftec M1913". Next, the temperature was lowered to 40° C., and a solution of 7.0 g of hexamethylene-type diisocyanate having a urethane bond (manufactured by Asahi Kasei Corporation, trade name “Duranate D101”) dissolved in 133 g of xylene was added dropwise. Thereafter, the temperature was raised to 60° C. over about 0.5 hours while stirring, and then the temperature was kept for 1 hour.
  • 7.0 g of hexamethylene-type diisocyanate having a urethane bond manufactured by Asahi Kasei Corporation, trade name “Duranate D101”
  • the temperature was raised to 135° C. in about 1 hour, and then kept at the temperature for 2 hours while circulating nitrogen to obtain a toluene solution of the isocyanate group-containing succinimide-modified styrene elastomer (B-2).
  • the FT-IR spectrum of (B-2) was measured, and the peak derived from the acid anhydride group around 1780 cm ⁇ 1 disappeared, the peak derived from the imide group around 1700 cm ⁇ 1 , and the isocyanate group around 2260 cm ⁇ 1 It was confirmed that there was a peak derived from the group.
  • Example B-3 150 g of "Tuftec M1913" and 679 g of toluene were charged into a 1 L flask, and the temperature was raised to 80° C. in about 0.5 hours while stirring, and then kept warm for 1 hour to dissolve "Tuftec M1913". Then, the temperature was lowered to 40°C, and a solution of 2.0 g of ethanolamine dissolved in 38 g of PGME was added dropwise. Thereafter, the temperature was raised to 60° C. over about 0.5 hours while stirring, and then the temperature was kept for 1 hour. Further, the temperature was raised to 110° C.
  • Example B-4 To a toluene solution of a succinimide-modified styrenic elastomer having an ethanolic hydroxyl group, 10.3g of "Duranate D101" was added and reacted at 90°C for 2 hours to obtain a succinimide-modified styrenic elastomer (B-4) having an isocyanate group and a urethane bond. ) was obtained.
  • Example C-1 To the toluene solution of (B-1) above, 0.1 g of methanol (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added and reacted at 90°C for 2 hours to create a succinimide-modified styrene elastomer (C-1) having blocked isocyanate groups. ) was obtained. The FT-IR spectrum of (C-1) was measured, and it was confirmed that the peak derived from the isocyanate group around 2260 cm ⁇ 1 had disappeared.
  • methanol manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • Example C-2 Blocked isocyanate group-containing succinimide-modified styrenic elastomer (C-2) was prepared in the same manner as (C-1) except that 0.1 g of methanol was changed to 0.2 g of methyl ethyl ketone oxime (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). A toluene solution of was obtained. The FT-IR spectrum of (C-2) was measured, and it was confirmed that the peak derived from the isocyanate group around 2260 cm ⁇ 1 had disappeared.
  • Example C-3 Blocked isocyanate group-containing succinimide-modified styrenic elastomer (C-3) was prepared in the same manner as (C-1) except that 0.1 g of methanol was changed to 0.2 g of dimethyl pyrazole (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). A toluene solution of was obtained. The FT-IR spectrum of (C-3) was measured, and it was confirmed that the peak derived from the isocyanate group around 2260 cm ⁇ 1 had disappeared.
  • Example D-1 688 g of toluene and 150 g of "Tuftec M1913" were put into a 1 L flask equipped with a cooling tube, a nitrogen introduction tube, a thermocouple, and a stirrer, and the mixture was heated to 80° C. and dissolved for 1.0 hour while stirring. .
  • the temperature inside the flask was lowered to 30°C, and a solution of 9.3 g of 2,2-bis(4-aminophenyl)hexafluoropropane (manufactured by Tokyo Kasei Kogyo Co., Ltd.) dissolved in 9.3 g of toluene was added dropwise. Stirred for .0 hour.
  • Example D-2 722 g of toluene and 150 g of "Tuftec M1913" were put into a 1 L flask equipped with a cooling tube, nitrogen introduction tube, thermocouple, and stirrer, heated to 80° C., and dissolved for 1.0 hour with stirring. .
  • the temperature inside the flask was lowered to 30° C., and a solution of 6.6 g of polyoxypropylene diamine (manufactured by Huntsman, trade name “Jeffermine D230”) dissolved in 6.6 g of toluene was added dropwise and stirred for 1.0 hour. Thereafter, 2.8 g of maleic anhydride was added, and the mixture was kept warm for an additional 1.0 hour.
  • 6.6 g of polyoxypropylene diamine manufactured by Huntsman, trade name “Jeffermine D230”
  • Example D-3 692 g of toluene and 150 g of "Tuftec M1913" were put into a 1 L flask equipped with a cooling tube, a nitrogen introduction tube, a thermocouple, and a stirrer, the temperature was raised to 80 ° C., and the mixture was dissolved for 1.0 hour while stirring. . Next, the temperature inside the flask was lowered to 30° C., and a solution of 5.5 g of 4,4-methylene dianiline (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 5.5 g of toluene was added dropwise and stirred for 1.0 hour.
  • 4,4-methylene dianiline manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example D-4 692 g of toluene and 150 g of "Tuftec M1913" were put into a 1 L flask equipped with a cooling tube, a nitrogen introduction tube, a thermocouple, and a stirrer, the temperature was raised to 80 ° C., and the mixture was dissolved for 1.0 hour while stirring. . Next, the temperature inside the flask was lowered to 30° C., and a solution of 5.6 g of 4,4'-diaminodiphenyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 5.6 g of toluene was added dropwise and stirred for 1.0 hour.
  • 4,4'-diaminodiphenyl ether manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example E-1 672 g of toluene and 150 g of "Tuftec M1913" were put into a 1 L glass container equipped with a cooling tube, a nitrogen introduction tube, a thermocouple, and a stirrer, and the mixture was heated to 80° C. and dissolved for 1.0 hour while stirring. . Thereafter, the temperature inside the flask system was lowered to 40° C., and a solution of 3.8 g of tyramine dissolved in 72.2 g of PGME was added dropwise. Thereafter, the temperature was raised to 60° C. over about 0.5 hours while stirring, and then the temperature was kept for 1 hour. Further, the temperature was raised to 110° C.
  • Example E-2 A toluene solution of a benzoxazine group-containing succinimide-modified styrenic elastomer (E-2) was prepared in the same manner as in (E-1) except that 2.6 g of aniline was changed to 1.6 g of allylamine (manufactured by Tokyo Kasei Kogyo Co., Ltd.). I got it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本開示の一態様は、フェノール性水酸基、イソシアネート基、ブロックイソシアネート基、マレイミド基、又はベンゾオキサジン基を含むN-置換スクシイミド基を側鎖に有する、変性スチレン系エラストマーに関する。

