WO2024027122A1 - 一种高介电复合粉末烧结箔的制备方法 - Google Patents

一种高介电复合粉末烧结箔的制备方法 Download PDF

Info

Publication number
WO2024027122A1
WO2024027122A1 PCT/CN2023/075165 CN2023075165W WO2024027122A1 WO 2024027122 A1 WO2024027122 A1 WO 2024027122A1 CN 2023075165 W CN2023075165 W CN 2023075165W WO 2024027122 A1 WO2024027122 A1 WO 2024027122A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
solution
sintered foil
controlled
minutes
Prior art date
Application number
PCT/CN2023/075165
Other languages
English (en)
French (fr)
Inventor
王建中
程恒洋
冒慧敏
何桂丽
濮钰
李姜红
朱伟晨
Original Assignee
南通海星电子股份有限公司
南通海一电子有限公司
四川中雅科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通海星电子股份有限公司, 南通海一电子有限公司, 四川中雅科技有限公司 filed Critical 南通海星电子股份有限公司
Publication of WO2024027122A1 publication Critical patent/WO2024027122A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/04Drying; Impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes

Definitions

  • the invention relates to the technical field of electrode foil manufacturing, in particular to a method for preparing high dielectric composite powder sintered foil.
  • the electrode foil used in traditional aluminum electrolytic capacitors increases the specific surface area by chemically/electrochemically corroding the aluminum foil to create holes. This method requires the consumption of a large amount of acid liquid, and the waste liquid produced increases environmental costs. In recent years, methods have emerged to obtain high specific surface areas by sintering aluminum powder on the surface of aluminum substrates instead of electrochemical etching. Research shows that powder sintered foil can obtain a specific surface area larger than that of corroded foil, and the preparation process does not use various corrosive acids, which greatly reduces environmental protection load and economic costs.
  • Chinese invention patent CN106384670B discloses a method for manufacturing a high dielectric constant composite oxide film electrode foil, which includes the following steps: placing the expanded-etched aluminum foil in 50-70°C titanic acid prepared by the sol-gel method In a mixed system of n-butyl ester and ethylene glycol methyl ether, electrodeposition is carried out under a DC voltage of 5 to 10V and a current density of 30 to 60 mA/ cm2 for 0.5 to 2 minutes ⁇ drying in an air atmosphere of 100 to 200°C for 3 to 5min ⁇ High temperature heat treatment at 400 ⁇ 600°C for 1 ⁇ 24h in a protective gas atmosphere under a pressure of 1 ⁇ 3atm ⁇ Chemical production; the n-butyl titanate and ethylene glycol methyl ether are mixed in a volume ratio of 1:3 ⁇ 5 , the resulting solution is subjected to chelation reaction at
  • the present invention relates to a preparation method of high dielectric composite powder sintered foil, which includes the following steps:
  • step S2 Coat the mixed slurry obtained in step S1 on the surface of the aluminum foil and dry and solidify it to form a film to prepare a sintered foil base material;
  • step S3 Place the sintered foil base material obtained in step S2 in an inert gas for sintering to obtain a powder sintered foil;
  • step S4 Dip the powder sintered foil obtained in step S3 into a titanium-containing precursor solution, drain it, and undergo heat treatment to form a titanium dioxide film on the surface of the powder sintered foil to obtain a composite sintered foil;
  • the preparation method of the titanium-containing precursor solution includes the following sub-steps:
  • step S42 Add deionized water to the mixed solution obtained in step S41 for dilution, and stir evenly;
  • step S5 The composite sintered foil obtained in step S4 is synthesized to obtain a high dielectric composite sintered powder. Tie foil.
  • step S1 the mass proportion of each component in the mixed slurry is preferably: aluminum powder: 60-85%, binder: 5-10%, additive 1-5%, Organic solvent 6 ⁇ 30%.
  • step S1 the purity of the aluminum powder is preferably controlled to be above 99.9%, and the particle size is controlled to be 1 to 50 ⁇ m.
  • the binder is preferably any one or a mixture of epoxy resin, polyvinylidene fluoride, carboxymethyl cellulose and acrylic resin.
  • the additive is preferably a mixture of any one or more of sodium dodecyl benzene sulfonate, stearic acid and polyvinyl alcohol.
  • the organic solvent is preferably any one or a mixture of ethanol, ethylene glycol, glycerol, and N-methylpyrrolidone.
  • the thickness of the aluminum foil is preferably controlled at 30 to 80 ⁇ m, and the surface roughness value Ra is controlled at 0.2 to 0.25 ⁇ m.
  • the application method of the mixed slurry is one or more of brushing, rolling and spraying.
  • the drying temperature for solidifying the mixed slurry into a film is controlled at 150 to 200°C.
  • step S3 includes the following sub-steps:
  • step S31 Place the sintered foil base material obtained in step S2 in an inert gas, control the temperature at 300 to 450°C, and maintain it for 1.5 to 2 hours;
  • step S32 Continue to place the sintered foil base material obtained in step S31 in an inert gas, raise the temperature to 500-650°C, and maintain it for 3-5 hours.
  • the inert gas is preferably nitrogen or argon.
  • step S4 after the titanium-containing precursor solution is drained, the heat treatment temperature required to prepare the composite sintered foil is controlled at 550-600°C, and the heat preservation time is controlled at 25-30 minutes.
  • step S5 includes the following sub-steps:
  • step S52 Place the composite sintered foil obtained in step S51 into a boric acid solution with a mass percentage concentration of 2 to 10% and an ammonium pentaborate solution of 0.5 to 2%, and place it at 70 to 90° C. with a current density of 20 mA/cm 2 and a voltage of
  • the first-level formation is carried out under 200V conditions.
  • the formation time is controlled at 10 to 20 minutes, and it is taken out and washed with water;
  • step S53 Place the composite sintered foil obtained in step S52 into a boric acid solution with a mass percentage concentration of 2 to 10% and an ammonium pentaborate solution with a mass percentage concentration of 0.2 to 1.5%, and maintain the temperature at 80 to 95°C with a current density of 20 mA. /cm 2 , perform secondary formation under the conditions of 430V, control the formation time at 10 to 15 minutes, and take it out for washing;
  • step S54 Place the composite sintered foil obtained in step S53 into a boric acid solution with a mass concentration of 4 to 9% and an ammonium pentaborate solution with a mass concentration of 0.1 to 1%, and heat it at 80 to 95°C with a current density of 20 mA/ cm 2 and 590V for three-stage formation.
  • the formation time is controlled at 8 to 15 minutes, and then taken out and washed with water;
  • step S55 Place the composite sintered foil obtained in step S54 into a boric acid solution with a mass concentration of 4 to 9% and an ammonium pentaborate solution with a mass concentration of 0.1 to 1%, and heat it at 80 to 95°C with a current density of 20 mA/ cm 2 , carry out four-stage formation under the conditions of 620V, control the formation time at 20 to 30 minutes, and take it out for washing;
  • step S56 Immerse the composite sintered foil obtained in step S55 into a phosphoric acid solution with a mass percentage concentration of 5 to 6%, control the temperature at 50 to 80°C, and control the immersion time at 5 to 10 minutes, and then take it out and wash it with water;
  • step S57 Place the composite sintered foil obtained in step S56 into a boric acid solution with a mass concentration of 10 to 12% and an ammonium pentaborate solution with a mass concentration of 1 to 1.5%, and heat it at 80 to 95°C with a current density of 20 mA/
  • the latter formation is carried out under the conditions of cm 2 and 620V, the formation time is controlled at 5 to 8 minutes, and it is taken out and washed with water;
  • step S58 Place the composite sintered foil obtained in step S57 in an oven, control the temperature at 400 to 550°C, and control the duration at 3 to 5 minutes;
  • step S59 Place the composite sintered foil obtained in step S58 into a boric acid solution with a mass concentration of 4 to 9% and an ammonium pentaborate solution with a mass concentration of 0.1 to 1%, and heat it at 80 to 95°C with a current density of 20 mA/ cm 2 and 620V, and the formation time is controlled between 7 and 10 minutes, then remove and wash with water;
