WO2024111380A1 - 樹脂組成物、樹脂フィルム、プリプレグ、積層板、プリント配線板及び半導体パッケージ - Google Patents

樹脂組成物、樹脂フィルム、プリプレグ、積層板、プリント配線板及び半導体パッケージ Download PDF

Info

Publication number
WO2024111380A1
WO2024111380A1 PCT/JP2023/039613 JP2023039613W WO2024111380A1 WO 2024111380 A1 WO2024111380 A1 WO 2024111380A1 JP 2023039613 W JP2023039613 W JP 2023039613W WO 2024111380 A1 WO2024111380 A1 WO 2024111380A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
resins
resin
component
Prior art date
Application number
PCT/JP2023/039613
Other languages
English (en)
French (fr)
Inventor
裕司 小川
圭芸 日▲高▼
栞 田端
香織 佐々木
陽佳 篠崎
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2024111380A1 publication Critical patent/WO2024111380A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a resin composition, a resin film, a prepreg, a laminate, a printed wiring board, and a semiconductor package.
  • a resin composition containing a specific polyphenylene ether derivative, a specific thermosetting resin, and a styrene-based thermoplastic elastomer has been proposed, with the objective of providing a resin composition that has particularly good compatibility, high frequency characteristics, high adhesion to conductors, excellent heat resistance, a high glass transition temperature, a low coefficient of thermal expansion, and high flame retardancy.
  • the present invention aims to provide a resin composition capable of forming a cured product that has excellent high-frequency characteristics and suppresses the occurrence of depressions on the surface after desmearing, as well as to provide a resin film, a prepreg, a laminate, a printed wiring board, and a semiconductor package that use the resin composition.
  • a resin composition comprising a modified styrene-based elastomer (A) having an N-substituted succinimide group in a side chain, a thermosetting resin (B), and an inorganic filler (C).
  • a resin composition comprising a modified styrene-based elastomer (A) having an N-substituted succinimide group in a side chain, a thermosetting resin (B), and an inorganic filler (C).
  • thermosetting resin (B) comprises at least one selected from the group consisting of an epoxy resin, a maleimide compound, a modified polyphenylene ether resin, a phenolic resin, a polyimide resin, a cyanate resin, an isocyanate resin, a benzoxazine resin, an oxetane resin, an amino resin, an unsaturated polyester resin, an allyl resin, a dicyclopentadiene resin, a silicone resin, a triazine resin, and a melamine resin.
  • a semiconductor package comprising the printed wiring board according to [12] above and a semiconductor element.
  • the present invention provides a resin composition capable of forming a cured product that has excellent high-frequency characteristics and suppresses the occurrence of depressions on the resin layer surface after desmearing, and also provides a resin film, a prepreg, a laminate, a printed wiring board, and a semiconductor package that use the resin composition.
  • the upper or lower limit of the numerical range may be replaced with the values shown in the examples.
  • the lower and upper limits of a numerical range may be arbitrarily combined with the lower or upper limit of another numerical range.
  • the numerical values AA and BB at both ends are included in the numerical range as the lower and upper limits, respectively.
  • the expression “10 or more” means 10 or a numerical value exceeding 10, and the same applies when the numerical values are different.
  • the expression "10 or less” means 10 or a numerical value less than 10, and the same applies when the numerical values are different.
  • each component and material exemplified in this specification may be used alone or in combination of two or more.
  • the content of each component in the resin composition means the total amount of the multiple substances present in the resin composition when multiple substances corresponding to each component are present in the resin composition, unless otherwise specified.
  • the term "resin component” refers to all components among the solid contents constituting the resin composition, excluding inorganic compounds such as inorganic fillers described below.
  • solid content refers to components other than the solvent, and components that are liquid at 25° C. are also considered to be solid content.
  • the expression "containing XX” described in the present disclosure may mean containing XX in a reacted state if XX is capable of reacting, or may simply contain XX as it is, or may include both of these aspects. Any combination of the descriptions in this specification is also included in the present disclosure and the present embodiment.
  • the resin composition of the present embodiment is a resin composition containing a modified styrene-based elastomer (A) having an N-substituted succinimide group on a side chain [hereinafter, also referred to as component (A)], a thermosetting resin (B) [hereinafter, also referred to as component (B)], and an inorganic filler (C) [hereinafter, also referred to as component (C)].
  • component (A) modified styrene-based elastomer having an N-substituted succinimide group on a side chain
  • component (B) thermosetting resin
  • C inorganic filler
  • the component (A) is preferably a thermoplastic elastomer.
  • the (A) component can be prepared by reacting a compound having an amino group with the acid anhydride group of a styrene-based elastomer modified with maleic anhydride.
  • the styrene-based elastomer may be a copolymer having a structural unit derived from a styrene-based compound and a structural unit derived from a conjugated diene compound.
  • the content of the structural unit derived from a styrene-based compound is not particularly limited, but is preferably 5 to 60 mass%, more preferably 10 to 50 mass%, and even more preferably 20 to 40 mass%.
  • the styrene content of the (A) component itself is also not particularly limited, but is preferably 5 to 60 mass%, more preferably 10 to 50 mass%, and even more preferably 20 to 40 mass%.
  • Styrenic compounds include styrene, ⁇ -methylstyrene, p-methylstyrene, p-tert-butylstyrene, etc. Among these, from the viewpoints of availability and productivity, styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferred, and styrene is more preferred.
  • Conjugated diene compounds include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 1,3-pentadiene (piperylene), 1-phenyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 3,4-dimethyl-1,3-hexadiene, 4,5-diethyl-1,3-octadiene, etc.
  • 1,3-butadiene and isoprene are preferred, and 1,3-butadiene is more preferred.
  • the styrene-based elastomer may be a hydrogenated styrene-based elastomer in which at least a portion of the structural units derived from a conjugated diene compound are hydrogenated.
  • hydrogenated styrene-butadiene-styrene block copolymers include hydrogenated styrene-isoprene-styrene block copolymers (SEBS).
  • SEBS hydrogenated styrene-isoprene-styrene block copolymers
  • SEBS hydrogenated styrene-isoprene-styrene block copolymers
  • SEBS hydrogenated styrene-isoprene-styrene block copolymers
  • SEBS hydrogenated styrene-isoprene-styrene block copolymers
  • the styrene-based elastomer may be produced by a known
  • Examples of commercially available styrene-based elastomers include the Tuftec (registered trademark) H series and M series manufactured by Asahi Kasei Corporation, the Septon (registered trademark) series manufactured by Kuraray Co., Ltd., and the Kraton (registered trademark) G Polymer series manufactured by Kraton Polymer Japan Co., Ltd.
  • the weight average molecular weight (Mw) of the styrene-based elastomer is preferably 20,000 to 120,000, more preferably 30,000 to 110,000, even more preferably 40,000 to 100,000, and particularly preferably 50,000 to 80,000.
  • the weight average molecular weight is a value calculated from a calibration curve using standard polystyrene by gel permeation chromatography (GPC), and more specifically, a value determined by the measurement method described in the examples.
  • the styrene-based elastomer may be a hydrogenated styrene-based elastomer or a non-hydrogenated styrene-based elastomer.
  • the maleic anhydride-modified styrene-based elastomer may be produced by reacting a styrene-based elastomer or a hydrogenated styrene-based elastomer with maleic anhydride, or a commercially available product may be used.
  • the styrene-based elastomer modified with maleic anhydride can be produced, for example, by adding a radical generator to a mixture of a styrene-based elastomer and maleic anhydride dissolved in a solvent under a nitrogen atmosphere, and reacting the styrene-based elastomer with maleic anhydride.
  • the reaction temperature may be 20 to 150°C. After the reaction, it is preferable to remove unreacted maleic anhydride by extraction in order to suppress side reactions.
  • organic peroxides examples include dicumyl peroxide, benzoyl peroxide, 2-butanone peroxide, tert-butyl perbenzoate, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, bis(tert-butylperoxyisopropyl)benzene, tert-butyl hydroperoxide, etc.
  • azo compounds examples include 2,2'-azobis(2-methylpropanenitrile), 2,2'-azobis(2-methylbutanenitrile), 1,1'-azobis(cyclohexanecarbonitrile), etc.
  • Solvents include butyl cellosolve, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, toluene, xylene, mesitylene, methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, ethyl acetate, etc. These may be used alone or in combination of two or more. Among these, toluene, xylene, and propylene glycol monomethyl ether are preferred from the viewpoint of solubility.
  • the acid value of the styrene-based elastomer modified with maleic anhydride is preferably 20 to 120 mgKOH/g, more preferably 25 to 100 mgKOH/g, further preferably 30 to 90 mgKOH/g, and particularly preferably 35 to 80 mgKOH/g, from the viewpoint of suppressing the occurrence of depressions on the surface after the desmear treatment.
  • the weight average molecular weight (Mw) of the maleic anhydride-modified styrene-based elastomer is preferably 20,000 to 120,000, more preferably 30,000 to 110,000, further preferably 40,000 to 100,000, and particularly preferably 50,000 to 80,000.
  • the compound having an amino group is not particularly limited as long as it has one or more amino groups.
  • Examples of compounds having an amino group include amine compounds having a hydroxyl group, amine compounds having an isocyanate group, amine compounds having a carboxy group, amine compounds having a silanol group, amine compounds having a thiol group, amine compounds having a sulfo group, amine compounds having a phosphoric acid group, amine compounds having a vinyl group, amine compounds having a (meth)acryloyl group, amine compounds having a nitrile group, amine compounds having a cyclic ether group, and diamine compounds having two amino groups.
  • the term "(meth)acryloyl group” refers to an acryloyl group or a methacryloyl group.
  • the N-substituted succinimide group may have a structure represented by the following formula (a1):
  • X represents a monovalent organic group
  • * represents a bond.
  • X include monovalent organic groups having at least one selected from the group consisting of an isocyanate group, a hydroxyl group, a carboxyl group, a silanol group, a thiol group, a sulfo group, a phosphoric acid group, a cyclic ether group, a carbonate group, a nitrile group, a (meth)acryloyl group, a vinyl group, a maleimide group, an imidazole group, an oxazoline group, a benzotriazole group, and a benzoxazine group.
  • X may be a monovalent organic group having at least one selected from the group consisting of an isocyanate group, a hydroxyl group, a carboxyl group, a maleimide group, and a benzoxazine group, or may be a monovalent organic group having a hydroxyl group or a maleimide group.
  • the N-substituted succinimide group may have a structure represented by the following formula (a2) or (a3):
  • X represents a residue of an amine compound having a hydroxyl group , and * represents a bond.
  • X represents a residue of a diamine compound, and * represents a bond.
  • residue refers to a group (structure) remaining after removing the functional group used for bonding from the raw material component.
  • the modified styrene-based elastomer having a group having a structure represented by formula (a2) may be a reaction product between a styrene-based elastomer modified with maleic anhydride and an amine compound having a hydroxyl group.
  • the amine compound having a hydroxyl group include amines having an alcoholic hydroxyl group, such as hydroxyethylamine; and amines having a phenolic hydroxyl group, such as tyramine and dopamine.
  • the modified styrene-based elastomer having a group having a structure represented by formula (a3) may be a reaction product of a styrene-based elastomer modified with maleic anhydride, a diamine compound, and maleic anhydride.
  • diamine compound examples include aliphatic diamines such as polyoxypropylene diamine; and aromatic diamines such as 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ketone, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 2,2-bis(4-aminophenyl)propane, 2,2-bis(4-aminophenyl)hexafluoropropane, and 9,9-bis(4-aminophenyl)fluorene.
  • aromatic diamines such as 4,4'-d
  • the (A) component is preferably a succinimide-modified styrene-based elastomer having an ethanolic hydroxyl group, a succinimide-modified styrene-based elastomer having a phenolic hydroxyl group, or a succinimide-modified styrene-based elastomer having a maleimide group.
  • the succinimide-modified styrene-based elastomer having an ethanolic hydroxyl group is not particularly limited, but is preferably one having a succinimide group having an ethanolic hydroxyl group as described below. (* indicates a joint.)
  • the succinimide-modified styrene-based elastomer having a phenolic hydroxyl group is not particularly limited, but is preferably one having a succinimide group having a phenolic hydroxyl group as described below. (* indicates a joint.)
  • the succinimide-modified styrene-based elastomer having a maleimide group is not particularly limited, but is preferably one having a succinimide group having a maleimide group as described below.
  • m represents the number of repeating units of the structure in parentheses. * represents a bond.
  • the above-mentioned m is preferably an integer of 1 to 50, more preferably an integer of 1 to 30, and even more preferably an integer of 1 to 10.
  • the content of the component (A) in the resin composition of the present embodiment is not particularly limited, but from the viewpoints of high-frequency characteristics and suppression of the occurrence of depressions on the resin layer surface after desmear treatment, the content is preferably 1 to 50 parts by mass, more preferably 3 to 40 parts by mass, still more preferably 3 to 35 parts by mass, particularly preferably 3 to 25 parts by mass, and most preferably 3 to 15 parts by mass, relative to 100 parts by mass of the solid content in the resin composition.
  • the resin composition of the present embodiment contains a thermosetting resin as component (B).
  • the thermosetting resin preferably contains at least one selected from the group consisting of epoxy resins, maleimide compounds, modified polyphenylene ether resins, phenolic resins, polyimide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, dicyclopentadiene resins, silicone resins, triazine resins, and melamine resins.
  • the modified polyphenylene ether resin is preferably a polyphenylene ether resin having an ethylenically unsaturated bond-containing group at its terminal, and more preferably a polyphenylene ether resin having an ethylenically unsaturated bond-containing group at both terminals.
  • the "ethylenically unsaturated bond-containing group” include unsaturated aliphatic hydrocarbon groups such as vinyl groups, allyl groups, 1-methylallyl groups, isopropenyl groups, 2-butenyl groups, 3-butenyl groups, and styryl groups; and groups containing a heteroatom and an ethylenically unsaturated bond, such as maleimide groups and (meth)acryloyl groups.
  • the thermosetting resin more preferably contains one or more selected from the group consisting of an epoxy resin, a maleimide compound, a phenol resin, a polyimide resin, a cyanate resin, and an isocyanate resin, further preferably contains one or more selected from an epoxy resin, a maleimide compound, and a cyanate resin, and particularly preferably contains a maleimide compound.
  • the maleimide compound is preferably at least one selected from the group consisting of maleimide compounds having two or more N-substituted maleimide groups [hereinafter, sometimes simply referred to as "maleimide compound (b1)” or “component (b1)”] and derivatives thereof.
  • the “derivative thereof” may be an addition reaction product between a maleimide compound having two or more N-substituted maleimide groups and an amine compound such as a diamine compound described later.
  • maleimide compounds (b1) include, but are not limited to, aromatic maleimide compounds such as bis(4-maleimidophenyl)methane, polyphenylmethane maleimide, bis(4-maleimidophenyl)ether, bis(4-maleimidophenyl)sulfone, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, m-phenylene bismaleimide, 2,2-bis[4-(4-maleimidophenoxy)phenyl]propane, and indane ring-containing aromatic bismaleimide; and aliphatic maleimide compounds such as 1,6-bismaleimido-(2,2,4-trimethyl)hexane and pyrophosphate binder type long-chain alkyl bismaleimide.
  • aromatic maleimide compounds such as bis(4-maleimidophenyl)methane, poly
  • aromatic maleimide compounds are preferred, aromatic bismaleimide compounds are more preferred, and 2,2-bis[4-(4-maleimidophenoxy)phenyl]propane and 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide are even more preferred.
  • the maleimide compound from the viewpoints of solubility in organic solvents, compatibility, adhesion to conductors, and high-frequency characteristics, a derivative of the maleimide compound (b1) is preferred.
  • the derivative of the maleimide compound (b1) is preferably a modified maleimide compound [hereinafter, sometimes abbreviated as "modified maleimide compound (X)" or “component (X)] having a structural unit derived from the maleimide compound (b1) and a structural unit derived from an amine compound having a primary amino group [hereinafter, sometimes abbreviated as simply "component (b2)].