Description

変性スチレン系エラストマー
 本開示は、変性スチレン系エラストマーに関する。
 芳香族ビニル化合物と共役ジエン化合物との共重合体、その水素添加物等から構成されるスチレン系エラストマーは、様々な用途に用いられている。接着性、親和性等の特性を付与するために、スチレン系エラストマーを無水マレイン酸等で変性することが知られている(例えば、特許文献1参照)。
特開2013-028761号公報
 本開示は、特定の構造を有する基で変性された新規な変性スチレン系エラストマーを提供することを目的とする。
 本開示の一態様は、以下の変性スチレン系エラストマーに関する。
[1]フェノール性水酸基、イソシアネート基、ブロックイソシアネート基、マレイミド基、又はベンゾオキサジン基を含むN-置換スクシンイミド基を側鎖に有する、変性スチレン系エラストマー。
[2]前記N-置換スクシイミド基が、下記式(1)で表される構造を有する、上記[1]に記載の変性スチレン系エラストマー。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、Xはフェノール性水酸基、イソシアネート基、ブロックイソシアネート基、マレイミド基、又はベンゾオキサジン基を有する1価の有機基を示し、*は結合部を示す。]
[3]前記フェノール性水酸基を含むN-置換スクシンイミド基が、下記式(2)で表される構造を有する、上記[1]又は[2]に記載の変性スチレン系エラストマー。
Figure JPOXMLDOC01-appb-C000008
[式(2)中、Rはアルキレン基又は単結合を示し、Rはアルキル基を示し、mは0又は1であり、nは1又は2であり、*は結合部を示す。]
[4]前記イソシアネート基を含むN-置換スクシンイミド基が、下記式(3)で表される構造を有する、上記[1]又は[2]に記載の変性スチレン系エラストマー。
Figure JPOXMLDOC01-appb-C000009
[式(3)中、Rは脂肪族炭化水素基、芳香環を有する炭化水素基、又はウレタン結合を有する有機基を示し、*は結合部を示す。]
[5]前記ブロックイソシアネート基を含むN-置換スクシンイミド基が、下記式(4)で表される構造を有する、上記[1]又は[2]に記載の変性スチレン系エラストマー。
Figure JPOXMLDOC01-appb-C000010
[式(4)中、Rはジイソシアネート化合物の残基を示し、Rはブロック剤の残基を示し、*は結合部を示す。]
[6]前記マレイミド基を含むN-置換スクシンイミド基が、下記式(5)で表される構造を有する、上記[1]又は[2]に記載の変性スチレン系エラストマー。
Figure JPOXMLDOC01-appb-C000011
[式(5)中、Rはジアミン化合物の残基を示す。]
[7]前記ベンゾオキサジン基を含むN-置換スクシンイミド基が、下記式(6)で表される構造を有する、上記[1]又は[2]に記載のスチレン系エラストマー。
Figure JPOXMLDOC01-appb-C000012
[式(6)中、Rはアルキレン基を示し、Rはアルキル基、フェニル基、又はアリル基を示し、*は結合部を示す。]
 本開示によれば、特定の構造を有する基で変性された新規な変性スチレン系エラストマーを提供することができる。
 以下、本開示の好適な実施形態について詳細に説明する。ただし、本開示は以下の実施形態に限定されない。本明細書において、「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。本明細書において、「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。「固形分」とは、樹脂組成物において、揮発する物質(水、溶剤等)を除いた不揮発分を指す。すなわち、「固形分」とは、後述する樹脂組成物の乾燥において揮発せずに残る溶剤以外の成分を指し、室温(25℃)で液状、水飴状又はワックス状の成分も含む。
[変性スチレン系エラストマー)
 本実施形態に係る変性スチレン系エラストマーは、フェノール性水酸基、イソシアネート基、ブロックイソシアネート基、マレイミド基、又はベンゾオキサジン基を含むN-置換スクシンイミド基を側鎖に有している。該変性スチレン系エラストマーは、N-置換スクシンイミド基を有することで、空気中の水分等により加水分解され難いため、安定性に優れ、また、フェノール性水酸基、イソシアネート基、ブロックイソシアネート基、マレイミド基、及びベンゾオキサジン基からなる群より選ばれる少なくとも1種の官能基を含むことで、反応性を有するため、硬化物の耐熱性、強度等の特性を向上できると考えられる。
 N-置換スクシンイミド基は、無水マレイン酸で変性されたスチレン系エラストマーの酸無水物基に対して、アミノ基、イソシアネート基等の反応性基を有する化合物を反応させることで導入することができる。スチレン系エラストマーは、スチレン系化合物に由来する構造単位と、共役ジエン化合物に由来する構造単位とを有する共重合体であってよい。
 スチレン系化合物としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、及びp-tert-ブチルスチレンが挙げられる。これらの中でも、入手性及び生産性の観点から、スチレン、α-メチルスチレン、及び4-メチルスチレンが好ましく、スチレンがより好ましい。
 共役ジエン化合物としては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、1,3-ペンタジエン(ピペリレン)、1-フェニル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-メチル-1,3-ペンタジエン、3,4-ジメチル-1,3-ヘキサジエン、及び4,5-ジエチル-1,3-オクタジエンが挙げられる。これらの中でも、入手性及び生産性の観点から、1,3-ブタジエン及びイソプレンが好ましい。
 スチレン系エラストマーは、共役ジエン化合物に由来する構造単位の少なくとも一部が水添された水添スチレン系エラストマーであってもよい。水添スチレン系エラストマーとしては、例えば、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物(SEBS)及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物が挙げられる。SEBSの市販品としては、例えば、旭化成株式会社製のタフテック(登録商標)Hシリーズ、Mシリーズ、株式会社クラレ製のセプトン(登録商標)シリーズ、クレイトンポリマージャパン株式会社製のクレイトン(登録商標)Gポリマーシリーズ等が挙げられる。
 無水マレイン酸で変性されたスチレン系エラストマー又は水添スチレン系エラストマー(以下、「無水マレイン酸変性スチレン系エラストマー」という。)は、スチレン系又は水添スチレン系エラストマーに無水マレイン酸を反応させることで作製してもよいし、市販品を用いてもよい。
 無水マレイン酸変性スチレン系エラストマーは、例えば、スチレン系エラストマー及び無水マレイン酸を溶剤に溶解した混合液に、窒素雰囲気下でラジカル発生剤を添加して、スチレン系エラストマーに無水マレイン酸を反応させることで作製することができる。反応温度は、20~150℃であってよい。反応後は、副反応を抑制する観点から、未反応の無水マレイン酸を抽出により除去することが好ましい。