  • step S60 Place the composite sintered foil obtained in step S59 into an ammonium dihydrogen phosphate solution with a mass percentage concentration of 1 to 5%, and immerse it at 60 to 80°C for 5 to 8 minutes; take it out, wash it with water, and dry it.
  • the preparation method of high-dielectric composite powder sintered foil has achieved at least the following beneficial effects:
  • titanium dioxide film can effectively improve the dielectric properties of the electrode foil, thus paving the way for subsequent higher specific volume performance
  • the prepared gel precursor solution is easier to adhere to the powder sintered foil. This not only helps ensure that the titanium dioxide film after molding has good surface quality and regular shape, but also ensures that the titanium dioxide film after molding has good surface quality and regular shape.
  • the titanium dioxide film phase and the aluminum foil matrix have better bonding strength, which can effectively avoid the phenomenon of peeling off from the aluminum foil matrix due to excitation force or external force.
  • a method for preparing high-dielectric composite powder sintered foil which includes the following steps:
  • step S2 Coat the mixed slurry obtained in step S1 on the surface of an aluminum foil with a thickness of 30 ⁇ m and a surface roughness value Ra controlled at 0.2 to 0.25 ⁇ m, and dry and solidify it to form a film to prepare a sintered foil base material; and the mixed slurry
  • the drying temperature for curing the material into a film is controlled at 150°C;
  • step S31 Place the sintered foil base material obtained in step S2 in an argon atmosphere, control the temperature at 300°C, and maintain it for 2 hours;
  • step S32 Continue to place the sintered foil base material obtained in step S31 in an argon atmosphere, raise the temperature to 500°C, and maintain it for 5 hours;
  • step S4 Dip the powder sintered foil obtained in step S3 into a titanium-containing precursor solution, drain it, and undergo heat treatment to form a titanium dioxide film on the surface of the powder sintered foil to obtain a composite sintered foil; and when the titanium-containing precursor solution After the solution is drained, the heat treatment temperature required to prepare the composite sintered foil is controlled at 550°C, and the heat preservation time is controlled at 30 minutes;
  • the preparation method of the titanium-containing precursor solution includes the following sub-steps:
  • step S42 Add deionized water to the mixed solution obtained in step S41 for dilution, and stir evenly;
  • step S5 The composite sintered foil obtained in step S4 is formed using a traditional formation process to obtain a high-dielectric composite powder sintered foil.
  • the traditional formation process includes the following sub-steps:
  • step S51 Put the composite sintered foil obtained in step S4 into a solution containing 25wt% ammonium diacid to form, and add a current density of 10mA/cm 2 during the formation.
  • the temperature in the solution tank is controlled at 90°C to obtain a first-level formed into foil;
  • the primary formed foil is formed in a solution containing 25wt% ammonium diacid, and a current density of 30mA/cm 2 is added during the formation.
  • the temperature in the solution tank is controlled at 90°C to obtain a secondary formed foil;
  • the secondary formation foil is formed in a solution containing 5wt% ammonium diacid, and a current density of 40mA/cm 2 is added during the formation.
  • the temperature in the solution tank is controlled at 90°C to obtain a third-level formation foil;
  • the three-stage formation foil is formed in a solution containing 25wt% ammonium diacid, and a current density of 50mA/cm 2 is added during the formation.
  • the temperature in the solution tank is controlled at 60°C.
  • the density is 50mA/cm 2 to obtain a sixth-level formation foil;
  • a method for preparing high-dielectric composite powder sintered foil which includes the following steps:
  • step S2 Coat the mixed slurry obtained in step S1 on the surface of an aluminum foil with a thickness of 30 ⁇ m and a surface roughness value Ra controlled at 0.2 to 0.25 ⁇ m, and dry and solidify it to form a film to prepare a sintered foil base material; and the mixed slurry
  • the drying temperature for curing the material into a film is controlled at 180°C;
  • step S31 Place the sintered foil base material obtained in step S2 in an argon atmosphere, control the temperature at 450°C, and maintain it for 1.5 hours;
  • step S32 Continue to place the sintered foil base material obtained in step S31 in an argon atmosphere, raise the temperature to 650°C, and maintain it for 3 hours;
  • step S4 Dip the powder sintered foil obtained in step S3 into a titanium-containing precursor solution, drain it, and undergo heat treatment to form a titanium dioxide film on the surface of the powder sintered foil to obtain a composite sintered foil; and when the titanium-containing precursor solution After the solution is drained, the heat treatment temperature required to prepare the composite sintered foil is controlled at 600°C, and the heat preservation time is controlled at 25 minutes;
  • the preparation method of the titanium-containing precursor solution includes the following sub-steps:
  • step S42 Add deionized water to the mixed solution obtained in step S41 for dilution, and stir evenly;
  • step S5 The composite sintered foil obtained in step S4 is formed using a traditional formation process to obtain a high-dielectric composite powder sintered foil.
  • the traditional formation process includes the following sub-steps:
  • step S51 Put the composite sintered foil obtained in step S4 into a solution containing 25wt% ammonium diacid to form, and add a current density of 10mA/cm 2 during the formation.
  • the temperature in the solution tank is controlled at 90°C to obtain a first-level formed into foil;
  • the primary formed foil is formed in a solution containing 25wt% ammonium diacid, and a current density of 30mA/cm 2 is added during the formation.
  • the temperature in the solution tank is controlled at 90°C to obtain a secondary formed foil;
  • the secondary formation foil is formed in a solution containing 5wt% ammonium diacid, and a current density of 40mA/cm 2 is added during the formation.
  • the temperature in the solution tank is controlled at 90°C to obtain a third-level formation foil;
  • the three-stage formation foil is formed in a solution containing 25wt% ammonium diacid, and a current density of 50mA/cm 2 is added during the formation.
  • the temperature in the solution tank is controlled at 60°C.
  • the density is 50mA/cm 2 to obtain a sixth-level formation foil;
  • a method for preparing high-dielectric composite powder sintered foil which includes the following steps:
  • step S2 Coat the mixed slurry obtained in step S1 on the surface of an aluminum foil with a thickness of 30 ⁇ m and a surface roughness value Ra controlled at 0.2 to 0.25 ⁇ m, and dry and solidify it to form a film to prepare a sintered foil.
  • the base material; and the drying temperature for the mixed slurry to solidify into a film is controlled at 180°C;
  • step S31 Place the sintered foil base material obtained in step S2 in an argon atmosphere, control the temperature at 350°C, and maintain it for 1.8 hours;
  • step S32 Continue to place the sintered foil base material obtained in step S31 in an argon atmosphere, raise the temperature to 550°C, and maintain it for 4 hours;
  • step S4 Dip the powder sintered foil obtained in step S3 into a titanium-containing precursor solution, drain it, and undergo heat treatment to form a titanium dioxide film on the surface of the powder sintered foil to obtain a composite sintered foil; and when the titanium-containing precursor solution After the solution is drained, the heat treatment temperature required to prepare the composite sintered foil is controlled at 600°C, and the heat preservation time is controlled at 25 minutes;
  • the preparation method of the titanium-containing precursor solution includes the following sub-steps:
  • step S42 Add deionized water to the mixed solution obtained in step S41 for dilution, and stir evenly;
  • step S5 The composite sintered foil obtained in step S4 is formed using a traditional formation process to obtain a high-dielectric composite powder sintered foil.
