WO2024038665A1 - 電子装置、電子装置の製造方法 - Google Patents

電子装置、電子装置の製造方法 Download PDF

Info

Publication number
WO2024038665A1
WO2024038665A1 PCT/JP2023/021219 JP2023021219W WO2024038665A1 WO 2024038665 A1 WO2024038665 A1 WO 2024038665A1 JP 2023021219 W JP2023021219 W JP 2023021219W WO 2024038665 A1 WO2024038665 A1 WO 2024038665A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
electronic device
electronic component
manufacturing
electronic
Prior art date
Application number
PCT/JP2023/021219
Other languages
English (en)
French (fr)
Inventor
靖 池田
裕二朗 金子
佑輔 高木
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2024038665A1 publication Critical patent/WO2024038665A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present invention relates to an electronic device and a method of manufacturing the electronic device.
  • Ni-based electrodes that are responsible for bonding with solder are used for the electrodes of semiconductor elements, and the resurface of the electrodes is metallized with Au or Ag to facilitate solder wetting.
  • Ni diffuses into the surface of thin Au metallization or Ag metallization with many defects, and Ni oxide is generated on the surface from the resurface, impairing solder bonding properties. Sometimes I put it away. Therefore, in order to prevent the formation of Ni oxide on the surface, it is becoming increasingly common to provide a Pd layer on the Ni-based electrode and then metallize it with Au or Ag.
  • Patent Document 1 discloses a lead-free solder ball alloy comprising, in atomic percent, Ag: 3 to 6%, Cu: 1 to 4%, Co: 0.01 to 2%, and the balance Sn.
  • An electronic device includes a first electronic component having a Ni-based electrode, and a second electronic component joined to the Ni-based electrode via Sn-based solder, the second electronic component having a Ni-based electrode.
  • a (Cu, Ni, Pd)6Sn5 compound layer exists at the bonding interface of the Sn-based solder, and the Pd content present as a (Pd, Ni)Sn4 compound in the parent phase of the Sn-based solder after bonding is The Pd content present in the (Cu, Ni, Pd)6Sn5 compound layer is less than or zero.
  • a method for manufacturing an electronic device includes a first electronic component having a Ni-based electrode, and a second electronic component joined to the Ni-based electrode via Sn-based solder.
  • a Pd layer is formed on the outer periphery of the Ni-based electrode
  • an Sn-based solder containing more Cu than the eutectic composition is placed on the surface of the Pd layer.
  • a (Cu, Ni, Pd)6Sn5 compound layer is formed at a joint interface between the Ni-based electrode and the Sn-based solder.
  • the occurrence of shrinkage cavities can be suppressed.
  • Diagram showing an example of a shrinkage cavity Diagram showing the behavior of solder during cooling A diagram showing a first configuration of electronic components Diagram showing a configuration using general solder Diagram showing a second configuration of electronic components Diagram showing a method for manufacturing a semiconductor device Diagram showing Examples 1 to 6 Diagram showing Comparative Examples 1 and 2 Diagram showing a method for manufacturing a semiconductor device Diagram showing Examples 7 to 9 Diagram showing comparative examples 3 and 4
  • a first embodiment of a semiconductor device which is an electronic component, will be described below with reference to FIGS. 1 to 11.
  • a chip with a Pd (palladium) layer on a Ni (nickel)-based electrode there is a known problem that shrinkage cavities are more likely to form at the solder joint than when using a chip without a Pd layer. There is.
  • FIG. 1 is a diagram showing an example of a shrinkage cavity.
  • a solder joint 3 is formed between a semiconductor element 1 and an emitter-side lead 2 of a power module.
  • a shrinkage cavity 101 which is displayed in black, is formed in a region of the solder joint 3 close to the emitter side lead 2.
  • more heat was radiated from the semiconductor element 1 side than from the emitter side lead 2 side.
  • shrinkage cavities are formed, there are fewer heat dissipation paths for dissipating the heat generated by the semiconductor element due to energization, making it difficult to ensure reliability. Therefore, if a shrinkage cavity is formed, the product is determined to be defective in the quality inspection after assembly.
  • Shrinkage cavities occur when Pd formed on the Ni-based electrode of a semiconductor element diffuses into the molten Sn-based lead-free solder during soldering, causing the liquidus line of the Sn-based lead-free solder to drop. I think this is caused by an increase in temperature.
  • the Ni-based electrode in this embodiment includes, for example, only nickel, nickel and phosphorus, nickel and vanadium, and the like.
  • the ratio of nickel to phosphorus is, for example, about 100:1 to 15.
  • the ratio of nickel to vanadium is, for example, about 100:1 to 15.
  • FIG. 2 is a diagram showing the behavior of solder during cooling.
  • the left side of FIG. 2 shows a case where the temperature difference between the beginning and end of solder hardening is small, and the right side of FIG. 2 shows a case where the temperature difference between the beginning and end of solder hardening is large.
  • a large amount of heat is radiated from the semiconductor element 1 side.
  • the solder will solidify little by little from the side that is being cooled, and will undergo volumetric shrinkage during solidification at the final solidification part. Nests 101 are more likely to be formed. Note that if more heat is radiated from the emitter side lead 2 side than from the semiconductor element 1 side, the shrinkage cavity 101 will be formed on the semiconductor element 1 side.
