JP6896994B2 - 樹脂組成物、プリプレグ、積層板及び多層プリント配線板 - Google Patents

樹脂組成物、プリプレグ、積層板及び多層プリント配線板 Download PDF

Info

Publication number
JP6896994B2
JP6896994B2 JP2015185287A JP2015185287A JP6896994B2 JP 6896994 B2 JP6896994 B2 JP 6896994B2 JP 2015185287 A JP2015185287 A JP 2015185287A JP 2015185287 A JP2015185287 A JP 2015185287A JP 6896994 B2 JP6896994 B2 JP 6896994B2
Authority
JP
Japan
Prior art keywords
group
resin composition
printed wiring
carbon atoms
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015185287A
Other languages
English (en)
Other versions
JP2017057347A (ja
Inventor
啓太 城野
啓太 城野
裕希 永井
裕希 永井
和俊 彈正原
和俊 彈正原
隆雄 谷川
隆雄 谷川
富男 福田
富男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015185287A priority Critical patent/JP6896994B2/ja
Publication of JP2017057347A publication Critical patent/JP2017057347A/ja
Application granted granted Critical
Publication of JP6896994B2 publication Critical patent/JP6896994B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyethers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ポリフェニレンエーテル誘導体を含む樹脂組成物、プリプレグ、積層板及び多層プリント配線板に関する。
携帯電話に代表される移動体通信機器や、その基地局装置、サーバー、ルーター等のネットワークインフラ機器、あるいは大型コンピュータなどでは使用する信号の高速化及び大容量化が年々進んでいる。これに伴い、これらの電子機器に搭載されるプリント配線板には高周波化対応が必要となり、伝送損失の低減を可能とする高周波数帯での誘電特性(低誘電率及び低誘電正接;以下、高周波特性と称することがある。)に優れる基板材料が求められている。近年、このような高周波信号を扱うアプリケーションとして、上述した電子機器のほかに、ITS(Intelligent Transport Systems)分野(自動車、交通システム関連)及び室内の近距離通信分野でも高周波無線信号を扱う新規システムの実用化及び実用計画が進んでおり、今後、これらの機器に搭載するプリント配線板に対しても、低伝送損失の基板材料が更に要求されると予想される。
また、近年の環境問題から、鉛フリーはんだによる電子部品の実装及びハロゲンフリーによる難燃化が要求されるようになってきたため、プリント配線板用材料にはこれまでよりも高い耐熱性及び難燃性が必要とされている。
従来、低伝送損失が要求されるプリント配線板には、高周波特性に優れる耐熱性熱可塑性ポリマーとしてポリフェニレンエーテル(PPE)系樹脂が使用されてきた。例えば、ポリフェニレンエーテルと熱硬化性樹脂とを併用する方法も提案されている。具体的には、ポリフェニレンエーテルとエポキシ樹脂を含有する樹脂組成物(例えば、特許文献1参照)、ポリフェニレンエーテルと、熱硬化性樹脂の中でも誘電率が低いシアネート樹脂とを含有する樹脂組成物(例えば、特許文献2参照)等が開示されている。
しかしながら、上記特許文献1及び2に記載の樹脂組成物は、GHz領域での高周波特性、導体との接着性、低熱膨張係数、難燃性が総合的に不十分であったり、ポリフェニレンエーテルと熱硬化性樹脂との相容性が低いことにより耐熱性が低下することがあった。
一方、本発明者らも、ポリフェニレンエーテル樹脂とポリブタジエン樹脂をベースとして、有機溶媒を含有する樹脂組成物の製造段階(Aステージ段階)でセミIPN(semi-interpenetrating network)化することで、相容性、耐熱性、低熱膨張係数、導体との接着性等を向上できる樹脂組成物(例えば、特許文献3参照)を提案した。しかしながら、近年のプリント配線板用基板材料には高周波化対応に加えて、高密度化、高信頼性、環境配慮への適合性への要求から、導体との高接着性、低熱膨張係数、高ガラス転移温度、高難燃性等の更なる向上が要求されている。
また、サーバー、ルーター等のネットワーク関連機器用途で使用されるプリント配線板用基板材料には、高密度化に伴い高多層化することも必要であり、高いリフロー耐熱性及びスルーホール信頼性が要求されている。さらに、高周波特性としては、より高い周波数帯での優れた誘電特性が要求されており、しかも、一般的に基板材料は周波数が高くなるほど誘電正接が高くなる傾向を示すが、従来の1〜5GHzでの誘電特性値ではなく、10GHz帯以上で優れた誘電特性(低誘電率及び低誘電正接)を発揮する必要性が高まってきている。
また、ポリフェニレンエーテルを用いた樹脂組成物はそのままでは難燃性が不十分であるため、難燃剤を併用させて難燃性を付与する方法等が提案されている(特許文献4参照)。
しかしながら、特許文献4に示されるような難燃剤を併用した樹脂組成物においても、相容性、誘電特性(低誘電率及び低誘電正接)、導体との高接着性、優れた耐熱性、高ガラス転移温度、低熱膨張係数及び高難燃性をすべて満足し得ることは困難であった。
特開昭58−069046号公報 特公昭61−018937号公報 特開2008−95061号公報 特開平3−275760号公報
本発明は、このような現状に鑑み、特に相容性が良好であり、かつ優れた高周波特性(低誘電率及び低誘電正接)、導体との高接着性、優れた耐熱性、高ガラス転移温度、低熱膨張係数及び高難燃性を有する樹脂組成物並びにそれを用いたプリプレグ、積層板及び多層プリント配線板を提供することを課題とする。
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定の分子構造を有するポリフェニレンエーテル誘導体と特定の難燃剤とを含有する樹脂組成物が、相容性が良好であり、優れた高周波特性、導体との高接着性、優れた耐熱性、高ガラス転移温度、低熱膨張係数及び高難燃性を発現することを見出し、本発明を完成するに至った。
すなわち、本発明は、下記[1]〜[16]に関するものである。
[1]分子中に少なくとも1個のN−置換マレイミド基を有するポリフェニレンエーテル誘導体(A)と、5%質量減少温度が300℃以上である臭素系難燃剤(B)と、を含有する樹脂組成物。
[2]ポリフェニレンエーテル誘導体(A)が、分子中に少なくとも1個のN−置換マレイミド構造含有基及び下記一般式(I)で表される構造単位を有するものである、上記[1]に記載の樹脂組成物。
Figure 0006896994

(式中、Rは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。xは0〜4の整数である。)
[3]前記N−置換マレイミド構造含有基が下記一般式(Z)で表される基である、上記[2]に記載の樹脂組成物。
Figure 0006896994

(式中、Rは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。yは0〜4の整数である。Aは、下記一般式(II)、(III)、(IV)又は(V)で表される基である。)
Figure 0006896994

(式中、Rは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。pは0〜4の整数である。)
Figure 0006896994

(式中、R及びRは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基、単結合又は下記一般式(III−1)で表される基である。q及びrは各々独立に0〜4の整数である。)
Figure 0006896994

(式中、R及びRは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基又は単結合である。s及びtは各々独立に0〜4の整数である。)
Figure 0006896994

(式中、nは0〜10の整数である。)
Figure 0006896994

(式中、R及びRは各々独立に、水素原子又は炭素数1〜5の脂肪族炭化水素基である。uは1〜8の整数である。)
[4]前記一般式(Z)中のAが下記式のいずれかで表される基である、上記[3]に記載の樹脂組成物。
Figure 0006896994

[5]前記一般式(I)で表される構造単位が、下記式(I’)で表される構造単位である、上記[2]〜[4]のいずれか1項に記載の樹脂組成物。
Figure 0006896994

[6]ポリフェニレンエーテル誘導体(A)の数平均分子量が3000〜12000である、上記[1]〜[5]のいずれか1項に記載の樹脂組成物。
[7]臭素系難燃剤(B)が、臭素化ポリフェニレンエーテル、臭素化ポリスチレン、2,4,6−トリス(トリブロモフェノキシ)−1,3,5−トリアジン、エチレンビス(ペンタブロモフェニル)及びエチレンビステトラブロモフタルイミドから選ばれる少なくとも1種である、上記[1]〜[6]のいずれか1項に記載の樹脂組成物。
[8]エポキシ樹脂、シアネートエステル樹脂及びマレイミド化合物から選ばれる少なくとも1種の熱硬化性樹脂(C)をさらに含む、上記[1]〜[7]のいずれか1項に記載の樹脂組成物。
[9]熱硬化性樹脂(C)が、分子中に少なくとも2個のN−置換マレイミド基を有するポリマレイミド化合物(a)又は下記一般式(VI)で表されるポリアミノビスマレイミド化合物(c)を含む、上記[8]に記載の樹脂組成物。
Figure 0006896994

(式中、Aは前記一般式(Z)中のAの定義と同じであり、Aは下記一般式(VII)で表される基である。)
Figure 0006896994

(式中、R17及びR18は各々独立に、炭素数1〜5の脂肪族炭化水素基、炭素数1〜5のアルコキシ基、水酸基又はハロゲン原子である。Aは炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基、フルオレニレン基、単結合、又は下記一般式(VII-1)もしくは(VII-2)で表される基である。q’及びr’は各々独立に0〜4の整数である。)
Figure 0006896994

(式中、R19及びR20は各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1〜5のアルキレン基、イソプロピリデン基、m−又はp−フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基又は単結合である。s’及びt’は各々独立に0〜4の整数である。)
Figure 0006896994

(式中、R21は炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。A10及びA11は各々独立に、炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基又は単結合である。wは0〜4の整数である。)
[10]前記(A)成分と(C)成分の含有割合[(A):(C)]が、質量比で、5:95〜90:10であり、(B)成分の含有割合が、(A)成分と(C)成分との合計量100質量部に対して、1〜200質量部の範囲である、上記[8]又は[9]に記載の樹脂組成物。
[11]更に無機充填剤(D)を含有する、上記[1]〜[10]のいずれか1項に記載の樹脂組成物。
[12]230℃で180分加熱した後のガラス転移温度が190℃以上である、上記[1]〜[11]のいずれか1項に記載の樹脂組成物。
[13]上記[1]〜[12]のいずれか1項に記載の樹脂組成物とシート状繊維補強基材とを有するプリプレグ。
[14]上記[1]〜[12]のいずれか1項に記載の樹脂組成物の硬化物と金属箔とを有する積層板。
[15]上記[1]〜[12]のいずれか1項に記載の樹脂組成物の硬化物又は上記[14]に記載の積層板を有する多層プリント配線板。
[16]上記[13]に記載のプリプレグ又は上記[14]に記載の積層板を用いる多層プリント配線板の製造方法。
本発明の樹脂組成物は、特に相容性が良好であり、かつ優れた高周波特性(低誘電率、低誘電正接)、導体との高接着性、優れた耐熱性、高ガラス転移温度、低熱膨張係数及び高難燃性を有する。したがって、該樹脂組成物を用いて得られるプリプレグ及び積層板は、多層プリント配線板等の電子部品用途に好適に使用することができる。
以下、本発明の実施形態について詳細に説明する。
[樹脂組成物]
本発明の一態様は、分子中に少なくとも1個のN−置換マレイミド基を有するポリフェニレンエーテル誘導体(A)[以下、単にポリフェニレンエーテル誘導体(A)又は(A)成分と略称することがある]と、5%質量減少温度が300℃以上である臭素系難燃剤(B)[以下、単に(B)成分と略称することがある]と、を含有する樹脂組成物である。
(ポリフェニレンエーテル誘導体(A))
ポリフェニレンエーテル誘導体(A)は、分子中に少なくとも1個のN−置換マレイミド基を有するポリフェニレンエーテル誘導体であれば、特に限定されることなく使用することができる。
特に、ポリフェニレンエーテル誘導体(A)が分子中に少なくとも1個のN−置換マレイミド基を有することにより、優れた高周波特性(低誘電率、低誘電正接)、導体との高接着性、優れた耐熱性、高ガラス転移温度、低熱膨張係数及び高難燃性を有する樹脂組成物となる。ここで、本発明でいう熱膨張係数は、線膨張係数とも呼ばれる値である。
ポリフェニレンエーテル誘導体(A)は、上記と同様の観点から、分子中に少なくとも1個のN−置換マレイミド構造含有基及び下記一般式(I)で表される構造単位を有するものであってもよい。
Figure 0006896994