  • the structural unit derived from the component (b1) and the structural unit derived from the component (b2) contained in the modified maleimide compound (X) may each be one type or a combination of two or more types.
  • the modified maleimide compound (X) is preferably a compound having a structure represented by the following formula (B-1), which is formed by an addition reaction between a maleimide group in the component (b1) and a primary amino group in the component (b2). (* indicates the bond position to other structures.)
  • the amine compound (b2) is preferably a compound having two or more amino groups, and more preferably a diamine compound having two amino groups.
  • examples of the amine compound (b2) include 4,4'-diaminodiphenylmethane, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 4,4'-diamino-3,3'-diethyldiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ketone, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-di Aminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxybenzidine, 2,2-bis(
  • 3,3'-dimethyl-5,5'-diethyl-4,4'-diaminodiphenylmethane is preferred.
  • 2,2-bis[4-(4-aminophenoxy)phenyl]propane is preferred.
  • the functional group equivalent weight of the amine-modified siloxane compound is not particularly limited, but is preferably 300 to 3,000 g/mol, more preferably 400 to 2,000 g/mol, and even more preferably 600 to 1,000 g/mol.
  • an aromatic diamine compound and an amine-modified siloxane compound in combination.
  • the ratio of the aromatic diamine compound and the amine-modified siloxane compound used [aromatic diamine compound/amine-modified siloxane compound] is not particularly limited, but is preferably 20/80 to 80/20, more preferably 40/60 to 70/30, and even more preferably 50/50 to 65/35, in mass ratio.
  • the content of the structural unit derived from component (b2) in the modified maleimide compound (X) is not particularly limited, but is preferably 5 to 50 mass%, more preferably 8 to 30 mass%, and even more preferably 10 to 15 mass%.
  • the content of the structural unit derived from component (b2) is within the above range, there is a tendency for excellent high-frequency characteristics, as well as better heat resistance, flame retardancy, and glass transition temperature to be obtained.
  • the total content of the structural units derived from the (b1) component and the structural units derived from the (b2) component in the modified maleimide compound (X) is not particularly limited, but is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and particularly preferably 100% by mass.
  • the content ratio of the structural unit derived from component (b1) and the structural unit derived from component (b2) in the modified maleimide compound (X) is not particularly limited, but is preferably such that the equivalent ratio ( Ta1 /Ta2) of the total equivalent (Ta1) of the groups derived from the maleimide groups (including maleimide groups) derived from component (b1) to the total equivalent (Ta2) of the groups derived from the -NH2 groups (including -NH2 ) of component (b2) is 0.05 to 10, more preferably 1 to 5.
  • the equivalent ratio (Ta1/Ta2) is within the above range, excellent high frequency characteristics, and better heat resistance, flame retardancy, and glass transition temperature tend to be obtained.
  • the component (X) can be obtained as a reaction product between the components (b1) and (b2), and can be produced, for example, by reacting the components (b1) and (b2) in an organic solvent. Specifically, a reactor is charged with predetermined amounts of the components (b1), (b2), and, if necessary, other components, and the components (b1) and (b2) are subjected to a Michael addition reaction (hereinafter, sometimes abbreviated as "pre-reaction") to obtain the modified maleimide compound (X).
  • pre-reaction Michael addition reaction
  • the reaction conditions in the pre-reaction are not particularly limited, but from the viewpoint of obtaining good reactivity and workability while suppressing gelation, the reaction temperature is preferably 50 to 160° C. and the reaction time is preferably 1 to 10 hours.
  • reaction catalyst In the pre-reaction, a reaction catalyst may be used as necessary.
  • reaction catalysts include acid catalysts such as p-toluenesulfonic acid; amines such as triethylamine, pyridine, and tributylamine; imidazole-based compounds such as methylimidazole and phenylimidazole; and phosphorus-based catalysts such as triphenylphosphine. These may be used alone or in combination of two or more. There are no particular restrictions on the amount of the reaction catalyst used, but it is, for example, 0.01 to 5 parts by mass per 100 parts by mass of the total amount of the (b1) and (b2) components.
  • the weight average molecular weight (Mw) of the modified maleimide compound (X) is not particularly limited, but is preferably 400 to 10,000, more preferably 1,000 to 5,000, even more preferably 1,500 to 4,000, and particularly preferably 2,000 to 3,000.
  • the content of the thermosetting resin (B) in the resin composition of the present embodiment is not particularly limited, but from the viewpoints of high frequency characteristics, heat resistance, and moldability, it is preferably 10 to 70 parts by mass, more preferably 15 to 60 parts by mass, even more preferably 20 to 50 parts by mass, and particularly preferably 25 to 45 parts by mass, relative to 100 parts by mass of the solid content in the resin composition.
  • the resin composition of the present embodiment may contain an inorganic filler as component (C).
  • component (C) When the resin composition of the present embodiment contains component (C), it tends to have a low thermal expansion coefficient, improved heat resistance, and improved flame retardancy.
  • the (C) component is not particularly limited, but includes silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, aluminum silicate, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, clay (calcined clay, etc.), molybdic acid compounds such as zinc molybdate, talc, aluminum borate, silicon carbide, etc.
  • the (C) component may be used alone or in combination of two or more.
  • silica, alumina, mica, and talc are preferred, silica and alumina are more preferred, and silica is even more preferred.
  • examples of silica include crushed silica, fumed silica, and fused silica (fused spherical silica).
  • the shape and particle size of component (C) are not particularly limited, but the particle size is preferably 0.01 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m, even more preferably 0.2 to 1 ⁇ m, and particularly preferably 0.3 to 0.8 ⁇ m.
  • particle size refers to the average particle size, and is the particle size at the point corresponding to 50% volume when a cumulative frequency distribution curve is calculated based on particle size, with the total volume of the particles being 100%.
  • the particle size of component (C) can be measured using a particle size distribution measuring device using a laser diffraction scattering method.
  • the content of the component (C) is not particularly limited, but from the viewpoints of the thermal expansion coefficient, heat resistance, and flame retardancy, it is preferably 5 to 70 parts by mass, more preferably 15 to 65 parts by mass, even more preferably 20 to 60 parts by mass, and particularly preferably 30 to 55 parts by mass, relative to 100 parts by mass of the solid content in the resin composition.
  • a coupling agent may be used in combination as necessary in order to improve the dispersibility of the (C) component and the adhesion between the (C) component and the organic component in the resin composition.
  • the coupling agent is not particularly limited, and for example, a silane coupling agent or a titanate coupling agent may be appropriately selected and used.
  • the coupling agent may be used alone or in combination of two or more types.
  • the amount of the coupling agent used is also not particularly limited.
  • the so-called integral blending method may be used in which the coupling agent is added after the (C) component is blended into the resin composition, but it is preferable to use an inorganic filler that has been previously surface-treated with a coupling agent by a dry or wet method. By adopting this method, the characteristics of the (C) component can be more effectively expressed.
  • component (C) when component (C) is used in this embodiment, in order to improve the dispersibility of component (C) in the resin composition, component (C) may be used as a slurry in which it is dispersed in an organic solvent beforehand, if necessary.
  • organic solvent include the same organic solvents as those described below.
  • the resin composition of the present embodiment may contain a polyphenylene ether derivative having an ethylenically unsaturated bond-containing group as component (D) (hereinafter, may be simply referred to as "polyphenylene ether derivative (D)").
  • component (D) polyphenylene ether derivative having an ethylenically unsaturated bond-containing group
  • the resin composition of the present embodiment contains component (D)
  • the high frequency characteristics are further improved, and the compatibility of components (A) and (B) tends to be improved.
  • the component (D) is preferably a polyphenylene ether derivative having an ethylenically unsaturated bond-containing group at a terminal thereof, and more preferably a polyphenylene ether derivative having an ethylenically unsaturated bond-containing group at both terminals.
  • ethylenically unsaturated bond-containing group refers to a substituent containing a carbon-carbon double bond capable of undergoing an addition reaction, and does not include a double bond in an aromatic ring.
  • the polyphenylene ether derivative (D) may be used alone or in combination of two or more kinds.
  • the ethylenically unsaturated bond-containing group examples include unsaturated aliphatic hydrocarbon groups such as vinyl, allyl, 1-methylallyl, isopropenyl, 2-butenyl, 3-butenyl, and styryl groups; maleimide groups, and groups containing a heteroatom and an ethylenically unsaturated bond, such as the group represented by the following general formula (D-1).
  • unsaturated aliphatic hydrocarbon groups such as vinyl, allyl, 1-methylallyl, isopropenyl, 2-butenyl, 3-butenyl, and styryl groups
  • maleimide groups groups containing a heteroatom and an ethylenically unsaturated bond, such as the group represented by the following general formula (D-1).
  • R d1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms represented by R d1 may be any of a linear alkyl group, a branched alkyl group, and a cyclic alkyl group, and is preferably a linear alkyl group.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, further preferably 1 to 3 carbon atoms, and particularly preferably 1 carbon atom.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a pentadecyl group, a hexadecyl group, and a heptadecyl group.
  • a methyl group is preferable.
  • the group represented by the general formula (D-1) is preferably a (meth)acryloyl group (i.e., a group in which R d1 in the general formula (D-1) is a hydrogen atom or a methyl group), and more preferably a methacryloyl group.
  • the polyphenylene ether derivative (D) preferably has a group represented by the above general formula (D-1) at one or both ends.
  • the polyphenylene ether derivative (D) may further have an ethylenically unsaturated bond-containing group at other than one or both ends, but it is preferable that the polyphenylene ether derivative (D) has an ethylenically unsaturated bond-containing group only at both ends.
  • the polyphenylene ether derivative (D) is preferably a polyphenylene ether having methacryloyl groups at both ends.
  • the number of ethylenically unsaturated bond-containing groups that the polyphenylene ether derivative (D) has in one molecule is not particularly limited, but is preferably 2 to 5, more preferably 2 to 3, and even more preferably 2.
  • the number of ethylenically unsaturated bond-containing groups is equal to or greater than the lower limit, excellent heat resistance and compatibility between components (A) and (B) tend to be obtained, and when the number is equal to or less than the upper limit, excellent flowability and moldability tend to be obtained.
  • the polyphenylene ether derivative (D) has a phenylene ether bond and preferably has a structural unit represented by the following general formula (D-2).
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R d2 in the general formula (D-2) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, etc.
  • an aliphatic hydrocarbon group having 1 to 3 carbon atoms is preferable, an alkyl group having 1 to 3 carbon atoms is more preferable, and a methyl group is even more preferable.
  • n d1 represents an integer of 0 to 4, preferably 1 or 2, and more preferably 2.
  • R d2 is preferably substituted at the ortho position on the benzene ring (based on the substitution position of the oxygen atom).
  • n d1 is an integer of 2 or more, multiple R d2 may be the same or different.
  • the structural unit represented by the general formula (D-2) is preferably a structural unit represented by the following general formula (D-2').
  • the polyphenylene ether derivative (D) is a compound represented by the following general formula (D-3):
  • R d2 and n d1 are as explained in the general formula (D-2) above.
  • R d3 and R d4 each independently represent an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • n d2 and n d3 each independently represent an integer of 0 to 4.
  • n d4 and n d5 each independently represent an integer of 0 to 20, and the sum of n d4 and n d5 is an integer of 1 to 30.
  • X d1 represents an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group, or a single bond.
  • Y d1 and Y d2 each independently represent the ethylenically unsaturated bond-containing group.
  • n d2 and n d3 each represent an integer of 0 to 4, preferably an integer of 0 to 3, and more preferably 2 or 3.
  • n d2 or n d3 is an integer of 2 or more
  • a plurality of R d3s or a plurality of R d4s may be the same or different.
  • n d4 and n d5 each represent an integer of 0 to 20, preferably an integer of 1 to 20, more preferably an integer of 2 to 15, and still more preferably an integer of 3 to 10.
  • n d4 or n d5 is an integer of 2 or more, multiple n d1s may be the same or different.
  • the sum of n d4 and n d5 is an integer of 1 to 30, preferably an integer of 2 to 25, more preferably an integer of 5 to 20, and even more preferably an integer of 7 to 15.
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by Xd1 in the general formula (D-3) include a methylene group, a 1,2-dimethylene group, a 1,3-trimethylene group, a 1,4-tetramethylene group, and a 1,5-pentamethylene group.
  • Examples of the alkylidene group having 2 to 5 carbon atoms represented by Xd1 include an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group, and an isopentylidene group.
  • an isopropylidene group is preferred from the viewpoints of high frequency characteristics, adhesion to the conductor, and compatibility between the components (A) and (B).
  • the preferred embodiments of the ethylenically unsaturated bond-containing group represented by Y d1 and Y d2 are as described above.
  • the compound represented by general formula (D-3) is preferably a compound represented by the following general formula (D-4):
  • n d4 and n d5 are as explained in the general formula (D-3) above.
  • R d5 and R d6 each independently represent a hydrogen atom or a methyl group.
  • X d2 represents a methylene group or an isopropylidene group.
  • the weight average molecular weight (Mw) of the polyphenylene ether derivative (D) is not particularly limited, but is preferably 500 to 7,000, more preferably 800 to 5,000, even more preferably 1,000 to 3,000, and particularly preferably 1,200 to 2,500.
  • the weight average molecular weight (Mw) of the (D) component is at least the lower limit, a cured product having excellent dielectric properties of polyphenylene ether and excellent heat resistance tends to be obtained, whereas when it is at most the upper limit, excellent moldability tends to be obtained.
  • the method for synthesizing the polyphenylene ether derivative (D) is not particularly limited and may be any known method for synthesizing and modifying polyphenylene ether.
  • the content of the (D) component in the resin composition of this embodiment is not particularly limited, but is preferably 0.1 to 40 parts by mass, more preferably 0.5 to 20 parts by mass, even more preferably 1 to 15 parts by mass, and particularly preferably 2 to 10 parts by mass, relative to 100 parts by mass of the solid content in the resin composition.
  • the content of the (D) component is equal to or greater than the lower limit, better high-frequency characteristics and compatibility tend to be obtained, and when the content is equal to or less than the upper limit, better heat resistance, moldability, and processability tend to be obtained.
  • ⁇ Curing Accelerator (E)> By further containing a curing accelerator as component (E) in the resin composition of the present embodiment, the curability is improved, and more excellent high frequency characteristics, heat resistance, adhesion to a conductor, elastic modulus, and glass transition temperature tend to be obtained.
  • a suitable curing accelerator (E) may be appropriately selected depending on the type of the thermosetting resin (B) component used.
  • the curing accelerator (E) may be used alone or in combination of two or more kinds.
  • Examples of the component (E) include amine-based curing accelerators, imidazole-based curing accelerators, phosphorus-based curing accelerators, organometallic salts, acid catalysts, organic peroxides, etc.
  • imidazole-based curing accelerators are not classified as amine-based curing accelerators.
  • Examples of the amine-based curing accelerator include amine compounds having primary to tertiary amines, such as triethylamine, pyridine, tributylamine, dicyandiamide, and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane; and quaternary ammonium compounds.
  • imidazole-based curing accelerator examples include imidazole compounds such as methylimidazole, phenylimidazole, 2-undecylimidazole, and isocyanate-masked imidazole (eg, an addition reaction product of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole).