  • FIG. 3 is a diagram showing a first configuration of a semiconductor device 100, which is an electronic component in this embodiment.
  • the left side of the figure shows the state before joining, and the right side of the figure shows the state after joining.
  • a Ni-based electrode 8 , a Pd layer 7 , and a metal film 6 are present on the surface of the semiconductor element 1 .
  • the metal film 6 is metallized with Au (gold) or Ag (silver).
  • Ni plating 5 is present on the surface of the emitter side lead 2.
  • a copper-added solder 24 is placed between the metal film 6 and the Ni plating 5 for bonding.
  • the copper-added solder 24 is Sn-based solder to which Cu (copper) is added in a larger amount than in the eutectic composition.
  • the copper-added solder 24 has a Cu content of 0.9% or more, preferably 3% or more and less than 6%, and a Sn content of 80% or more.
  • Pd is incorporated into the Cu 6 Sn 5 compound supplied from the solder, and a compound is formed at the joint interface 26 as a (Cu, Ni, Pd) 6 Sn 5 compound. can do.
  • the solder joint is composed of a joint interface 26 and a solder center layer 27 that are present at the top and bottom in the figure.
  • the thickness of the Pd layer 7 is represented by the symbol d
  • the thickness of the Pd layer is represented by the symbol d
  • the thickness of the upper joint interface 26 is represented by the symbol y1
  • the thickness of the lower joint interface 26 is represented by the symbol y2.
  • the density of Pd is represented by the symbol D1
  • the density D2 of (Cu, Ni, Pd) 6 Sn 5 is represented by the symbol D2.
  • Equation 1 Since Pd in (Cu, Ni, Pd) 6 Sn 5 is 3.6% by weight, the following formula 1 holds true regarding the weight of Pd.
  • the left side of Equation 1 describes Pd before bonding, and the right side describes Pd after bonding.
  • x in Equation 1 is an operation symbol meaning a product.
  • Equation 2 it can be seen that the sum of the thicknesses of the upper joint interface 26 and the lower joint interface 26 is approximately 40 times the thickness of the Pd layer 7 before bonding. Note that when the desired solder thickness L is determined, the necessary Cu content of the solder can be calculated based on the thickness y of the joint interface 26.
  • FIG. 4 is a diagram showing a configuration using general solder for comparison.
  • the left side of the figure shows the state before joining, and the right side of the figure shows the state after joining.
  • a general solder 4 is used instead of the copper-added solder 24 in FIG. 3 in that a Ni-based electrode 8, a Pd layer 7, and a metal film 6 are present on the surface of the semiconductor element 1, and that Ni plating 5 is present on the surface of the emitter side lead 2.
  • the general solder 4 is, for example, Sn-based lead-free solder such as Sn-3Ag-0.5Cu.
  • the Pd contained in the Pd layer 7 reacts with the solder and is incorporated as a component of the (Ni, Cu, Pd) 3 Sn 4 compound formed at the interface of the joint, and the Pd contained in the solder joint ( Pd,Ni)Sn 4 It is distributed as floating island-like compounds.
  • the intermetallic compound formed at the joint interface is independent of the liquidus temperature of the solder, and The liquidus temperature of the solder part affects the ease with which shrinkage cavities form.
  • the liquidus temperature of the solder becomes higher and shrinkage cavities are more likely to form.
  • FIG. 5 is a diagram showing a second configuration of the semiconductor device 100 in this embodiment.
  • a semiconductor device 1 such as a power module may have its emitter side and collector side both joined by solder.
  • the semiconductor element 1 shown in FIG. 5 is sandwiched between a collector side lead 12 at the bottom in the figure and an emitter side lead 2 at the top in the figure.
  • the collector side lead 12 shown in the lower part of the figure is cooled, the collector side junction section 13 located below the semiconductor element 1 is cooled faster, and the emitter side junction section indicated at 3 is cooled faster.
  • the cooling rate becomes slower. Shrinkage cavities are more likely to occur as the cooling rate is slower, so shrinkage cavities are more likely to occur at the emitter side joint.
  • shrinkage cavity generation can be suppressed by bonding a semiconductor element having Pd onto a Ni-based electrode using Sn-based solder to which Cu is added in a larger amount than in the eutectic composition, at least in the emitter-side bonding portion.
  • Examples 1 to 6 will be described with reference to FIGS. 6 and 7.
  • the method for manufacturing the semiconductor device 100A shown in FIG. 6 is as follows. First, the collector side solder 24-2 is supplied to the solder mounting position of the collector side lead 32 made of Cu and having roughened Ni plating. A semiconductor element 1 having a Pd layer with a thickness of 600 nm on Ni-based electrodes on both sides is bonded thereon. Furthermore, an emitter side solder 24-1 is placed on the electrode on the upper surface of the semiconductor element 1 that has been bonded, and furthermore, an emitter side lead 31 made of copper having roughened Ni plating is laminated and bonded thereon.
  • both the collector side solder 24-2 and the emitter side solder 24-1 are solders containing Sn as a main component and 3% by weight or more and less than 6% by weight of Cu.