(式中、Rは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。xは0〜4の整数である。)
前記一般式(I)中のRが表す脂肪族炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基等が挙げられる。該脂肪族炭化水素基としては、炭素数1〜3の脂肪族炭化水素基であってもよく、メチル基であってもよい。また、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。ハロゲン原子としては、ハロゲンフリーとする観点から、フッ素原子であってもよい。
以上の中でも、Rとしては炭素数1〜5の脂肪族炭化水素基であってもよい。
xは0〜4の整数であり、0〜2の整数であってもよく、2であってもよい。なお、xが1又は2である場合、Rはベンゼン環上のオルト位(但し、酸素原子の置換位置を基準とする。)に置換していてもよい。また、xが2以上である場合、複数のR同士は同一であっても異なっていてもよい。
前記一般式(I)で表される構造単位としては、具体的には、下記一般式(I')で表される構造単位であってもよい。
Figure 0006896994
ポリフェニレンエーテル誘導体(A)が有するN−置換マレイミド構造含有基としては、高周波特性、導体との接着性、耐熱性、ガラス転移温度、熱膨張係数及び難燃性の観点から、2つのマレイミド基の窒素原子同士が有機基を介して結合しているビスマレイミド構造を含有する基であってもよく、下記一般式(Z)で表される基であってもよい。
Figure 0006896994

(式中、Rは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。yは0〜4の整数である。Aは、下記一般式(II)、(III)、(IV)又は(V)で表される基である。)
が表す炭素数1〜5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同様に説明される。
yは0〜4の整数であり、0〜2の整数であってもよく、0であってもよい。yが2以上の整数である場合、複数のR同士は同一であっても異なっていてもよい。
が表す、一般式(II)、(III)、(IV)又は(V)で表される基は、以下のとおりである。
Figure 0006896994

(式中、Rは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。pは0〜4の整数である。)
が表す炭素数1〜5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同様に説明される。
pは0〜4の整数であり、入手容易性の観点から、0〜2の整数であってもよく、0又は1であってもよく、0であってもよい。pが2以上の整数である場合、複数のR同士は同一であっても異なっていてもよい。
Figure 0006896994

(式中、R及びRは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基、単結合又は下記一般式(III−1)で表される基である。q及びrは各々独立に0〜4の整数である。)
及びRが表す炭素数1〜5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同じものが挙げられる。該脂肪族炭化水素基としては、炭素数1〜3の脂肪族炭化水素基であってもよく、メチル基、エチル基であってもよく、エチル基であってもよい。
が表す炭素数1〜5のアルキレン基としては、例えば、メチレン基、1,2−ジメチレン基、1,3−トリメチレン基、1,4−テトラメチレン基、1,5−ペンタメチレン基等が挙げられる。該アルキレン基としては、高周波特性、導体との接着性、耐熱性、ガラス転移温度、熱膨張係数及び難燃性の観点から、炭素数1〜3のアルキレン基であってもよく、メチレン基であってもよい。
が表す炭素数2〜5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、高周波特性、導体との接着性、耐熱性、ガラス転移温度、熱膨張係数及び難燃性の観点から、イソプロピリデン基であってもよい。
としては、上記選択肢の中でも、炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基であってもよい。
q及びrは各々独立に0〜4の整数であり、入手容易性の観点から、いずれも、0〜2の整数であってもよく、0又は2であってもよい。q又はrが2以上の整数である場合、複数のR同士又はR同士は、それぞれ同一であっても異なっていてもよい。
なお、Aが表す一般式(III−1)で表される基は以下のとおりである。
Figure 0006896994

(式中、R及びRは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基又は単結合である。s及びtは各々独立に0〜4の整数である。)
及びRが表す炭素数1〜5の脂肪族炭化水素基、ハロゲン原子としては、R及びRの場合と同様に説明される。
が表す炭素数1〜5のアルキレン基としては、Aが表す炭素数1〜5のアルキレン基と同じものが挙げられる。
としては、上記選択肢の中でも、炭素数2〜5のアルキリデン基を選択してもよい。
s及びtは0〜4の整数であり、入手容易性の観点から、いずれも、0〜2の整数であってもよく、0又は1であってもよく、0であってもよい。s又はtが2以上の整数である場合、複数のR同士又はR同士は、それぞれ同一であっても異なっていてもよい。
Figure 0006896994

(式中、nは0〜10の整数である。)
nは、入手容易性の観点から、0〜5の整数であってもよく、0〜3の整数であってもよい。
Figure 0006896994

(式中、R及びRは各々独立に、水素原子又は炭素数1〜5の脂肪族炭化水素基である。uは1〜8の整数である。)
及びRが表す炭素数1〜5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同様に説明される。
uは1〜8の整数であり、1〜3の整数であってもよく、1であってもよい。
一般式(Z)で表される基の中のAとしては、高周波特性、導体との接着性、耐熱性、ガラス転移温度、熱膨張係数及び難燃性の観点から、下記式のいずれかで表される基であってもよい。
Figure 0006896994
ポリフェニレンエーテル誘導体(A)は、下記一般式(A’)で表されるポリフェニレンエーテル誘導体であってもよい。
Figure 0006896994

(式中、A、R、R、x及びyは前記定義のとおりである。mは1以上の整数である。)
mは、1〜300の整数であってもよく、10〜300の整数であってもよく、30〜200の整数であってもよく、50〜150の整数であってもよい。
ポリフェニレンエーテル誘導体(A)は、下記式のいずれかで表されるポリフェニレンエーテル誘導体であってもよい。
Figure 0006896994

(式中、mは前記一般式(A’)中のmと同じである。)
原材料が安価であるという観点から、上記式(A'−1)のポリフェニレンエーテル誘導体であってもよく、誘電特性に優れ、低吸水性であるという観点から、上記式(A'−2)のポリフェニレンエーテル誘導体であってもよく、導体との接着性及び機械特性(伸び、破断強度等)に優れるという観点から、上記式(A'−3)のポリフェニレンエーテル誘導体であってもよい。したがって、目的とする特性に合わせて、上記式(A'−1)〜(A'−3)のいずれかで表されるポリフェニレンエーテル誘導体の1種を単独で用いる又は2種以上を併用することができる。
本発明のポリフェニレンエーテル誘導体(A)の数平均分子量としては、3000〜12000であってもよく、5000〜12000であってもよく、7000〜12000であってもよく、7000〜10000であってもよい。数平均分子量が3000以上の場合、本発明の樹脂組成物、それを用いたプリプレグ及び積層板において、より良好なガラス転移温度が得られる傾向にある。また、数平均分子量が、12000以下の場合、本発明の樹脂組成物を積層板に用いた際に、より良好な成形性が得られる傾向にある。
なお、本明細書において、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した値であり、より詳細には実施例に記載の数平均分子量の測定方法により求めた値である。
(ポリフェニレンエーテル誘導体(A)の製造方法)
ポリフェニレンエーテル誘導体(A)は、例えば、以下の製造方法によって得ることができる。
まず、下記一般式(VIII)で表されるアミノフェノール化合物[以下、アミノフェノール化合物(VIII)と称する]と、例えば、数平均分子量15000〜25000のポリフェニレンエーテルを有機溶媒中で、公知の再分配反応をさせることにより、ポリフェニレンエーテルの低分子量化を伴いながら、分子中に第一級アミノ基を有するポリフェニレンエーテル化合物(A'')(以下、単に、ポリフェニレンエーテル化合物(A'')ともいう)を製造し、次いで、前記ポリフェニレンエーテル化合物(A'')と一般式(IX)で表されるビスマレイミド化合物[以下、ビスマレイミド化合物(IX)と称する。]をマイケル付加反応させることによって、ポリフェニレンエーテル誘導体(A)を製造することができる。
Figure 0006896994