  • the traditional formation process includes the following sub-steps:
  • step S51 Put the composite sintered foil obtained in step S4 into a solution containing 25wt% ammonium diacid to form, and add a current density of 10mA/cm 2 during the formation.
  • the temperature in the solution tank is controlled at 90°C to obtain a first-level formed into foil;
  • the primary formed foil is formed in a solution containing 25wt% ammonium diacid, and a current density of 30mA/cm 2 is added during the formation.
  • the temperature in the solution tank is controlled at 90°C to obtain a secondary formed foil;
  • the secondary formation foil is formed in a solution containing 5wt% ammonium diacid, and a current density of 40mA/cm 2 is added during the formation.
  • the temperature in the solution tank is controlled at 90°C to obtain a third-level formation foil;
  • the three-stage formation foil is formed in a solution containing 25wt% ammonium diacid, and a current density of 50mA/cm 2 is added during the formation.
  • the temperature in the solution tank is controlled at 60°C.
  • the density is 50mA/cm 2 to obtain a sixth-level formation foil;
  • a method for preparing high-dielectric composite powder sintered foil which includes the following steps:
  • step S2 Coat the mixed slurry obtained in step S1 on the surface of an aluminum foil with a thickness of 30 ⁇ m and a surface roughness value Ra controlled at 0.2 to 0.25 ⁇ m, and dry and solidify it to form a film to prepare a sintered foil base material; and the mixed slurry
  • the drying temperature for curing the material into a film is controlled at 180°C;
  • step S31 Place the sintered foil base material obtained in step S2 in an argon atmosphere, control the temperature at 350°C, and maintain it for 1.8 hours;
  • step S32 Continue to place the sintered foil base material obtained in step S31 in an argon atmosphere, raise the temperature to 550°C, and maintain it for 4 hours;
  • step S4 Dip the powder sintered foil obtained in step S3 into a titanium-containing precursor solution, drain it, and undergo heat treatment to form a titanium dioxide film on the surface of the powder sintered foil to obtain a composite sintered foil; and when the titanium-containing precursor solution After the solution is drained, the heat treatment temperature required to prepare the composite sintered foil is controlled at 600°C, and the heat preservation time is controlled at 25 minutes;
  • the preparation method of the titanium-containing precursor solution includes the following sub-steps:
  • step S42 Add deionized water to the mixed solution obtained in step S41 for dilution, and stir Mix evenly;
  • step S5 The composite sintered foil obtained in step S4 is formed using a chemical formation process to obtain a high dielectric composite powder sintered foil.
  • Step S5 includes the following sub-steps:
  • step S52 Place the composite sintered foil obtained in step S51 into a boric acid solution with a mass percentage concentration of 2 to 10% and an ammonium pentaborate solution of 0.5 to 2%, and place it at 70 to 90° C. with a current density of 20 mA/cm 2 and a voltage of
  • the first-level formation is carried out under 200V conditions.
  • the formation time is controlled at 10 to 20 minutes, and it is taken out and washed with water;
  • step S53 Place the composite sintered foil obtained in step S52 into a boric acid solution with a mass percentage concentration of 2 to 10% and an ammonium pentaborate solution with a mass percentage concentration of 0.2 to 1.5%, and maintain the temperature at 80 to 95°C with a current density of 20 mA. /cm 2 , perform secondary formation under the conditions of 430V, control the formation time at 10 to 15 minutes, and take it out for washing;
  • step S54 Place the composite sintered foil obtained in step S53 into a boric acid solution with a mass concentration of 4 to 9% and an ammonium pentaborate solution with a mass concentration of 0.1 to 1%, and heat it at 80 to 95°C with a current density of 20 mA/ cm 2 and 590V for three-stage formation.
  • the formation time is controlled at 8 to 15 minutes, and then taken out and washed with water;
  • step S55 Place the composite sintered foil obtained in step S54 into a boric acid solution with a mass concentration of 4 to 9% and an ammonium pentaborate solution with a mass concentration of 0.1 to 1%, and heat it at 80 to 95°C with a current density of 20 mA/ cm 2 , carry out four-stage formation under the conditions of 620V, control the formation time at 20 to 30 minutes, and take it out for washing;
  • step S56 Immerse the composite sintered foil obtained in step S55 into a phosphoric acid solution with a mass percentage concentration of 5 to 6%, control the temperature at 50 to 80°C, and control the immersion time at 5 to 10 minutes, and then take it out and wash it with water;
  • step S57 Place the composite sintered foil obtained in step S56 into a boric acid solution with a mass percentage concentration of 10 to 12% and an ammonium pentaborate solution with a mass percentage concentration of 1 to 1.5%, and heat it at 80 to 95°C. Carry out the latter formation under the conditions of current density of 20mA/cm 2 and 620V. The formation time is controlled at 5 to 8 minutes, and then taken out and washed with water;
  • step S58 Place the composite sintered foil obtained in step S57 in an oven, control the temperature at 400 to 550°C, and control the duration at 3 to 5 minutes;
  • step S59 Place the composite sintered foil obtained in step S58 into a boric acid solution with a mass concentration of 4 to 9% and an ammonium pentaborate solution with a mass concentration of 0.1 to 1%, and heat it at 80 to 95°C with a current density of 20 mA/
  • the post-secondary formation is carried out under the conditions of cm 2 and 620V.
  • the formation time is controlled at 7 to 10 minutes, and is taken out and washed with water;
  • step S60 Place the composite sintered foil obtained in step S59 into an ammonium dihydrogen phosphate solution with a mass percentage concentration of 1 to 5%, and immerse it at 60 to 80°C for 5 to 8 minutes; take it out, wash it with water, and dry it.
  • Table 1 shows the electrode foil performance test results obtained using existing technology and Examples 1 to 4.
  • the preparation method of high-dielectric composite powder sintered foil has achieved at least the following beneficial effects:
  • titanium dioxide film can further improve the dielectric properties of the electrode foil, thereby enabling the composite electrode foil to obtain higher specific volume performance
  • the prepared gel precursor solution is easier to adhere to the powder sintered foil. This not only helps ensure that the titanium dioxide film after molding has good surface quality and regular shape, but also ensures that the titanium dioxide film after molding has good surface quality and regular shape.
  • the titanium dioxide film phase and the aluminum foil matrix have better bonding strength, which can effectively avoid the phenomenon of peeling off from the aluminum foil matrix due to excitation force or external force.
  • step S5 the composite sintered foil is formed by mixing boric acid and ammonium pentaborate, and the entire formation process is carried out in multiple stages (specifically including primary formation, secondary formation, tertiary formation, quaternary formation, The latter formation and the latter two formations), the microstructure of the oxide film obtained under this formation system is more dense, which is beneficial to improving the bonding strength between the high-dielectric titanium dioxide film and the aluminum oxide film and the overall bending performance after compounding.
  • the composite film is composed of a high-dielectric titanium dioxide film and an alumina film
  • the composite film is made of a high-dielectric composite powder sintered on a large area of the foil. The occurrence of peeling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种高介电复合粉末烧结箔的制备方法,包括以下步骤:将铝粉、粘结剂、添加剂混合于有机溶剂中,且搅拌以得到混合浆料;将混合浆料涂覆于铝箔表面并烘干固化成膜,以制得烧结箔基材;对烧结箔基材进行烧结,得到粉末烧结箔;将粉末烧结箔浸渍于含钛前驱体溶液中,经沥干、高温烧结处理后以得到复合烧结箔;对复合烧结箔进行化成处理。如此,一方面,在制备过程中,无需对铝箔进行表面腐蚀扩孔处理,从而省去了大量酸液的使用;另一方面,提升电极箔的介电性能;再一方面,经过亲水改性处理后,所制备的凝胶前驱体溶液更易于附着于粉末烧结箔上,从而提高二氧化钛负载量,并确保成型后的二氧化钛膜和铝箔基体之间具有良好的结合强度。