  • both the collector side solder 24-2 and the emitter side solder 24-1 are solders containing Sn as a main component, 4% by weight of Ag, and 3% by weight or more and less than 6% by weight of Cu. be.
  • shrinkage cavities 101 For each example, 100 semiconductor devices 100A were manufactured, and the presence of shrinkage cavities 101 was evaluated. The evaluation of shrinkage cavities 101 is "Pass” if not a single machine out of 100 machines has shrinkage cavities 101 exceeding 5% of the joint area, and "Fail” if shrinkage cavities 101 exceeding 5% of the joint area are observed. Passed.” As a result, all of Examples 1 to 6 were "passed”.
  • Comparative Examples 1 and 2 will be described with reference to FIGS. 6 and 8. Comparative Examples 1 to 2, which differed from Examples 1 to 6 only in the compositions of emitter side solder 24-1 and collector side solder 24-2, were similarly fabricated and evaluated. As a result of the evaluation, all of Comparative Examples 1 and 2 were "fail".
  • Examples 7 to 9 will be described with reference to FIGS. 9 and 10.
  • the method for manufacturing the semiconductor device 100B shown in FIG. 9 is as follows. First, a sheet of substrate lower solder 24-4 is placed on the heat dissipation base 45, and the ceramic insulating substrate 43 is laminated thereon. The emitter side lead 2 is arranged on the upper side of the ceramic insulating substrate 43 in the drawing. Next, the substrate upper solder 24-3 is placed on the emitter side lead 2, and after the semiconductor element 1 is installed, it is heated and bonded. After the solder is bonded, the aluminum wire 42 and the terminal 41 are bonded, and then the case 47 is attached. Finally, the inside of the case 47 is sealed with gel 46 to manufacture the semiconductor device 100B.
  • the respective compositions of the substrate upper solder 24-3 and the substrate lower solder 24-4 for each example are as described in the columns of "substrate upper solder” and "substrate lower solder” in FIG.
  • 100 semiconductor devices 100B were manufactured and the presence of shrinkage cavities 101 was evaluated.
  • the evaluation of shrinkage cavities 101 is "Pass” if not a single machine out of 100 machines has shrinkage cavities 101 exceeding 5% of the joint area, and "Fail” if shrinkage cavities 101 exceeding 5% of the joint area are observed. Passed.” As a result, as shown in FIG. 10, all of Examples 7 to 9 were "passed”.
  • Comparative Examples 3 and 4 will be described with reference to FIGS. 9 and 11.
  • the only difference from Examples 7 to 9 is the composition of the substrate upper solder 24-3 and the substrate lower solder 24-4.
  • semiconductor devices were similarly produced and evaluated.
  • the respective compositions of the board upper solder 24-3 and the board lower solder 24-4 of Comparative Examples 3 and 4 are as described in the columns of "substrate upper solder” and "substrate lower solder” in FIG. As a result of the evaluation, all of Comparative Examples 1 and 2 were "fail".
  • a semiconductor device 100 which is an electronic device, includes a semiconductor element 1 having a Ni-based electrode, and an emitter-side lead 2 connected to the Ni-based electrode via Sn-based solder.
  • a (Cu, Ni, Pd) 6 Sn 5 compound layer exists at the joint interface 26 between the Ni-based electrode and Sn-based solder, and exists as a (Pd, Ni) Sn 4 compound in the parent phase of the Sn-based solder after bonding.
  • the Pd content present in the (Cu, Ni, Pd) 6 Sn 5 compound layer is less than or zero. Therefore, the occurrence of shrinkage cavities 101 is suppressed.
  • the semiconductor element 1 includes a plurality of Ni-based electrodes, and the (Cu, Ni, Pd) 6 Sn 5 compound layer includes at least the Ni-based electrode and the Sn-based electrode, which require the longest time for heat dissipation among the multiple Ni-based electrodes.
  • Exists at the solder joint interface For example, in the example shown in FIG. 6, since heat is radiated from the side of the collector side lead 32 in the lower part of the figure, shrinkage cavities 101 are less likely to occur in the collector side solder 24-2, which is cooled quickly, so that it is less necessary to take countermeasures. However, on the side that takes time to cool down, the emitter side in the example of FIG. 6, shrinkage cavities 101 may occur if no measures are taken, so by using solder with the above-mentioned composition, shrinkage cavities 101 suppress the occurrence of
  • the Ni content in the (Cu, Ni, Pd) 6 Sn 5 compound layer is 5 wt. % or less.
  • a method for manufacturing a semiconductor device 100 that includes a semiconductor element 1 having a Ni-based electrode and an emitter-side lead 2 that is connected to the Ni-based electrode via Sn-based solder includes a method in which a Pd layer is formed on the outer periphery of the Ni-based electrode.
  • the method includes a step of arranging copper-added solder 24 containing more Cu than the eutectic composition on the surface of the Pd layer on the formed semiconductor element 1 .
  • a (Cu, Ni, Pd) 6 Sn 5 compound layer is formed at the interface between the Ni-based electrode and the Sn-based solder.
  • the semiconductor element 1 has a plurality of Ni-based electrodes.
  • a copper-added solder 24 containing more Cu than the eutectic composition is placed at least between the Ni-based electrode on the upper side of FIG. 6 and the emitter side lead 31, which requires time for heat dissipation.
  • composition of the copper-added solder 24, which contains more Cu than the eutectic composition, contains 3 to 6 wt. %include.