(式中、R及びyは、前記一般式(Z)中のものと同じである。)
Figure 0006896994

(式中、Aは、前記一般式(Z)中のものと同じである。)
アミノフェノール化合物(VIII)としては、例えば、o−アミノフェノール、m−アミノフェノール、p−アミノフェノール等が挙げられる。これらの中でも、ポリフェニレンエーテル化合物(A'')を製造する際の反応収率、並びに樹脂組成物、プリプレグ及び積層板とした際の耐熱性の観点から、m−アミノフェノール、p−アミノフェノールであってもよく、p−アミノフェノールであってもよい。
ポリフェニレンエーテル化合物(A'')の分子量は、アミノフェノール化合物(VIII)の使用量によって制御でき、アミノフェノール化合物(VIII)の使用量が多いほど、得られるポリフェニレンエーテル化合物(A'')は低分子量化される。つまり、最終的に製造されるポリフェニレンエーテル誘導体(A)の数平均分子量が好適な範囲となるようにアミノフェノール化合物(VIII)の使用量を適宜調整すればよい。
アミノフェノール化合物(VIII)の配合量としては、特に制限されるものではないが、例えば、アミノフェノール化合物(VIII)と反応させる前記ポリフェニレンエーテルの数平均分子量が15000〜25000であれば、該ポリフェニレンエーテル100質量部に対して0.5〜6質量部の範囲で使用することにより、数平均分子量が5000〜12000であるポリフェニレンエーテル誘導体(A)が得られる。
ポリフェニレンエーテル化合物(A'')の製造工程で使用される有機溶媒は特に制限はないが、例えば、メタノール、エタノール、ブタノール、ブチルセロソルブ、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン;トルエン、キシレン、メシチレン等の芳香族炭化水素;メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等のエステル;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等の含窒素化合物などが挙げられる。これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。これらの中でも、溶解性の観点から、トルエン、キシレン、メシチレンであってもよい。
また、ポリフェニレンエーテル化合物(A'')の製造工程においては、必要に応じて反応触媒を使用することができる。この反応触媒としては、公知の再分配反応時における反応触媒を適用できる。例えば、再現性良く安定した数平均分子量のポリフェニレンエーテル化合物(A'')を得られるという観点から、t−ブチルペルオキシイソプロピルモノカーボネート等の有機過酸化物とナフテン酸マンガン等のカルボン酸金属塩とを併用してもよい。また、反応触媒の使用量は特に制限はない。例えば、ポリフェニレンエーテル化合物(A'')を製造する際の反応速度及びゲル化抑制の観点から、アミノフェノール化合物(VIII)と反応させる前記ポリフェニレンエーテル100質量部に対して、有機過酸化物を0.5〜5質量部、カルボン酸金属塩を0.05〜0.5質量部としてもよい。
前記アミノフェノール化合物(VIII)、前記数平均分子量15000〜25000のポリフェニレンエーテル、有機溶媒及び必要により反応触媒を反応器に所定量仕込み、加熱、保温、攪拌しながら反応させることによりポリフェニレンエーテル化合物(A'')が得られる。この工程での反応温度及び反応時間は、公知の再分配反応時における反応条件を適用できる。
作業性及びゲル化抑制の観点から、及び所望の数平均分子量の(A)成分を得るためのポリフェニレンエーテル化合物(A'')の分子量を制御できる等の観点から、例えば、反応温度70〜110℃、反応時間1〜8時間で反応を行ってもよい。
以上のようにして製造されたポリフェニレンエーテル化合物(A'')の溶液は、そのまま連続的に次工程のポリフェニレンエーテル誘導体(A)の製造工程に供給されてもよい。この際、ポリフェニレンエーテル化合物(A'')の溶液を冷却してもよく、又は次工程の反応温度に調整してもよい。また、この溶液は後述のように必要に応じて濃縮して有機溶媒の一部を除去しても、有機溶媒を追加して希釈してもよい。
前記ポリフェニレンエーテル誘導体(A)を製造する際に用いられるビスマレイミド化合物(IX)としては、例えば、ビス(4−マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビス(4−マレイミドフェニル)エーテル、ビス(4−マレイミドフェニル)スルホン、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド、4−メチル−1,3−フェニレンビスマレイミド、m−フェニレンビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)スルフィド、ビス(4−マレイミドフェニル)ケトン、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、ビス(4−(4−マレイミドフェノキシ)フェニル)スルホン、4,4’−ビス(3−マレイミドフェノキシ)ビフェニル、1,6−ビスマレイミド−(2,2,4−トリメチル)ヘキサン等が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。
これらの中でも、ビス(4−マレイミドフェニル)メタン、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンを選択してもよい。
前記式(A'−1)で表されるポリフェニレンエーテル誘導体を含むポリフェニレンエーテル誘導体が得られ、安価であるという観点から、ビス(4−マレイミドフェニル)メタンを用いてもよい。
前記式(A'−2)で表されるポリフェニレンエーテル誘導体を含むポリフェニレンエーテル誘導体が得られ、誘電特性に優れ、低吸水性であるという観点から、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミドを用いてもよい。
前記式(A'−3)で表されるポリフェニレンエーテル誘導体を含むポリフェニレンエーテル誘導体が得られ、導体との高接着性及び機械特性(伸び、破断強度等)に優れるという観点から、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンを用いてもよい。
ビスマレイミド化合物(IX)の使用量は、アミノフェノール化合物(VIII)の使用量によって決定される。すなわち、該アミノフェノール化合物(VIII)の−NH基当量(Ta1)と、ビスマレイミド化合物(IX)のマレイミド基当量(Tb1)との当量比(Tb1/Ta1)を2〜6の範囲としてもよく、2〜4の範囲で配合してもよい。上記の当量比の範囲内でビスマレイミド化合物(IX)を使用することにより、本発明の樹脂組成物、プリプレグ及び積層板において、より優れた耐熱性、高ガラス転移温度及び高難燃性が得られる傾向にある。
ポリフェニレンエーテル誘導体(A)を製造する際のマイケル付加反応には、必要に応じて反応触媒を使用することもできる。使用し得る反応触媒としては、特に限定されないが、例えば、p−トルエンスルホン酸等の酸性触媒;トリエチルアミン、ピリジン、トリブチルアミン等のアミン;メチルイミダゾール、フェニルイミダゾール等のイミダゾール化合物;トリフェニルホスフィン等のリン系触媒などが挙げられる。これらは単独で用いても、2種類以上を混合して用いてもよい。また反応触媒の配合量は特に限定されないが、例えば、ポリフェニレンエーテル化合物(A'')100質量部に対して、0.01〜5質量部であってもよい。
上記ビスマレイミド化合物(IX)及び必要により反応触媒等を、ポリフェニレンエーテル化合物(A'')溶液中に所定量仕込み、加熱、保温、攪拌しながらマイケル付加反応させることによりポリフェニレンエーテル誘導体(A)が得られる。この工程での反応条件としては、作業性及びゲル化抑制の観点から、例えば、反応温度は50〜160℃、反応時間は1〜10時間の範囲であってもよい。また、この工程では前述のように有機溶媒を追加又は濃縮して反応濃度(固形分濃度)、溶液粘度を調整することができる。追加で使用される有機溶媒としては、ポリフェニレンエーテル化合物(A'')の製造工程で例示した有機溶媒が適用でき、これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。またこれらの中でも、溶解性の観点から、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドを選択してもよい。
また、前記ポリフェニレンエーテル誘導体(A)及びポリフェニレンエーテル化合物(A'')の製造工程における反応濃度(固形分濃度)は、特に制限はないが、例えば、前記いずれの製造工程も10〜60質量%であってもよく、20〜50質量%であってもよい。反応濃度が10質量%以上の場合、反応速度が遅くなりすぎず、製造コストの面でより有利となる傾向にある。また、反応濃度が60質量%以下の場合、より良好な溶解性が得られる傾向にある。また、溶液粘度が低く攪拌効率がよく、ゲル化することがより少なくなる傾向にある。
なお、ポリフェニレンエーテル誘導体(A)を製造後は、反応器から取り出す際の作業性の観点並びにポリフェニレンエーテル誘導体(A)に種々の熱硬化性樹脂等を加えて、本発明の樹脂組成物とする際の使用状況に適した溶液粘度及び溶液濃度(例えば、プリプレグの製造に適した溶液粘度、溶液濃度等)とする観点から、適宜、溶液中の有機溶媒の一部又は全部を除去して濃縮してもよく、有機溶媒を追加して希釈してもよい。追加する際の有機溶媒は特に制限はなく、上述した1種類以上の有機溶媒を適用できる。
前記の製造工程によって得られたポリフェニレンエーテル化合物(A'')及びポリフェニレンエーテル誘導体(A)の生成は、それぞれの工程終了後に少量の試料を取り出し、GPC測定とIR測定により確認できる。
まず、ポリフェニレンエーテル化合物(A'')は、GPC測定から原料のポリフェニレンエーテルよりも分子量が低下し、かつ原材料のアミノフェノール化合物(VIII)のピークが消失していること、またIR測定から3300〜3500cm−1の一級アミノ基の出現により所望のポリフェニレンエーテル化合物(A'')が製造されていることを確認できる。また、ポリフェニレンエーテル誘導体(A)は、再沈殿により精製後、IR測定から3300〜3500cm−1の一級アミノ基由来のピークの消失と、1700〜1730cm−1のマレイミドのカルボニル基由来のピークの出現を確認することにより、所望のポリフェニレンエーテル誘導体(A)が製造されていることを確認できる。
本発明の樹脂組成物は、ポリフェニレンエーテル化合物(A'')と後述する(C)成分とを含有させた樹脂組成物よりも、導体との接着性、耐熱性、熱膨張係数、難燃性、加工性(ドリル加工、切削)により優れる傾向にある。
(臭素系難燃剤(B))
本発明の樹脂組成物で用いる(B)成分は、熱分解時の5%質量減少温度が300℃以上である臭素系難燃剤である。
(B)成分は、良好な誘電特性を維持したまま、鉛フリーはんだに対応した高温条件化での耐熱性も両立する観点から、熱分解時の5%質量減少温度が300℃以上である。なお、ここでいう5%質量減少温度とは、熱重量分析(TGA)により窒素雰囲気中、昇温速度10℃/minの条件下で測定を行い、初期質量から5質量%減じた温度である。
(B)成分の5%質量減少温度は、上記の観点から、300℃以上であり、320℃以上であってもよく、340℃以上であってもよく、360℃以上であってもよい。また、5%質量減少温度の上限は高ければ高いほど良いが、例えば600℃以下であってもよく、500℃以下であってもよい。
(B)成分は、熱分解時の5%質量減少温度が300℃以上ある臭素系難燃剤であれば、特に制限されるものではないが、樹脂の硬化性及び硬化物の誘電特性への影響を考慮すると、(A)成分との反応性を有しないものであってもよく、分子中にエポキシ基、水酸基、(メタ)アクリル基、カルボニル基等の極性基を含有していないことが望ましい。
本発明において好適に用いられる(B)成分の具体例としては、臭素化ポリフェニレンエーテル、臭素化ポリスチレン及び2,4,6−トリス(トリブロモフェノキシ)−1,3,5−トリアジン、エチレンビス(ペンタブロモフェニル)、エチレンビステトラブロモフタルイミド等が挙げられるが、誘電特性、接着性(金属箔引き剥がし強さ、ガラス等の基材との接着性等)、ガラス転移温度等のバランスの観点から、臭素化ポリスチレン及びエチレンビス(ペンタブロモフェニル)であってもよい。
これらの(B)成分は単独でも、二種類以上を組み合わせて用いてもよく、又はこれら少なくとも一種以上の難燃剤を含有していれば、本発明の効果を阻害しない範囲の配合量で、更に他の難燃剤を一種以上併用してもよい。
本発明の樹脂組成物における(B)成分の配合割合は、特に限定されないが、(A)成分及び後述する(C)成分の合計量100質量部(ただし、(C)成分を使用しない場合は(A)成分100質量部)に対して、1〜200質量部であってもよく、10〜150質量部であってもよく、20〜100質量部であってもよく、30〜80質量部であってもよい。難燃剤の配合割合が1質量部以上では難燃性がより向上する傾向があり、200質量部以下であるとプリント配線板としたときの耐熱性及び金属箔引き剥がし強さがより向上する傾向にある。
(熱硬化性樹脂(C))
本発明の樹脂組成物は、(C)成分として、エポキシ樹脂、シアネート樹脂及びマレイミド化合物から選択される少なくとも1種の熱硬化性樹脂をさらに含んでいてもよい。なお、該マレイミド化合物は、前記ポリフェニレンエーテル誘導体(A)を包含しない。
エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有するエポキシ樹脂であってもよい。ここで、エポキシ樹脂は、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等に分類される。これらの中でも、グリシジルエーテルタイプのエポキシ樹脂を選択してもよい。
エポキシ樹脂は、主骨格の違いによっても種々のエポキシ樹脂に分類され、上記それぞれのタイプのエポキシ樹脂において、更に、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;脂環式エポキシ樹脂;脂肪族鎖状エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;スチルベン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等のナフタレン骨格含有型エポキシ樹脂;ビフェニル型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジヒドロアントラセン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂などに分類される。
エポキシ樹脂は、1種類を単独で用いてもよく、2種類以上を併用してもよい。これらの中でも、高周波特性、耐熱性、ガラス移転温度、熱膨張係数及び難燃性等の観点から、ナフタレン骨格含有型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂を用いてもよい。
また、(C)成分としてエポキシ樹脂を用いる場合、必要に応じて、エポキシ樹脂の硬化剤、硬化助剤等を併用することができる。これらは特に限定されるものではないが、例えば、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルメタン、m−フェニレンジアミン、ジシアンジアミド等のポリアミン化合物;ビスフェノールA、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、フェノールアラルキル樹脂等のポリフェノール化合物;無水フタル酸、無水ピロメリット酸等の酸無水物;カルボン酸化合物;活性エステル化合物などが挙げられる。これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。その使用量は特に制限されるものではなく、目的に応じて、適宜調整することができる。これらの中でも、耐熱性、ガラス転移温度、熱膨張係数、保存安定性及び絶縁信頼性の観点から、ポリフェノール系化合物、活性エステル系化合物を用いてもよい。
シアネート樹脂は特に限定されるものではないが、例えば、2,2−ビス(4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エタン、ビス(3,5−ジメチル−4−シアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、α,α’−ビス(4−シアナトフェニル)−m−ジイソプロピルベンゼン、フェノール付加ジシクロペンタジエン重合体のシアネートエステル化合物、フェノールノボラック型シアネートエステル化合物、クレゾールノボラック型シアネートエステル化合物等が挙げられる。シアネート樹脂は1種類を単独で用いてもよく、2種類以上を併用してもよい。これらの中でも、製造コストの観点、並びに高周波特性及びその他特性の総合バランスの観点から、2,2−ビス(4−シアナトフェニル)プロパンを用いてもよい。
また、(C)成分としてシアネート樹脂を用いる場合、必要に応じて、シアネート樹脂の硬化剤、硬化助剤等を併用することができる。これらは特に限定されるものではないが、例えば、モノフェノール化合物、ポリフェノール化合物、アミン化合物、アルコール化合物、酸無水物、カルボン酸化合物等が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。硬化剤及び硬化助剤の使用量は特に制限されるものではなく、目的に応じて、適宜調整することができる。これらの中でも、高周波特性、耐熱性、耐吸湿性及び保存安定性の観点から、モノフェノール化合物を用いてもよい。
シアネート樹脂にモノフェノール化合物を併用する場合、有機溶媒への溶解性の観点から、予備反応させてフェノール変性シアネートプレポリマーとして用いる方法を採用できる。併用するモノフェノール化合物はプレポリマー化する時に規定量の全てを配合してもよく、又はプレポリマー化前後で規定量を分けて配合してもよいが、保存安定性の観点から、分けて配合する方法を採用できる。
マレイミド化合物としては特に限定されるものではないが、例えば、分子中に少なくとも2個のN−置換マレイミド基を有するポリマレイミド化合物(a)[以下、(a)成分と称することがある。]、及び下記一般式(VI)で表されるポリアミノビスマレイミド化合物(c)[以下、(c)成分と称することがある。]のうちの少なくとも1種類を含有することができる。また、有機溶媒への溶解性、高周波特性、導体との接着性及びプリプレグの成形性の観点から、該マレイミド化合物としてはポリアミノビスマレイミド化合物(c)であってもよい。
ポリアミノビスマレイミド化合物(c)は、例えば、(a)成分と分子中に2個の一級アミノ基を有する芳香族ジアミン化合物(b)[以下、(b)成分と称することがある。]とを有機溶媒中でマイケル付加反応させることにより得られる。
Figure 0006896994