Description

一种高介电复合粉末烧结箔的制备方法 技术领域
本发明涉及电极箔制造技术领域,尤其是一种高介电复合粉末烧结箔的制备方法。
背景技术
传统铝电解电容器用电极箔通过对铝光箔进行化学/电化学腐蚀造孔从而提高比表面积,此方法需要消耗大量酸液,且产生的废液增加了环保成本。近年来,出现了通过在铝基底表面烧结铝粉代替电化学蚀刻获得高比表面积的方法。研究表明,粉末烧结箔可获得大于腐蚀箔的比表面积,且制备过程不使用各种腐蚀酸,大幅降低了环保负荷和经济成本。
近些年来,研究者们证实了在铝电极箔中添加高介电材料是提高铝电极箔比容的有效手段。例如,中国发明专利CN106384670B公开了一种高介电常数复合氧化膜电极箔制造方法,其包括以下步骤:将经过扩面腐蚀的铝箔,置于通过溶胶凝胶法制备的50~70℃钛酸正丁酯与乙二醇甲醚混合体系中,在该体系中施加5~10V直流电压、30~60mA/cm2电流密度下进行电沉积0.5~2min→100~200℃空气氛围中干燥3~5min→在1~3atm压力下的保护气体氛围状态下400~600℃高温热处理1~24h→化成生产;所述的钛酸正丁酯与乙二醇甲醚按体积比1:3~5混合,所得溶液在40~80℃下进行12~24h螯合反应,然后加纯水调节溶液浓度为0.1~1mol/L。实际实验结果证实,采用上述技术方案所生成的电极箔相较于传统工艺其比容提升20%以上,然而,对铝箔进行扩面的进程中需要消耗大量的酸液以及电能,且为了消除环境污染现象,工厂还需额外花费大量资金以购置废酸处理设备。再者,难以对铝箔表面所形成孔洞的孔径、深度以及分布密度一致性等参数进行控制,如此,势必会影响到含钛高介电常数复合氧化膜的成型质量以及与铝箔基体的结合强度,实际应用场景下含钛高介电常数复合氧化膜因受到激振力或外 力作用而极易由铝箔基体上剥离,进而会导致铝电解电容器工作性能的下降。因而,亟待技术人员解决上述问题。
发明内容
故,本发明设计人员鉴于上述现有的问题以及缺陷,乃搜集相关资料,经由多方的评估及考量,并经过从事于此行业的多年研发经验技术人员的不断实验以及修改,最终导致该高介电复合粉末烧结箔的制备方法的出现。
为了解决上述技术问题,本发明涉及了一种高介电复合粉末烧结箔的制备方法,其包括以下步骤:
S1、将铝粉、粘结剂、添加剂混合于有机溶剂中,且搅拌均匀以得到混合浆料;
S2、将步骤S1得到的混合浆料涂覆于铝箔表面并烘干固化成膜,以制得烧结箔基材;
S3、将步骤S2得到的烧结箔基材置于惰性气体中进行烧结,得到粉末烧结箔;
S4、将步骤S3得到的粉末烧结箔浸渍于含钛前驱体溶液中,经沥干处理后,并经过热处理以在粉末烧结箔的表面形成二氧化钛膜,得到复合烧结箔;
含钛前驱体溶液的制备方法包括以下子步骤:
S41、将钛酸四丁酯溶液逐滴加入到乳酸溶液中,且搅拌3~5min以形成混合溶液,其中,钛酸四丁酯溶液与乳酸溶液的体积比为1:6,且钛酸四丁酯溶液的浓度为0.01~0.5mol/L;
S42、向着步骤S41得到的混合溶液中加入去离子水进行稀释,并搅拌均匀;
S43、向着混合溶液中继续加入浓度为0.2~0.5g/L的聚乙烯醇水溶液,并搅拌3~5min至混合均匀;
S5、将步骤S4得到的复合烧结箔进行化成,得到高介电复合粉末烧 结箔。
作为本发明技术方案的进一步改进,在步骤S1中,混合浆料中各组分质量配比优选为:铝粉:60~85%,粘结剂:5~10%,添加剂1~5%,有机溶剂6~30%。
作为本发明技术方案的更进一步改进,在步骤S1中,铝粉纯度优选控制在99.9%以上,且粒径控制为1~50μm。
作为本发明技术方案的更进一步改进,在步骤S1中,粘结剂优选为环氧树脂、聚偏氟乙烯、羧甲基纤维素和丙烯酸树脂中的任一种或多种的混合。
作为本发明技术方案的更进一步改进,在步骤S1中,添加剂优选为十二烷基苯磺酸钠、硬脂酸和聚乙烯醇中的任一种或多种的混合。
作为本发明技术方案的更进一步改进,在步骤S1中,有机溶剂优选为乙醇、乙二醇、丙三醇、N-甲基吡咯烷酮中的任一种或多种的混合。
作为本发明技术方案的进一步改进,在步骤S2中,铝箔的厚度控制优选在30~80μm,且表面粗糙度值Ra控制在0.2~0.25μm。混合浆料的涂覆方式为刷涂、滚涂和喷涂中的一种或多种。混合浆料固化成膜的烘干温度控制在150~200℃。
作为本发明技术方案的进一步改进,步骤S3包括以下子步骤:
S31、将步骤S2得到的烧结箔基材置于惰性气体中,温度控制在300~450℃,且维持1.5~2h;
S32、将步骤S31得到的烧结箔基材继续置于惰性气体中,升温至500~650℃,且维持3~5h。
作为本发明技术方案的更进一步改进,惰性气体优选为氮气或氩气。
作为本发明技术方案的进一步改进,在步骤S4中,当含钛前驱体溶液被沥干后,制备复合烧结箔所需热处理温度控制在550~600℃,且保温时长控制在25~30min。
作为本发明技术方案的进一步改进,步骤S5包括以下子步骤:
S51、将复合烧结箔置于90~95℃水中煮8~10min;
S52、将步骤S51得到的复合烧结箔置于质量百分比浓度为2~10%的硼酸和0.5~2%的五硼酸铵溶液中,且在70~90℃、电流密度为20mA/cm2、电压为200V条件下进行一级化成,化成时间控制在10~20min,并取出水洗;
S53、将步骤S52得到的复合烧结箔置于质量百分比浓度为2~10%的硼酸和质量百分比浓度为为0.2~1.5%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、430V的条件下进行二级化成,化成时间控制在10~15min,并取出水洗;
S54、将步骤S53得到的复合烧结箔置于质量百分比浓度为4~9%的硼酸和质量百分比浓度为0.1~1%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、590V的条件下进行三级化成,化成时间控制在8~15min,并取出水洗;
S55、将步骤S54得到的复合烧结箔置于质量百分比浓度为4~9%的硼酸和质量百分比浓度为0.1~1%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、620V的条件下进行四级化成,化成时间控制在20~30min,并取出水洗;
S56、将步骤S55得到的复合烧结箔浸于质量百分比浓度为5~6%的磷酸溶液中,温度控制在50~80℃,沉浸时长控制在5~10min,并取出水洗;
S57、将步骤S56得到的复合烧结箔置于质量百分比浓度为10~12%的硼酸和质量百分比浓度为1~1.5%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、620V的条件下进行后一化成,化成时间控制在5~8min,并取出水洗;