  • examples of the phosphorus-based curing accelerator include tertiary phosphines such as triphenylphosphine; and quaternary phosphonium compounds such as an addition product of p-benzoquinone and tri-n-butylphosphine.
  • the organic metal salts include carboxylates of manganese, cobalt, zinc, etc.
  • the acid catalyst includes p-toluenesulfonic acid and the like.
  • organic peroxides include dicumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3,2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, t-butylperoxyisopropyl monocarbonate, and ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene.
  • organic peroxides may also be used in combination, but from the viewpoint of the physical properties of the cured product, it is preferable not to contain an organic peroxide.
  • the content of the component (E) is not particularly limited, but is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, further preferably 0.1 to 4 parts by mass, and particularly preferably 0.5 to 3 parts by mass, relative to 100 parts by mass of the resin component.
  • the content of the curing accelerator (E) is within the above range, better high-frequency characteristics, heat resistance, storage stability, and moldability tend to be obtained.
  • the resin composition of the present embodiment may further contain, as necessary, one or more optional components such as a resin material other than the above-mentioned components, a flame retardant, a flame retardant assistant, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a pigment, a colorant, a lubricant, and a silane coupling agent.
  • a resin material other than the above-mentioned components e.g., a flame retardant, a flame retardant assistant, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a pigment, a colorant, a lubricant, and a silane coupling agent.
  • the resin composition of the present embodiment contains the optional components
  • their contents are not particularly limited, and may be, per 100 parts by mass of the total of the resin components, 0.01 parts by mass or more, 0.1 parts by mass or more, 0.5 parts by mass or more, or 10 parts by mass or less, 5 parts by mass or less, or 1 part by mass or less.
  • the resin composition of the present embodiment may not contain the optional components described above, depending on the desired performance.
  • the total content of components (A) to (E) in the resin components contained in the resin composition of this embodiment is not particularly limited, but is preferably 80 parts by mass or more, more preferably 90 parts by mass or more, and even more preferably 95 parts by mass or more, per 100 parts by mass of the solid content in the resin composition, and may be 100 parts by mass.
  • the resin composition of the present embodiment may be a varnish-like resin composition containing an organic solvent, from the viewpoint of facilitating handling and facilitating production of a prepreg, which will be described later.
  • the organic solvent include alcohol-based solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether; ketone-based solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ether-based solvents such as tetrahydrofuran; aromatic solvents such as toluene, xylene, and mesitylene; nitrogen-containing solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone; sulfur-containing solvents such as dimethylsulfoxide; and ester-based solvents such as ⁇ -butyrolactone.
  • These organic solvents may be used alone
  • the resin composition of this embodiment contains an organic solvent
  • its content is not particularly limited, but is preferably an amount that results in a solids concentration of the resin composition of this embodiment of 30 to 90 mass%, more preferably an amount that results in a solids concentration of 40 to 80 mass%, and even more preferably an amount that results in a solids concentration of 50 to 70 mass%.
  • the content of the organic solvent is within the above range, the resin composition is easy to handle, and the impregnation of the substrate and the appearance of the produced prepreg are good. Furthermore, it becomes easy to adjust the solids concentration of the resin in the prepreg, which will be described later, and it tends to be easier to produce a prepreg having the desired thickness.
  • the dielectric constant (Dk) at 10 GHz when the resin composition of this embodiment is prepared into a test piece by the method described in the Examples below is not particularly limited, but is preferably 4.0 or less, more preferably 3.7 or less, even more preferably 3.3 or less, and may be 3.1 or less.
  • the dielectric loss tangent (Df) at 10 GHz when the resin composition of this embodiment is prepared into a test piece by the method described in the examples below is not particularly limited, but is preferably 0.0040 or less, more preferably 0.0038 or less, even more preferably 0.0035 or less, even more preferably 0.0033 or less, and may be 0.0032 or less.
  • the dielectric constant (Dk) and the dielectric loss tangent (Df) are values based on the cavity resonator perturbation method, and more specifically, are values measured by the method described in the Examples.
  • the term "dielectric constant” simply refers to the relative dielectric constant.
  • the resin composition of this embodiment can be produced by mixing components (A) to (C) and, if necessary, other components, by a known method. At this time, each component may be dissolved or dispersed in the organic solvent while stirring.
  • the mixing order, temperature, time, and other conditions are not particularly limited and can be set as desired.
  • the resin film of the present embodiment is a resin film containing the resin composition of the present embodiment or a semi-cured product of the resin composition.
  • the resin film of the present embodiment can be produced, for example, by applying a resin composition containing an organic solvent, i.e., a varnish, to a support, drying by heating, and semi-curing (B-staging) as necessary.
  • the thickness of the resin film is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 3 to 70 ⁇ m, and even more preferably 5 to 35 ⁇ m.
  • the support may be a plastic film, a metal foil, or a release paper.
  • the drying temperature and drying time may be appropriately determined depending on the amount of the organic solvent used, the boiling point of the organic solvent used, and the like, but a resin film can be suitably formed by drying at 50 to 200° C. for about 1 to 10 minutes.
  • the prepreg of the present embodiment is a prepreg containing the resin composition of the present embodiment or a semi-cured product of the resin composition.
  • the prepreg of this embodiment contains, for example, the resin composition of this embodiment or a semi-cured product of the resin composition and a sheet-like fiber substrate.
  • the prepreg is formed using the resin composition of this embodiment or the resin film and a sheet-like fiber substrate.
  • the resin composition of this embodiment or the resin film is impregnated into a sheet-like fiber substrate, and then heated and dried to semi-cure (B-stage) as necessary.
  • the prepreg of this embodiment can be produced by heating and drying in a drying oven at 80 to 200 ° C.
  • B-stage refers to a state of B-stage defined in JIS K6900 (1994).
  • the amount of the resin composition used can be appropriately determined so that the solid content concentration derived from the resin composition in the prepreg after drying is 30 to 90 mass %. By setting the solid content concentration in this range, better moldability tends to be obtained when the laminate is made.
  • the material of the sheet-like fiber substrate may be inorganic fibers such as E glass, D glass, S glass, Q glass, etc.; organic fibers such as polyimide, polyester, tetrafluoroethylene, etc.; mixtures thereof, etc.
  • These sheet-like fiber substrates have shapes such as woven fabric, nonwoven fabric, roving, chopped strand mat, surfacing mat, etc.
  • the thickness of the sheet-like fiber substrate is not particularly limited, but may be 1 to 100 ⁇ m, 3 to 70 ⁇ m, 5 to 55 ⁇ m, 15 to 55 ⁇ m, or 25 to 55 ⁇ m.
  • the laminate of the present embodiment is a laminate having a cured product of the resin composition of the present embodiment or a cured product of the prepreg, and a metal foil.
  • the laminate of the present embodiment can be produced, for example, by disposing a metal foil on one or both sides of a single resin film of the present embodiment, or by disposing a metal foil on one or both sides of a laminate obtained by stacking two or more resin films of the present embodiment, and then molding the laminate under heat and pressure.
  • the resin film of the present embodiment is C-staged.
  • Another embodiment of the laminate of this embodiment can be produced, for example, by disposing metal foil on one or both sides of a single prepreg of this embodiment, or by disposing metal foil on one or both sides of a laminate obtained by stacking two or more prepregs of this embodiment, and then molding the laminate under heat and pressure.
  • the prepreg of this embodiment is C-staged.
  • C-staging refers to bringing the laminate into the C-stage state defined in JIS K6900 (1994). Note that a laminate having a metal foil is sometimes called a metal-clad laminate.
  • the metal of the metal foil is not particularly limited, but from the viewpoint of electrical conductivity, it may be copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, titanium, chromium, or an alloy containing one or more of these metal elements, with copper and aluminum being preferred, and copper being more preferred.
  • the method for carrying out the hot and pressure molding is not particularly limited, but may be carried out, for example, under conditions of a temperature of 100 to 300° C., a pressure of 0.2 to 10 MPa, and a time of 0.1 to 5 hours. In addition, the hot and pressure molding may be carried out using a vacuum press or the like to maintain a vacuum state for 0.5 to 5 hours.
  • the printed wiring board of the present embodiment has a cured product of the resin composition of the present embodiment. It can also be said that the printed wiring board of the present embodiment is a printed wiring board having one or more selected from the group consisting of a cured product of the thermosetting resin composition of the present embodiment, a cured product of the prepreg of the present embodiment, and a laminate of the present embodiment.
  • the printed wiring board of this embodiment can be manufactured by performing a circuit formation process such as drilling, metal plating, and etching of metal foil by a known method using one or more selected from the group consisting of the prepreg of this embodiment, the resin film of this embodiment, and the laminate of this embodiment.
  • a multilayer printed wiring board can also be manufactured by performing a multilayer adhesive process as necessary.
  • the prepreg of this embodiment and the resin film of this embodiment are C-staged.
  • the semiconductor package of the present embodiment is a semiconductor package having the printed wiring board of the present embodiment and a semiconductor element.
  • the semiconductor package of the present embodiment can be manufactured by mounting a semiconductor element such as a semiconductor chip or a memory at a predetermined position on the printed wiring board of the present embodiment.
  • the resin composition, resin film, prepreg, laminate, printed wiring board, and semiconductor package of this embodiment can be suitably used in electronic devices that handle high-frequency signals of 10 GHz or more.
  • the printed wiring board is useful as a printed wiring board for millimeter-wave radar.
  • the weight average molecular weight (Mw) was measured by the following method.
  • the values were calculated from a calibration curve using standard polystyrene by gel permeation chromatography (GPC).
  • the calibration curve was approximated by a third order equation using standard polystyrene: TSKstandard POLYSTYRENE (Type: A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) [manufactured by Tosoh Corporation, trade name].
  • TSKstandard POLYSTYRENE Type: A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40 [manufactured by Tosoh Corporation, trade name].
  • the measurement conditions for GPC are shown below.
  • the temperature was lowered to 40°C, and a solution of 2.0 g of ethanolamine (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) dissolved in 38 g of propylene glycol monomethyl ether (hereinafter referred to as PGME) was dropped. Thereafter, the temperature was raised to 60°C in about 0.5 hours while stirring, and the temperature was maintained for 1 hour. Further, the temperature was raised to 110°C in about 1 hour, and the temperature was maintained for 2 hours while circulating nitrogen, thereby obtaining a toluene solution of succinimide-modified styrene-based elastomer (A-1) having an ethanolic hydroxyl group.
  • PGME propylene glycol monomethyl ether
  • the succinimide-modified styrene-based elastomer (A-1) having an ethanolic hydroxyl group may be referred to as SEBS-g-HIS.
  • SEBS-g-HIS the succinimide-modified styrene-based elastomer (A-1) having an ethanolic hydroxyl group.
  • the succinimide-modified styrene-based elastomer (A-2) having a phenolic hydroxyl group may be referred to as SEBS-g-PhSI.
  • SEBS-g-PhSI succinimide-modified styrene-based elastomer having a phenolic hydroxyl group
  • the temperature in the flask was raised to the reflux temperature (about 110°C), and a dehydration cyclization reaction was carried out for 3.0 hours while circulating nitrogen, to obtain a toluene solution of a succinimide-modified styrene-based elastomer (A-3) having a maleimide group.
  • a succinimide-modified styrene-based elastomer (A-3) having a maleimide group may be referred to as SEBS-g-MISI.
  • component (A-3) The FT-IR spectrum of component (A-3) was measured in the same manner as in Production Example 1, and it was confirmed that the peak derived from the acid anhydride group near 1780 cm ⁇ 1 had disappeared, and a peak derived from the imide group had appeared near 1700 cm ⁇ 1 .
  • the 13 C-NMR spectrum of component (A-3) (NMR apparatus: manufactured by Bruker) was measured, and it was confirmed that 2 to 3 peaks derived from the carbonyl carbon of the succinimide group and the carbonyl carbon of the maleimide group appeared in the region of 170 to 180 ppm.
  • the component (A-3) has a succinimide group having a maleimide group as shown below. ( m1 is an integer from 1 to 10. * indicates a bond.)
  • the mixture was concentrated at the reflux temperature for 3 hours to produce a modified maleimide compound (X-1) solution having a solid content of 65% by mass.
  • the weight average molecular weight (Mw) of the obtained modified maleimide compound (X-1) was about 2,700.
  • the PET films on both sides of this resin-attached PET film with a resin thickness of 325 ⁇ m were peeled off, and low-profile copper foil (BF-ANP18, Rz of M side: 1.5 ⁇ m, manufactured by CIRCUIT FOIL Co., Ltd.) with a thickness of 18 ⁇ m was laminated on the top and bottom of the resin so that the M side was in contact with the resin, and this laminate was placed in a mold with a thickness of 300 ⁇ m.
  • the laminate was heated and pressurized at a temperature of 230°C, a pressure of 3.0 MPa, and a time of 90 minutes to produce a double-sided copper-clad laminate.
  • the surface of the resin plate (resin layer) after the desmear treatment obtained above was observed using a scanning electron microscope (SEM) (manufactured by Hitachi High-Technologies Corporation, product name: SV-4700) under conditions of secondary electron mode, acceleration voltage of 10 kV, and observation magnification of 5,000 times.
  • SEM scanning electron microscope
  • a resin plate (resin layer) having a surface with a depression exceeding 1.0 ⁇ m in size was rated as having a depression "present,” and a resin plate (resin layer) having no depression exceeding 1.0 ⁇ m in size was rated as having no depression.
  • the size of the recess here means the length of the longest straight line that can be drawn within the region of the recess when viewed from above on the resin plate.
  • a resin plate was prepared under the same conditions as in the above "Confirmation of the presence or absence of dents” and cut into a length of 60 mm and a width of 2 mm to be used as a test piece, and the dielectric constant and dielectric loss tangent were measured by the cavity resonator perturbation method.
  • the measuring device used was Agilent Technologies' vector network analyzer "N5227A,” the cavity resonator used was Kanto Electronics Application Development's "CP129” (10 GHz band resonator), and the measurement program was "CPMA-V2.” The measurement was performed under conditions of a frequency of 10 GHz and a measurement temperature of 25°C.
  • the copper foil peel strength of the double-sided copper-clad laminate obtained in each example was measured by peeling the copper foil at a 90° angle in accordance with JIS C6481 (1996). The pulling speed was 50 mm/min.
  • Modified maleimide compound Modified maleimide compound (X-1) prepared in Production Example 4
  • Component (C): Inorganic filler Silica: spherical fused silica, average particle size: 0.5 ⁇ m, methyl isobutyl ketone 70% by mass slurry
  • B-1 Polyphenylene ether having methacryloyl groups at both ends (weight average molecular weight (Mw): 1,700)
  • the copper-clad laminates of Examples 1 to 3 which were made using the resin composition of this embodiment, had excellent high-frequency characteristics, but did not suffer from the dents on the resin layer that occurred in the copper-clad laminate of Comparative Example 1.
  • the copper-clad laminates of Examples 1 to 3 had greater copper foil peel strength than the copper-clad laminate of Comparative Example 1, possibly because no dents occurred on the resin layer.
  • the resin composition of the present invention exhibits excellent dielectric properties in the high frequency band of 10 GHz or more, and suppresses the occurrence of depressions on the resin layer surface after desmearing. Therefore, resin films, prepregs, laminates, printed wiring boards, semiconductor packages, etc. obtained using the resin composition are suitable for electronic component applications that handle high frequency signals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