(式中、Aは前記一般式(Z)中のAの定義と同じであり、Aは下記一般式(VII)で表される基である。)
Figure 0006896994

(式中、R17及びR18は各々独立に、炭素数1〜5の脂肪族炭化水素基、炭素数1〜5のアルコキシ基、水酸基又はハロゲン原子である。式中、Aは炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基、フルオレニレン基、単結合、又は下記一般式(VII-1)もしくは(VII-2)で表される基である。q’及びr’は各々独立に0〜4の整数である。)
Figure 0006896994

(式中、R19及びR20は各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1〜5のアルキレン基、イソプロピリデン基、m−又はp−フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基又は単結合である。s’及びt’は各々独立に0〜4の整数である。)
Figure 0006896994

(式中、R21は炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。A10及びA11は各々独立に、炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基又は単結合である。wは0〜4の整数である。)
前記一般式(VII)、(VII-1)又は(VII-2)中のR17、R18、R19、R20及びR21が表す炭素数1〜5の脂肪族炭化水素基又はハロゲン原子としては、一般式(I)中のRと同じものが挙げられる。該脂肪族炭化水素基としては、炭素数1〜3の脂肪族炭化水素基であってもよく、メチル基、エチル基であってもよい。
前記一般式(VII)又は(VII-1)中のA及びAが表す炭素数1〜5のアルキレン基及び炭素数2〜5のアルキリデン基、及び前記一般式(VII-2)中のA10及びA11が表す炭素数1〜5のアルキレン基としては、前記一般式(III)中のAの場合と同様に説明される。
q’及びr’は0〜4の整数であり、入手容易性の観点から、いずれも0〜2の整数であってもよく、0又は2であってもよい。s’及びt’は0〜4の整数であり、入手容易性の観点から、いずれも0〜2の整数であってもよく、0又は1であってもよく、0であってもよい。wは0〜4の整数であり、入手容易性の観点から、0〜2の整数であってもよく、0であってもよい。
前記(a)成分としては、特に限定されるものではなく、例えば、前記ビスマレイミド化合物(IX)と同じものを適用してもよい。(a)成分としては、例えば、ビス(4−マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビス(4−マレイミドフェニル)エーテル、ビス(4−マレイミドフェニル)スルホン、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド、4−メチル−1,3−フェニレンビスマレイミド、m−フェニレンビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)スルフィド、ビス(4−マレイミドフェニル)ケトン、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、ビス(4−(4−マレイミドフェノキシ)フェニル)スルホン、4,4’−ビス(3−マレイミドフェノキシ)ビフェニル、1,6−ビスマレイミド−(2,2,4−トリメチル)ヘキサン等が挙げられる。(a)成分は目的、用途等に合わせて1種類を単独で用いてもよく、2種類以上を併用してもよい。また、(a)成分としては、ビスマレイミド化合物であってもよく、安価であるという観点から、ビス(4−マレイミドフェニル)メタンであってもよく、また、誘電特性に優れ、低吸水性であるという観点から、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミドであってもよく、導体との高接着性及び機械特性(伸び、破断強度等)に優れるという観点から、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンであってもよい。
前述のとおり、ポリアミノビスマレイミド化合物(c)は、前記(a)成分と、分子中に2個の一級アミノ基を有する芳香族ジアミン化合物(b)と、を有機溶媒中でマイケル付加反応させることにより得ることができる。
前記(b)成分としては、特に限定されるものではないが、例えば、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノ−3,3’−ジメチル−ジフェニルメタン、4,4’−ジアミノ−3,3’−ジエチル−ジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルケトン、4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジヒドロキシベンジジン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンジアミン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、1,3−ビス(1−4−(4−アミノフェノキシ)フェニル)−1−メチルエチル)ベンゼン、1,4−ビス(1−4−(4−アミノフェノキシ)フェニル)−1−メチルエチル)ベンゼン、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスアニリン、3,3’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、ビス(4−(3−アミノフェノキシ)フェニル)スルホン、9,9−ビス(4−アミノフェニル)フルオレン等が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。
また、これらの中でも、有機溶媒への溶解性が高く、合成時の反応率が高く、かつ耐熱性を高くできる観点から、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノ−3,3’−ジメチル−ジフェニルメタン、4,4’−ジアミノ−3,3’−ジエチル−ジフェニルメタン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスアニリンから選択してもよい。溶解性、反応率及び耐熱性が優れることに加えて、安価であるという観点から、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノ−3,3’−ジメチル−ジフェニルメタン、4,4’−ジアミノ−3,3’−ジエチル−ジフェニルメタンであってもよい。また、溶解性、反応率及び耐熱性に優れることに加えて、導体との高接着性を発現できるという観点から、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスアニリンであってもよい。更に、溶解性、反応率、耐熱性、及び導体との接着性に優れることに加えて、高周波特性及び耐吸湿性の観点からは、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスアニリンを選択してもよい。これらは目的、用途等に合わせて、1種類を単独で用いてもよく、2種類以上を併用してもよい。
前記ポリアミノビスマレイミド化合物(c)を製造する際に使用される有機溶媒は特に制限はないが、例えば、上記のポリフェニレンエーテル化合物(A'')の製造工程で例示した有機溶媒が適用できる。これらは1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。またこれらの中でも、溶解性の観点から、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドであってもよい。
前記(c)成分を製造する際の(a)成分と(b)成分の使用量は、(b)成分の−NH基当量(Ta2)と、(a)成分のマレイミド基当量(Tb2)との当量比(Tb2/Ta2)が1〜10の範囲であってもよく、2〜10の範囲であってもよい。上記範囲内で(a)成分と(b)成分を使用することにより、本発明の樹脂組成物、プリプレグ及び積層板において、優れた高周波特性、導体との高接着性、優れた耐熱性、高ガラス転移温度及び高難燃性が得られる。
前記ポリアミノビスマレイミド化合物(c)を製造する際のマイケル付加反応には反応触媒を使用しなくてもよいが、必要に応じて使用することもできる。反応触媒としては、特に制限されるものではないが、上記のポリフェニレンエーテル誘導体(A)の製造時のマイケル付加反応に使用できる反応触媒を適用することができる。反応触媒の配合量も上記のように、特に限定されるものではない。
また、(C)成分としてマレイミド化合物を用いる場合、マレイミド化合物の硬化剤、架橋剤、硬化助剤等を併用することができる。これらは、特に制限されるものではないが、例えば、スチレンモノマー、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物;(メタ)アクリレート化合物;トリアリルシアヌレート、トリアリルイソシアヌレート等のアリル化合物;ジアミノジフェニルメタン等のポリアミン化合物などが挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。これらの使用量も特に制限されるものではなく、目的に応じて、適宜調整することができる。これらの中でも、高周波特性及び耐熱性の観点から、ビニル化合物及びポリアミン化合物を用いてもよい。
上記(a)成分、(b)成分、有機溶媒及び必要により反応触媒等を反応器に所定量仕込み、必要に応じて加熱、保温、攪拌しながらマイケル付加反応させることによりポリアミノビスマレイミド化合物(c)が得られる。この工程での反応温度、反応時間等の反応条件は、例えば、上述したポリフェニレンエーテル誘導体(A)の製造時のマイケル付加反応時における反応条件を適用できる。
反応濃度(固形分濃度)は特に制限はないが、10〜90質量%であってもよく、20〜80質量%であってもよい。反応濃度が10質量%以上の場合、反応速度が遅くなりすぎず、製造コストの面でより有利となる傾向にある。90質量%以下の場合、より良好な溶解性が得られる傾向にある。また、溶液粘度が低いので攪拌効率がよく、ゲル化することも少ない。なお、ポリアミノビスマレイミド化合物(c)の製造後は、ポリフェニレンエーテル誘導体(A)の製造時と同様に、目的に合わせて有機溶媒の一部又は全部を除去(濃縮)したり、有機溶媒を追加して希釈したりすることができる。
((A)成分と(C)成分の含有割合)
前記(A)成分と前記(C)成分の含有割合[(A):(C)]は特に制限はないが、質量比で、5:95〜90:10であってもよく、5:95〜80:20であってもよく、5:95〜75:25であってもよく、5:95〜70:30であってもよく、20:80〜70:30であってもよく、40:60〜70:30であってもよい。(A)成分と(C)成分合計量に対する(A)成分の含有割合が5質量%以上であれば、より優れた高周波特性及び低吸湿性が得られる傾向にある。また、90質量%以下であれば、より優れた耐熱性、より優れた成形性及びより優れた加工性が得られる傾向にある。
<その他の成分>
本発明の樹脂組成物は、任意に必要に応じて、無機充填剤(D)[以下、(D)成分と称することがある。]、硬化促進剤(E)[以下、(E)成分と称することがある。]から選択される少なくとも1種類を含有していてもよい。これらを含有させることにより、積層板とした際の諸特性を更に向上させることができる。
例えば、本発明の樹脂組成物に任意に適切な無機充填剤(D)を含有させることで、低熱膨張係数、高弾性率性、耐熱性及び難燃性を向上させることができる。また、適切な硬化促進剤(E)を含有させることで、樹脂組成物の硬化性を向上させ、高周波特性、耐熱性、導体との接着性、弾性率及びガラス転移温度を向上させるができる。
(無機充填剤(D))