 ラジカル発生剤としては、例えば、有機過酸化物、アゾ化合物等を用いることができる。有機過酸化物としては、例えば、ジクミルパーオキサイド、ベンゾイルパーオキサイド、2-ブタノンパーオキサイド、tert-ブチルパーベンゾエイト、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、及びtert-ブチルヒドロパーオキシドが挙げられる。アゾ化合物としては、例えば、2,2’-アゾビス(2-メチルプロパンニトリル)、2,2’-アゾビス(2-メチルブタンニトリル)、及び1,1’-アゾビス(シクロヘキサンカルボニトリル)が挙げられる。
 溶剤としては、例えば、ブチルセロソルブ、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、トルエン、キシレン、メシチレン、メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、及び酢酸エチルが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらの中でも、溶解性の観点から、トルエン、キシレン、及びプロピレングリコールモノメチルエーテルが好ましい。
 N-置換スクシイミド基は、下記式(1)で表される構造を有する基であってもよい。
Figure JPOXMLDOC01-appb-C000013
 式(1)中、Xはフェノール性水酸基、イソシアネート基、ブロックイソシアネート基、マレイミド基、又はベンゾオキサジン基を有する1価の有機基を示し、*は結合部を示す。
 フェノール性水酸基を含むN-置換スクシンイミド基は、下記式(2)で表される構造を有する基であってもよい。
Figure JPOXMLDOC01-appb-C000014
 式(2)中、Rはアルキレン基又は単結合を示し、Rはアルキル基を示し、mは0又は1であり、nは1又は2であり、*は結合部を示す。Rのアルキレン基としては、例えば、メチレン基、エチレン基、及びプロピレン基が挙げられる。Rのアルキル基としては、例えば、メチル基、エチル基、及びプロピル基が挙げられる。
 フェノール性水酸基を含むN-置換スクシンイミド基を側鎖に有する変性スチレン系エラストマー(以下、「フェノール性水酸基含有スクシイミド変性スチレン系エラストマー。」という。)は、無水マレイン酸変性スチレン系エラストマーと、フェノール性水酸基を有するアミン化合物との反応物であってよい。フェノール水酸基を有するアミン化合物としては、例えば、チラミン、ドーパミン、4-アミノフェノール、及び5-アミノ-o-クレゾールが挙げられる。
 イソシアネート基を含むN-置換スクシンイミド基は、下記式(3)で表される構造を有する基であってもよい。
Figure JPOXMLDOC01-appb-C000015
 式(3)中、Rは脂肪族炭化水素基、芳香環を有する炭化水素基、又はウレタン結合を有する有機基を示し、*は結合部を示す。
 イソシアネート基を含むN-置換スクシンイミド基を側鎖に有する変性スチレン系エラストマー(以下、「イソシアネート基含有スクシイミド変性スチレン系エラストマー。」という。)は、無水マレイン酸変性スチレン系エラストマーと、ジイソシアネート化合物との反応物、又は、無水マレイン酸変性スチレン系エラストマーと、アルコール性水酸基を有するアミン化合物と、ジイソシアネート化合物との反応物であってよい。
 ジイソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート、トルエンジイソシアネート、ヘキサメチレンジイソシアネート、及びウレタン結合を有するヘキサメチレン型ジイソシアネートが挙げられる。アルコール性水酸基を有するアミン化合物としては、例えば、ヒドロキシエチルアミンが挙げられる。
 ブロックイソシアネート基を含むN-置換スクシンイミド基が、下記式(4)で表される構造を有する基であってもよい。
Figure JPOXMLDOC01-appb-C000016
 式(4)中、Rはジイソシアネート化合物の残基を示し、Rはブロック剤の残基を示し、*は結合部を示す。なお、残基とは、原料成分から結合に供された官能基を除いた部分の構造をいう。
 ブロックイソシアネート基を含むN-置換スクシンイミド基を側鎖に有する変性スチレン系エラストマー(以下、「ブロックイソシアネート基含有スクシイミド変性スチレン系エラストマー。」という。)は、上記イソシアネート基含有スクシンイミド変性スチレン系エラストマーのイソシアネート基が、ブロック剤で保護されている。
 ブロック剤として、一般にイソシアネート基のブロック剤として知られている化合物を用いることができる。ブロック剤としては、例えば、メタノール、メチルエチルケトンオキシム、及びジメチルピラゾールが挙げられる。
 マレイミド基を含むN-置換スクシンイミド基は、下記式(5)で表される構造を有する基であってもよい。
Figure JPOXMLDOC01-appb-C000017
 式(5)中、Rはジアミン化合物の残基を示す。
 マレイミド基を含むN-置換スクシンイミド基を側鎖に有する変性スチレン系エラストマー(以下、「マレイミド基含有スクシイミド変性スチレン系エラストマー。」という。)は、無水マレイン酸変性スチレン系エラストマーと、ジアミン化合物と、無水マレイン酸との反応物であってよい。
 ジアミン化合物としては、例えば、ポリオキシプロピレンジアミン等の脂肪族ジアミン;及び4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルケトン、4,4’-ジアミノビフェニル、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)フルオレン等の芳香族ジアミンが挙げられる。
 ベンゾオキサジン基を含むN-置換スクシンイミド基は、下記式(6)で表される構造を有する基であってもよい。
Figure JPOXMLDOC01-appb-C000018
 式(6)中、Rはアルキレン基を示し、Rはアルキル基、フェニル基、又はアリル基を示し、*は結合部を示す。Rはモノアミン化合物の残基である。
よい。
 ベンゾオキサジン基を含むN-置換スクシンイミド基を側鎖に有する変性スチレン系エラストマー(以下、「ベンゾオキサジン基含有スクシイミド変性スチレン系エラストマー。」という。)は、上記フェノール性水酸基含有スクシンイミド変性スチレン系エラストマーと、パラホルムアルデヒドと、モノアミン化合物との反応物であってもよい。
 モノアミン化合物としては、例えば、アニリン等の芳香族アミン、及びアリルアミン等の脂肪族アミンが挙げられる。
[樹脂組成物]
 本実施形態に係る変性スチレン系エラストマーと、他の成分(例えば、熱硬化性樹脂、硬化促進剤、フィラー、難燃剤等)とを混合して、樹脂組成物を作製することができる。本実施形態に係る変性スチレン系エラストマーは、熱硬化性樹脂に対する反応性を有しており、該樹脂組成物の硬化物は、耐熱性、強度等に優れている。
(熱硬化性樹脂)
 熱硬化性樹脂としては、例えば、エポキシ樹脂、シアネートエステル樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、マレイミド樹脂、熱硬化型ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂、及びユリア樹脂が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等のナフタレン骨格含有型エポキシ樹脂、2官能ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、及びジヒドロアントラセン型エポキシ樹脂が挙げられる。