高周波特性に優れ、且つ、デスミア処理後の表面における窪みの発生が抑制された硬化物を形成可能な樹脂組成物等を提供する。前記樹脂組成物は、具体的には、N-置換スクシンイミド基を側鎖に有する変性スチレン系エラストマー(A)と、熱硬化性樹脂(B)と、無機充填材(C)と、を含有する、樹脂組成物である。

Description

樹脂組成物、樹脂フィルム、プリプレグ、積層板、プリント配線板及び半導体パッケージ
 本発明は、樹脂組成物、樹脂フィルム、プリプレグ、積層板、プリント配線板及び半導体パッケージに関する。
 携帯電話に代表される移動体通信機器、その基地局装置、サーバー、ルーター等のネットワークインフラ機器、大型コンピュータなどでは、使用する信号の高速化及び大容量化が年々進んでいる。これに伴い、これらの電子機器に搭載されるプリント配線板には高周波化対応が必要となり、伝送損失の低減を可能とする高周波数帯(例えば、10GHz以上)における誘電特性(低誘電率及び低誘電正接;以下、高周波特性と称することがある。)に優れる基板材料が求められている。近年、このような高周波信号を扱うアプリケーションとして、上述した電子機器のほかに、ITS分野(自動車、交通システム関連)及び室内の近距離通信分野でも高周波無線信号を扱う新規システムの実施計画及び実用化が進んでいる。したがって、今後、これらの機器に搭載するプリント配線板に対しても、低伝送損失基板材料が要求されると予想される。
 このような状況下、特に相容性が良好で、且つ高周波特性、導体との高接着性、優れた耐熱性、高ガラス転移温度、低熱膨張係数及び高難燃性を有する樹脂組成物を提供することを課題として、特定のポリフェニレンエーテル誘導体、特定の熱硬化性樹脂、及びスチレン系熱可塑性エラストマーを含む樹脂組成物が提案されている。
国際公開第2016/175326号
 ところで、プリント配線板の製造工程において、絶縁層の穴あけ加工後の残渣成分の除去を目的として、又は、絶縁層と導体層との接着性向上のための表面粗化を目的として、絶縁層を酸化剤水溶液によって処理するデスミア処理が行われている。本発明者等の検討によると、スチレン系エラストマーを含む樹脂組成物を用いた銅張積層板は、前記デスミア処理の後、絶縁層の表面に直径が約1μmを超える大きさの窪みが発生する場合があることが判明した。
 本発明は、このような現状に鑑み、高周波特性に優れ、且つ、デスミア処理後の表面における窪みの発生が抑制された硬化物を形成可能な樹脂組成物を提供すること、並びに、前記樹脂組成物を用いた、樹脂フィルム、プリプレグ、積層板、プリント配線板及び半導体パッケージを提供することを課題とする。
 本発明者らは、鋭意研究を重ねた結果、本開示の樹脂組成物であれば、前記目的を達成できることを見出した。
 本開示は、下記[1]~[13]の実施形態を含むものである。
[1]N-置換スクシンイミド基を側鎖に有する変性スチレン系エラストマー(A)と、熱硬化性樹脂(B)と、無機充填材(C)と、を含有する、樹脂組成物。
[2]前記N-置換スクシンイミド基が、下記式(a1)で表される構造を有する、上記[1]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000003

[式(a1)中、Xは1価の有機基を示し、*は結合部を示す。]
[3]前記式(a1)中のXが、イソシアネート基、水酸基、カルボキシ基、シラノール基、チオール基、スルホ基、リン酸基、環状エーテル基、カーボネート基、ニトリル基、(メタ)アクリロイル基、ビニル基、マレイミド基、イミダゾール基、オキサゾリン基、ベンゾトリアゾール基及びベンゾオキサジン基からなる群より選ばれる1種以上を有する1価の有機基である、上記[2]に記載の樹脂組成物。
[4]前記N-置換スクシンイミド基が、下記式(a2)又は(a3)で表される構造を有する、上記[2]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000004

[式(a2)中、XA1は水酸基を有するアミン化合物の残基を示し、*は結合部を示す。式(a3)中、XA2はジアミン化合物の残基を示し、*は結合部を示す。]
[5]前記熱硬化性樹脂(B)が、エポキシ樹脂、マレイミド化合物、変性ポリフェニレンエーテル樹脂、フェノール樹脂、ポリイミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂及びメラミン樹脂からなる群より選ばれる1種以上を含む、上記[1]~[4]のいずれかに記載の樹脂組成物。
[6]前記(A)成分の含有量が、樹脂組成物中の固形分100質量部に対して1~50質量部である、上記[1]~[5]のいずれかに記載の樹脂組成物。
[7]さらに、エチレン性不飽和結合含有基を有するポリフェニレンエーテル誘導体(D)含有する、上記[1]~[6]のいずれかに記載の樹脂組成物。
[8]さらに、硬化促進剤(E)を含有する、上記[1]~[7]のいずれかに記載の樹脂組成物。
[9]上記[1]~[8]のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物を含有する樹脂フィルム。
[10]上記[1]~[8]のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物を含有するプリプレグ。
[11]上記[1]~[8]のいずれかに記載の樹脂組成物の硬化物又は上記[10]に記載のプリプレグの硬化物と、金属箔と、を有する積層板。
[12]上記[1]~[8]のいずれかに記載の樹脂組成物の硬化物を有する、プリント配線板。
[13]上記[12]に記載のプリント配線板と、半導体素子と、を有する半導体パッケージ。
 本発明によると、高周波特性に優れ、且つ、デスミア処理後の樹脂層表面における窪みの発生が抑制された硬化物を形成可能な樹脂組成物を提供すること、並びに、前記樹脂組成物を用いた、樹脂フィルム、プリプレグ、積層板、プリント配線板及び半導体パッケージを提供することができる。
 本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値又は上限値と任意に組み合わせられる。数値範囲「AA~BB」という表記においては、両端の数値AA及びBBがそれぞれ下限値及び上限値として数値範囲に含まれる。
 本明細書において、例えば、「10以上」という記載は、10及び10を超える数値を意味し、数値が異なる場合もこれに準ずる。また、例えば、「10以下」という記載は、10及び10未満の数値を意味し、数値が異なる場合もこれに準ずる。
 また、本明細書に例示する各成分及び材料は、特に断らない限り、1種を単独で使用してもよいし、2種以上を併用してもよい。本明細書において、樹脂組成物中の各成分の含有量は、樹脂組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、樹脂組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書において、「樹脂成分」とは、樹脂組成物を構成する固形分のうち、後述する無機充填材等の無機化合物を除く、すべての成分のことをいう。
 本明細書において、「固形分」とは、溶媒以外の成分を意味し、25℃で液体状の成分も固形分とみなす。
 本開示中に記載されている「XXを含有する」という表現は、XXが反応し得る場合にはXXが反応した状態で含有していてもよいし、単にXXをそのまま含有していてもよいし、これら両方の態様が含まれていてもよい。
 本明細書における記載事項を任意に組み合わせた態様も本開示及び本実施形態に含まれる。
[樹脂組成物]
 本実施形態の樹脂組成物は、N-置換スクシンイミド基を側鎖に有する変性スチレン系エラストマー(A)[以下、(A)成分と称することもある]と、熱硬化性樹脂(B)[以下、(B)成分と称することもある]と、無機充填材(C)[以下、(C)成分と称することもある]と、を含有する、樹脂組成物である。
 以下、本実施形態の樹脂組成物が含有する各成分について説明する。
<N-置換スクシンイミド基を側鎖に有する変性スチレン系エラストマー(A)>
 N-置換スクシンイミド基は、空気中の水分等により加水分解され難く、また、(B)成分である熱硬化性樹脂との相溶性に優れるため、(A)成分としてN-置換スクシンイミド基を有する変性スチレン系エラストマーを用いることで、樹脂組成物の安定性を向上することができるため、デスミア処理後の樹脂層表面における窪みの発生の抑制に効果的に寄与する。窪みの発生の抑制を行うことで、銅箔引き剥がし強さの低下を抑制し得る。
 また、本実施形態の樹脂組成物が(A)成分を含有することで、高周波特性も良好なものとなる。
 (A)成分は、好ましくは熱可塑性エラストマーである。
 (A)成分は、無水マレイン酸で変性されたスチレン系エラストマーの酸無水物基に対して、アミノ基を有する化合物を反応させることで作製することができる。スチレン系エラストマーは、スチレン系化合物に由来する構造単位と、共役ジエン化合物に由来する構造単位とを有する共重合体であってよい。前記スチレン系エラストマーにおいて、スチレン系化合物に由来する構造単位の含有率[以下、「スチレン含有率」と称する場合がある。]は、特に限定されないが、好ましくは5~60質量%、より好ましくは10~50質量%、さらに好ましくは20~40質量%である。また、(A)成分自体のスチレン含有率も、特に限定されないが、好ましくは5~60質量%、より好ましくは10~50質量%、さらに好ましくは20~40質量%である。
 スチレン系化合物としては、スチレン、α-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン等が挙げられる。これらの中でも、入手性及び生産性の観点から、スチレン、α-メチルスチレン、4-メチルスチレンが好ましく、スチレンがより好ましい。
 共役ジエン化合物としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、1,3-ペンタジエン(ピペリレン)、1-フェニル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-メチル-1,3-ペンタジエン、3,4-ジメチル-1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン等が挙げられる。これらの中でも、入手性及び生産性の観点から、1,3-ブタジエン、イソプレンが好ましく、1,3-ブタジエンがより好ましい。
 スチレン系エラストマーは、共役ジエン化合物に由来する構造単位の少なくとも一部が水添された水添スチレン系エラストマーであってもよい。水添スチレン系エラストマーとしては、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物(SEBS)及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物が挙げられる。スチレン系エラストマーは公知の方法によって製造してもよいし、市販品を使用してもよい。スチレン系エラストマーの市販品としては、旭化成株式会社製のタフテック(登録商標)Hシリーズ、Mシリーズ、株式会社クラレ製のセプトン(登録商標)シリーズ、クレイトンポリマージャパン株式会社製のクレイトン(登録商標)Gポリマーシリーズ等が挙げられる。
 前記スチレン系エラストマーの重量平均分子量(Mw)は、好ましくは20,000~120,000、より好ましくは30,000~110,000、さらに好ましくは40,000~100,000、特に好ましくは50,000~80,000である。なお、本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した値であり、より詳細には実施例に記載の測定方法により求めた値である。
 前記スチレン系エラストマーは、水添スチレン系エラストマーであってもよいし、未水添スチレン系エラストマーであてもよい。
 無水マレイン酸で変性されたスチレン系エラストマーは、スチレン系エラストマー又は水添スチレン系エラストマーに無水マレイン酸を反応させることで製造してもよいし、市販品を用いてもよい。
 無水マレイン酸で変性されたスチレン系エラストマーは、例えば、スチレン系エラストマー及び無水マレイン酸を溶剤に溶解した混合液に、窒素雰囲気下でラジカル発生剤を添加して、スチレン系エラストマーに無水マレイン酸を反応させることで作製することができる。反応温度は、20~150℃であってよい。反応後は、副反応を抑制する観点から、未反応の無水マレイン酸を抽出により除去することが好ましい。
 ラジカル発生剤としては、有機過酸化物、アゾ化合物等を用いることができる。有機過酸化物としては、ジクミルパーオキサイド、ベンゾイルパーオキサイド、2-ブタノンパーオキサイド、tert-ブチルパーベンゾエイト、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、tert-ブチルヒドロパーオキシド等が挙げられる。アゾ化合物としては、2,2’-アゾビス(2-メチルプロパンニトリル)、2,2’-アゾビス(2-メチルブタンニトリル)、1,1’-アゾビス(シクロヘキサンカルボニトリル)等が挙げられる。
 溶剤としては、ブチルセロソルブ、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、トルエン、キシレン、メシチレン、メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらの中でも、溶解性の観点から、トルエン、キシレン、プロピレングリコールモノメチルエーテルが好ましい。
 無水マレイン酸で変性されたスチレン系エラストマーの酸価は、デスミア処理後の表面における窪みの発生を抑制する観点から、好ましくは20~120mgKOH/g、より好ましくは25~100mgKOH/g、さらに好ましくは30~90mgKOH/g、特に好ましくは35~80mgKOH/gである。
 無水マレイン酸で変性されたスチレン系エラストマーの重量平均分子量(Mw)は、好ましくは20,000~120,000、より好ましくは30,000~110,000、さらに好ましくは40,000~100,000、特に好ましくは50,000~80,000である。
 アミノ基を有する化合物は、アミノ基を1つ以上有していれば特に限定されない。アミノ基を有する化合物としては、水酸基を有するアミン化合物、イソシアネート基を有するアミン化合物、カルボキシ基を有するアミン化合物、シラノール基を有するアミン化合物、チオール基を有するアミン化合物、スルホ基を有するアミン化合物、リン酸基を有するアミン化合物、ビニル基を有するアミン化合物、(メタ)アクリロイル基を有するアミン化合物、ニトリル基を有するアミン化合物、環状エーテル基を有するアミン化合物、アミノ基を2つ有するジアミン化合物等が挙げられる。なお、本明細書において、「(メタ)アクリロイル基」とは、アクリロイル基又はメタクリロイル基を意味する。
 N-置換スクシイミド基は、下記式(a1)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000005
 式(a1)中、Xは1価の有機基を示し、*は結合部を示す。
 Xとしては、イソシアネート基、水酸基、カルボキシ基、シラノール基、チオール基、スルホ基、リン酸基、環状エーテル基、カーボネート基、ニトリル基、(メタ)アクリロイル基、ビニル基、マレイミド基、イミダゾール基、オキサゾリン基、ベンゾトリアゾール基及びベンゾオキサジン基からなる群より選ばれる少なくとも1種以上を有する1価の有機基が挙げられる。Xは、反応性、硬化性、耐熱性及び相容性の観点から、イソシアネート基、水酸基、カルボキシ基、マレイミド基及びベンゾオキサジン基からなる群より選ばれる少なくとも1種以上を有する1価の有機基であってもよく、イソシアネート基、水酸基、カルボキシ基、マレイミド基又はベンゾオキサジン基を有する1価の有機基であってもよく、水酸基又はマレイミド基を有する1価の有機基であってもよい。
 前記N-置換スクシイミド基は、下記式(a2)又は(a3)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000006
 前記式(a2)中、XA1は水酸基を有するアミン化合物の残基を示し、*は結合部を示す。前記式(a3)中、XA2はジアミン化合物の残基を示し、*は結合部を示す。なお、残基とは、原料成分から結合に供された官能基を除いた部分の基(構造)を意味する。
 式(a2)で表される構造を有する基を有する変性スチレン系エラストマーは、無水マレイン酸で変性されたスチレン系エラストマーと、水酸基を有するアミン化合物との反応物であってよい。
 水酸基を有するアミン化合物としては、ヒドロキシエチルアミン等のアルコール性水酸基を有するアミン;チラミン、ドーパミン等のフェノール性水酸基を有するアミン;などが挙げられる。
 式(a3)で表される構造を有する基を有する変性スチレン系エラストマーは、無水マレイン酸で変性されたスチレン系エラストマーと、ジアミン化合物と、無水マレイン酸との反応物であってよい。
 前記ジアミン化合物としては、ポリオキシプロピレンジアミン等の脂肪族ジアミン;4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルケトン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)フルオレン等の芳香族ジアミン;などが挙げられる。
 (A)成分としては、好ましくは、エタノール性水酸基を有するスクシンイミド変性スチレン系エラストマー、フェノール性水酸基を有するスクシンイミド変性スチレン系エラストマー、マレイミド基を有するスクシンイミド変性スチレン系エラストマーである。
 前記エタノール性水酸基を有するスクシンイミド変性スチレン系エラストマーは、特に制限されないが、下記のエタノール性水酸基を有するスクシンイミド基を有するものであることが好ましい。
Figure JPOXMLDOC01-appb-C000007