(D)成分としては、特に制限されるものではないが、例えば、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、クレー(焼成クレー等)、タルク、ホウ酸アルミニウム、ホウ酸アルミニウム、炭化ケイ素等が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。これらの中でも、熱膨張係数、弾性率、耐熱性及び難燃性の観点から、シリカ、アルミナ、マイカ、タルクであってもよく、シリカ、アルミナであってもよく、シリカであってもよい。シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられ、乾式法シリカとしては、更に、製造法の違いにより破砕シリカ、フュームドシリカ、溶融シリカ(溶融球状シリカ)が挙げられる。
また、無機充填剤(D)の形状及び粒径についても特に制限はない。例えば、粒径は0.01〜20μmであってもよく、0.1〜10μmであってもよい。ここで、粒径とは、体積平均粒子径を指し、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことである。体積平均粒子径は、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
(D)成分を用いる場合、樹脂組成物中における(D)成分の含有割合は特に制限されるものではないが、熱膨張係数、弾性率、耐熱性及び難燃性の観点から、樹脂組成物中の(D)成分の含有割合が3〜65体積%であってもよく、5〜60体積%であってもよく、15〜55体積%であってもよい。樹脂組成物中の(D)成分の含有割合が上記の範囲である場合、より良好な硬化性、成形性及び耐薬品性が得られる傾向にある。
また、(D)成分を用いる場合、(D)成分の分散性及び(D)成分と樹脂組成物中の有機成分との密着性を向上させる目的で、必要に応じ、カップリング剤を併用してもよい。該カップリング剤としては特に限定されるものではなく、例えば、シランカップリング剤又はチタネートカップリング剤を適宜選択して用いることができる。カップリング剤は1種類を単独で用いてもよく、2種類以上を併用してもよい。また、カップリング剤の使用量も特に限定されるものではなく、例えば、(D)成分100質量部に対して0.1〜5質量部としてもよく、0.5〜3質量部としてもよい。この範囲であれば、諸特性の低下が少なく、上記の(D)成分の使用による特長を効果的に発揮できる傾向にある。
なお、カップリング剤を用いる場合、樹脂組成物中に(D)成分を配合した後、カップリング剤を添加する、いわゆるインテグラルブレンド処理方式ではなく、予め無機充填剤にカップリング剤を乾式又は湿式で表面処理した無機充填剤を使用する方式を採用できる。この方法を採用することで、より効果的に上記(D)成分の特長を発現できる。
本発明において(D)成分を用いる場合、(D)成分の樹脂組成物への分散性を向上させる目的で、必要に応じ、(D)成分を予め有機溶媒中に分散させたスラリーとして用いることができる。(D)成分をスラリー化する際に使用される有機溶媒は特に制限はないが、例えば、上述したポリフェニレンエーテル化合物(A'')の製造工程で例示した有機溶媒が適用できる。これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。また、これらの中でも、分散性の観点から、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンを選択できる。また、スラリーの固形分(不揮発分)濃度は特に制限はないが、例えば、無機充填剤(D)の沈降性及び分散性の観点から、50〜80質量%であってもよく、60〜80質量%であってもよい。
(硬化促進剤(E))
本発明の樹脂組成物に(E)成分を含有させる場合、使用する(C)成分の種類に合わせて好適な(E)成分を用いることができる。
(C)成分としてエポキシ樹脂を用いる場合の(E)成分としては、例えば、イミダゾール化合物及びその誘導体;第3級アミン化合物;第4級アンモニウム化合物;トリフェニルホスフィン等のリン系化合物などが挙げられる。これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。これらの中でも、耐熱性、ガラス転移温度及び保存安定性の観点から、イミダゾール化合物及びその誘導体又はリン系化合物を用いてもよい。該イミダゾール化合物としては、例えば、メチルイミダゾール、フェニルイミダゾール、イソシアネートマスクイミダゾール(例えば、ヘキサメチレンジイソシアネート樹脂と2−エチル−4−メチルイミダゾールの付加反応物等)等が挙げられ、イソシアネートマスクイミダゾールを選択してもよい。
(C)成分としてシアネート樹脂を用いる場合の(E)成分としては、例えば、イミダゾール化合物及びその誘導体;マンガン、コバルト、亜鉛等のカルボン酸塩;マンガン、コバルト、亜鉛等の遷移金属のアセチルアセトン錯体等の有機金属化合物などが挙げられる。これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。これらの中でも、耐熱性、ガラス転移温度及び保存安定性の観点から、有機金属化合物を用いてもよい。
(C)成分としてマレイミド化合物を用いる場合の(E)成分としては、例えば、p−トルエンスルホン酸等の酸性触媒;トリエチルアミン、ピリジン、トリブチルアミン等のアミン化合物;メチルイミダゾール、フェニルイミダゾール、イソシアネートマスクイミダゾール(例えば、ヘキサメチレンジイソシアネート樹脂と2−エチル−4−メチルイミダゾールの付加反応物等)等のイミダゾール化合物;第3級アミン化合物;第4級アンモニウム化合物;トリフェニルホスフィン等のリン系化合物;ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキシン−3,2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン等の有機過酸化物;マンガン、コバルト、亜鉛等のカルボン酸塩などが挙げられる。これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。これらの中でも、耐熱性、ガラス転移温度及び保存安定性の観点から、イミダゾール化合物、有機過酸化物、カルボン酸塩であってもよく、耐熱性、ガラス転移温度、弾性率及び熱膨張係数の観点から、イミダゾール化合物と有機過酸化物とを併用してもよい。また、有機過酸化物の中でも、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼンを選択してもよい。
本発明の樹脂組成物に(E)成分を含有させる場合、(E)成分の含有割合は特に制限されるものではないが、例えば、本発明の(A)成分及び(C)成分の総和100質量部(ただし、(C)成分を使用しない場合は(A)成分100質量部)に対して0.01〜10質量部であってもよく、0.01〜5質量部であってもよい。このような範囲で(E)成分を用いると、より良好な耐熱性及び保存安定性が得られる傾向にある。
本発明の樹脂組成物には、必要に応じて、任意に公知の熱可塑性樹脂、エラストマー等の樹脂材料、並びにカップリング剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、顔料、着色剤、滑剤等を適宜選択して含有させることができる。これらは1種類を単独で使用してもよく、2種類以上を併用してもよい。また、これらの使用量は特に限定されるものではない。
(有機溶剤)
本発明の樹脂組成物は、希釈することによって取り扱いを容易にする観点及び後述するプリプレグを製造し易くする観点から、有機溶剤を含有させてもよい。
該有機溶剤としては、特に制限されないが、例えば、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;テトラヒドロフラン等のエーテル系溶剤;トルエン、キシレン、メシチレン等の芳香族系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶剤;ジメチルスルホキシド等の硫黄原子含有溶剤;γ−ブチロラクトン等のエステル系溶剤などが挙げられる。
これらの中でも、溶解性の観点から、アルコール系溶剤、ケトン系溶剤、窒素原子含有溶剤であってもよく、ケトン系溶剤であってもよく、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンであってもよく、メチルエチルケトンであってもよく。
有機溶剤は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
本発明の樹脂組成物における有機溶剤の含有量は、特に制限はないが、固形分濃度が30〜90質量%であってもよく、40〜80質量%であってもよく、40〜70質量%であってもよく、40〜60質量%であってもよい。固形分濃度が上記の範囲内である樹脂組成物を用いることで、取り扱い性が容易となり、さらに基材への含浸性及び製造されるプリプレグの外観が良好で、後述するプリプレグ中の樹脂の固形分濃度の調整が容易となり、所望の厚みとなるようなプリプレグの製造が容易となる傾向にある。
前記(A)成分及び(B)成分、並びに必要に応じて使用される(C)成分、その他の成分、有機溶媒等を公知の方法で混合することにより、本発明の樹脂組成物を得ることができる。この際、攪拌しながら溶解又は分散させてもよい。混合順序、混合及び攪拌時の温度、時間等の条件は、特に限定されず任意に設定することができる。
本発明の樹脂組成物から積層板を作製したときの、樹脂組成物の硬化物のガラス転移温度は特に限定されないが、良好な耐熱性及びスルーホール接続信頼性、並びに電子部品等を製造する際の優れた加工性の観点から、230℃で180分加熱した後のガラス転移温度が、190℃以上であってもよく、200℃以上であってもよく、210℃以上であってもよい。ガラス転移温度の上限は特にないが、例えば1000℃以下であってもよく、500℃以下であってもよく、300℃以下であってもよい。ガラス転移温度が190℃以上であることにより、良好なはんだ耐熱性、スルーホール接続信頼性、電子部品等を製造する際の優れた加工性が得られる。
また、本発明の樹脂組成物から積層板を作製したときの、樹脂組成物の硬化物の熱膨張係数(Z方向、Tg以下)は特に限定されないが、積層板のそりを抑制する観点から、45ppm/℃以下であってもよく、40ppm/℃以下であってもよい。熱膨張係数の下限値には制限はないが、通常、30ppm/℃以上、さらには35ppm/℃以上である。
なお、ガラス転移温度及び熱膨張係数は、実施例に記載のとおり、IPC規格に準じて測定した値である。
本発明の樹脂組成物から積層板を作製したときの、樹脂組成物の硬化物の誘電率及び誘電正接は特に限定されないが、高周波帯で好適に用いる観点から、10Ghzでの誘電率が小さいことが好ましく、3.8以下であってもよく、3.75以下であってもよく、3.65以下であってもよい。誘電率の下限については特に限定はないが、例えば0.5以上であってもよく、1以上であってもよく、3以上であってもよく、3.5以上であってもよい。
また、誘電正接は小さいことが好ましく、10GHzでの誘電正接が、0.007以下であってもよく、0.006以下であってもよい。誘電正接の下限については特に限定はなく、小さいほどよいが、例えば、0.0001以上であってもよく、0.002以上であってもよく、0.004以上であってもよく、0.005以上であってもよい。
なお、誘電率及び誘電正接は実施例のとおり、JPCA−TM001(トリプレート共振器法)に準拠して測定した値である。
[プリプレグ]
本発明は、本発明の樹脂組成物とシート状繊維補強基材とを有するプリプレグをも提供する。該プリプレグは、本発明の樹脂組成物を、シート状繊維補強基材に含浸又は塗工し、乾燥させることによって得ることができる。より具体的には、例えば、乾燥炉中で通常、80〜200℃の温度で、1〜30分間加熱乾燥し、半硬化(Bステージ化)させることにより本発明のプリプレグを製造することができる。樹脂組成物の使用量は、乾燥後のプリプレグ中の樹脂組成物由来の固形分濃度が30〜90質量%となるように決定することができる。固形分濃度を上記の範囲とすることで積層板とした際、より良好な成形性が得られる傾向にある。