(硬化促進剤)
 硬化促進剤としては、例えば、潜在性の熱硬化剤である各種イミダゾール化合物、BFアミン錯体、リン系硬化促進剤等が挙げられる。硬化促進剤を配合する場合、樹脂組成物の保存安定性、半硬化の樹脂組成物の取扱性、及び硬化物のはんだ耐熱性の観点から、イミダゾール化合物及びリン系硬化促進剤が好ましい。
(フィラー)
 フィラーとしては、例えば、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、焼成クレー、タルク、ホウ酸アルミニウム、及び炭化ケイ素が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。
 フィラーの形状及び粒径についても特に制限はない。フィラーの粒径は、例えば、0.01~20μmであっても、0.1~10μmであってもよい。ここで、粒径とは、平均粒子径を指し、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、体積50%に相当する点の粒子径のことである。平均粒径はレーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。
 フィラーの分散性、有機成分との密着性を向上させる等の目的で、必要に応じ、カップリング剤を併用できる。カップリング剤としては特に限定されず、例えば、各種のシランカップリング剤、チタネートカップリング剤等を用いることができる。これらは1種を単独で用いても、2種以上を併用してもよい。また、カップリング剤の使用量も特に限定されず、例えば、使用するフィラー100質量部に対して0.1~5質量部としてもよいし、0.5~3質量部としてもよい。この範囲であれば、諸特性の低下が少なく、フィラーの使用による特長を効果的に発揮し易くなる。
 カップリング剤を用いる場合、樹脂組成物中にフィラーを配合した後、カップリング剤を添加する、いわゆるインテグラルブレンド処理方式であってもよいが、予めフィラーにカップリング剤を、乾式又は湿式で表面処理したフィラーを使用する方式が好ましい。この方法を用いることで、より効果的に上記フィラーの特長を発現できる。
(難燃剤)
 難燃剤としては特に限定されないが、臭素系難燃剤、リン系難燃剤、金属水酸化物等が好適に用いられる。臭素系難燃剤としては、例えば、臭素化エポキシ樹脂、臭素化添加型難燃剤、不飽和二重結合基含有の臭素化反応型難燃剤等が挙げられる。リン系難燃剤としては、例えば、芳香族系リン酸エステル、ホスホン酸エステル、ホスフィン酸エステル、ホスファゼン化合物等が挙げられる。金属水酸化物難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム等が挙げられる。
 樹脂組成物は、必要に応じて、溶剤を用いて希釈してもよい。溶剤は特に限定されないが、製膜時の揮発性等を沸点から考慮して決めることができる。溶剤としては、例えば、メタノール、エタノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、メチルエチルケトン、アセトン、メチルイソブチルケトン、トルエン、キシレン等の比較的低沸点の溶剤が挙げられる。溶剤は、1種を単独で又は2種以上を組み合わせて用いることができる。
 本実施形態の樹脂組成物は、上記した各成分を均一に分散及び混合することによって得ることができ、その調製手段、条件等は特に限定されない。例えば、所定配合量の各種成分をミキサー等によって十分に均一に撹拌及び混合した後、ミキシングロール、押出機、ニーダー、ロール、エクストルーダー等を用いて混練し、更に得られた混練物を冷却及び粉砕する方法が挙げられる。なお、混練形式についても特に限定されない。
[樹脂フィルム]
 本実施形態に係る樹脂組成物を用いて、樹脂フィルムを作製することができる。なお、樹脂フィルムとは未硬化又は半硬化のフィルム状の樹脂組成物を指す。
 樹脂フィルムの作製方法は限定されないが、例えば、樹脂組成物を支持基材上に塗布して形成された樹脂層を乾燥することで得られる。具体的には、上記樹脂組成物をキスコーター、ロールコーター、コンマコーター等を用いて支持基材上に塗布した後、加熱乾燥炉中等で、例えば70~250℃、好ましくは70~200℃の温度で、1~30分間、好ましくは3~15分間乾燥してもよい。これにより、樹脂組成物が半硬化した状態の樹脂フィルムを得ることができる。
 半硬化した状態の樹脂フィルムを、加熱炉で更に、例えば、170~250℃、好ましくは185~230℃の温度で、60~150分間加熱させることによって樹脂フィルムを熱硬化させることができる。
 本実施形態に係る樹脂フィルムの厚さは特に限定されないが、1~200μmであることが好ましく、2~180μmであることがより好ましく、3~150μmであることが更に好ましい。樹脂フィルムの厚さを上記の範囲とすることにより、本実施形態に係る樹脂フィルムを用いて得られるプリント配線板の薄型化と良好な高周波特性を両立し易い。
 支持基材は特に限定されないが、ガラス、金属箔及びPETフィルムからなる群より選ばれる少なくとも一種であることが好ましい。樹脂フィルムが支持基材を備えることにより、保管性及びプリント配線板の製造に用いる際の取扱性が良好となる傾向にある。すなわち、本実施形態に係る樹脂フィルムは、本実施形態に係る樹脂組成物を含む樹脂層及び支持基材を備える、樹脂層付き支持体の形態をとることができ、使用される際には支持基材から剥離してもよい。
[プリプレグ]
 本実施形態に係る樹脂組成物を用いてプリプレグを作製することができる。本実施形態に係る樹脂組成物を補強基材である繊維基材に塗工し、塗工された樹脂組成物を乾燥させてプリプレグを得ることができる。また、プリプレグは、繊維基材を本実施形態に係る樹脂組成物に含浸した後、含浸された樹脂組成物を乾燥させて得てもよい。具体的には、樹脂組成物が付着した繊維基材を、乾燥炉中で通常、80~200℃の温度で、1~30分間加熱乾燥することで、樹脂組成物が半硬化したプリプレグを得られる。良好な成形性の観点からは、繊維基材に対する樹脂組成物の付着量は、乾燥後のプリプレグ中の樹脂含有率として30~90質量%となるように塗工又は含浸することが好ましい。
 プリプレグの補強基材としては限定されないが、シート状繊維基材が好ましい。シート状繊維基材としては、例えば、Eガラス、NEガラス、Sガラス、Qガラス等の無機繊維;ポリイミド、ポリエステル、テトラフルオロエチレン等の有機繊維が挙げられる。シート状繊維基材として、織布、不織布、チョップドストランドマット等の形状を有するものが使用できる。
[積層板]
 本実施形態によれば、上述の樹脂組成物の硬化物を含む樹脂層と、導体層とを有する積層板を提供することができる。例えば、上記樹脂フィルム又は上記プリプレグを用い、金属張積層板を製造することができる。
 金属張積層板の製造方法は限定されないが、例えば、本実施形態に係る樹脂フィルム又はプリプレグを1枚又は複数枚重ね、少なくとも一つの面に導体層となる金属箔を配置し、例えば、170~250℃、好ましくは185~230℃の温度及び0.5~5.0MPaの圧力で60~150分間加熱及び加圧することにより、絶縁層となる樹脂層又はプリプレグの少なくとも一つの面に金属箔を備える金属張積層板が得られる。加熱及び加圧は、例えば、真空度は10kPa以下、好ましくは5kPa以下の条件で実施でき、効率を高める観点からは真空中で行うことが好ましい。加熱及び加圧は、開始から30分間~成形終了時間まで実施することが好ましい。