Abstract

電子装置は、Ni系電極を有する第1電子部品と、Sn系はんだを介してNi系電極と接合される第2電子部品とを備え、Ni系電極とSn系はんだの接合部界面に(Cu,Ni,Pd)Sn化合物層が存在し、接合後のSn系はんだの母相中において(Pd,Ni)Sn化合物として存在するPd含有量が、(Cu,Ni,Pd)Sn化合物層として存在するPd含有量よりも少ないか又はゼロである。

Description

電子装置、電子装置の製造方法
 本発明は、電子装置、および電子装置の製造方法に関する。
 RoHS指令やELV指令により自動車に搭載される電子制御装置に含まれる鉛の使用が規制されているため、これまでSn-3Ag-0.5Cu(重量%)を主とした鉛フリーはんだにより鉛フリー化が進められてきた。インバータに用いられるパワーモジュールは、小型化および軽量化を目的として高パワー密度化が潮流となっており、たとえば次の2点が求められている。第1に、パワー半導体の上下両面をはんだ接合してパワーモジュールの上下両面から放熱できることである。第2に、パワー半導体接合部の保証温度を高温化して多くの電流を流せることである。
 半導体素子の電極には、はんだとの接合を担うNi系電極が用いられており、はんだの濡れを確保しやすくするために、電極の再表面にはAuやAgのメタライズが施される。しかしながら、チップ製造過程での加熱や保管環境によっては、薄いAuメタライズや欠陥の多いAgメタライズの表面にNiが拡散し再表面から最も表面にNi酸化物を生成し、はんだの接合性を損ねてしまうことがある。そのため、再表面にNi酸化物を形成しないように、Ni系電極上にPdの層を設け、その上にAuやAgのメタライズを施すことが増えてきている。特許文献1には、原子%で、Ag:3~6%、Cu:1~4%、Co:0.01~2%、Sn:残部からなる鉛フリーはんだボール用合金が開示されている。
日本国特許第3724486号
 特許文献1に記載されている発明では、ひけ巣の対策に検討の余地がある。
 本発明の第1の態様による電子装置は、Ni系電極を有する第1電子部品と、Sn系はんだを介して前記Ni系電極と接合される第2電子部品とを備え、前記Ni系電極と前記Sn系はんだの接合部界面に(Cu,Ni,Pd)6Sn5化合物層が存在し、接合後の前記Sn系はんだの母相中において(Pd,Ni)Sn4化合物として存在するPd含有量が、前記(Cu,Ni,Pd)6Sn5化合物層として存在するPd含有量よりも少ないか又はゼロである。
 本発明の第2の態様による電子装置の製造方法は、Ni系電極を有する第1電子部品と、Sn系はんだを介して前記Ni系電極と接合される第2電子部品とを備える電子装置の製造方法であって、前記Ni系電極の外周にPd層が形成された前記第1電子部品に対して、前記Pd層の表面に共晶組成よりもCuを多く含有するSn系はんだを配置する配置工程を含み、前記電子装置は、前記Ni系電極と前記Sn系はんだの接合部界面に(Cu,Ni,Pd)6Sn5化合物層が形成される。
 本発明によれば、ひけ巣の発生を抑制できる。
ひけ巣の一例を示す図 冷却時のはんだの挙動を示す図 電子部品の第1の構成を示す図 一般的なはんだを用いた構成を示す図 電子部品の第2の構成を示す図 半導体装置の製造方法を示す図 実施例1~6を示す図 比較例1~2を示す図 半導体装置の製造方法を示す図 実施例7~9を示す図 比較例3~4を示す図
―第1の実施の形態―
 以下、図1~図11を参照して、電子部品である半導体装置の第1の実施の形態を説明する。Ni(ニッケル)系電極上にPd(パラジウム)層を設けたチップを用いる場合は、Pd層の無いチップを用いた場合と比べて、はんだ接合部にひけ巣ができやすいという問題が知られている。
 図1は、ひけ巣の一例を示す図である。図1では、半導体素子1とパワーモジュールのエミッタ側リード2の間にはんだ接合部3が形成されている。はんだ接合部3のエミッタ側リード2に近い領域には、黒く表示されるひけ巣101が形成されている。なお図1に示す例では、エミッタ側リード2の側よりも半導体素子1の側から多く放熱された。ひけ巣が形成されると、通電により発熱した半導体素子の熱を逃がす放熱経路が少なくなり信頼性確保が難しくなる。そのため、ひけ巣が形成されると組立後の品質検査において不具合品と判定される。ひけ巣は、半導体素子のNi系電極上に形成されたPdがはんだ接合の際に、溶融したSn(スズ)系鉛フリーはんだにPdが拡散することで、Sn系鉛フリーはんだの液相線温度が上昇するために生じると考える。
 本実施の形態におけるNi系電極とはたとえば、ニッケルのみ、ニッケルとリン、ニッケルとバナジウムなどである。この場合のニッケルとリンの比率は、たとえば100:1~15程度である。この場合のニッケルとバナジウムの比率は、たとえば100:1~15程度である。
 図2は、冷却時のはんだの挙動を示す図である。図2の左側は、はんだの固まり始めと終わりの温度差が小さい場合を示し、図2の右側は、はんだの固まり始めと終わりの温度差が大きい場合を示す。図2では、図示上方から下方に向かって時間が経過している。また図2に示す例でも、半導体素子1の側から多く放熱されている。図2の左側に示す、はんだの固まり始めと終わりの温度差が小さい場合は、はんだ接合部3の全体が凝固による体積収縮の影響を受けて全体的に収縮する。その一方で、図2の右側に示す、はんだの固まり始めと終わりの温度差が大きい場合は、冷却されている側から少しずつ固まり、最終凝固部で凝固時の体積収縮を受けることになりひけ巣101が形成されやすくなる。なお仮に半導体素子1の側よりもエミッタ側リード2の側から多く放熱される場合には、ひけ巣101は半導体素子1の側に形成される。