プリプレグのシート状繊維補強基材としては、各種の電気絶縁材料用積層板に用いられている公知のものが用いられる。シート状補強基材の材質としては、Eガラス、Dガラス、Sガラス、Qガラス等の無機物繊維;ポリイミド、ポリエステル、テトラフルオロエチレン等の有機繊維;これらの混合物などが挙げられる。これらのシート状補強基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット、サーフェシングマット等の形状を有する。また、シート状繊維補強基材の厚みは特に制限されず、例えば、0.02〜0.5mmのものを用いることができる。また、カップリング剤等で表面処理したもの及び機械的に開繊処理を施したものが、樹脂組成物の含浸性、積層板とした際の耐熱性、耐吸湿性及び加工性の観点から好適に使用できる。
樹脂組成物をシート状補強基材に含浸又は塗工させる方法としては、例えば、次のホットメルト法又はソルベント法を採用できる。
ホットメルト法は、樹脂組成物に有機溶剤を含有させず、(1)該組成物との剥離性の良い塗工紙に一旦コーティングし、それをシート状補強基材にラミネートする方法又は(2)ダイコーターによりシート状補強基材に直接塗工する方法である。
一方、ソルベント法は、樹脂組成物に有機溶剤を含有させ、得られた樹脂組成物にシート状補強基材を浸漬して、樹脂組成物をシート状補強基材に含浸させ、その後、乾燥させる方法である。
[積層板及び多層プリント配線板]
本発明の積層板は、本発明の樹脂組成物の硬化物と金属箔とを有する。本発明の積層板に用いられる本発明の樹脂組成物の硬化物は加熱加圧したプリプレグに含まれるものであってもよい。この場合、本発明の積層板は、本発明のプリプレグ1枚の片面もしくは両面に金属板を配置するか、又は本発明のプリプレグ2枚以上を重ねたものの片面もしくは両面に金属箔を配置し、次いで加熱加圧成形することによって得ることができる。
金属箔の金属としては、電気絶縁材料用途で用いられるものであれば特に制限されないが、導電性の観点から、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム又はこれらの金属元素のうちの少なくとも1種を含む合金であってもよく、銅、アルミニウムであってもよく、銅であってもよい。
加熱加圧成形の条件は特に制限されるものではないが、例えば、温度が100〜300℃、圧力が0.2〜10.0MPa、時間が0.1〜5時間の範囲で実施することができる。また加熱加圧成形は真空プレス等を用いて真空状態を0.5〜5時間保持する方法を採用できる。
また、本発明の多層プリント配線板は、本発明の樹脂組成物の硬化物又は積層板を有するものである。本発明の多層プリント配線板に用いられる本発明の樹脂組成物の硬化物は加熱加圧したプリプレグに含まれるものであってもよい。
本発明の多層プリント配線板は、例えば、本発明のプリプレグ又は積層板を用いて、公知の方法によって、穴開け加工、金属めっき加工、回路形成加工(金属箔のエッチング等)及び多層化接着加工を行うことによって製造することができる。
本発明の積層板において、樹脂組成物の硬化物と導体との接着性が、銅箔引き剥がし強さで0.6kN/m以上であってもよい。銅箔引き剥がし強さは、JISC 6481に準拠して測定したものである。上記のような値は、例えば本発明の樹脂組成物と、該樹脂組成物との接着面側の表面粗さが非常に小さいロープロファイル銅箔(Rz:1〜2μm)とを使用することで達成できる。
本発明の樹脂組成物、プリプレグ、積層板及び多層プリント配線板は、1GHz以上の高周波信号を扱う電子機器の製造に好適に用いることができ、特に10GHz以上の高周波信号を扱う電子機器の製造に好適に用いることができる。
以上、本発明の好適な実施形態を説明したが、これらは本発明の説明のための例示であり、本発明の範囲をこれらの実施形態にのみ限定する趣旨ではない。
本発明は、その要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することができる。
以下、実施例を挙げて、本発明を具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
[ポリフェニレンエーテル誘導体(A)の製造]
下記手順、表1の配合量に従って、ポリフェニレンエーテル誘導体(A)を製造した。
(製造例A−1:ポリフェニレンエーテル誘導体(A−1)の製造)
温度計、還流冷却管、撹拌装置を備えた加熱及び冷却可能な容積2Lのガラス製フラスコ容器に、トルエン、数平均分子量が約16000のポリフェニレンエーテル及びp−アミノフェノールを投入し、90℃で撹拌しながら溶解した。
溶解したことを目視で確認後、t−ブチルペルオキシイソプロピルモノカーボネート及びナフテン酸マンガンを添加し、溶液温度90℃で4時間反応させた後、70℃に冷却して分子末端に一級アミノ基を有するポリフェニレンエーテル化合物(A'')を得た。
この反応溶液を少量取り出し、ゲルパーミエーションクロマトグラフィー(GPC)により、測定を行ったところ、p−アミノフェノールに由来するピークが消失し、かつポリフェニレンエーテル化合物(A'')の数平均分子量は約9200であった。また少量取り出した反応溶液をメタノール/ベンゼン混合溶媒(混合質量比:1:1)に滴下し、再沈殿させて精製した固形分(反応生成物)のFT−IR測定を行ったところ、3400cm-1付近の一級アミノ基由来ピークの出現が確認された。
ここで、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandardPOLYSTYRENE(Type;A−2500、A−5000、F−1、F−2、F−4、F−10、F−20、F−40)[東ソー株式会社製、商品名]を用いて3次式で近似した。GPCの測定条件を、以下に示す。
装置:
ポンプ:L−6200型[株式会社日立ハイテクノロジーズ製]
検出器:L−3300型RI[株式会社日立ハイテクノロジーズ製]
カラムオーブン:L−655A−52[株式会社日立ハイテクノロジーズ製]
カラム:ガードカラム;TSK Guardcolumn HHR−L+カラム;TSKgel G4000HHR+TSKgelG2000HHR[すべて東ソー株式会社製、商品名]
カラムサイズ:6.0×40mm(ガードカラム)、7.8×300mm(カラム)
溶離液:テトラヒドロフラン
試料濃度:30mg/5mL
注入量:20μL
流量:1.00mL/分
測定温度:40℃
次に、上記反応溶液に、ビス(4−マレイミドフェニル)メタン及びプロピレングリコールモノメチルエーテルを加えて、攪拌しながら液温を昇温し、120℃で保温しながら4時間反応させた後、冷却してから200メッシュフィルターを通して濾過することにより、ポリフェニレンエーテル誘導体(A−1)を製造した。
この反応溶液を少量取り出し、上記同様に再沈殿して、精製した固形物のFT−IR測定を行い、3400cm-1付近の一級アミノ基由来ピークの消失と、1700〜1730cm-1のマレイミドのカルボニル基由来ピークの出現が確認された。また、この固形物のGPC(上記と同条件)を測定したところ、数平均分子量は約9400であった。
(製造例A−2〜A−9:ポリフェニレンエーテル誘導体(A−2)〜(A−9)の製造)
製造例A−1において、各原料及び配合量を表1に示すとおりに変更した以外は、製造例A−1と同様にして、ポリフェニレンエーテル誘導体(A−2)〜(A−9)を製造した。ポリフェニレンエーテル誘導体(A−2)〜(A−9)の数平均分子量を表1に示す。
[比較用ポリマーの製造]
下記手順、表1の配合量に従って、比較材料である比較用ポリマー(R−1)〜(R−3)を製造した。
(比較製造例R−1:ポリフェニレンエーテル(R−1)の製造)
温度計、還流冷却管、撹拌装置を備えた加熱及び冷却可能な容積2Lのガラス製フラスコ容器に、トルエン、数平均分子量が約16000のポリフェニレンエーテル、ビスフェノールAを投入し、80℃で撹拌しながら溶解した。
溶解したことを目視で確認後、t−ブチルペルオキシイソプロピルモノカーボネート、ナフテン酸コバルトを配合し、1時間反応させることによってポリフェニレンエーテル(R−1)を得た。このポリフェニレンエーテル(R−1)の数平均分子量は約8000であった。
(比較製造例R−2:ポリフェニレンエーテル(R−2)の製造)
比較製造例R−1において、各原料の配合量を表1に示す配合量に変更したこと以外は比較製造例R−1と同様にしてポリフェニレンエーテル溶液を得た。この溶液に多量のメタノールを加えて、ポリフェニレンエーテルを再沈殿させた後、減圧下80℃/3時間で乾燥して有機溶媒を除去して、固形のポリフェニレンエーテル(R−2’)を得た。
次いで、この得られたポリフェニレンエーテル(R−2’)、クロロメチルスチレン、テトラ−n−ブチルアンモニウムブロマイド、トルエンを温度計、還流冷却管、撹拌装置及び滴下ロートを備えた加熱及び冷却可能な容積2Lのガラス製フラスコ容器に投入し、75℃で撹拌しながら溶解した。
溶解したことを目視で確認後、この溶液に水酸化ナトリウム水溶液を20分間で滴下し、75℃で更に4時間撹拌し、反応させた。次に、10質量%塩酸水溶液でフラスコ内容物を中和し、さらに多量のメタノールを追加して再沈殿させた後、ろ過した。ろ過物をメタノールと水との混合液(メタノール:水=80:20(体積比))で3回洗浄した後、減圧下80℃/3時間乾燥して、末端をエテニルベンジル化したポリフェニレンエーテル(R−2)を得た。このポリフェニレンエーテル(R−2)の数平均分子量は約3000であった。
(比較製造例R−3:ポリフェニレンエーテル変性ブタジエンプレポリマー(R−3)の製造)
温度計、還流冷却管、減圧濃縮装置、撹拌装置を備えた加熱及び冷却可能な容積2Lのガラス製フラスコ容器に、トルエン、数平均分子量が約16000のポリフェニレンエーテルを投入し、フラスコ内の温度を90℃に設定して撹拌溶解した。次いで、ポリブタジエン樹脂、ビス(4−マレイミドフェニル)メタンを入れ、撹拌、溶解させた。液温を110℃にした後、反応開始剤として、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサンを配合し、撹拌しながら1時間反応させて、ポリフェニレンエーテルの存在下でブタジエン樹脂とビスマレイミドを予備反応させた。更に液温を80℃に設定後、撹拌しながら溶液の固形分濃度が45質量%となるように減圧濃縮後、冷却してポリフェニレンエーテル変性ブタジエンプレポリマー(R−3)溶液を得た。このポリフェニレンエーテル変性ブタジエンプレポリマー(R−3)溶液中のビス(4−マレイミドフェニル)メタンの転化率(100からビス(4−マレイミドフェニル)メタンの未転化分(測定値)を引いた値)をGPC(ポリスチレン換算、溶離液:テトラヒドロフラン)により測定したところ30%であった。
Figure 0006896994
表1における各材料の略号は、以下のとおりである。
(1)ポリフェニレンエーテル
・PPO640:ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製)、数平均分子量=約16000、商品名
(2)アミノフェノール化合物(VIII)
・p−アミノフェノール:イハラケミカル工業株式会社製
・m−アミノフェノール:関東化学株式会社製
(3)フェノール化合物
・ビスフェノールA:東京化成工業株式会社製
(4)ビスマレイミド化合物(IX)
・BMI−1000:ビス(4−マレイミドフェニル)メタン、商品名(大和化成工業株式会社製)
・BMI−5100:3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド、商品名(大和化成工業株式会社製)
・BMI−4000:2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、商品名(大和化成工業株式会社製)
・BMI−2300:ポリフェニルメタンマレイミド、商品名(大和化成工業株式会社製)
・BMI−TMH:1,6−ビスマレイミド−(2,2,4−トリメチル)ヘキサン、商品名(大和化成工業株式会社製)
(5)ポリブタジエン樹脂
・B−3000:ブタジエンホモポリマー、商品名(数平均分子量:約3000、日本曹達株式会社製)
(6)反応触媒
・パーブチル(登録商標)I:t−ブチルペルオキシイソプロピルモノカーボネート、商品名(日油株式会社製)
・パーヘキサTMH:1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、商品名(日油株式会社製)
・ナフテン酸マンガン(和光純薬工業株式会社製)
・ナフテン酸コバルト(和光純薬工業株式会社製)
(7)反応溶媒
・トルエン(関東化学株式会社製)