[多層プリント配線板]
 本実施形態によれば、上述の樹脂組成物の硬化物を含む樹脂層と、回路層とを備える多層プリント配線板を提供することができる。回路層の数の上限値は特に限定されず、3層~20層であってもよい。多層プリント配線板は、例えば、上記樹脂フィルム、プリプレグ又は金属張積層板を用いて製造することもできる。
 多層プリント配線板の製造方法としては特に限定されないが、例えば、まず、回路形成加工されたコア基板の片面又は両面に、樹脂フィルムを配置するか、あるいは複数枚のコア基板の間に樹脂フィルムを配置し、加圧及び加熱ラミネート成形、又は加圧及び加熱プレス成形を行って各層を接着した後、レーザー穴開け加工、ドリル穴開け加工、金属めっき加工、金属エッチング等による回路形成加工を行うことで、多層プリント配線板を製造することができる。樹脂フィルムが支持基材を有している場合、支持基材は、コア基板上又はコア基板間に樹脂フィルムを配置する前に剥離しておくか、あるいは、樹脂層をコア基板に張り付けた後に剥離することができる。
 以上、本開示の好適な実施形態を説明したが、これらは本開示の説明のための例示であり、本発明の範囲をこれらの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することができる。
 以下、本開示を実施例に基づいて更に詳細に説明する。ただし、本発明は以下の実施例に限定されない。
(実施例A-1)
 無水マレイン酸変性水添スチレン系熱可塑性エラストマー(旭化成株式会社製、商品名「タフテックM1913」)150g及びトルエン656gを1Lのフラスコに仕込み、撹拌しながら約0.5時間で80℃に上昇した後、1時間保温し、「タフテックM1913」を溶解した。次いで、40℃に降温し、プロピレングリコールモノメチルエーテル(PGME)85.5gにチラミン(富士フイルム和光純薬株式会社製)4.5gを溶解した溶液を滴下した。その後、攪拌しながら約0.5時間で60℃に昇温した後、1時間保温した。さらに、約1時間で110℃に昇温した後、窒素を循環させながら2時間保温し、フェノール性水酸基含有スクシンイミド変性スチレン系エラストマー(A-1)のトルエン溶液を得た。
 FT-IRスペクトル(株式会社島津製作所製、商品名「IRSpirit」)を用い、(A-1)のFT-IRスペクトルを測定し、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピークを有することを確認した。
(実施例A-2)
 「タフテックM1913」150g及びトルエン636gを1Lのフラスコに仕込み、撹拌しながら約0.5時間で80℃に上昇した後、1時間保温し、「タフテックM1913」を溶解した。次いで、40℃に降温し、PGME95.0gにドーパミン(富士フイルム和光純薬株式会社製)5.0gを溶解した溶液を滴下した。その後、攪拌しながら約0.5時間で60℃に昇温した後、1時間保温した。さらに、約1時間で110℃に昇温した後、窒素を循環させながら2時間保温し、カテコール基含有スクシンイミド変性スチレン系エラストマー(A-2)のトルエン溶液を得た。
 (A-2)のFT-IRスペクトルを測定し、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピークを有することを確認した。
(実施例B-1)
 「タフテックM1913」150g及びキシレン656gを1Lのフラスコに仕込み、撹拌しながら約0.5時間で80℃に上昇した後、1時間保温し、「タフテックM1913」を溶解した。次いで、40℃に降温し、キシレン68.4gにジフェニルメタンジイソシアネート(富士フイルム和光純薬株式会社製)3.6gを溶解した溶液を滴下した。その後、攪拌しながら約0.5時間で60℃に昇温した後、1時間保温した。さらに、約1時間で135℃に昇温した後、窒素を循環させながら2時間保温し、イソシアネート基含有スクシンイミド変性スチレン系エラストマー(B-1)のトルエン溶液を得た。
 (B-1)のFT-IRスペクトルを測定し、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピーク、及び2260cm-1付近にイソシアネート基に由来するピークを有することを確認した。
(実施例B-2)
 「タフテックM1913」150g及びキシレン607gを1Lのフラスコに仕込み、撹拌しながら約0.5時間で温度を80℃に上昇した後、1時間保温し、「タフテックM1913」を溶解した。次いで、40℃に降温し、キシレン133gにウレタン結合を有するヘキサメチレン型ジイソシアネート(旭化成株式会社製、商品名「デュラネートD101」)7.0gを溶解した溶液を滴下した。その後、攪拌しながら約0.5時間で60℃に昇温した後、1時間保温した。さらに、約1時間で135℃に昇温した後、窒素を循環させながら2時間保温し、イソシアネート基含有スクシンイミド変性スチレン系エラストマー(B-2)のトルエン溶液を得た。
 (B-2)のFT-IRスペクトルを測定し、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピーク、及び2260cm-1付近にイソシアネート基に由来するピークを有することを確認した。
(実施例B-3)
 「タフテックM1913」150g及びトルエン679gを1Lのフラスコに仕込み、撹拌しながら約0.5時間で80℃に上昇した後、1時間保温し、「タフテックM1913」を溶解した。次いで、40℃に降温し、PGME38gにエタノールアミン2.0gを溶解した溶液を滴下した。その後、攪拌しながら約0.5時間で60℃に昇温した後、1時間保温した。さらに、約1時間で110℃に昇温した後、窒素を循環させながら2時間保温し、エタノール性水酸基含有スクシンイミド変性スチレン系エラストマーのトルエン溶液を得た。
 エタノール性水酸基含有スクシンイミド変性スチレン系エラストマーのトルエン溶液に、ジフェニルメタンジイソシアネートを6.0g添加し90℃で2時間反応させて、イソシアネート基及びウレタン結合を有するスクシンイミド変性スチレン系エラストマー(B-3)のトルエン溶液を得た。
 (B-3)のFT-IRスペクトルを測定し、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピーク、1730cm-1付近にウレタン結合に由来するピーク、及び2260cm-1付近にイソシアネート基に由来するピークを有することを確認した。
(実施例B-4)
 エタノール性水酸基を有するスクシンイミド変性スチレン系エラストマーのトルエン溶液に、「デュラネートD101」を10.3g添加し90℃で2時間反応させて、イソシアネート基及びウレタン結合を有するスクシンイミド変性スチレン系エラストマー(B-4)のトルエン溶液を得た。
 (B-4)のFT-IRスペクトルを測定し、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピーク、1730cm-1付近にウレタン結合に由来するピーク、及び2260cm-1付近にイソシアネート基に由来するピークを有することを確認した。
(実施例C-1)
 上記(B-1)のトルエン溶液に、メタノール(富士フイルム和光純薬株式会社製)0.1g添加し90℃で2時間反応させて、ブロックイソシアネート基を有するスクシンイミド変性スチレン系エラストマー(C-1)のトルエン溶液を得た。
 (C-1)のFT-IRスペクトルを測定し、2260cm-1付近のイソシアネート基に由来するピークが消失したことを確認した。