(*は結合部を示す。)
 前記フェノール性水酸基を有するスクシンイミド変性スチレン系エラストマーは、特に制限されないが、下記のフェノール性水酸基を有するスクシンイミド基を有するものであることが好ましい。
Figure JPOXMLDOC01-appb-C000008

(*は結合部を示す。)
 前記マレイミド基を有するスクシンイミド変性スチレン系エラストマーは、特に制限されないが、下記のマレイミド基を有するスクシンイミド基を有するものであることが好ましい。
Figure JPOXMLDOC01-appb-C000009

(mは括弧内の構造の繰り返し単位数を表す。*は結合部を示す。)
 上記mは、溶解性の観点から、1~50の整数が好ましく、1~30の整数がより好ましく、1~10の整数がさらに好ましい。
((A)成分の含有量)
 本実施形態の樹脂組成物中における(A)成分の含有量は、特に限定されないが、高周波特性、デスミア処理後の樹脂層表面における窪みの発生抑制の観点から、樹脂組成物中の固形分100質量部に対して、好ましくは1~50質量部、より好ましくは3~40質量部、さらに好ましくは3~35質量部、特に好ましくは3~25質量部、最も好ましくは3~15質量部である。
<熱硬化性樹脂(B)>
 本実施形態の樹脂組成物は、(B)成分として熱硬化性樹脂を含有する。前記熱硬化性樹脂は、エポキシ樹脂、マレイミド化合物、変性ポリフェニレンエーテル樹脂、フェノール樹脂、ポリイミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂及びメラミン樹脂からなる群より選ばれる1種以上を含有することが好ましい。前記変性ポリフェニレンエーテル樹脂は、末端にエチレン性不飽和結合含有基を有するポリフェニレンエーテル樹脂であることが好ましく、両末端にエチレン性不飽和結合含有基を有するポリフェニレンエーテル樹脂であることがより好ましい。ここで、「エチレン性不飽和結合含有基」としては、ビニル基、アリル基、1-メチルアリル基、イソプロペニル基、2-ブテニル基、3-ブテニル基、スチリル基等の不飽和脂肪族炭化水素基;マレイミド基、(メタ)アクリロイル基等のヘテロ原子とエチレン性不飽和結合とを含む基などが挙げられる。
 高周波特性、導体との接着性及び難燃性等の観点から、前記熱硬化性樹脂は、エポキシ樹脂、マレイミド化合物、フェノール樹脂、ポリイミド樹脂、シアネート樹脂、イソシアネート樹脂からなる群より選ばれる1種以上を含有することがより好ましく、エポキシ樹脂、マレイミド化合物、シアネート樹脂より選ばれる1種以上を含有することがさらに好ましく、マレイミド化合物を含有することが特に好ましい。
(マレイミド化合物)
 マレイミド化合物としては、N-置換マレイミド基を2個以上有するマレイミド化合物[以下、単に「マレイミド化合物(b1)」又は「(b1)成分」と略称することがある。]及びその誘導体からなる群より選ばれる1種以上であることが好ましい。
 なお、前記「その誘導体」としては、N-置換マレイミド基を2個以上有するマレイミド化合物と、後述するジアミン化合物等のアミン化合物との付加反応物などが挙げられる。
 マレイミド化合物(b1)の具体例としては、N-置換マレイミド基を2個以上有するマレイミド化合物であれば特に限定されないが、ビス(4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、m-フェニレンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、インダン環含有芳香族ビスマレイミド等の芳香族マレイミド化合物;1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、ピロリン酸バインダ型長鎖アルキルビスマレイミド等の脂肪族マレイミド化合物などが挙げられる。これらの中でも、導体との接着性及び機械特性の観点から、芳香族マレイミド化合物が好ましく、芳香族ビスマレイミド化合物がより好ましく、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミドがさらに好ましい。
 マレイミド化合物としては、有機溶媒への溶解性、相容性、導体との接着性及び高周波特性の観点から、マレイミド化合物(b1)の誘導体が好ましい。
 マレイミド化合物(b1)の誘導体としては、マレイミド化合物(b1)由来の構造単位と、第1級アミノ基を有するアミン化合物[以下、単に「(b2)成分」と略称することがある。]由来の構造単位と、を有する変性マレイミド化合物[以下、「変性マレイミド化合物(X)」又は「(X)成分」と略称することがある。]であることが好ましい。
 なお、変性マレイミド化合物(X)に含まれる(b1)成分由来の構造単位及び(b2)成分由来の構造単位は、各々について、1種であってもよく、2種以上の組み合わせであってもよい。
 変性マレイミド化合物(X)は、(b1)成分が有するマレイミド基と(b2)成分が有する第1級アミノ基とが付加反応してなる、下記式(B-1)で表される構造を含む化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010

(*は他の構造への結合位置を示す。)
 アミン化合物(b2)は、アミノ基を2個以上有する化合物が好ましく、アミノ基を2個有するジアミン化合物がより好ましい。
 アミン化合物(b2)としては、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルケトン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,3-ビス〔1-[4-(4-アミノフェノキシ)フェニル]-1-メチルエチル〕ベンゼン、1,4-ビス〔1-[4-(4-アミノフェノキシ)フェニル]-1-メチルエチル〕ベンゼン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、3,3’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレン等の芳香族ジアミン化合物;第1級アミノ基を有するアミン変性シロキサン化合物などが挙げられる。
 これらの中でも、(b2)成分としては、有機溶媒への溶解性、(b1)成分との反応性、及び耐熱性に優れるという観点から、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリンが好ましい。また、高周波特性及び低吸水性に優れるという観点からは、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタンが好ましい。また、導体との高接着性、伸び、破断強度等の機械特性に優れるという観点からは、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンが好ましい。さらに、有機溶媒への溶解性、合成時の反応性、耐熱性、導体との高接着性に優れることに加えて、高周波特性及び低吸湿性に優れるという観点からは、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリンが好ましい。また、低熱膨張性の観点からは、アミン変性シロキサン化合物が好ましい。
 前記アミン変性シロキサン化合物の官能基当量は、特に限定されないが、好ましくは300~3,000g/mol、より好ましくは400~2,000g/mol、さらに好ましくは600~1,000g/molである。
 (b2)成分としては、耐熱性及び低熱膨張性の観点から、芳香族ジアミン化合物と、アミン変性シロキサン化合物と、を併用することが好ましい。
 芳香族ジアミン化合物及びアミン変性シロキサン化合物の使用割合[芳香族ジアミン化合物/アミン変性シロキサン化合物]は、特に限定されないが、質量比で、好ましくは20/80~80/20、より好ましくは40/60~70/30、さらに好ましくは50/50~65/35である。
 変性マレイミド化合物(X)中における(b2)成分由来の構造単位の含有量は、特に限定されないが、好ましくは5~50質量%、より好ましくは8~30質量%、さらに好ましくは10~15質量%である。(b2)成分由来の構造単位の含有量が前記範囲内であると、高周波特性に優れ、且つより良好な耐熱性、難燃性及びガラス転移温度が得られる傾向にある。
 変性マレイミド化合物(X)中における(b1)成分由来の構造単位と、(b2)成分由来の構造単位の合計含有量は、特に限定されないが、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは100質量%である。
 変性マレイミド化合物(X)中における(b1)成分由来の構造単位と、(b2)成分由来の構造単位との含有比率は、特に限定されないが、(b2)成分の-NH基由来の基(-NHも含む)の合計当量(Ta2)に対する、(b1)成分に由来するマレイミド基由来の基(マレイミド基も含む)の合計当量(Ta1)の当量比(Ta1/Ta2)が、好ましくは0.05~10、より好ましくは1~5となる含有比率である。当量比(Ta1/Ta2)が前記範囲内であると、高周波特性に優れ、且つより良好な耐熱性、難燃性及びガラス転移温度が得られる傾向にある。
(変性マレイミド化合物(X)の製造方法)
 (X)成分は、(b1)成分と(b2)成分との反応物として得ることができ、例えば、(b1)成分と(b2)成分とを有機溶媒中で反応させることで製造することができる。
 具体的には、(b1)成分、(b2)成分、必要によりその他の成分を反応器に所定量仕込み、(b1)成分と(b2)成分とをマイケル付加反応[以下、「プレ反応」と略称することがある。]を行うことにより、変性マレイミド化合物(X)が得られる。
 プレ反応における反応条件は特に限定されないが、ゲル化を抑制しつつ、良好な反応性及び作業性が得られるという観点からは、反応温度は50~160℃、反応時間は1~10時間が好ましい。
 プレ反応では、必要に応じて反応触媒を使用してもよい。反応触媒としては、p-トルエンスルホン酸等の酸性触媒;トリエチルアミン、ピリジン、トリブチルアミン等のアミン;メチルイミダゾール、フェニルイミダゾール等のイミダゾール系化合物;トリフェニルホスフィン等のリン系触媒などが挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。また、反応触媒の配合量に特に制限はないが、(b1)成分及び(b2)成分の合計量100質量部に対して、例えば、0.01~5質量部である。
 変性マレイミド化合物(X)の重量平均分子量(Mw)は、特に限定されないが、好ましくは400~10,000、より好ましくは1,000~5,000、さらに好ましくは1,500~4,000、特に好ましくは2,000~3,000である。
((B)成分の含有量)
 本実施形態の樹脂組成物における熱硬化性樹脂(B)の含有量は、特に限定されないが、高周波特性、耐熱性及び成形性の観点から、樹脂組成物中の固形分100質量部に対して、好ましくは10~70質量部、より好ましくは15~60質量部、さらに好ましくは20~50質量部、特に好ましくは25~45質量部である。
<無機充填材(C)>
 本実施形態の樹脂組成物は、(C)成分として無機充填材を含有していてもよい。本実施形態の樹脂組成物が(C)成分を含有することで、低熱膨張係数、耐熱性及び難燃性を向上させることができる傾向にある。
 (C)成分としては、特に限定されないが、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、クレー(焼成クレー等)、モリブデン酸亜鉛等のモリブデン酸化合物、タルク、ホウ酸アルミニウム、炭化ケイ素等が挙げられる。(C)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、熱膨張係数、耐熱性及び難燃性の観点から、シリカ、アルミナ、マイカ、タルクが好ましく、シリカ、アルミナがより好ましく、シリカがさらに好ましい。シリカとしては、破砕シリカ、フュームドシリカ、溶融シリカ(溶融球状シリカ)等が挙げられる。
 (C)成分の形状及び粒径は、特に限定されないが、粒径は、好ましくは0.01~20μm、より好ましくは0.1~10μm、さらに好ましくは0.2~1μm、特に好ましくは0.3~0.8μmである。ここで、粒径とは、平均粒子径を指し、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことである。(C)成分の粒径は、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
((C)成分の含有量)
 本実施形態の樹脂組成物が(C)成分を含有する場合、(C)成分の含有量は、特に限定されないが、熱膨張係数、耐熱性及び難燃性の観点から、樹脂組成物中の固形分100質量部に対して、好ましくは5~70質量部、より好ましくは15~65質量部、さらに好ましくは20~60質量部、特に好ましくは30~55質量部である。
 また、(C)成分を用いる場合、(C)成分の分散性及び(C)成分と樹脂組成物中の有機成分との密着性を向上させる目的で、必要に応じ、カップリング剤を併用してもよい。該カップリング剤としては特に限定されるものではなく、例えば、シランカップリング剤又はチタネートカップリング剤を適宜選択して用いることができる。カップリング剤は1種を単独で用いてもよく、2種以上を併用してもよい。また、カップリング剤の使用量も特に限定されない。
 なお、カップリング剤を用いる場合、樹脂組成物中に(C)成分を配合した後、カップリング剤を添加する、いわゆるインテグラルブレンド処理方式であってもよいが、予め無機充填材にカップリング剤を乾式又は湿式で表面処理した無機充填材を使用する方式が好ましい。この方法を採用することで、より効果的に(C)成分の特長を発現できる。
 本実施形態において(C)成分を用いる場合、(C)成分の樹脂組成物への分散性を向上させる目的で、必要に応じ、(C)成分を予め有機溶媒中に分散させたスラリーとして用いることができる。有機溶媒としては、後述する有機溶媒と同じものが挙げられる。
<エチレン性不飽和結合含有基を有するポリフェニレンエーテル誘導体(D)>
 本実施形態の樹脂組成物は、(D)成分としてエチレン性不飽和結合含有基を有するポリフェニレンエーテル誘導体(以下、単に「ポリフェニレンエーテル誘導体(D)」と称することがある。)を含有していてもよい。本実施形態の樹脂組成物が(D)成分を含有することで、高周波特性がさらに向上し、且つ、(A)成分と(B)成分の相容性が向上する傾向にある。
 (D)成分は、末端にエチレン性不飽和結合含有基を有するポリフェニレンエーテル誘導体であることが好ましく、両末端にエチレン性不飽和結合含有基を有するポリフェニレンエーテル誘導体であることがより好ましい。
 なお、本明細書において、「エチレン性不飽和結合含有基」とは、付加反応が可能な炭素-炭素二重結合を含有する置換基を意味し、芳香環の二重結合は含まないものとする。
 ポリフェニレンエーテル誘導体(D)は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 エチレン性不飽和結合含有基としては、ビニル基、アリル基、1-メチルアリル基、イソプロペニル基、2-ブテニル基、3-ブテニル基、スチリル基等の不飽和脂肪族炭化水素基;マレイミド基、下記一般式(D-1)で表される基等のヘテロ原子とエチレン性不飽和結合とを含む基などが挙げられる。これらの中でも、高周波特性、導体との接着性及び(A)成分と(B)成分との相容性の観点から、エチレン性不飽和結合含有基は、下記一般式(D-1)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000011