 図3は、本実施の形態における電子部品である半導体装置100の第1の構成を示す図である。図示左側が接合前の状態を示し、図示右側が接合後の状態を示す。半導体素子1の表面にNi系電極8、Pd層7、および金属膜6が存在する。金属膜6は、Au(金)またはAg(銀)によるメタライズである。エミッタ側リード2の表面にはNiめっき5が存在する。本実施の形態では、金属膜6とNiめっき5の間に銅添加はんだ24を配して接合する。銅添加はんだ24は、Cu(銅)を共晶組成よりも多く添加されたSn系はんだである。具体的には銅添加はんだ24は、Cuの重量%が0.9%以上であり好ましくは3%以上6%未満、かつSnの重量%が80%以上である。
 Cuを共晶組成よりも多く含む銅添加はんだ24は、はんだ中に符号25で示すCuSn化合物を多く含んでいる。CuSn化合物を用いて接合することで、はんだ中から供給したCuSn化合物の中にPdを取り込み、(Cu,Ni,Pd)Sn化合物として接合部界面26に化合物を形成することができる。はんだ接合部は、図示上下に存在する接合部界面26と、はんだ中央層27とから構成される。
 このとき、はんだに含まれるCuの含有量やはんだ接合部の厚さLを、半導体素子1のPd厚さに応じてコントロールすることで、接合部界面26に形成する(Cu,Ni,Pd)Sn化合物にPdをほぼ取り込むことができる。ここで、Pd層7の厚みを記号dで表し、Pd層の厚みを記号dで表し、上部の接合部界面26の厚みを記号y1で表し、下部の接合部界面26の厚みを記号y2で表し、Pdの密度を記号D1で表し、(Cu,Ni,Pd)Snの密度D2を記号D2で表す。(Cu,Ni,Pd)SnにおけるPdは、3.6重量%なので、Pdの重量に関して次の式1が成りたつ。式1の左辺は接合前のPd、右辺は接合後のPdについて記述している。なお式1における「x」は積を意味する演算記号である。
   d x D1=(y1+y2)x D2 x 0.036  ・・・(式1)
 ここで、Pd密度D1は12.03g/cm3、(Cu,Ni,Pd)Sn密度D2は8.33g/cm3なので、式1を整理すると次の式2が得られる。
   y=y1+y2=40.1 x d  ・・・(式2)
 すなわち式2から、上部の接合部界面26の厚みと下部の接合部界面26の厚みの合計が、接合前のPd層7の厚みの約40倍になることがわかる。なお、所望のはんだ厚さLが決まる場合には、接合部界面26の厚さyに基づき、必要なはんだのCu含有率を算出できる。
 Pdを接合部界面26に全て取り込むことができれば、はんだ中央層27には(Pd,Ni)Sn4化合物がほぼ存在しなくなり、液相線温度の上昇を抑制できるので、ひけ巣を抑制できる。ひけ巣を抑制する効果は、接合後の前記Sn系はんだの母相中において(Pd,Ni)Sn化合物として存在するPd含有量が、前述の(Cu,Ni,Pd)Sn化合物層として存在するPd含有量よりも少ないか又はゼロであるときに顕著に得られる。なお、(Cu,Ni,Pd)Sn化合物層におけるNi含有率が5wt.%以下である。
 図4は、比較のために一般的なはんだを用いた構成を示す図である。図示左側が接合前の状態を示し、図示右側が接合後の状態を示す。図4の左側を図3の左側と比較すると、図3における銅添加はんだ24の代わりに一般はんだ4が用いられている。半導体素子1の表面にNi系電極8、Pd層7、および金属膜6が存在する点と、エミッタ側リード2の表面にはNiめっき5が存在する点は図3と共通している。一般はんだ4はたとえば、Sn-3Ag-0.5CuのようなSn系鉛フリーはんだである。
 この場合にPd層7に含まれるPdは、はんだと反応して接合部界面に形成される(Ni,Cu,Pd)Sn化合物の成分として取込まれるものと、はんだ接合部内部に(Pd,Ni)Sn化合物として浮島状に存在するものに分配される。ここで、接合部を接合部界面の金属間化合物とそれ以外のはんだ部として分けて考えると、接合部界面に形成された金属間化合物ははんだの液相線温度には関わらず、それ以外のはんだ部の液相線温度がひけ巣の出来やすさに影響を及ぼす。ここでは、(Pd,Ni)Sn化合物23が多く形成するほど、はんだの液相線温度が高くなりひけ巣が出来やすくなる。
 図5は、本実施の形態における半導体装置100の第2の構成を示す図である。パワーモジュールなどの半導体素子1は、図5に示すようにエミッタ側とコレクタ側の両面をはんだ接合することがある。具体的には図5に示す半導体素子1は、図示下方のコレクタ側リード12と、図示上方のエミッタ側リード2とに挟みこまれている。この場合は、図示下方のコレクタ側リード12から冷却されるため、半導体素子1の下側に存在する符号13のコレクタ側接合部の方が冷却が速く、符号3で示すエミッタ側接合部の方が冷却速度が遅くなる。ひけ巣は冷却速度が遅いほど発生しやすいため、エミッタ側接合部の方がひけ巣が出来やすい。そのため、少なくともエミッタ側接合部において、Cuを共晶組成より多く添加されたSn系はんだでNi系電極上にPdを有する半導体素子を接合することでひけ巣生成を抑制することができる。
(実施例1~6)
 図6および図7を参照して、実施例1~6を説明する。図6に示す半導体装置100Aの製造方法は次のとおりである。まず、粗化Niめっきを有するCu製のコレクタ側リード32のはんだ搭載位置に、コレクタ側はんだ24-2を供給する。その上に、両面のNi系電極上に厚さ600nmのPd層を有する半導体素子1を接合する。さらに、接合した半導体素子1の上面の電極上にエミッタ側はんだ24-1を配し、さらにその上に粗化Niめっきを有する銅製のエミッタ側リード31を積層して接合する。これにより、ひけ巣が生成しやすいエミッタ側接合部において、接合部内部にほぼ(Pd,Ni)Sn化合物が無い状態で、接合部界面の(Cu,Ni,Pd)Sn化合物の中に半導体素子から供給されたPdを取込むことができる。その後にトランスファーモールドによりレジン33による封止を行い、半導体装置100Aが製造される。
 実施例ごとのエミッタ側はんだ24-1およびコレクタ側はんだ24-2のそれぞれの組成は、図10の「基板上部はんだ」および「基板下部はんだ」の欄に記載のとおりである。たとえば実施例1は、コレクタ側はんだ24-2およびエミッタ側はんだ24-1はいずれも、Snを主成分としてCuが3重量%以上6重量%未満含まれるはんだである。実施例2は、コレクタ側はんだ24-2およびエミッタ側はんだ24-1はいずれも、Snを主成分としてAgが4重量%含まれ、かつCuが3重量%以上6重量%未満含まれるはんだである。