(実施例C-2)
 メタノール0.1gをメチルエチルケトンオキシム(富士フイルム和光純薬株式会社製)0.2gに変更した以外は、(C-1)と同様にして、ブロックイソシアネート基含有スクシンイミド変性スチレン系エラストマー(C-2)のトルエン溶液を得た。
 (C-2)のFT-IRスペクトルを測定し、2260cm-1付近のイソシアネート基に由来するピークが消失したことを確認した。
(実施例C-3)
 メタノール0.1gをジメチルピラゾール(富士フイルム和光純薬株式会社製)0.2gに変更した以外は、(C-1)と同様にして、ブロックイソシアネート基含有スクシンイミド変性スチレン系エラストマー(C-3)のトルエン溶液を得た。
 (C-3)のFT-IRスペクトルを測定し、2260cm-1付近のイソシアネート基に由来するピークが消失したことを確認した。
(実施例D-1)
 冷却管、窒素導入管、熱電対、及び攪拌機を備えた1Lのフラスコに、トルエンを688g、「タフテックM1913」を150g投入し、80℃に昇温し、攪拌しながら1.0時間溶解させた。次いで、フラスコ内を30℃に降温し、トルエン9.3gに2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン(東京化成工業株式会社製)を9.3g溶解した溶液を滴下し、1.0時間攪拌した。その後、無水マレイン酸(富士フイルム和光純薬株式会社製)を2.8g添加し、更に1.0時間保温した。p-トルエンスルホン酸を0.53g加えた後、フラスコ内の温度を還流温度(約110℃)まで昇温し、窒素を循環させながら3.0時間脱水環化反応を行い、マレイミド基含有スクシンイミド変性スチレン系エラストマー(D-1)のトルエン溶液を得た。
 (D-1)のFT-IRスペクトルを測定し、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピークを有することを確認した。(D-1)の13C-NMRスペクトル(ブルカー製)を測定し、170~180ppmの領域に、スクシンイミド基のカルボニル炭素及びマレイミド基のカルボニル炭素に由来するピークが2~3個生じていることを確認した。
(実施例D-2)
 冷却管、窒素導入管、熱電対、及び攪拌機を備えた1Lのフラスコに、トルエンを722g、「タフテックM1913」を150g投入し、80℃に昇温し、攪拌しながら1.0時間溶解させた。次いで、フラスコ内を30℃に降温し、トルエン6.6gにポリオキシプロピレンジアミン(ハンツマン製、商品名「Jeffermine D230」)を6.6g溶解した溶液を滴下し、1.0時間攪拌した。その後、無水マレイン酸を2.8g添加し、更に1.0時間保温した。p-トルエンスルホン酸を0.53g加えた後、フラスコ内の温度を還流温度(約110℃)まで昇温し、窒素を循環させながら3.0時間脱水環化反応を行い、マレイミド基含有スクシンイミド変性スチレン系エラストマー(D-2)のトルエン溶液を得た。
 (D-2)のFT-IRスペクトルを測定し、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピークを有することを確認した。(D-2)の13C-NMRスペクトルを測定し、170~180ppmの領域に、スクシンイミド基のカルボニル炭素及びマレイミド基のカルボニル炭素に由来するピークが2~3個生じていることを確認した。
(実施例D-3)
 冷却管、窒素導入管、熱電対、及び攪拌機を備えた1Lのフラスコに、トルエンを692g、「タフテックM1913」を150g投入し、80℃に昇温し、攪拌しながら1.0時間溶解させた。次いで、フラスコ内を30℃に降温し、トルエン5.5gに4,4-メチレンジアニリン(東京化成工業株式会社製)を5.5g溶解した溶液を滴下し、1.0時間攪拌した。その後、無水マレイン酸を2.8g添加し、更に1.0時間保温した。p-トルエンスルホン酸を0.53g加えた後、フラスコ内の温度を還流温度(約110℃)まで昇温し、窒素を循環させながら3.0時間脱水環化反応を行い、マレイミド基含有スクシンイミド変性スチレン系エラストマー(D-3)のトルエン溶液を得た。
 (D-3)のFT-IRスペクトルを測定し、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピークを有することを確認した。(D-3)の13C-NMRスペクトルを測定し、170~180ppmの領域に、スクシンイミド基のカルボニル炭素及びマレイミド基のカルボニル炭素に由来するピークが2~3個生じていることを確認した。
(実施例D-4)
 冷却管、窒素導入管、熱電対、及び攪拌機を備えた1Lのフラスコに、トルエンを692g、「タフテックM1913」を150g投入し、80℃に昇温し、攪拌しながら1.0時間溶解させた。次いで、フラスコ内を30℃に降温し、トルエン5.6gに4,4’-ジアミノジフェニルエーテル(東京化成工業株式会社製)を5.6g溶解した溶液を滴下し、1.0時間攪拌した。その後、無水マレイン酸を2.8g添加し、更に1.0時間保温した。p-トルエンスルホン酸を0.53g加えた後、フラスコ内の温度を還流温度(約110℃)まで昇温し、窒素を循環させながら3.0時間脱水環化反応を行い、マレイミド基含有スクシンイミド変性スチレン系エラストマー(D-4)のトルエン溶液を得た。
 (D-4)のFT-IRスペクトルを測定し、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピークを有することを確認した。(D-4)の13C-NMRスペクトルを測定し、170~180ppmの領域に、スクシンイミド基のカルボニル炭素及びマレイミド基のカルボニル炭素に由来するピークが2~3個生じていることを確認した。
(実施例E-1)
 冷却管、窒素導入管、熱電対、攪拌機を備えた1Lのガラス容器に、トルエンを672g、「タフテックM1913」を150g投入し、80℃に昇温し、攪拌しながら1.0時間溶解させた。その後、フラスコ系内を40℃に降温し、PGME72.2gにチラミンを3.8g溶解させた溶液を滴下した。その後、攪拌しながら約0.5時間で60℃に昇温した後、1時間保温した。さらに、約1時間で110℃に昇温した後、窒素を循環させながら2時間保温し、フェノール性水酸基含有スクシンイミド変性スチレン系エラストマーのトルエン溶液を得た。その後、アニリン(東京化成工業株式会社製)を2.6g、パラホルムアルデヒドを1.6g加え、フラスコ系中の温度を還流温度(約110℃)まで昇温した後、窒素を循環させながら3.0時間脱水環化反応を行わせ、ベンゾオキサジン基含有スクシンイミド変性スチレン系エラストマー(E-1)のトルエン溶液を得た。
 (E-1)のFT-IRスペクトルを測定し、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピーク、1029cm-1及び1232cm-1付近にベンゾオキサジン基に由来するピークを有することを確認した。
(実施例E-2)
 アニリン2.6gをアリルアミン(東京化成工業株式会社製)1.6gに変更した以外は、(E-1)と同様にして、ベンゾオキサジン基含有スクシンイミド変性スチレン系エラストマー(E-2)のトルエン溶液を得た。
 (E-2)のFT-IRスペクトルを測定し、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピーク、1029cm-1及び1232cm-1付近にベンゾオキサジン基に由来するピークを有することを確認した。