(式中、Rd1は、水素原子又は炭素数1~20のアルキル基を示す。)
 Rd1が示す炭素数1~20のアルキル基は、直鎖状アルキル基、分岐鎖状アルキル基又は環状アルキル基のいずれであってもよく、直鎖状アルキル基であることが好ましい。
 前記アルキル基の炭素数は、1~10が好ましく、1~5がより好ましく、1~3がさらに好ましく、1が特に好ましい。
 アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基等が挙げられ、これらの中でも、メチル基が好ましい。
 前記一般式(D-1)で表される基は、高周波特性、導体との接着性及び(A)成分と(B)成分との相容性の観点から、(メタ)アクリロイル基(すなわち、前記一般式(D-1)におけるRd1が、水素原子又はメチル基である基)であることが好ましく、メタクリロイル基であることがより好ましい。
 なお、本明細書において、マレイミド基、前記一般式(D-1)で表される基等のように、一部に不飽和脂肪族炭化水素基を有しているが、その基全体として見たときに不飽和脂肪族炭化水素基とは言えない基は、前記「不飽和脂肪族炭化水素基」に含まれないものとする。
 ポリフェニレンエーテル誘導体(D)は、前記一般式(D-1)で表される基を、片末端又は両末端に有するものであることが好ましい。
 ポリフェニレンエーテル誘導体(D)は、エチレン性不飽和結合含有基を片末端又は両末端に有している場合、さらに、片末端又は両末端以外にもエチレン性不飽和結合含有基を有していてもよいが、両末端のみにエチレン性不飽和結合含有基を有することが好ましい。ポリフェニレンエーテル誘導体(D)は、両末端にメタクリロイル基を有するポリフェニレンエーテルであることが好ましい。
 ポリフェニレンエーテル誘導体(D)が1分子中に有するエチレン性不飽和結合含有基の数は、特に限定されないが、2~5個が好ましく、2~3個がより好ましく、2個がさらに好ましい。エチレン性不飽和結合含有基の数が前記下限値以上であると、優れた耐熱性及び(A)成分と(B)成分との相容性が得られる傾向にあり、前記上限値以下であると、優れた流動性及び成形性が得られる傾向にある。
 ポリフェニレンエーテル誘導体(D)は、フェニレンエーテル結合を有するものであり、下記一般式(D-2)で表される構造単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000012

(式中、Rd2は、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示す。nd1は、0~4の整数を示す。)
 前記一般式(D-2)中のRd2が示す炭素数1~5の脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基がさらに好ましい。
 nd1は0~4の整数を示し、1又は2が好ましく、2であることがより好ましい。なお、nd1が1又は2である場合、Rd2はベンゼン環上のオルト位(但し、酸素原子の置換位置を基準とする。)に置換していることが好ましい。また、nd1が2以上の整数である場合、複数のRd2同士は同一であってもよいし、異なっていてもよい。
 前記一般式(D-2)で表される構造単位は、下記一般式(D-2’)で表される構造単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 ポリフェニレンエーテル誘導体(D)は、高周波特性、導体との接着性及び(A)成分と(B)成分との相容性の観点から、下記一般式(D-3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000014

(式中、Rd2及びnd1は、前記一般式(D-2)における説明の通りである。Rd3及びRd4は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示す。nd2及びnd3は、各々独立に、0~4の整数を示す。nd4及びnd5は、各々独立に、0~20の整数を示し、nd4及びnd5の合計は、1~30の整数である。Xd1は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合を示す。Yd1及びYd2は、各々独立に、前記エチレン性不飽和結合含有基を示す。)
 前記一般式(D-3)中のRd3及びRd4が示す炭素数1~5の脂肪族炭化水素基についての説明は、前記一般式(D-2)中のRd2が示す炭素数1~5の脂肪族炭化水素基についての説明と同じである。
 nd2及びnd3は、0~4の整数を示し、0~3の整数が好ましく、2又は3が好ましい。nd2又はnd3が2以上の整数である場合、複数のRd3同士又は複数のRd4同士は、それぞれ同一であってもよいし、異なっていてもよい。
 nd4及びnd5は、0~20の整数を示し、1~20の整数が好ましく、2~15の整数がより好ましく、3~10の整数がさらに好ましい。nd4又はnd5が2以上の整数である場合、複数のnd1同士は、同一であってもよいし、異なっていてもよい。
 nd4及びnd5の合計は、1~30の整数であり、2~25の整数が好ましく、5~20の整数がより好ましく、7~15の整数がさらに好ましい。
 前記一般式(D-3)中のXd1が示す炭素数1~5のアルキレン基としては、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。
 Xd1が示す炭素数2~5のアルキリデン基としては、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。
 Xd1が示す基の中でも、高周波特性、導体との接着性及び(A)成分と(B)成分との相容性の観点から、イソプロピリデン基が好ましい。
 Yd1及びYd2が示すエチレン性不飽和結合含有基の好ましい態様については前記した通りである。
 前記一般式(D-3)で表される化合物は、高周波特性、導体との接着性及び(A)成分と(B)成分との相容性の観点から、下記一般式(D-4)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000015