・プロピレングリコールモノメチルエーテル(関東化学株式会社製)
[ポリアミノビスマレイミド化合物(B−1)〜(B−3)及びフェノール変性シアネートプレポリマー(B−4)の製造]
下記手順、表2の配合量に従って、ポリアミノビスマレイミド化合物(B−1)〜(B−3)及びフェノール変性シアネートプレポリマー(B−4)を製造した。
(製造例B−1:ポリアミノビスマレイミド化合物(B−1)の製造)
温度計、還流冷却管、撹拌装置を備えた加熱及び冷却可能な容積1Lのガラス製フラスコ容器に、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン及びプロピレングリコールモノメチルエーテルを投入し、液温を120℃に保ったまま、撹拌しながら3時間反応させた後、冷却してから200メッシュフィルターを通して濾過することにより、ポリアミノビスマレイミド化合物(B−1)を製造した。
(製造例B−2〜B−3:ポリアミノビスマレイミド化合物(B−2)〜(B−3)の製造)
製造例B−1において、各原料及びその配合量を表2に示すとおりに変更した以外は、製造例B−1と同様にして、ポリアミノビスマレイミド化合物(B−2)〜(B−3)を製造した。
(製造例B−4:フェノール変性シアネートプレポリマー(B−4)の製造)
温度計、還流冷却管、撹拌装置を備えた加熱及び冷却可能な容積1Lのガラス製フラスコ容器に、トルエン、2,2−ビス(4−シアナトフェニル)プロパン、p−(α−クミル)フェノールを投入し、溶解したことを目視で確認した後に、液温を110℃に保ったまま、攪拌しながら反応触媒としてナフテン酸亜鉛を投入して3時間反応させた後、冷却してから200メッシュフィルターを通して濾過することにより、フェノール変性シアネートプレポリマー(B−4)を製造した。
Figure 0006896994
表2における各材料の略号は、以下のとおりである。
(1)ポリマレイミド化合物(a)
・BMI−4000:2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、商品名(大和化成工業株式会社製)
・BMI−5100:3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド、商品名(大和化成工業株式会社製)
(2)芳香族ジアミン化合物(b)
・BAPP:2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、商品名(和歌山精化工業株式会社製)
・ビスアニリン−P:4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスアニリン、商品名(三井化学株式会社製)
・ビスアニリン−M:4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、商品名(三井化学株式会社製)
(3)シアネート樹脂
・BADCy:Primaset(登録商標)BADCy、2,2−ビス(4−シアナトフェニル)プロパン、商品名(ロンザ社製)
(4)モノフェノール化合物
・p−(α−クミル)フェノール(三井化学ファイン株式会社製)
(5)反応触媒
・ナフテン酸亜鉛(和光純薬工業株式会社製)
(6)有機溶媒
・トルエン(関東化学株式会社製)
・プロピレングリコールモノメチルエーテル(関東化学株式会社製)
[実施例1〜13、比較例1〜8;樹脂組成物の調製]
表3及び表4に記載の各成分を表3及び表4に記載の配合量(単位:質量部)に従って室温又は50〜80℃で加熱しながら攪拌、混合して、固形分(不揮発分)濃度40〜60質量%の樹脂組成物を調製した。
ここで、無機充填剤の配合量としては、通常、樹脂組成物(無機充填材を除く)の密度が1.20〜1.25g/cm3であり、用いた無機充填剤の密度が2.2〜3.01g/cm3であることから、無機充填剤を樹脂組成物100質量部に対して80質量部配合した場合、24〜31体積%程度となる。
[評価及び測定方法]
上記実施例及び比較例で得られた樹脂組成物を用いて、下記方法に従って各測定及び評価を行った。結果を表3及び表4に示す。
(1.樹脂組成物の相容性評価)
各例で得た樹脂組成物及びこれを160℃で10分間乾燥して有機溶媒を揮発させた後の外観を目視で観察して、それぞれの相容性(巨視的(マクロ)な相分離又はムラの有無)を以下の基準に従い評価した。
○:巨視的(マクロ)な相分離及びムラがない。
×:巨視的(マクロ)な相分離又はムラがある。
(2.プリプレグ及び銅張積層板の作製)
各例で得た樹脂組成物を、厚さ0.1mmのガラス布(Eガラス、日東紡績株式会社製)に塗工した後、160℃で7分間加熱乾燥して、樹脂含有量(樹脂分)約54質量%のプリプレグを作製した。これらのプリプレグ6枚を重ね、その上下に、厚さ18μmのロープロファイル銅箔(FV−WS、M面Rz:1.5μm、古河電気工業株式会社製)をM面が接するように配置し、温度230℃(ただし、実施例12は200℃)、圧力3.9MPa、時間180分間の条件で加熱加圧成形して、両面銅張積層板(厚さ:0.8mm)を作製した。
(2−1.プリプレグの外観評価)
上記で得られたプリプレグの外観を観察した。外観は目視により評価し、プリプレグの表面に多少なりともムラ、スジ、発泡、相分離があり、表面平滑性に欠けるものを×とし、前記のような外観上の異常がないものを○とした。
(2−2.銅張積層板の特性評価)
上記で得られた銅張積層板について、成形性、誘電特性、銅箔引き剥がし強さ、ガラス転移温度、熱膨張係数、はんだ耐熱性及び難燃性を評価した。銅張積層板の特性評価方法は、以下のとおりである。
(2−2−1)成形性
両面の銅箔をエッチングした積層板の外観を観察して成形性を評価した。成形性は目視により評価し、多少なりともムラ、スジ、カスレ、ボイドがあり、表面平滑性に欠けるものを×、前記のような外観上の異常がないものを○とした。
(2−2−2)誘電特性
銅張積層板を銅エッチング液である過硫酸アンモニウム(三菱ガス化学株式会社製)10質量%溶液に浸漬することにより銅箔を取り除いた評価基板から、2mm×85mmの評価基板を作製した。
該評価基板をJPCA−TM001(トリプレート共振器法)に準拠して、10GHz帯で測定した。
(2−2−3)銅箔引き剥がし強さ
銅箔引き剥がし強さは、JIS C 6481に準拠して測定し、導体との接着性を測定した。
(2−2−4)はんだ耐熱性
はんだ耐熱性は、両面の銅箔をエッチングした50mm角の試験片を用いて評価した。該試験片を常態及びプレッシャークッカーテスト(PCT)用装置(条件:121℃、2.2気圧)中で所定時間(1時間、3時間及び5時間)処理した後のものを、288℃の溶融はんだ中に20秒間浸漬して得られたはんだ浸漬後の試験片の外観を目視観察した。なお、表中の数字は、はんだ浸漬後の試験片3枚のうち、積層板内に膨れ、ミーズリングの発生等の異常が認められなかったものの枚数を意味する。
(2−2−5)ガラス転移温度(Tg)及び熱膨張係数
ガラス転移温度(Tg)と熱膨張係数(板厚方向、温度範囲:30〜150℃)は、両面の銅箔をエッチングした5mm角の試験片を用いて、熱機械測定装置(TMA)[ティー・エイ・インスツルメント・ジャパン株式会社製、Q400(型番)]により、IPC(The Institute for Interconnecting and Packaging Electronic Circuits)規格に準拠して測定した。
(2−2−6)難燃性
銅張積層板を銅エッチング液である過硫酸アンモニウム(三菱ガス化学株式会社製)10質量%溶液に浸漬することにより銅箔を取り除いた評価基板から、長さ127mm及び幅12.7mmの試験片を切り出し、該試験片を用いて、UL94の試験法(V法)に準じて難燃性を試験及び評価した。
つまり、垂直に保持した試験片の下端に20mm炎による10秒間の接炎を2回行った。評価は、UL94のV法の基準に従って行った。
Figure 0006896994
Figure 0006896994
なお、表3及び表4における各材料の略号等は、以下のとおりである。
(1)ポリフェニレンエーテル
・PPO640:ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製)、数平均分子量=約16000、商品名
(2)臭素系難燃剤
・PBS64HW:臭素化ポリスチレン、商品名(5%質量減少温度:370℃、グレートレイクス社製)
・BT−93W:エチレンビステトラブロモフタルイミド、商品名(5%質量減少温度:410℃、アルベマール社製)
・SR−245:2,4,6−トリス(トリブロモフェノキシ)−1,3,5−トリアジン、商品名(5%質量減少温度:385℃、第一工業製薬株式会社製)
・PO−64P:臭素化ポリフェニレンエーテル、商品名(5%質量減少温度:363℃、グレートレイクス社製)
・SAYTEX8010:エチレンビス(ペンタブロモフェニル)、商品名(5%質量減少温度:344℃、アルベマール社製)
・HBB:ヘキサブロモベンゼン、商品名(5%質量減少温度:270℃、マナック社製)
・CD−75:ヘキサブロモシクロドデカン、商品名(5%質量減少温度:228℃、グレートレイクス社製)
・FF−680:ビス(トリブロモフェノキシ)エタン、商品名(5%質量減少温度:276℃、グレートレイクス社製)
・BE−51:臭素化ビスフェノールAのジアリルエーテル、グレートレイクス社製、商品名
(3)熱硬化性樹脂(C)
・BMI−4000:2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、商品名(大和化成工業株式会社製)
・NC−3000H:ビフェニルアラルキル型エポキシ樹脂、商品名(日本化薬株式会社製)
・NC−7000L:ナフトールノボラック型エポキシ樹脂、商品名(日本化薬株式会社製)
・BA230S:2,2−ビス(4−シアナトフェニル)プロパンのプレポリマー、商品名(固形分濃度75質量%、ロンザ社製)
・TAIC:トリアリルイソシアヌレート(日本化成株式会社製)
(4)無機充填剤(D)
・SC−2050−KNG:球状溶融シリカ(平均粒子径:0.5μm、表面処理:ビニルシランカップリング剤(1質量%/固形分)、分散媒:メチルイソブチルケトン(MIBK)、固形分濃度70質量%、密度2.2g/cm3、株式会社アドマテックス製)
・AlOOH:ベーマイト型水酸化アルミニウム、河合石炭工業株式会社製
(5)反応促進剤(E)
・パーブチル(登録商標)P:α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、商品名(日油株式会社製)
・G−8009L:イソシアネートマスクイミダゾール(ヘキサメチレンジイソシアネート樹脂と2−エチル−4−メチルイミダゾールの付加反応物)、商品名(第一工業製薬株式会社製)
・ナフテン酸亜鉛:和光純薬工業株式会社製
(6)相容化剤
・タフプレンA:スチレン−ブタジエンブロック共重合体、商品名(旭化成ケミカルズ株式会社製)
(7)有機溶媒
・トルエン(関東化学株式会社製)
・メチルエチルケトン(関東化学株式会社製)
・シクロヘキサン(関東化学株式会社製)
表3及び表4に示した結果から明らかなように、本発明の実施例においては、樹脂ワニス、樹脂組成物の相容性及びプリプレグの外観(均一性)に優れる。また、これらを用いて作製した銅張積層板は、成形性、高周波特性、導体との接着性、はんだ耐熱性、ガラス転移温度、熱膨張特性及び難燃性の全てにおいて良好であり、バランスに優れている。
表4が示すように、未反応のポリフェニレンエーテルを使用したもの(比較例1)は樹脂ワニス及び樹脂組成物の相容性及びプリプレグの外観(均一性)が劣る。
比較例において、本発明に適用できないポリフェニレンエーテル誘導体を使用したもの(比較例2〜4)は、成形性、誘電特性、導体との接着性、はんだ耐熱性、ガラス転移温度、熱膨張特性及び難燃性の全てにおいて満足するものはなく、いずれかの特性に劣っている。
比較例において、本発明に適用できない5%質量減少温度が300℃未満の難燃剤を加えたもの(比較例5〜8)は、はんだ耐熱性が劣る。
本発明の樹脂組成物は、相容性が良好で、V−0以上の高難燃、優れた高周波特性、導体との高接着性、優れた耐熱性、低熱膨張係数及び高ガラス転移温度を有する。また、本発明の樹脂組成物は、原材料コスト及び基板材料の製造コストを低く抑えられ、この樹脂組成物を用いて提供されるプリプレグ及び積層板は、多層印刷配線板等の電子部品用途に好適に使用することができる。