S58、将步骤S57得到的复合烧结箔置于烘箱中,温度控制在400~550℃,且时长控制在3~5min;
S59、将步骤S58得到的复合烧结箔置于质量百分比浓度为4~9%的硼酸和质量百分比浓度为0.1~1%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、620V的条件下进行后二化成,化成时间控制在7~ 10min,并取出水洗;
S60、将步骤S59得到的复合烧结箔置于质量百分比浓度为1~5%的磷酸二氢铵溶液中,在60~80℃条件下浸渍5~8min;取出水洗,并烘干。
在实际应用中,高介电复合粉末烧结箔的制备方法至少取得了以下几方面的有益效果:
1)与传统的扩面腐蚀-电沉积以在铝箔表面形成钛复合氧化膜工艺相比,所公开的技术方案中,无需对铝箔进行表面腐蚀扩孔处理,因而整个制备过程省去了大量酸液的运用,从而不但在一定程度降低了电极箔的制备困难度以及制备成本,而且降低了废酸处理压力;
2)二氧化钛膜的存在可有效地提升电极箔的介电性能,从而为后续获得更高的比容性能作良好的铺垫;
3)经历亲水改性处理后,所制备的凝胶前驱体溶液更易于附着于粉末烧结箔上,如此,不但利于确保成型后二氧化钛膜具有良好的表面质量以及外形规整度,而且成型后的二氧化钛膜相和铝箔基体之间具有更为优良的结合强度,进而可有效地避免其因受到激振力或外力作用而由铝箔基体上剥离现象的发生。
具体实施方式
为了加深对本发明的理解,下面将结合实施例对本发明作进一步详述,该实施例仅用于解释本发明,并不构成对本发明保护范围的限定。所述方法无特别说明的均为常规方法。
实施例1
一种高介电复合粉末烧结箔的制备方法,其包括以下步骤:
S1、将铝粉、环氧树脂、十二烷基苯磺酸钠混合于乙醇中,且搅拌均匀以得到混合浆料;混合浆料中各组分质量配比为:铝粉:60~85%,环氧树脂:5~10%,十二烷基苯磺酸钠1~5%,乙醇6~30%;且铝粉纯度控制在99.9%以上,且粒径控制在1~50μm;
S2、将步骤S1得到的混合浆料涂覆于厚度为30μm,且表面粗糙度值Ra控制在0.2~0.25μm的铝箔表面并烘干固化成膜,以制得烧结箔基材;且混合浆料固化成膜的烘干温度控制在150℃;
S3、粉末烧结箔的成型,其包括以下子步骤:
S31、将步骤S2得到的烧结箔基材置于氩气氛围中,温度控制在300℃,且维持2h;
S32、将步骤S31得到的烧结箔基材继续置于氩气氛围中,升温至500℃,且维持5h;
S4、将步骤S3得到的粉末烧结箔浸渍于含钛前驱体溶液中,经沥干处理后,并经过热处理以在粉末烧结箔的表面形成二氧化钛膜,得到复合烧结箔;且当含钛前驱体溶液被沥干后,制备复合烧结箔所需热处理温度控制在550℃,且保温时长控制在30min;
含钛前驱体溶液的制备方法包括以下子步骤:
S41、将钛酸四丁酯溶液逐滴加入到乳酸溶液中,且搅拌3~5min以形成混合溶液,其中,钛酸四丁酯溶液与乳酸溶液的体积比为1:6,且钛酸四丁酯溶液的浓度为0.05~0.1mol/L;
S42、向着步骤S41得到的混合溶液中加入去离子水进行稀释,并搅拌均匀;
S43、向着混合溶液中继续加入浓度为0.2~0.5g/L的聚乙烯醇水溶液,并搅拌3~5min至混合均匀;
S5、将步骤S4得到的复合烧结箔采用传统化成工艺进行化成,得到高介电复合粉末烧结箔。
传统化成工艺包括以下子步骤:
S51、将步骤S4得到的复合烧结箔放入到在含有在25wt%二酸铵溶液中化成,并在化成时加入电流密度为10mA/cm2,溶液槽内温度控制在90℃,得到一级化成箔;
S52、将一级化成箔在含有在25wt%二酸铵溶液中化成,并在化成时加入电流密度为30mA/cm2,溶液槽内温度控制在90℃,得到二级化成箔;
S53、将二级化成箔在含有在5wt%二酸铵溶液中化成,并在化成时加入电流密度为40mA/cm2,溶液槽内温度控制在90℃,得到三级化成箔;
S54、将三级化成箔在含有在25wt%二酸铵溶液中化成,并在化成时加入电流密度为50mA/cm2,溶液槽内温度控制在60℃,重复多级化成,四至六级电流密度为50mA/cm2得到六级化成箔;
S55、将得到的六级化成箔进行去极化处理。
实施例2
一种高介电复合粉末烧结箔的制备方法,其包括以下步骤:
S1、将铝粉、环氧树脂、十二烷基苯磺酸钠混合于乙醇中,且搅拌均匀以得到混合浆料;混合浆料中各组分质量配比为:铝粉:60~85%,环氧树脂:5~10%,十二烷基苯磺酸钠1~5%,乙醇6~30%;且铝粉纯度控制在99.9%以上,且粒径控制在1~50μm;
S2、将步骤S1得到的混合浆料涂覆于厚度为30μm,且表面粗糙度值Ra控制在0.2~0.25μm的铝箔表面并烘干固化成膜,以制得烧结箔基材;且混合浆料固化成膜的烘干温度控制在180℃;
S3、粉末烧结箔的成型,其包括以下子步骤:
S31、将步骤S2得到的烧结箔基材置于氩气氛围中,温度控制在450℃,且维持1.5h;
S32、将步骤S31得到的烧结箔基材继续置于氩气氛围中,升温至650℃,且维持3h;
S4、将步骤S3得到的粉末烧结箔浸渍于含钛前驱体溶液中,经沥干处理后,并经过热处理以在粉末烧结箔的表面形成二氧化钛膜,得到复合烧结箔;且当含钛前驱体溶液被沥干后,制备复合烧结箔所需热处理温度控制在600℃,且保温时长控制在25min;
含钛前驱体溶液的制备方法包括以下子步骤:
S41、将钛酸四丁酯溶液逐滴加入到乳酸溶液中,且搅拌3~5min以形成混合溶液,其中,钛酸四丁酯溶液与乳酸溶液的体积比为1:6,且 钛酸四丁酯溶液的浓度为0.05~0.1mol/L;
S42、向着步骤S41得到的混合溶液中加入去离子水进行稀释,并搅拌均匀;
S43、向着混合溶液中继续加入浓度为0.2~0.5g/L的聚乙烯醇水溶液,并搅拌3~5min至混合均匀;
S5、将步骤S4得到的复合烧结箔采用传统化成工艺进行化成,得到高介电复合粉末烧结箔。
传统化成工艺包括以下子步骤:
S51、将步骤S4得到的复合烧结箔放入到在含有在25wt%二酸铵溶液中化成,并在化成时加入电流密度为10mA/cm2,溶液槽内温度控制在90℃,得到一级化成箔;
S52、将一级化成箔在含有在25wt%二酸铵溶液中化成,并在化成时加入电流密度为30mA/cm2,溶液槽内温度控制在90℃,得到二级化成箔;
S53、将二级化成箔在含有在5wt%二酸铵溶液中化成,并在化成时加入电流密度为40mA/cm2,溶液槽内温度控制在90℃,得到三级化成箔;
S54、将三级化成箔在含有在25wt%二酸铵溶液中化成,并在化成时加入电流密度为50mA/cm2,溶液槽内温度控制在60℃,重复多级化成,四至六级电流密度为50mA/cm2得到六级化成箔;
S55、将得到的六级化成箔进行去极化处理。
实施例3