(式中、nd4及びnd5は、前記一般式(D-3)における説明の通りである。Rd5及びRd6は、各々独立に、水素原子又はメチル基を示す。Xd2は、メチレン基又はイソプロピリデン基を示す。)
〔ポリフェニレンエーテル誘導体(D)の重量平均分子量(Mw)〕
 ポリフェニレンエーテル誘導体(D)の重量平均分子量(Mw)は、特に限定されないが、500~7,000が好ましく、800~5,000がより好ましく、1,000~3,000がさらに好ましく、1,200~2,500が特に好ましい。(D)成分の重量平均分子量(Mw)が前記下限値以上であると、ポリフェニレンエーテルの優れた誘電特性を有し、且つ耐熱性に優れる硬化物が得られる傾向にあり、前記上限値以下であると、優れた成形性が得られる傾向にある。
 ポリフェニレンエーテル誘導体(D)の合成方法は、公知のポリフェニレンエーテルの合成方法及び変性方法を適用することができ、特に限定されるものではない。
((D)成分の含有量)
 本実施形態の樹脂組成物中における(D)成分の含有量は、特に限定されないが、樹脂組成物中の固形分100質量部に対して、0.1~40質量部が好ましく、0.5~20質量部がより好ましく、1~15質量部がさらに好ましく、2~10質量部が特に好ましい。(D)成分の含有量が、前記下限値以上であると、より優れた高周波特性及び相容性が得られる傾向にあり、前記上限値以下であると、より優れた耐熱性、成形性及び加工性が得られる傾向にある。
<硬化促進剤(E)>
 本実施形態の樹脂組成物は、さらに(E)成分として硬化促進剤を含有することにより、硬化性が向上し、より優れた高周波特性、耐熱性、導体との接着性、弾性率及びガラス転移温度が得られる傾向にある。
 本実施形態の樹脂組成物が硬化促進剤(E)を含有する場合、使用する熱硬化性樹脂(B)成分の種類に合わせて好適な硬化促進剤(E)を適宜選択すればよい。
 硬化促進剤(E)は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 (E)成分としては、アミン系硬化促進剤、イミダゾール系硬化促進剤、リン系硬化促進剤、有機金属塩、酸性触媒、有機過酸化物等が挙げられる。なお、本実施形態において、イミダゾール系硬化促進剤は、アミン系硬化促進剤に分類しないものとする。
 アミン系硬化促進剤としては、トリエチルアミン、ピリジン、トリブチルアミン、ジシアンジアミド、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン等の第1級~第3級アミンを有するアミン化合物;第4級アンモニウム化合物などが挙げられる。
 イミダゾール系硬化促進剤としては、メチルイミダゾール、フェニルイミダゾール、2-ウンデシルイミダゾール、イソシアネートマスクイミダゾール(例えば、ヘキサメチレンジイソシアネート樹脂と2-エチル-4-メチルイミダゾールの付加反応物等)等のイミダゾール化合物が挙げられる。
 リン系硬化促進剤としては、トリフェニルホスフィン等の第3級ホスフィン;p-ベンゾキノンのトリ-n-ブチルホスフィン付加反応物等の第4級ホスホニウム化合物などが挙げられる。
 有機金属塩としては、マンガン、コバルト、亜鉛等のカルボン酸塩などが挙げられる。
 酸性触媒としては、p-トルエンスルホン酸等が挙げられる。
 有機過酸化物としては、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3,2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン等が挙げられる。
 これらの中でも、より優れた高周波特性、耐熱性、導体との接着性、弾性率及びガラス転移温度が得られるという観点から、アミン系硬化促進剤、イミダゾール系硬化促進剤、リン系硬化促進剤が好ましく、ジシアンジアミド、イミダゾール系硬化促進剤、第4級ホスホニウム化合物がより好ましく、これらを併用することがさらに好ましい。このとき、有機過酸化物も併用してもよいが、硬化物の物性の観点から、有機過酸化物を含有しないことが好ましい。
((E)成分の含有量)
 本実施形態の樹脂組成物が(E)成分を含有する場合、(E)成分の含有量は、特に限定されないが、樹脂成分100質量部に対して、0.01~10質量部が好ましく、0.05~5質量部がより好ましく、0.1~4質量部がさらに好ましく、0.5~3質量部が特に好ましい。硬化促進剤(E)の含有量が前記範囲内であると、より良好な高周波特性、耐熱性、保存安定性及び成形性が得られる傾向にある。
<その他の成分>
 本実施形態の樹脂組成物は、さらに必要に応じて、前記各成分以外の樹脂材料、難燃剤、難燃助剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、顔料、着色剤、滑剤、シランカップリング剤等の任意成分を1種以上含有していてもよい。
 前記の任意成分は、各々について、1種を単独で使用してもよく、2種以上を組み合わせて用いてもよい。
 本実施形態の樹脂組成物が前記の任意成分を含有する場合、その含有量は、特に限定されないが、樹脂成分の総和100質量部に対して、それぞれ、0.01質量部以上であってもよく、0.1質量部以上であってもよく、0.5質量部以上であってもよく、また、10質量部以下であってもよく、5質量部以下であってもよく、1質量部以下であってもよい。
 また、本実施形態の樹脂組成物は、所望する性能に応じて、前記の任意成分を含有しないものであってもよい。
 本実施形態の樹脂組成物が含有する樹脂成分中における(A)~(E)成分の合計含有量は、特に限定されないが、樹脂組成物中の固形分100質量部に対して、80質量部以上が好ましく、90質量部以上がより好ましく、95質量部以上がさらに好ましく、100質量部であってもよい。
(有機溶媒)
 本実施形態の樹脂組成物は、取り扱いを容易にするという観点及び後述するプリプレグを製造し易くする観点から、有機溶媒を含有するワニス状の樹脂組成物であってもよい。
 有機溶媒としては、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶媒;ジメチルスルホキシド等の硫黄原子含有溶媒;γ-ブチロラクトン等のエステル系溶媒などが挙げられる。これらの有機溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態の樹脂組成物が有機溶媒を含有する場合、その含有量は、特に限定されないが、本実施形態の樹脂組成物の固形分濃度が、30~90質量%となる量が好ましく、40~80質量%となる量がより好ましく、50~70質量%となる量がさらに好ましい。有機溶媒の含有量が前記範囲内であると、樹脂組成物の取り扱い性が容易となり、基材への含浸性及び製造されるプリプレグの外観が良好となる。さらに、後述するプリプレグ中の樹脂の固形分濃度の調整が容易となり、所望の厚みを有するプリプレグの製造がより容易となる傾向にある。
<誘電特性>
 本実施形態の樹脂組成物を、後述する実施例に記載の方法によって試験片とした際の10GHzにおける誘電率(Dk)は、特に限定されないが、4.0以下が好ましく、3.7以下がより好ましく、3.3以下がさらに好ましく、3.1以下にもなり得る。前記誘電率(Dk)は小さい程好ましく、その下限値に特に制限はないが、他の物性とのバランスを考慮して、例えば、2.5以上であってもよく、2.8以上であってもよい。
 本実施形態の樹脂組成物を、後述する実施例に記載の方法によって試験片とした際の10GHzにおける誘電正接(Df)は、特に限定されないが、0.0040以下が好ましく、0.0038以下がより好ましく、0.0035以下がさらに好ましく、0.0033以下がよりさらに好ましく、0.0032以下にもなり得る。前記誘電正接(Df)は小さい程好ましく、その下限値に特に制限はないが、他の物性とのバランスを考慮して、例えば、0.0020以上であってもよく、0.0025以上であってもよく、0.0028以上であってもよく、0.0030以上であってもよい。
 なお、誘電率(Dk)及び誘電正接(Df)は、空洞共振器摂動法に準拠した値であり、より詳細には、実施例に記載の方法によって測定された値である。また、本明細書において、単に誘電率というとき、比誘電率を意味する。
 本実施形態の樹脂組成物は、(A)~(C)成分及び必要に応じてそれ以外の成分を公知の方法で混合することで製造することができる。この際、各成分は、前記有機溶媒中で撹拌しながら溶解又は分散させてもよい。混合順序、温度、時間等の条件は、特に限定されず任意に設定することができる。
[樹脂フィルム]
 本実施形態の樹脂フィルムは、本実施形態の樹脂組成物又は前記樹脂組成物の半硬化物を含有する樹脂フィルムである。
 本実施形態の樹脂フィルムは、例えば、有機溶媒を含有する樹脂組成物、つまりワニスを支持体へ塗布し、加熱乾燥して必要に応じて半硬化(B-ステージ化)させることによって製造することができる。樹脂フィルムの厚さは、特に限定されないが、好ましくは1~100μm、より好ましくは3~70μm、さらに好ましくは5~35μmである。
 支持体としては、プラスチックフィルム、金属箔、離型紙などが挙げられる。
 乾燥温度及び乾燥時間は、有機溶媒の使用量、及び使用する有機溶媒の沸点等に応じて適宜決定すればよいが、50~200℃で1~10分間程度乾燥させることによって、樹脂フィルムを好適に形成することができる。
[プリプレグ]
 本実施形態のプリプレグは、本実施形態の樹脂組成物又は前記樹脂組成物の半硬化物を含有するプリプレグである。
 本実施形態のプリプレグは、例えば、本実施形態の樹脂組成物又は前記樹脂組成物の半硬化物とシート状繊維基材とを含有するものである。該プリプレグは、本実施形態の樹脂組成物又は前記樹脂フィルムと、シート状繊維基材と、を用いて形成される。例えば、本実施形態の樹脂組成物又は前記樹脂フィルムをシート状繊維基材に含浸した後、加熱乾燥させて必要に応じて半硬化(Bステージ化)させることによって得ることができる。より具体的には、例えば、乾燥炉中で通常、80~200℃で、1~30分間加熱乾燥して半硬化(Bステージ化)させることによって、本実施形態のプリプレグを製造することができる。ここで、本明細書において、B-ステージ化とは、JIS K6900(1994年)にて定義されるB-ステージの状態にすることである。
 樹脂組成物の使用量は、乾燥後のプリプレグ中の樹脂組成物由来の固形分濃度を30~90質量%にするという目的で適宜決定することができる。固形分濃度を前記範囲とすることで、積層板とした際により良好な成形性が得られる傾向にある。
 プリプレグのシート状繊維基材としては、各種の電気絶縁材料用積層板に用いられている公知のものが用いられる。シート状繊維基材の材質としては、Eガラス、Dガラス、Sガラス、Qガラス等の無機物繊維;ポリイミド、ポリエステル、テトラフルオロエチレン等の有機繊維;これらの混合物などが挙げられる。これらのシート状繊維基材は、織布、不織布、ロービンク、チョップドストランドマット又はサーフェシングマット等の形状を有する。
 シート状繊維基材の厚さは、特に限定されないが、1~100μmであってもよいし、3~70μmであってもよいし、5~55μmであってもよいし、15~55μmであってもよいし、25~55μmであってもよい。
[積層板]
 本実施形態の積層板は、本実施形態の樹脂組成物の硬化物又はプリプレグの硬化物と、金属箔と、を有する積層板である。
 本実施形態の積層板の実施形態は、例えば、本実施形態の樹脂フィルム1枚の片面もしくは両面に金属箔を配置するか、又は本実施形態の樹脂フィルムを2枚以上重ねて得られる積層物の片面もしくは両面に金属箔を配置し、次いで加熱加圧成形することによって製造することができる。該製造方法により得られる積層板において、本実施形態の樹脂フィルムはC-ステージ化されている。
 本実施形態の積層板の別の実施形態は、例えば、本実施形態のプリプレグ1枚の片面もしくは両面に金属箔を配置するか、又は本実施形態のプリプレグを2枚以上重ねて得られる積層物の片面もしくは両面に金属箔を配置し、次いで加熱加圧成形することによって製造することができる。該製造方法により得られる積層板において、本実施形態のプリプレグはC-ステージ化されている。
 本明細書において、C-ステージ化とは、JIS K6900(1994年)にて定義されるC-ステージの状態にすることである。なお、金属箔を有する積層板は、金属張積層板と称されることもある。
 金属箔の金属としては、特に限定されないが、導電性の観点から、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、又はこれらの金属元素を1種以上含有する合金であってもよく、銅、アルミニウムが好ましく、銅がより好ましい。
 前記加熱加圧成形の実施方法としては、特に限定されないが、例えば、温度が100~300℃、圧力が0.2~10MPa、時間が0.1~5時間の条件で実施することができる。また、加熱加圧成形は、真空プレス等を用いて真空状態を0.5~5時間保持する方法を採用できる。
[プリント配線板]
 本実施形態のプリント配線板は、本実施形態の樹脂組成物の硬化物を有するものである。また、本実施形態のプリント配線板は、本実施形態の熱硬化性樹脂組成物の硬化物、本実施形態のプリプレグの硬化物、及び本実施形態の積層板からなる群より選ばれる1種以上を有するプリント配線板であるということもできる。
 本実施形態のプリント配線板は、本実施形態のプリプレグ、本実施形態の樹脂フィルム及び本実施形態の積層板からなる群より選ばれる1種以上を用いて、公知の方法によって、穴開け加工、金属めっき加工、金属箔のエッチング等による回路形成加工を行うことで製造することができる。また、さらに必要に応じて多層化接着加工を行うことによって、多層プリント配線板を製造することもできる。本実施形態のプリント配線板において、本実施形態のプリプレグ及び本実施形態の樹脂フィルムはC-ステージ化されている。
[半導体パッケージ]
 本実施形態の半導体パッケージは、本実施形態のプリント配線板と、半導体素子と、を有する半導体パッケージである。本実施形態の半導体パッケージは、本実施形態のプリント配線板の所定の位置に、半導体チップ、メモリ等の半導体素子を搭載することによって製造することができる。
 本実施形態の樹脂組成物、樹脂フィルム、プリプレグ、積層板、プリント配線板及び半導体パッケージは、10GHz以上の高周波信号を扱う電子機器に好適に用いることができる。特に、プリント配線板は、ミリ波レーダー用プリント配線板として有用である。
 以上、好適な実施形態を説明したが、これらは本開示の説明のための例示であり、本開示の範囲をこれらの実施形態にのみ限定する趣旨ではない。本開示は、その要旨を逸脱しない範囲で、前記実施形態とは異なる種々の態様も含まれる。
 以下、実施例を挙げて、本発明を具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
 なお、各例において、重量平均分子量(Mw)は以下の方法によって測定した。
 ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type;A-2500、A-5000、F-1、F-2、F-4、F-10、F-20、F-40)[東ソー株式会社製、商品名]を用いて3次式で近似した。GPCの測定条件を、以下に示す。
装置:
 ポンプ:L-6200型[株式会社日立ハイテクノロジーズ製]
 検出器:L-3300型RI[株式会社日立ハイテクノロジーズ製]
 カラムオーブン:L-655A-52[株式会社日立ハイテクノロジーズ製]
 カラム:ガードカラム;TSK Guardcolumn HHR-L+カラム;TSKgel G4000HHR+TSKgel G2000HHR(すべて東ソー株式会社製、商品名)
 カラムサイズ:6.0×40mm(ガードカラム)、7.8×300mm(カラム)
溶離液:テトラヒドロフラン
試料濃度:30mg/5mL
注入量:20μL
流量:1.00mL/分
測定温度:40℃
[製造例1:エタノール性水酸基を有するスクシンイミド変性スチレン系エラストマー(A-1)の製造((A)成分)]
 無水マレイン酸変性水添スチレン系エラストマー(旭化成株式会社製、商品名「タフテックM1913」、重量平均分子量(Mw)=63,000、スチレン含有率=30質量%)150g、トルエン678.6gを1Lのフラスコに仕込み、撹拌しながら約0.5時間で80℃に上昇した後、1時間保温し、無水マレイン酸変性水添スチレン系エラストマーを溶解した。
 次いで、40℃に降温し、プロピレングリコールモノメチルエーテル(以下、PGMEと称する。)38gにエタノールアミン(富士フイルム和光純薬株式会社製)2.0gを溶解した溶液を滴下した。その後、撹拌しながら約0.5時間で60℃に昇温した後、1時間保温した。さらに、約1時間で110℃に昇温した後、窒素を循環させながら2時間保温することで、エタノール性水酸基を有するスクシンイミド変性スチレン系エラストマー(A-1)のトルエン溶液を得た。以下、エタノール性水酸基を有するスクシンイミド変性スチレン系エラストマー(A-1)をSEBS-g-HISと称することがある。
 フーリエ変換赤外分光光度計(株式会社島津製作所製、商品名「IRSpirit」)を用いて前記(A-1)成分のFT-IRスペクトルを測定したところ、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピークを有することを確認した。
 なお、前記(A-1)成分は、下記のエタノール性水酸基を有するスクシンイミド基を有するものである。
Figure JPOXMLDOC01-appb-C000016

(*は結合部を示す。)
[製造例2:フェノール性水酸基を有するスクシンイミド変性スチレン系エラストマー(A-2)の製造((A)成分)]
 無水マレイン酸変性水添スチレン系エラストマー(旭化成株式会社製、商品名「タフテックM1913」、重量平均分子量(Mw)=63,000、スチレン含有率=30質量%)150g、トルエン655.7gを1Lのフラスコに仕込み、撹拌しながら約0.5時間で温度を80℃に上昇した後、1時間保温し、無水マレイン酸変性水添スチレン系エラストマーを溶解させた。
 次いで、40℃に降温し、PGME85.5gにチラミン(富士フイルム和光純薬株式会社製)4.5gを溶解した溶液を滴下した。その後、撹拌しながら約0.5時間で60℃に昇温した後、1時間保温した。さらに、約1時間で110℃に昇温した後、窒素を循環させながら2時間保温することで、フェノール性水酸基を有するスクシンイミド変性スチレン系エラストマー(A-2)のトルエン溶液を得た。以下、フェノール性水酸基を有するスクシンイミド変性スチレン系エラストマー(A-2)をSEBS-g-PhSIと称することがある。
 製造例1と同様の方法で(A-2)成分のFT-IRスペクトルを測定したところ、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピークを有することを確認した。
 なお、前記(A-2)成分は、下記のフェノール性水酸基を有するスクシンイミド基を有するものである。
Figure JPOXMLDOC01-appb-C000017

(*は結合部を示す。)
[製造例3:マレイミド基を有するスクシンイミド変性スチレン系エラストマー(A-3)の製造((A)成分)]
 冷却管、窒素導入管、熱電対、及び撹拌機を備えた1Lのフラスコに、トルエンを722g、無水マレイン酸変性水添スチレン系エラストマー(旭化成株式会社製、商品名「タフテックM1913」、重量平均分子量(Mw)=63,000、スチレン含有率=30質量%)を150g投入し、撹拌しながら80℃に昇温した後、1.0時間保温し、無水マレイン酸変性水添スチレン系エラストマーを溶解した。
 次いで、フラスコ内を30℃に降温し、トルエン6.6gにポリオキシプロピレンジアミン(ハンツマン社製、商品名「Jeffermine D230」)を6.6g溶解した溶液を滴下し、1.0時間撹拌した。その後、無水マレイン酸(富士フイルム和光純薬株式会社製)を2.8g添加し、さらに1.0時間保温した。p-トルエンスルホン酸を0.53g加えた後、フラスコ内の温度を還流温度(約110℃)まで昇温し、窒素を循環させながら3.0時間脱水環化反応を行い、マレイミド基を有するスクシンイミド変性スチレン系エラストマー(A-3)のトルエン溶液を得た。以下、マレイミド基を有するスクシンイミド変性スチレン系エラストマー(A-3)をSEBS-g-MISIと称することがある。
 製造例1と同様の方法で(A-3)成分のFT-IRスペクトルを測定したところ、1780cm-1付近の酸無水物基に由来するピークが消失し、1700cm-1付近にイミド基に由来するピークを有することを確認した。また、(A-3)成分の13C-NMRスペクトル(NMR装置:ブルカー社製)を測定したところ、170~180ppmの領域に、スクシンイミド基のカルボニル炭素及びマレイミド基のカルボニル炭素に由来するピークが2~3個生じていることを確認した。
 なお、前記(A-3)成分は、下記のマレイミド基を有するスクシンイミド基を有するものである。
Figure JPOXMLDOC01-appb-C000018