 実施例ごとに100台の半導体装置100Aを作製し、ひけ巣101の存在を評価した。ひけ巣101の評価は、接合部面積の5%を超えるひけ巣101が100台中1台も確認されない場合に「合格」、1台でも5%を超えるひけ巣101が観察された場合に「不合格」とした。その結果、実施例1~6のいずれにおいても「合格」となった。
(比較例1~2)
 図6および図8を参照して、比較例1~2を説明する。実施例1~6とは、エミッタ側はんだ24-1およびコレクタ側はんだ24-2の組成のみが異なる比較例1~2も同様に半導体装置を作成して評価した。評価の結果、比較例1~2のいずれも「不合格」となった。
(実施例7~9)
 図9および図10を参照して、実施例7~9を説明する。図9に示す半導体装置100Bの製造方法は次のとおりである。まず、放熱ベース45の上に基板下部はんだ24-4のシートを置き、その上にセラミックス絶縁基板43を積層する。セラミックス絶縁基板43の図示上側には、エミッタ側リード2が配されている。次に、そのエミッタ側リード2の上に基板上部はんだ24-3を置き、半導体素子1を設置した後に加熱して接合する。そして、はんだが接合された後にアルミワイヤ42および端子41を接合し、その後ケース47を取付ける。最後にケース47の内部をゲル46で封止して半導体装置100Bが製造される。
 実施例ごとの基板上部はんだ24-3および基板下部はんだ24-4のそれぞれの組成は、図10の「基板上部はんだ」および「基板下部はんだ」の欄に記載のとおりである。実施例ごとに100台の半導体装置100Bを作製し、ひけ巣101の存在を評価した。ひけ巣101の評価は、接合部面積の5%を超えるひけ巣101が100台中1台も確認されない場合に「合格」、1台でも5%を超えるひけ巣101が観察された場合に「不合格」とした。その結果、図10に示すように実施例7~9のいずれにおいても「合格」となった。
(比較例3~4)
 図9および図11を参照して、比較例3~4を説明する。実施例7~9とは、基板上部はんだ24-3および基板下部はんだ24-4の組成のみが異なる。比較例3~4も同様に半導体装置を作成して評価した。比較例3~4の基板上部はんだ24-3および基板下部はんだ24-4のそれぞれの組成は、図11の「基板上部はんだ」および「基板下部はんだ」の欄に記載のとおりである。評価の結果、比較例1~2のいずれも「不合格」となった。
 上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)電子装置である半導体装置100は、Ni系電極を有する半導体素子1と、Sn系はんだを介してNi系電極と接合されるエミッタ側リード2とを備える。Ni系電極とSn系はんだの接合部界面26に(Cu,Ni,Pd)Sn化合物層が存在し、接合後のSn系はんだの母相中において(Pd,Ni)Sn化合物として存在するPd含有量が、(Cu,Ni,Pd)Sn化合物層として存在するPd含有量よりも少ないか又はゼロである。そのため、ひけ巣101の発生が抑制される。
(2)半導体素子1は複数のNi系電極を備え、(Cu,Ni,Pd)Sn化合物層は、少なくとも、複数のNi系電極のうち放熱に最も時間を要するNi系電極とSn系はんだの接合部界面に存在する。たとえば図6に示す例では、図示下部のコレクタ側リード32の側から放熱されるため、早く冷却されるコレクタ側はんだ24-2にはひけ巣101が発生しにくいことから対策の必然性が低い。しかし冷却に時間を要する側、図6の例ではエミッタ側は、何らの対策も行わない場合にはひけ巣101が発生する可能性があるので、上述した組成のはんだを用いることでひけ巣101の発生を抑制する。
(3)半導体装置100は、(Cu,Ni,Pd)Sn化合物層におけるNi含有率が5wt.%以下である。
(4)Ni系電極を有する半導体素子1と、Sn系はんだを介してNi系電極と接合されるエミッタ側リード2とを備える半導体装置100の製造方法は、Ni系電極の外周にPd層が形成された半導体素子1に対して、Pd層の表面に共晶組成よりもCuを多く含有する銅添加はんだ24を配置する配置工程を含む。半導体装置100は、Ni系電極とSn系はんだの接合部界面に(Cu,Ni,Pd)Sn化合物層が形成される。
(5)半導体素子1は、複数のNi系電極を有する。配置工程では、少なくとも、放熱に時間を要する図6の図示上側のNi系電極とエミッタ側リード31との間に、共晶組成よりもCuを多く含有する銅添加はんだ24を配置する。
(6)共晶組成よりCuを多く含有する銅添加はんだ24の組成は、Cuが3~6wt.%含まれている。
(7)図3を参照して説明したように、半導体素子1のNi電極上のPd層の厚さdに対して40倍の厚さである厚さLの(Cu,Ni,Pd)Sn化合物層が接合部界面に形成される。
(変形例1)
 上述した第1の実施の形態では、半導体素子であるパワーモジュールの接合部におけるひけ巣101の発生を抑止するためのはんだの組成を説明した。しかしひけ巣101の発生は電子部品のあらゆる場面で問題となりうるため、本発明の適用対象はパワーモジュールに限定されず、様々な半導体素子を適用対象にできる。さらに、半導体に限定されず、電極を備えるさまざまな電子装置に適用できる。
 上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1     :半導体素子
7     :Pd層
8     :Ni系電極
12    :コレクタ側リード
24    :銅添加はんだ
24-1  :エミッタ側はんだ
24-2  :コレクタ側はんだ
24-3  :基板上部はんだ
24-4  :基板下部はんだ
31    :エミッタ側リード
32    :コレクタ側リード
100、100A、100B:半導体装置
101   :ひけ巣