一种高介电复合粉末烧结箔的制备方法,其包括以下步骤:
S1、将铝粉、环氧树脂、十二烷基苯磺酸钠混合于乙醇中,且搅拌均匀以得到混合浆料;混合浆料中各组分质量配比为:铝粉:60~85%,环氧树脂:5~10%,十二烷基苯磺酸钠1~5%,乙醇6~30%;且铝粉纯度控制在99.9%以上,且粒径控制在1~50μm;
S2、将步骤S1得到的混合浆料涂覆于厚度为30μm,且表面粗糙度值Ra控制在0.2~0.25μm的铝箔表面并烘干固化成膜,以制得烧结箔 基材;且混合浆料固化成膜的烘干温度控制在180℃;
S3、粉末烧结箔的成型,其包括以下子步骤:
S31、将步骤S2得到的烧结箔基材置于氩气氛围中,温度控制在350℃,且维持1.8h;
S32、将步骤S31得到的烧结箔基材继续置于氩气氛围中,升温至550℃,且维持4h;
S4、将步骤S3得到的粉末烧结箔浸渍于含钛前驱体溶液中,经沥干处理后,并经过热处理以在粉末烧结箔的表面形成二氧化钛膜,得到复合烧结箔;且当含钛前驱体溶液被沥干后,制备复合烧结箔所需热处理温度控制在600℃,且保温时长控制在25min;
含钛前驱体溶液的制备方法包括以下子步骤:
S41、将钛酸四丁酯溶液逐滴加入到乳酸溶液中,且搅拌3~5min以形成混合溶液,其中,钛酸四丁酯溶液与乳酸溶液的体积比为1:6,且钛酸四丁酯溶液的浓度为0.05~0.1mol/L;
S42、向着步骤S41得到的混合溶液中加入去离子水进行稀释,并搅拌均匀;
S43、向着混合溶液中继续加入浓度为0.2~0.5g/L的聚乙烯醇水溶液,并搅拌3~5min至混合均匀;
S5、将步骤S4得到的复合烧结箔采用传统化成工艺进行化成,得到高介电复合粉末烧结箔。
传统化成工艺包括以下子步骤:
S51、将步骤S4得到的复合烧结箔放入到在含有在25wt%二酸铵溶液中化成,并在化成时加入电流密度为10mA/cm2,溶液槽内温度控制在90℃,得到一级化成箔;
S52、将一级化成箔在含有在25wt%二酸铵溶液中化成,并在化成时加入电流密度为30mA/cm2,溶液槽内温度控制在90℃,得到二级化成箔;
S53、将二级化成箔在含有在5wt%二酸铵溶液中化成,并在化成时加入电流密度为40mA/cm2,溶液槽内温度控制在90℃,得到三级化成箔;
S54、将三级化成箔在含有在25wt%二酸铵溶液中化成,并在化成时加入电流密度为50mA/cm2,溶液槽内温度控制在60℃,重复多级化成,四至六级电流密度为50mA/cm2得到六级化成箔;
S55、将得到的六级化成箔进行去极化处理。
实施例4
一种高介电复合粉末烧结箔的制备方法,其包括以下步骤:
S1、将铝粉、环氧树脂、十二烷基苯磺酸钠混合于乙醇中,且搅拌均匀以得到混合浆料;混合浆料中各组分质量配比为:铝粉:60~85%,环氧树脂:5~10%,十二烷基苯磺酸钠1~5%,乙醇6~30%;且铝粉纯度控制在99.9%以上,且粒径控制在1~50μm;
S2、将步骤S1得到的混合浆料涂覆于厚度为30μm,且表面粗糙度值Ra控制在0.2~0.25μm的铝箔表面并烘干固化成膜,以制得烧结箔基材;且混合浆料固化成膜的烘干温度控制在180℃;
S3、粉末烧结箔的成型,其包括以下子步骤:
S31、将步骤S2得到的烧结箔基材置于氩气氛围中,温度控制在350℃,且维持1.8h;
S32、将步骤S31得到的烧结箔基材继续置于氩气氛围中,升温至550℃,且维持4h;
S4、将步骤S3得到的粉末烧结箔浸渍于含钛前驱体溶液中,经沥干处理后,并经过热处理以在粉末烧结箔的表面形成二氧化钛膜,得到复合烧结箔;且当含钛前驱体溶液被沥干后,制备复合烧结箔所需热处理温度控制在600℃,且保温时长控制在25min;
含钛前驱体溶液的制备方法包括以下子步骤:
S41、将钛酸四丁酯溶液逐滴加入到乳酸溶液中,且搅拌3~5min以形成混合溶液,其中,钛酸四丁酯溶液与乳酸溶液的体积比为1:6,且钛酸四丁酯溶液的浓度为0.05~0.1mol/L;
S42、向着步骤S41得到的混合溶液中加入去离子水进行稀释,并搅 拌均匀;
S43、向着混合溶液中继续加入浓度为0.2~0.5g/L的聚乙烯醇水溶液,并搅拌3~5min至混合均匀;
S5、将步骤S4得到的复合烧结箔采用化成工艺进行化成,得到高介电复合粉末烧结箔。
步骤S5包括以下子步骤:
S51、将复合烧结箔置于90~95℃水中煮8~10min;
S52、将步骤S51得到的复合烧结箔置于质量百分比浓度为2~10%的硼酸和0.5~2%的五硼酸铵溶液中,且在70~90℃、电流密度为20mA/cm2、电压为200V条件下进行一级化成,化成时间控制在10~20min,并取出水洗;
S53、将步骤S52得到的复合烧结箔置于质量百分比浓度为2~10%的硼酸和质量百分比浓度为为0.2~1.5%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、430V的条件下进行二级化成,化成时间控制在10~15min,并取出水洗;
S54、将步骤S53得到的复合烧结箔置于质量百分比浓度为4~9%的硼酸和质量百分比浓度为0.1~1%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、590V的条件下进行三级化成,化成时间控制在8~15min,并取出水洗;
S55、将步骤S54得到的复合烧结箔置于质量百分比浓度为4~9%的硼酸和质量百分比浓度为0.1~1%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、620V的条件下进行四级化成,化成时间控制在20~30min,并取出水洗;
S56、将步骤S55得到的复合烧结箔浸于质量百分比浓度为5~6%的磷酸溶液中,温度控制在50~80℃,沉浸时长控制在5~10min,并取出水洗;
S57、将步骤S56得到的复合烧结箔置于质量百分比浓度为10~12%的硼酸和质量百分比浓度为1~1.5%的五硼酸铵溶液中,且在80~95℃、 电流密度为20mA/cm2、620V的条件下进行后一化成,化成时间控制在5~8min,并取出水洗;
S58、将步骤S57得到的复合烧结箔置于烘箱中,温度控制在400~550℃,且时长控制在3~5min;
S59、将步骤S58得到的复合烧结箔置于质量百分比浓度为4~9%的硼酸和质量百分比浓度为0.1~1%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、620V的条件下进行后二化成,化成时间控制在7~10min,并取出水洗;
S60、将步骤S59得到的复合烧结箔置于质量百分比浓度为1~5%的磷酸二氢铵溶液中,在60~80℃条件下浸渍5~8min;取出水洗,并烘干。
表1是利用现有技术以及实施例1~4得到的电极箔性能测试结果。
表1