(mは1~10の整数である。*は結合部を示す。)
[製造例4:変性マレイミド化合物(X-1)の製造((B)成分)]
 温度計、撹拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積5Lの反応容器に、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン100質量部と、両末端にアミノ基を有するシロキサン化合物(官能基当量750g/mol)5.6質量部と、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン7.9質量部と、プロピレングリコールモノメチルエーテル171質量部と、を投入し、還流させながら2時間反応させた。これを還流温度にて3時間かけて濃縮し、固形分濃度が65質量%の変性マレイミド化合物(X-1)溶液を製造した。得られた変性マレイミド化合物(X-1)の重量平均分子量(Mw)は、約2,700であった。
[実施例1~3、比較例1]
(樹脂組成物の調製)
 表1に記載の各成分を表1に記載の配合組成に従って、トルエン58質量部及びメチルイソブチルケトン10質量部と共に、室温で撹拌及び混合して、固形分濃度55~65質量%の樹脂組成物を調製した。
(樹脂フィルムの製造)
 厚さ0.050mmのPETフィルム上に塗工機を用いて上記樹脂組成物を塗工し、120℃で3分間加熱乾燥して、樹脂厚さが25μmである樹脂付きPETフィルムを作製した。
(両面銅張積層板の製造)
 上記樹脂付きPETフィルムの樹脂面同士を、真空加圧ラミネート(温度110℃、圧力0.5MPa)で貼り合わせた。さらに、片面のPETフィルムを剥離して、露出した樹脂面に別の樹脂付きPETフィルムの樹脂面を貼り合わせる工程を繰り返し、樹脂厚さが325μmとなるまで積層した。この樹脂厚さ325μmの樹脂付きPETフィルムの両面PETフィルムを剥離し、樹脂の上下に、厚さ18μmのロープロファイル銅箔(BF-ANP18、M面のRz:1.5μm、CIRCUIT FOIL社製)を、M面が樹脂に接するように積層し、この積層体を厚さ300μmの型枠に配置した。次いで、温度230℃、圧力3.0MPa、時間90分間の条件で加熱加圧成形して、両面銅張積層板を作製した。
[評価方法]
 各例で得られた両面銅張積層板を用いて、下記方法に従って各評価を行った。結果を表1に示す。
(1.窪みの有無の確認)
 各例で得られた両面銅張積層板を銅エッチング液に浸漬することによって銅箔を取り除き、以下に示す(1)~(4)を順に行ってデスミア処理して、樹脂板を作製した。
(1)膨潤液(アトテックジャパン株式会社製、商品名「スエリングディップ・セキュリガントP」、グリコールエーテル類、水酸化ナトリウムの水溶液)に60℃で10分間浸漬した後、水洗。
(2)粗化液(アトテックジャパン株式会社製、商品名「コンセントレート・コンパクトP」、KMnO:60g/L、NaOH:40g/Lの水溶液)に80℃で20分間浸漬した後、水洗。
(3)中和液(アトテックジャパン株式会社製、「リダクションショリューシン・セキュリガントP」、硫酸の水溶液)に40℃で5分間浸漬した後、水洗。
(4)80℃で10分間乾燥
 上記で得たデスミア処理後の樹脂板(樹脂層)の表面を、走査型電子顕微鏡(SEM)(株式会社日立ハイテクノロジーズ製、商品名:SV-4700)を用いて、二次電子モード、加速電圧10kV、観察倍率5,000倍の条件にて観察した。得られた表面SEM像において、樹脂板(樹脂層)の表面に大きさが1.0μmを超える窪みが存在するものを窪み「有り」、樹脂板(樹脂層)の表面に大きさが1.0μmを超える窪みが存在しないものを窪み「無し」とした。
 なお、ここでの窪みの大きさとは、樹脂板の平面視における窪みの領域内において引ける直線のうち最も長いものの長さを意味する。
(2.高周波特性)
 上記「窪みの有無の確認」と同様の条件での樹脂板を作製し、これを長さ60mm、幅2mmに切り出したものを試験片として、空洞共振器摂動法によって誘電率及び誘電正接を測定した。測定器にはアジレントテクノロジー社製のベクトル型ネットワークアナライザ「N5227A」、空洞共振器には株式会社関東電子応用開発製の「CP129」(10GHz帯共振器)、測定プログラムには「CPMA-V2」をそれぞれ使用した。測定は、周波数10GHz、測定温度25℃の条件下で行った。
(3.銅箔引きはがし強さの評価)
 各例で得た両面銅張積層板の銅箔引きはがし強さについて、JIS C6481(1996年)に準拠して銅箔を90°方向に引き剥がすことによって、ピール強度を測定した。なお、引っ張り速度は50mm/分とした。
Figure JPOXMLDOC01-appb-T000019
 なお、表1における各材料の略号等は、以下の通りである。
[(A)成分:N-置換スクシンイミド基を側鎖に有する変性スチレン系エラストマー]
・SEBS-g-HSI:製造例1で調製した、エタノール性水酸基を有するスクシンイミド変性スチレン系エラストマー(A-1)
・SEBS-g-PhSI:製造例2で調製した、フェノール性水酸基を有するスクシンイミド変性スチレン系エラストマー(A-2)
・SEBS-g-MISI:製造例3で調製した、マレイミド基を有するスクシンイミド変性スチレン系エラストマー(A-3)
[(A’)成分]
・SEBS-g-MA:無水マレイン酸変性水添スチレン系エラストマー(旭化成株式会社製、商品名「タフテックM1913」)、酸価10mgCHONa/g、スチレン含有率30%
[(B)成分:熱硬化性樹脂]
・変性マレイミド化合物:製造例4で調製した変性マレイミド化合物(X-1)
[(C)成分:無機充填材]
・シリカ:球状溶融シリカ、平均粒子径:0.5μm、メチルイソブチルケトン70質量%スラリー
[(D)成分:エチレン性不飽和結合含有基を有するポリフェニレンエーテル誘導体]
・B-1:両末端にメタクリロイル基を有するポリフェニレンエーテル(重量平均分子量(Mw);1,700)
[(E)成分:硬化促進剤]
・E-1:p-ベンゾキノンのトリ-n-ブチルホスフィン付加反応物
・E-2:2-ウンデシルイミダゾール
・E-3:N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン
 表1に示した結果から明らかなように、本実施形態の樹脂組成物を用いて作製した実施例1~3の銅張積層板は、優れた高周波特性を有しながら、比較例1の銅張積層板で発生した樹脂層上の窪みが発生しなかった。また、実施例1~3の銅張積層板は、樹脂層上に窪みが発生しなかったためか、比較例1の銅張積層板に比べて銅箔引き剥がし強さが大きくなった。
 本発明の樹脂組成物は、10GHz帯以上の高周波数帯において優れた誘電特性を発現し、且つ、デスミア処理後の樹脂層表面における窪みの発生が抑制されるものであるため、該樹脂組成物を用いて得られる樹脂フィルム、プリプレグ、積層板、プリント配線板、半導体パッケージ等は、高周波信号を扱う電子部品用途に好適である。

Claims (13)

  1.  N-置換スクシンイミド基を側鎖に有する変性スチレン系エラストマー(A)と、熱硬化性樹脂(B)と、無機充填材(C)と、を含有する、樹脂組成物。
  2.  前記N-置換スクシンイミド基が、下記式(a1)で表される構造を有する、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    [式(a1)中、Xは1価の有機基を示し、*は結合部を示す。]
  3.  前記式(a1)中のXが、イソシアネート基、水酸基、カルボキシ基、シラノール基、チオール基、スルホ基、リン酸基、環状エーテル基、カーボネート基、ニトリル基、(メタ)アクリロイル基、ビニル基、マレイミド基、イミダゾール基、オキサゾリン基、ベンゾトリアゾール基及びベンゾオキサジン基からなる群より選ばれる1種以上を有する1価の有機基である、請求項2に記載の樹脂組成物。
  4.  前記N-置換スクシンイミド基が、下記式(a2)又は(a3)で表される構造を有する、請求項2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002

    [式(a2)中、XA1は水酸基を有するアミン化合物の残基を示し、*は結合部を示す。式(a3)中、XA2はジアミン化合物の残基を示し、*は結合部を示す。]
  5.  前記熱硬化性樹脂(B)が、エポキシ樹脂、マレイミド化合物、変性ポリフェニレンエーテル樹脂、フェノール樹脂、ポリイミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂及びメラミン樹脂からなる群より選ばれる1種以上を含む、請求項1に記載の樹脂組成物。
  6.  前記(A)成分の含有量が、樹脂組成物中の固形分100質量部に対して1~50質量部である、請求項1に記載の樹脂組成物。
  7.  さらに、エチレン性不飽和結合含有基を有するポリフェニレンエーテル誘導体(D)含有する、請求項1に記載の樹脂組成物。
  8.  さらに、硬化促進剤(E)を含有する、請求項1に記載の樹脂組成物。
  9.  請求項1に記載の樹脂組成物又は前記樹脂組成物の半硬化物を含有する樹脂フィルム。
  10.  請求項1に記載の樹脂組成物又は前記樹脂組成物の半硬化物を含有するプリプレグ。
  11.  請求項1に記載の樹脂組成物の硬化物又は請求項10に記載のプリプレグの硬化物と、金属箔と、を有する積層板。
  12.  請求項1に記載の樹脂組成物の硬化物を有する、プリント配線板。
  13.  請求項12に記載のプリント配線板と、半導体素子と、を有する半導体パッケージ。
PCT/JP2023/039613 2022-11-21 2023-11-02 樹脂組成物、樹脂フィルム、プリプレグ、積層板、プリント配線板及び半導体パッケージ WO2024111380A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-185926 2022-11-21
JP2022185926 2022-11-21

Publications (1)

Publication Number Publication Date
WO2024111380A1 true WO2024111380A1 (ja) 2024-05-30

Family

ID=91195566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039613 WO2024111380A1 (ja) 2022-11-21 2023-11-02 樹脂組成物、樹脂フィルム、プリプレグ、積層板、プリント配線板及び半導体パッケージ

Country Status (1)

Country Link
WO (1) WO2024111380A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061816A (ja) * 1992-06-19 1994-01-11 Asahi Chem Ind Co Ltd イミド基含有ブロック共重合体及びその製造方法
JPH0726072A (ja) * 1993-07-14 1995-01-27 Dai Ichi Kogyo Seiyaku Co Ltd 熱可塑性樹脂組成物
JP2014101399A (ja) * 2012-11-16 2014-06-05 Hitachi Chemical Co Ltd シアネートエステル系樹脂組成物、これを用いたプリプレグ、及び積層板
WO2018207784A1 (ja) * 2017-05-12 2018-11-15 旭化成株式会社 変性ブロック共重合体、変性ブロック共重合体の製造方法、及び樹脂組成物
JP2021187889A (ja) * 2020-05-26 2021-12-13 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061816A (ja) * 1992-06-19 1994-01-11 Asahi Chem Ind Co Ltd イミド基含有ブロック共重合体及びその製造方法
JPH0726072A (ja) * 1993-07-14 1995-01-27 Dai Ichi Kogyo Seiyaku Co Ltd 熱可塑性樹脂組成物
JP2014101399A (ja) * 2012-11-16 2014-06-05 Hitachi Chemical Co Ltd シアネートエステル系樹脂組成物、これを用いたプリプレグ、及び積層板
WO2018207784A1 (ja) * 2017-05-12 2018-11-15 旭化成株式会社 変性ブロック共重合体、変性ブロック共重合体の製造方法、及び樹脂組成物
JP2021187889A (ja) * 2020-05-26 2021-12-13 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ

Similar Documents

Publication Publication Date Title
JP6079930B2 (ja) N−置換マレイミド基を有するポリフェニレンエーテル誘導体、並びにそれを用いた熱硬化性樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及び多層プリント配線板
JP7501368B2 (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及びミリ波レーダー用多層プリント配線板
TWI830741B (zh) 樹脂組成物及其應用
KR20170141687A (ko) 수지 조성물, 프리프레그, 적층판 및 다층 프린트 배선판
JP6863126B2 (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP7272068B2 (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP7484909B2 (ja) マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージ
JP7106819B2 (ja) 樹脂ワニス、樹脂組成物、プリプレグ、積層板、多層プリント配線板及び樹脂ワニスの保存方法
WO2022004583A1 (ja) イソシアネート変性ポリイミド樹脂、樹脂組成物及びその硬化物
CN112969759B (zh) 树脂组合物、树脂组合物的固化物、预浸料、层叠板、树脂膜、多层印刷布线板、毫米波雷达用多层印刷布线板及聚苯醚衍生物
TW202225208A (zh) 馬來醯亞胺樹脂組成物、預浸體、積層板、樹脂薄膜、印刷線路板及半導體封裝體
JP2020169274A (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP2020169276A (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP6896994B2 (ja) 樹脂組成物、プリプレグ、積層板及び多層プリント配線板
TW202229442A (zh) 馬來醯亞胺樹脂組成物、預浸體、積層板、樹脂薄膜、印刷線路板及半導體封裝體
WO2024111380A1 (ja) 樹脂組成物、樹脂フィルム、プリプレグ、積層板、プリント配線板及び半導体パッケージ
JP2022122542A (ja) マレイミド樹脂組成物、プリプレグ、樹脂フィルム、積層板、多層プリント配線板及び半導体パッケージ
WO2023090351A1 (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
JP2024087484A (ja) 熱硬化性樹脂組成物、樹脂フィルム、プリプレグ、積層板、金属張り積層板、プリント配線板、アンテナ装置、アンテナモジュール及び通信装置
WO2023224021A1 (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
TW202235536A (zh) 熱硬化性樹脂組成物、預浸體、積層板、覆金屬積層板、印刷線路板及高速通訊對應模組
TW202227558A (zh) 馬來醯亞胺樹脂組成物、預浸體、樹脂薄膜、積層板、印刷線路板及半導體封裝體
JP2020169275A (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
WO2023243676A1 (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
WO2023163086A1 (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