Claims (9)

  1.  Ni系電極を有する第1電子部品と、
     Sn系はんだを介して前記Ni系電極と接合される第2電子部品とを備え、
     前記Ni系電極と前記Sn系はんだの接合部界面に(Cu,Ni,Pd)Sn化合物層が存在し、
     接合後の前記Sn系はんだの母相中において(Pd,Ni)Sn化合物として存在するPd含有量が、前記(Cu,Ni,Pd)Sn化合物層として存在するPd含有量よりも少ないか又はゼロである、電子装置。
  2.  請求項1に記載の電子装置であって、
     前記第1電子部品は半導体素子である、電子装置。
  3.  請求項1に記載の電子部品であって、
     前記第1電子部品は、複数の前記Ni系電極を有する半導体素子であり、
     前記(Cu,Ni,Pd)Sn化合物層は、少なくとも、前記複数のNi系電極のうち放熱に最も時間を要する前記Ni系電極と前記Sn系はんだの接合部界面に存在する、電子装置。
  4.  請求項1に記載の電子装置であって、
     前記(Cu,Ni,Pd)Sn化合物層におけるNi含有率が5wt.%以下である電子装置。
  5.  Ni系電極を有する第1電子部品と、Sn系はんだを介して前記Ni系電極と接合される第2電子部品とを備える電子装置の製造方法であって、
     前記Ni系電極の外周にPd層が形成された前記第1電子部品に対して、前記Pd層の表面に共晶組成よりもCuを多く含有するSn系はんだを配置する配置工程を含み、
     前記電子装置は、前記Ni系電極と前記Sn系はんだの接合部界面に(Cu,Ni,Pd)Sn化合物層が形成される電子装置の製造方法。
  6.  請求項5に記載の電子装置の製造方法であって、
     前記第1電子部品は半導体素子である、電子装置の製造方法。
  7.  請求項5に記載の電子装置の製造方法であって、
     前記第1電子部品は、複数の前記Ni系電極を有する半導体素子であり、
     前記配置工程では、少なくとも、前記複数のNi系電極のうち放熱に最も時間を要する前記Ni系電極と前記第2電子部品との間に、共晶組成よりもCuを多く含有するSn系はんだを配置する、電子装置の製造方法。
  8.  請求項5に記載の電子装置の製造方法であって、
     共晶組成よりCuを多く含有する前記Sn系はんだの組成は、Cuが3~6wt.%含まれている電子装置の製造方法。
  9.  請求項5に記載の電子装置の製造方法であって、
     前記第1電子部品のNi電極上のPd層の厚さに対して40倍の厚さの(Cu,Ni,Pd)Sn化合物層が前記接合部界面に形成される電子装置の製造方法。
     