备注:1)现有电极箔的制作工艺参照中国发明专利CN106384670B第二种实施例记载
内容实施;
2)剥离面积采用ISO2409—1992《色漆和清漆交叉切割实验》中的方法测试。
在实际应用中,高介电复合粉末烧结箔的制备方法至少取得了以下几方面的有益效果:
1)与传统的扩面腐蚀-电沉积以在铝箔表面形成钛复合氧化膜工艺相比,所公开的技术方案中,无需对铝箔进行表面腐蚀扩孔处理,因而 整个制备过程省去了大量酸液的运用,从而不但在一定程度降低了电极箔的制备困难度以及制备成本,而且降低了废酸处理压力。此外,粉末烧结箔具有更大的比表面积,从而获得更高的比容性能;
2)二氧化钛膜的存在可进一步地提升电极箔的介电性能,从而使复合电极箔获得更高的比容性能;
3)经历亲水改性处理后,所制备的凝胶前驱体溶液更易于附着于粉末烧结箔上,如此,不但利于确保成型后二氧化钛膜具有良好的表面质量以及外形规整度,而且成型后的二氧化钛膜相和铝箔基体之间具有更为优良的结合强度,进而可有效地避免其因受到激振力或外力作用而由铝箔基体上剥离现象的发生。
在此,还需要说明一点,第四种实施方式相较于上述第一种实施方式、第二种实施方式、第三种实施方式的区别点在于:其公开了一种异于常规的化成方法,具体为:在步骤S5中,使用硼酸、五硼酸铵混合对复合烧结箔进行化成,且整个化成进程分多阶段进行(具体包括一级化成、二级化成、三级化成、四级化成、后一化成以及后二化成),在此化成体系下得到的氧化膜显微结构更为致密,利于提升高介电二氧化钛膜和氧化铝膜之间的结合强度以及复合后的整体弯折性能,从而可有效地避免复合膜(由高介电二氧化钛膜和氧化铝膜复合而成)在实际应用中因多次弯折而导致的连接中断或复合膜由高介电复合粉末烧结箔上大面积剥落现象的发生。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种高介电复合粉末烧结箔的制备方法,其特征在于,包括以下步骤:
    S1、将铝粉、粘结剂、添加剂混合于有机溶剂中,且搅拌均匀以得到混合浆料;
    S2、将步骤S1得到的所述混合浆料涂覆于铝箔表面并烘干固化成膜,以制得烧结箔基材;
    S3、将步骤S2得到的所述烧结箔基材置于惰性气体中进行烧结,得到粉末烧结箔;
    S4、将步骤S3得到的所述粉末烧结箔浸渍于含钛前驱体溶液中,经沥干处理后,并经过热处理以在所述粉末烧结箔的表面形成二氧化钛膜,得到复合烧结箔;
    所述含钛前驱体溶液的制备方法包括以下子步骤:
    S41、将钛酸四丁酯溶液逐滴加入到乳酸溶液中,且搅拌3~5min以形成混合溶液,其中,所述钛酸四丁酯溶液与所述乳酸溶液的体积比为1:6,且所述钛酸四丁酯溶液的浓度为0.01~0.5mol/L;
    S42、向着步骤S41得到的所述混合溶液中加入去离子水进行稀释,并搅拌均匀;
    S43、向着所述混合溶液中继续加入浓度为0.2~0.5g/L的聚乙烯醇水溶液,并搅拌3~5min至混合均匀;
    S5、将步骤S4得到的所述复合烧结箔进行化成,得到高介电复合粉末烧结箔。
  2. 根据权利要求1所述高介电复合粉末烧结箔的制备方法,其特征在于,在步骤S1中,所述混合浆料中各组分质量配比为:铝粉:60~85%,粘结剂:5~10%,添加剂1~5%,有机溶剂6~30%。
  3. 根据权利要求2所述高介电复合粉末烧结箔的制备方法,其特征在于,在步骤S1中,所述铝粉纯度控制在99.9%以上,且粒径控制为1~50μm。
  4. 根据权利要求2所述高介电复合粉末烧结箔的制备方法,其特征 在于,在步骤S1中,所述粘结剂为环氧树脂、聚偏氟乙烯、羧甲基纤维素和丙烯酸树脂中的任一种或多种的混合。
  5. 根据权利要求2所述高介电复合粉末烧结箔的制备方法,其特征在于,在步骤S1中,所述添加剂为十二烷基苯磺酸钠、硬脂酸和聚乙烯醇中的任一种或多种的混合。
  6. 根据权利要求2所述高介电复合粉末烧结箔的制备方法,其特征在于,在步骤S1中,所述有机溶剂为乙醇、乙二醇、丙三醇、N-甲基吡咯烷酮中的任一种或多种的混合。
  7. 根据权利要求1所述高介电复合粉末烧结箔的制备方法,其特征在于,在步骤S2中,所述铝箔的厚度控制在30~80μm,且表面粗糙度值Ra控制在0.2~0.25μm;所述混合浆料的涂覆方式为刷涂、滚涂和喷涂中的一种或多种;所述混合浆料固化成膜的烘干温度控制在150~200℃。
  8. 根据权利要求1所述高介电复合粉末烧结箔的制备方法,其特征在于,步骤S3包括以下子步骤:
    S31、将步骤S2得到的所述烧结箔基材置于惰性气体中,温度控制在300~450℃,且维持1.5~2h;
    S32、将步骤S31得到的所述烧结箔基材继续置于惰性气体中,升温至500~650℃,且维持3~5h。
  9. 根据权利要求1所述高介电复合粉末烧结箔的制备方法,其特征在于,在步骤S4中,当所述含钛前驱体溶液被沥干后,制备所述复合烧结箔所需热处理温度控制在550~600℃,且保温时长控制在25~30min。
  10. 根据权利要求1所述高介电复合粉末烧结箔的制备方法,其特征在于,步骤S5包括以下子步骤:
    S51、将所述复合烧结箔置于90~95℃水中煮8~10min;
    S52、将步骤S51得到的所述复合烧结箔置于质量百分比浓度为2~10%的硼酸和0.5~2%的五硼酸铵溶液中,且在70~90℃、电流密度为20mA/cm2、电压为200V条件下进行一级化成,化成时间控制在10~20min, 并取出水洗;
    S53、将步骤S52得到的所述复合烧结箔置于质量百分比浓度为2~10%的硼酸和质量百分比浓度为为0.2~1.5%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、430V的条件下进行二级化成,化成时间控制在10~15min,并取出水洗;
    S54、将步骤S53得到的所述复合烧结箔置于质量百分比浓度为4~9%的硼酸和质量百分比浓度为0.1~1%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、590V的条件下进行三级化成,化成时间控制在8~15min,并取出水洗;
    S55、将步骤S54得到的所述复合烧结箔置于质量百分比浓度为4~9%的硼酸和质量百分比浓度为0.1~1%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、620V的条件下进行四级化成,化成时间控制在20~30min,并取出水洗;
    S56、将步骤S55得到的所述复合烧结箔浸于质量百分比浓度为5~6%的磷酸溶液中,温度控制在50~80℃,沉浸时长控制在5~10min,并取出水洗;
    S57、将步骤S56得到的所述复合烧结箔置于质量百分比浓度为10~12%的硼酸和质量百分比浓度为1~1.5%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、620V的条件下进行后一化成,化成时间控制在5~8min,并取出水洗;
    S58、将步骤S57得到的所述复合烧结箔置于烘箱中,温度控制在400~550℃,且时长控制在3~5min;
    S59、将步骤S58得到的所述复合烧结箔置于质量百分比浓度为4~9%的硼酸和质量百分比浓度为0.1~1%的五硼酸铵溶液中,且在80~95℃、电流密度为20mA/cm2、620V的条件下进行后二化成,化成时间控制在7~10min,并取出水洗;
    S60、将步骤S59得到的所述复合烧结箔置于质量百分比浓度为1~5%的磷酸二氢铵溶液中,在60~80℃条件下浸渍5~8min;取出水洗, 并烘干。
PCT/CN2023/075165 2022-08-02 2023-02-09 一种高介电复合粉末烧结箔的制备方法 WO2024027122A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210920985.4 2022-08-02
CN202210920985.4A CN115172061B (zh) 2022-08-02 2022-08-02 一种高介电复合粉末烧结箔的制备方法