Claims (15)

  1. 分子中に少なくとも1個のN−置換マレイミド基を有するポリフェニレンエーテル誘導体(A)と、5%質量減少温度が300℃以上である臭素系難燃剤(B)と、熱硬化性樹脂(C)と、を含有し、
    前記ポリフェニレンエーテル誘導体(A)が、分子中に第一級アミノ基を有するポリフェニレンエーテル化合物と、ビスマレイミド化合物とをマイケル付加反応させてなるものであり、
    前記熱硬化性樹脂(C)が、エポキシ樹脂、シアネートエステル樹脂及びマレイミド化合物から選ばれる少なくとも1種である、多層プリント配線板用熱硬化性樹脂組成物。
  2. ポリフェニレンエーテル誘導体(A)が、分子中に少なくとも1個の前記マイケル付加反応によって形成されたN−置換マレイミド構造含有基及び下記一般式(I)で表される構造単位を有するものである、請求項1に記載の多層プリント配線板用熱硬化性樹脂組成物。
    Figure 0006896994

    (式中、Rは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。xは0〜4の整数である。)
  3. 前記N−置換マレイミド構造含有基が下記一般式(Z)で表される基である、請求項2に記載の多層プリント配線板用熱硬化性樹脂組成物。
    Figure 0006896994

    (式中、Rは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。yは0〜4の整数である。Aは、下記一般式(II)、(III)、(IV)又は(V)で表される基である。)
    Figure 0006896994

    (式中、Rは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。pは0〜4の整数である。)
    Figure 0006896994

    (式中、R及びRは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基、単結合又は下記一般式(III−1)で表される基である。q及びrは各々独立に0〜4の整数である。)
    Figure 0006896994

    (式中、R及びRは各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基又は単結合である。s及びtは各々独立に0〜4の整数である。)
    Figure 0006896994

    (式中、nは0〜10の整数である。)
    Figure 0006896994

    (式中、R及びRは各々独立に、水素原子又は炭素数1〜5の脂肪族炭化水素基である。uは1〜8の整数である。)
  4. 前記一般式(Z)中のAが下記式のいずれかで表される基である、請求項3に記載の多層プリント配線板用熱硬化性樹脂組成物。
    Figure 0006896994
  5. 前記一般式(I)で表される構造単位が、下記式(I’)で表される構造単位である、請求項2〜4のいずれか1項に記載の多層プリント配線板用熱硬化性樹脂組成物。
    Figure 0006896994
  6. ポリフェニレンエーテル誘導体(A)の数平均分子量が3000〜12000である、請求項1〜5のいずれか1項に記載の多層プリント配線板用熱硬化性樹脂組成物。
  7. 臭素系難燃剤(B)が、臭素化ポリフェニレンエーテル、臭素化ポリスチレン、2,4,6−トリス(トリブロモフェノキシ)−1,3,5−トリアジン、エチレンビス(ペンタブロモフェニル)及びエチレンビステトラブロモフタルイミドから選ばれる少なくとも1種である、請求項1〜6のいずれか1項に記載の樹脂組成物。
  8. 熱硬化性樹脂(C)が、分子中に少なくとも2個のN−置換マレイミド基を有するポリマレイミド化合物(a)又は下記一般式(VI)で表されるポリアミノビスマレイミド化合物(c)を含む、請求項1〜7のいずれか1項に記載の多層プリント配線板用熱硬化性樹脂組成物。
    Figure 0006896994

    (式中、Aは前記一般式(Z)中のAの定義と同じであり、Aは下記一般式(VII)で表される基である。)
    Figure 0006896994

    (式中、R17及びR18は各々独立に、炭素数1〜5の脂肪族炭化水素基、炭素数1〜5のアルコキシ基、水酸基又はハロゲン原子である。Aは炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基、フルオレニレン基、単結合、又は下記一般式(VII-1)もしくは(VII-2)で表される基である。q’及びr’は各々独立に0〜4の整数である。)
    Figure 0006896994

    (式中、R19及びR20は各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1〜5のアルキレン基、イソプロピリデン基、m−又はp−フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基又は単結合である。s’及びt’は各々独立に0〜4の整数である。)
    Figure 0006896994

    (式中、R21は炭素数1〜5の脂肪族炭化水素基又はハロゲン原子である。A10及びA11は各々独立に、炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基又は単結合である。wは0〜4の整数である。)
  9. 前記(A)成分と(C)成分の含有割合[(A):(C)]が、質量比で、5:95〜90:10であり、(B)成分の含有割合が、(A)成分と(C)成分との合計量100質量部に対して、1〜200質量部の範囲である、請求項1〜のいずれか1項に記載の多層プリント配線板用熱硬化性樹脂組成物。
  10. 更に無機充填剤(D)を含有する、請求項1〜のいずれか1項に記載の多層プリント配線板用熱硬化性樹脂組成物。
  11. 230℃で180分加熱した後のガラス転移温度が190℃以上である、請求項1〜10のいずれか1項に記載の多層プリント配線板用熱硬化性樹脂組成物。
  12. 請求項1〜11のいずれか1項に記載の多層プリント配線板用熱硬化性樹脂組成物とシート状繊維補強基材とを有する多層プリント配線板用プリプレグ。
  13. 請求項1〜11のいずれか1項に記載の多層プリント配線板用熱硬化性樹脂組成物の硬化物と金属箔とを有する多層プリント配線板用積層板。
  14. 請求項1〜11のいずれか1項に記載の多層プリント配線板用熱硬化性樹脂組成物の硬化物又は請求項13に記載の多層プリント配線板用積層板を有する多層プリント配線板。
  15. 請求項12に記載の多層プリント配線板用プリプレグ又は請求項13に記載の多層プリント配線板用積層板を用いる多層プリント配線板の製造方法。
JP2015185287A 2015-09-18 2015-09-18 樹脂組成物、プリプレグ、積層板及び多層プリント配線板 Active JP6896994B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015185287A JP6896994B2 (ja) 2015-09-18 2015-09-18 樹脂組成物、プリプレグ、積層板及び多層プリント配線板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015185287A JP6896994B2 (ja) 2015-09-18 2015-09-18 樹脂組成物、プリプレグ、積層板及び多層プリント配線板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021010657A Division JP2021075729A (ja) 2021-01-26 2021-01-26 樹脂組成物、プリプレグ、積層板及び多層プリント配線板

Publications (2)

Publication Number Publication Date
JP2017057347A JP2017057347A (ja) 2017-03-23
JP6896994B2 true JP6896994B2 (ja) 2021-06-30

Family

ID=58391158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015185287A Active JP6896994B2 (ja) 2015-09-18 2015-09-18 樹脂組成物、プリプレグ、積層板及び多層プリント配線板

Country Status (1)

Country Link
JP (1) JP6896994B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7493178B2 (ja) * 2020-05-13 2024-05-31 パナソニックIpマネジメント株式会社 樹脂シートの製造方法、及び金属張積層板の製造方法
CN112898561A (zh) * 2021-01-27 2021-06-04 大连理工大学 马来酰亚胺封端聚苯醚及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261943B2 (ja) * 2006-02-17 2013-08-14 日立化成株式会社 セミipn型複合体の熱硬化性樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
JP5303852B2 (ja) * 2006-04-13 2013-10-02 日立化成株式会社 セミipn型複合体の樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
ATE541879T1 (de) * 2008-06-09 2012-02-15 Mitsubishi Gas Chemical Co Bismaleaminsäure, bismaleinimid und gehärtetes produkt davon

Also Published As

Publication number Publication date
JP2017057347A (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6705447B2 (ja) 樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP6079930B2 (ja) N−置換マレイミド基を有するポリフェニレンエーテル誘導体、並びにそれを用いた熱硬化性樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及び多層プリント配線板
JP6705446B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP6756107B2 (ja) 樹脂フィルム、支持体付き樹脂フィルム、プリプレグ、高多層用金属張積層板及び高多層印刷配線板
TWI737589B (zh) 印刷配線板用的樹脂組成物、帶樹脂層支撐體、預浸體、積層板、多層印刷配線板及其應用、毫米波雷達用印刷配線板
JP6896993B2 (ja) 樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP6863126B2 (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP6922157B2 (ja) 樹脂組成物、積層板及び多層プリント配線板
JP6756108B2 (ja) 樹脂フィルム、支持体付き樹脂フィルム、プリプレグ、金属張積層板及び多層印刷配線板
JPWO2019172342A1 (ja) プリプレグ、積層板、多層プリント配線板、半導体パッケージ及び樹脂組成物、並びに、プリプレグ、積層板及び多層プリント配線板の製造方法
JP7106819B2 (ja) 樹脂ワニス、樹脂組成物、プリプレグ、積層板、多層プリント配線板及び樹脂ワニスの保存方法
JP2021080459A (ja) 樹脂組成物、プリプレグ、積層板及び多層プリント配線板
WO2020095422A1 (ja) 樹脂組成物、樹脂組成物の硬化物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板、ミリ波レーダー用多層プリント配線板及びポリフェニレンエーテル誘導体
JP2017066280A (ja) 熱硬化性樹脂組成物とその製造方法、並びに前記熱硬化性樹脂組成物を有するプリプレグ、金属張積層板、及び多層プリント配線板
JP6896994B2 (ja) 樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP2021075729A (ja) 樹脂組成物、プリプレグ、積層板及び多層プリント配線板
WO2024111380A1 (ja) 樹脂組成物、樹脂フィルム、プリプレグ、積層板、プリント配線板及び半導体パッケージ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210126

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210202

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R151 Written notification of patent or utility model registration

Ref document number: 6896994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350