PCT/JP2023/021219 2022-08-16 2023-06-07 電子装置、電子装置の製造方法 WO2024038665A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022129483A JP2024026932A (ja) 2022-08-16 2022-08-16 電子装置、電子装置の製造方法
JP2022-129483 2022-08-16

Publications (1)

Publication Number Publication Date
WO2024038665A1 true WO2024038665A1 (ja) 2024-02-22

Family

ID=89941423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021219 WO2024038665A1 (ja) 2022-08-16 2023-06-07 電子装置、電子装置の製造方法

Country Status (2)

Country Link
JP (1) JP2024026932A (ja)
WO (1) WO2024038665A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098212A (ja) * 2006-10-06 2008-04-24 Hitachi Ltd 電子装置およびその製造方法
JP2011044624A (ja) * 2009-08-24 2011-03-03 Hitachi Ltd 半導体装置および車載用交流発電機
JP2013076135A (ja) * 2011-09-30 2013-04-25 Toppan Printing Co Ltd はんだ接続用通電部材、配線用基板及びめっき皮膜の形成方法
WO2016079881A1 (ja) * 2014-11-21 2016-05-26 株式会社日立製作所 半導体パワーモジュールおよびその製造方法ならびに移動体
JP2016111072A (ja) * 2014-12-03 2016-06-20 パナソニックIpマネジメント株式会社 実装構造体及びbgaボール
JP2017130547A (ja) * 2016-01-20 2017-07-27 トヨタ自動車株式会社 半導体装置の製造方法
JP2019013960A (ja) * 2017-07-07 2019-01-31 新光電気工業株式会社 導電性ボール及び電子装置とそれらの製造方法
JP2021027195A (ja) * 2019-08-06 2021-02-22 国立大学法人大阪大学 電子部品および実装構造体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098212A (ja) * 2006-10-06 2008-04-24 Hitachi Ltd 電子装置およびその製造方法
JP2011044624A (ja) * 2009-08-24 2011-03-03 Hitachi Ltd 半導体装置および車載用交流発電機
JP2013076135A (ja) * 2011-09-30 2013-04-25 Toppan Printing Co Ltd はんだ接続用通電部材、配線用基板及びめっき皮膜の形成方法
WO2016079881A1 (ja) * 2014-11-21 2016-05-26 株式会社日立製作所 半導体パワーモジュールおよびその製造方法ならびに移動体
JP2016111072A (ja) * 2014-12-03 2016-06-20 パナソニックIpマネジメント株式会社 実装構造体及びbgaボール
JP2017130547A (ja) * 2016-01-20 2017-07-27 トヨタ自動車株式会社 半導体装置の製造方法
JP2019013960A (ja) * 2017-07-07 2019-01-31 新光電気工業株式会社 導電性ボール及び電子装置とそれらの製造方法
JP2021027195A (ja) * 2019-08-06 2021-02-22 国立大学法人大阪大学 電子部品および実装構造体

Also Published As

Publication number Publication date
JP2024026932A (ja) 2024-02-29

Similar Documents

Publication Publication Date Title
US7964492B2 (en) Semiconductor device and automotive AC generator
AU2017248560B2 (en) Semiconductor device and manufacturing method for the semiconductor device
EP2750173B1 (en) Power semiconductor device with a power semiconductor element bonded to a substrate by a Sn-Sb-Cu solder and with a terminal bonded to the substrate by a Sn-Ag-based or Sn-Ag-Cu-based solder
TWI523724B (zh) A bonding material, a method for producing the same, and a method of manufacturing the bonding structure
JP5578326B2 (ja) リード部品及びその製造方法、並びに半導体パッケージ
JP2007173794A (ja) はんだ離型層を備えた高性能の再加工可能なヒートシンクおよびパッケージング構造ならびに製造方法
US20110042815A1 (en) Semiconductor device and on-vehicle ac generator
CN109755208B (zh) 一种接合材料、半导体装置及其制造方法
JP2002124533A (ja) 電極材料、半導体装置及び実装装置
JP2006066716A (ja) 半導体装置
JP2007059485A (ja) 半導体装置、基板及び半導体装置の製造方法
TWI242866B (en) Process of forming lead-free bumps on electronic component
KR102454265B1 (ko) 적층 접합 재료, 반도체 패키지 및 파워 모듈
JP6877600B1 (ja) 半導体装置
WO2024038665A1 (ja) 電子装置、電子装置の製造方法
JP4147875B2 (ja) ろう材、これを用いた半導体装置の組み立て方法並びに半導体装置
JP5919692B2 (ja) 半導体装置および半導体装置の製造方法
TWI775075B (zh) 具有金屬導熱凸塊接墊的陶瓷基板組件及元件
JP2006245478A (ja) 半導体装置
JP2008034514A (ja) 半導体装置
JP2005236019A (ja) 半導体装置の製造方法
JP4931835B2 (ja) 半導体装置
US7816249B2 (en) Method for producing a semiconductor device using a solder alloy
WO2011001818A1 (ja) 半導体装置および半導体装置の製造方法
JP2005177842A (ja) ろう材、これを用いた半導体装置の製造方法並びに半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854704

Country of ref document: EP

Kind code of ref document: A1