Claims (7)

  1.  フェノール性水酸基、イソシアネート基、ブロックイソシアネート基、マレイミド基、又はベンゾオキサジン基を含むN-置換スクシイミド基を側鎖に有する、変性スチレン系エラストマー。
  2.  前記N-置換スクシイミド基が、下記式(1)で表される構造を有する、請求項1に記載の変性スチレン系エラストマー。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Xは、フェノール性水酸基、イソシアネート基、ブロックイソシアネート基、マレイミド基、又はベンゾオキサジン基を有する1価の有機基を示し、*は結合部を示す。]
  3.  前記フェノール性水酸基を含むN-置換スクシンイミド基が、下記式(2)で表される構造を有する、請求項1又は2に記載の変性スチレン系エラストマー。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Rはアルキレン基又は単結合を示し、Rはアルキル基を示し、mは0又は1であり、nは1又は2であり、*は結合部を示す。]
  4.  前記イソシアネート基を含むN-置換スクシンイミド基が、下記式(3)で表される構造を有する、請求項1又は2に記載の変性スチレン系エラストマー。
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、Rは脂肪族炭化水素基、芳香環を有する炭化水素基、又はウレタン結合を有する有機基を示し、*は結合部を示す。]
  5.  前記ブロックイソシアネート基を含むN-置換スクシンイミド基が、下記式(4)で表される構造を有する、請求項1又は2に記載の変性スチレン系エラストマー。
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、Rはジイソシアネート化合物の残基を示し、Rはブロック剤の残基を示し、*は結合部を示す。]
  6.  前記マレイミド基を含むN-置換スクシンイミド基が、下記式(5)で表される構造を有する、請求項1又は2に記載の変性スチレン系エラストマー。
    Figure JPOXMLDOC01-appb-C000005
    [式(5)中、Rはジアミン化合物の残基を示す。]
  7.  前記ベンゾオキサジン基を含むN-置換スクシンイミド基が、下記式(6)で表される構造を有する、請求項1又は2に記載の変性スチレン系エラストマー。
    Figure JPOXMLDOC01-appb-C000006
    [式(6)中、Rはアルキレン基を示し、Rはアルキル基、フェニル基、又はアリル基を示し、*は結合部を示す。]
PCT/JP2023/029445 2022-08-16 2023-08-14 変性スチレン系エラストマー WO2024038846A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-129612 2022-08-16
JP2022129612 2022-08-16