Publications (1)

Publication Number Publication Date
WO2024027122A1 true WO2024027122A1 (zh) 2024-02-08

Family

ID=83477954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075165 WO2024027122A1 (zh) 2022-08-02 2023-02-09 一种高介电复合粉末烧结箔的制备方法

Country Status (2)

Country Link
CN (1) CN115172061B (zh)
WO (1) WO2024027122A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172061B (zh) * 2022-08-02 2024-01-30 南通海星电子股份有限公司 一种高介电复合粉末烧结箔的制备方法
CN116092834B (zh) * 2023-03-31 2023-07-14 南通海星电子股份有限公司 一种高比电容电极箔的制备方法
CN116875973B (zh) * 2023-09-07 2023-11-21 南通海星电子股份有限公司 一种电解电容器用烧结箔的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1766168A (zh) * 2005-10-10 2006-05-03 西安交通大学 氧化钛/氧化铝高介复合阳极氧化膜的制备方法
CN102017034A (zh) * 2008-04-22 2011-04-13 东洋铝株式会社 用于铝电解电容器的电极材料和制造该电极材料的方法
WO2016137057A1 (ko) * 2015-02-26 2016-09-01 경북대학교 산학협력단 전해 커패시터용 알루미늄 박의 제조 방법, 고유전 상수를 갖는 알루미늄 박, 이를 포함하는 전해 커패시터 및 알루미늄 박의 제조 장치
CN109759039A (zh) * 2017-11-09 2019-05-17 东莞东阳光科研发有限公司 一种负载型光催化剂及其制备方法
CN112045191A (zh) * 2020-08-27 2020-12-08 中南大学 一种浆料分散均匀的铝电解电容器阳极箔的烧结方法
CN113161150A (zh) * 2021-04-22 2021-07-23 湖南艾华集团股份有限公司 一种铝电解电容器阳极箔复合膜的制备方法
CN115172061A (zh) * 2022-08-02 2022-10-11 南通海星电子股份有限公司 一种高介电复合粉末烧结箔的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355920B2 (ja) * 2013-12-27 2018-07-11 東洋アルミニウム株式会社 アルミニウム電解コンデンサ用電極箔及びその製造方法
CN113593911A (zh) * 2021-09-02 2021-11-02 西安稀有金属材料研究院有限公司 一种高比表面积、高比容的烧结阳极材料的制备方法
CN114709080B (zh) * 2022-06-07 2022-08-05 南通海星电子股份有限公司 AAO-TiO2复合腐蚀铝箔的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1766168A (zh) * 2005-10-10 2006-05-03 西安交通大学 氧化钛/氧化铝高介复合阳极氧化膜的制备方法
CN102017034A (zh) * 2008-04-22 2011-04-13 东洋铝株式会社 用于铝电解电容器的电极材料和制造该电极材料的方法
WO2016137057A1 (ko) * 2015-02-26 2016-09-01 경북대학교 산학협력단 전해 커패시터용 알루미늄 박의 제조 방법, 고유전 상수를 갖는 알루미늄 박, 이를 포함하는 전해 커패시터 및 알루미늄 박의 제조 장치
CN109759039A (zh) * 2017-11-09 2019-05-17 东莞东阳光科研发有限公司 一种负载型光催化剂及其制备方法
CN112045191A (zh) * 2020-08-27 2020-12-08 中南大学 一种浆料分散均匀的铝电解电容器阳极箔的烧结方法
CN113161150A (zh) * 2021-04-22 2021-07-23 湖南艾华集团股份有限公司 一种铝电解电容器阳极箔复合膜的制备方法
CN115172061A (zh) * 2022-08-02 2022-10-11 南通海星电子股份有限公司 一种高介电复合粉末烧结箔的制备方法

Also Published As

Publication number Publication date
CN115172061B (zh) 2024-01-30
CN115172061A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2024027122A1 (zh) 一种高介电复合粉末烧结箔的制备方法
TWI417918B (zh) 製造電解質電容器之方法
TWI423284B (zh) 具有聚合物外層之電解電容器及製造其之方法
TWI417916B (zh) 製造高標稱電壓之電解質電容器之方法
CN106653373B (zh) 一种铝电解电容器用化成箔及其生产工艺
CN113458143B (zh) 一种利用冷轧机制备铝电解电容器阳极箔的方法
CN113161150A (zh) 一种铝电解电容器阳极箔复合膜的制备方法
CN113593911A (zh) 一种高比表面积、高比容的烧结阳极材料的制备方法
WO2022247364A1 (zh) 一种汽车电子用纳微孔结构铝电极箔制备方法
CN101034629A (zh) 一种卷绕型固体电解电容器的制造方法
CN113634753B (zh) 一种低成本低污染铝电解电容器阳极箔及其制备方法
JPH0258317A (ja) アルミニウム電解コンデンサ用電極箔の製造方法
CN103474247A (zh) 一种固体聚合物电解质电容器的制备方法
CN107967996B (zh) 一种点焊机电容器用阳极箔的化成方法
CN115188597A (zh) 一种基于多粒径搭配的烧结阳极材料的制备方法
CN109859949A (zh) 一种降低中高压化成箔漏电流的方法
CN101281823B (zh) 高比容阳极铝箔及其制备方法
CN113436891A (zh) 一种采用阳极氧化后的纳米凹坑来诱导中高压阳极箔均匀腐蚀发孔的方法
CN105702466B (zh) 一种高介电常数化成铝箔的制备方法
CN109786113A (zh) 一种铝电解电容器用化成箔及其生产工艺
CN116623250A (zh) 一种铝电解电容器用化成箔及其制备方法
CN114843108B (zh) 一种电极箔及其制备方法和应用
CN1805088A (zh) 一种铝电解电容器介电质膜的制备方法
WO2023103181A1 (zh) 一种弯曲疲劳强度良好低压电极箔的制备方法
Wu et al. Designing for the cerium‐based conversion coating with excellent corrosion resistance on Mg–4Y–2Al magnesium alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848837

Country of ref document: EP

Kind code of ref document: A1