Publications (1)

Publication Number Publication Date
WO2024038846A1 true WO2024038846A1 (ja) 2024-02-22

Family

ID=89941704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029445 WO2024038846A1 (ja) 2022-08-16 2023-08-14 変性スチレン系エラストマー

Country Status (2)

Country Link
TW (1) TW202417528A (ja)
WO (1) WO2024038846A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116702A (en) * 1980-02-22 1981-09-12 Asahi Chem Ind Co Ltd Graft copolymer
WO2018207683A1 (ja) * 2017-05-11 2018-11-15 日本ゼオン株式会社 変性処理により得られるブロック共重合体組成物及びその製造方法、並びにそれに用いられる変性ブロック共重合体組成物及びその製造方法
WO2021171954A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 耐衝撃材料用の熱可塑性エラストマー組成物、および耐衝撃材料
JP2021187889A (ja) * 2020-05-26 2021-12-13 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116702A (en) * 1980-02-22 1981-09-12 Asahi Chem Ind Co Ltd Graft copolymer
WO2018207683A1 (ja) * 2017-05-11 2018-11-15 日本ゼオン株式会社 変性処理により得られるブロック共重合体組成物及びその製造方法、並びにそれに用いられる変性ブロック共重合体組成物及びその製造方法
WO2021171954A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 耐衝撃材料用の熱可塑性エラストマー組成物、および耐衝撃材料
JP2021187889A (ja) * 2020-05-26 2021-12-13 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ

Also Published As

Publication number Publication date
TW202417528A (zh) 2024-05-01

Similar Documents

Publication Publication Date Title
TWI814832B (zh) 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂片及印刷配線板
JP7202690B2 (ja) 樹脂組成物、基材付フィルム、金属/樹脂積層体および半導体装置
KR101776560B1 (ko) 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 복합 시트, 및 프린트 배선판
JP7151834B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP5261943B2 (ja) セミipn型複合体の熱硬化性樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
JP5303854B2 (ja) 新規なセミipn型複合体の熱硬化性樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
JP6917636B2 (ja) 樹脂組成物、それを用いた熱硬化性フィルム、樹脂硬化物、積層板、プリント配線板、および半導体装置
TW200523319A (en) Thermosetting resin composition for high speed transmission circuit board
JP6089615B2 (ja) 熱硬化性樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP7055994B2 (ja) 樹脂組成物、樹脂層付き支持体、プリプレグ、積層板、多層プリント配線板及びミリ波レーダー用プリント配線板
TW202030255A (zh) 樹脂組成物及其製造方法、清漆、積層板、印刷配線基板以及成形品
JP2017155230A (ja) ポリ(ビニルベンジル)エーテル化合物、これを含む硬化性樹脂組成物及び硬化物
JP2019099712A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
WO2024038846A1 (ja) 変性スチレン系エラストマー
WO2024038845A1 (ja) 樹脂組成物
WO2024038847A1 (ja) 変性スチレン系エラストマー
WO2024038848A1 (ja) マレイミド変性スチレン系エラストマー及びマレイミド変性スチレン系エラストマーの製造方法
JP2012077107A (ja) 熱硬化性組成物の製造方法並びに熱硬化性組成物を用いた熱硬化性複合シート及び金属張積層板
JP7176186B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP2024059184A (ja) 変性スチレン系エラストマーの製造方法
WO2024135629A1 (ja) 変性スチレン系エラストマー及び変性スチレン系エラストマーの製造方法
KR20170139032A (ko) 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
KR102715236B1 (ko) 수지 조성물, 기재 부착 필름, 금속/수지 적층체 및 반도체 장치
JP6905682B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
WO2024111380A1 (ja) 樹脂組成物、樹脂フィルム、プリプレグ、積層板、プリント配線板及び半導体パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854880

Country of ref document: EP

Kind code of ref document: A1