WO2023103181A1 - 一种弯曲疲劳强度良好低压电极箔的制备方法 - Google Patents

一种弯曲疲劳强度良好低压电极箔的制备方法 Download PDF

Info

Publication number
WO2023103181A1
WO2023103181A1 PCT/CN2022/077207 CN2022077207W WO2023103181A1 WO 2023103181 A1 WO2023103181 A1 WO 2023103181A1 CN 2022077207 W CN2022077207 W CN 2022077207W WO 2023103181 A1 WO2023103181 A1 WO 2023103181A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum foil
foil
aluminum
voltage electrode
fatigue strength
Prior art date
Application number
PCT/CN2022/077207
Other languages
English (en)
French (fr)
Inventor
王建中
顾建萍
Original Assignee
南通海星电子股份有限公司
南通海一电子有限公司
四川中雅科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通海星电子股份有限公司, 南通海一电子有限公司, 四川中雅科技有限公司 filed Critical 南通海星电子股份有限公司
Publication of WO2023103181A1 publication Critical patent/WO2023103181A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to the technical field of electrode foil manufacturing, in particular to a method for preparing a low-voltage electrode foil with good bending fatigue strength.
  • Chinese invention patent 2021110678726 discloses a method for manufacturing electrode foil for solid aluminum electrolytic capacitors, including the following steps: immerse the aluminum foil in an acidic solution; immerse it in the acidic solution again, and apply a high-frequency pulse current for pre-electrolysis; Perform the first electrolytic corrosion and the second electrolytic corrosion in sequence; repeat the first electrolytic corrosion and the second electrolytic corrosion at least three times; rinse with pure water; clean with chemical cleaning solution; rinse with pure water again; high temperature heat treatment and cooling.
  • the distribution uniformity of the initial corrosion points formed on the surface of the aluminum foil can be effectively improved, thereby greatly improving the uniformity of subsequent electrolytic corrosion.
  • the capacitance and bending fatigue strength of the electrode foil are a pair of contradictory parameters, that is, the residual corrosion holes on the surface of the electrode foil will inevitably affect its bending fatigue strength, and the bending fatigue strength will increase with the increase of the corrosion hole depth. Intensity drops sharply. Therefore, how to prepare an electrode foil having both high capacity and high bending fatigue strength has become a technical problem to be solved urgently in the industry.
  • the present invention relates to a method for preparing a low-voltage electrode foil with good bending fatigue strength, which includes the following steps:
  • step S2 immersing the first aluminum foil obtained in step S1 in an acidic solution, and applying a high-frequency pulse current to perform pre-electrolysis;
  • step S3 performing an electrolytic etching operation on the first aluminum foil obtained in step S2;
  • step S4 Perform cleaning and drying operations on the first aluminum foil obtained in step S3;
  • step S5. Apply the aluminum-based slurry evenly on the front and back of the first aluminum foil obtained in step S4, and then perform a temperature rise treatment until the aluminum-based slurry is completely cured and sintered, so as to coat the front and back of the first aluminum foil A primary slurry layer is formed;
  • step S7 performing cold rolling treatment on the composite aluminum foil obtained in step S6;
  • step S8 placing the composite aluminum foil obtained in step S7 in an oven to perform a high-temperature heat treatment operation
  • step S9 cooling the composite aluminum foil obtained in step S8 to obtain a product.
  • the aluminum-based slurry is preferably formed by mixing and stirring aluminum powder and an adhesive.
  • the adhesive is preferably formed by mixing polyethylene glycol and absolute ethanol.
  • the average particle diameter D50 of the aluminum powder is preferably controlled at 2-5 ⁇ m, and the average molecular weight of polyethylene glycol is preferably controlled at 300-800.
  • step S5 the first aluminum foil coated with paste is placed in an oven to raise the temperature, and the baking conditions are: temperature 300-500°C, time 60-180s.
  • step S5 includes a sub-step S51. After the primary slurry layer is formed, step S51 is used to uniformly coat the aluminum-based slurry on the primary slurry layer again, and then Carry out temperature rise curing and sintering treatment, so that a secondary paste layer is formed on the front and back of the first aluminum foil.
  • step S6 before attaching the second aluminum foil and the third aluminum foil to the front and back of the first aluminum foil obtained in step S5, the second aluminum foil, the third aluminum foil
  • the third aluminum foils all perform pre-electrolysis and electrolytic corrosion operations in sequence.
  • step S1 the first aluminum foil, the second aluminum foil, and the third aluminum foil are all immersed in a sodium hydroxide solution with a mass percentage concentration of 0.1-0.5%, and the action conditions are: The temperature is 30-60°C, and the time is 60-180s.
  • the first aluminum foil, the second aluminum foil, and the third aluminum foil may all be immersed in the organic solution.
  • the organic solution is preferably any one of banana water, turpentine, alcohol, gasoline and kerosene.
  • the acidic solution used is a phosphoric acid solution with a mass percentage concentration of 0.1-0.5%, and the action conditions are: temperature 20-50°C, time 30-120s; high-frequency pulse The frequency of the current is controlled at 10-20KHz.
  • step S3 the first aluminum foil obtained in step S2 is placed in a mixed solution of hydrochloric acid, sulfuric acid, and oxalic acid to perform electrolytic corrosion once, and the working conditions are: temperature 30-60°C, current Sine wave alternating current, frequency 40-70Hz, time 60-200s; then continue to place the first aluminum foil in a mixed solution of hydrochloric acid, sulfuric acid and oxalic acid for secondary electrolytic corrosion, working conditions: temperature 30-60°C, current Wave alternating current, frequency 40-70Hz, time 100-400s.
  • step S3 the repetition times of primary electrolytic corrosion and secondary electrolytic corrosion are not less than 2.
  • step S4 the first aluminum foil obtained in step S3 is rinsed in tap water for 100-200 seconds; then placed in a concentration of 2-8% by mass Cleaning in nitric acid solution, action conditions: temperature 40-80°C, time 100-300s; rinse in pure water again, time 300-600s; finally place in oven, action conditions: temperature 85-100°C, time 40 ⁇ 60s.
  • step S8 the working conditions of the oven are: the temperature is controlled at 300-500°C, and the time is controlled at 60-180s.
  • the thickness of the first aluminum foil is controlled at 80-100 ⁇ m; and the thickness of the second aluminum foil and the third aluminum foil are both controlled at 5-10 ⁇ m.
  • the manufactured low-voltage electrode foil has five different functional zones, and the observation is carried out along the thickness direction of the low-voltage electrode foil, followed by It is the surface glossy foil layer, sintered layer, middle core layer of electrode foil, sintered layer, and glossy foil layer.
  • the electrode foil used as the intermediate core layer is still fully corroded, thus effectively avoiding the occurrence of a large decrease in the capacitance of the low-voltage electrode foil caused by the change of the molding process.
  • the actual experimental data show that under the premise that the overall thickness remains unchanged, the layered structure has better bending fatigue strength than the one-piece structure, thereby avoiding the bending fatigue during its molding preparation or assembly process. Cracks occur in advance due to multiple bendings.
  • step S2 Immerse the first aluminum foil obtained in step S1 in 0.25wt% phosphoric acid solution, apply a high-frequency pulse current to perform pre-electrolysis, and the action conditions are: temperature 40°C, time 40s, frequency 14KHz;
  • step S3 Place the first aluminum foil obtained in step S2 in a mixed solution of 9.0wt% hydrochloric acid, 1.0wt% sulfuric acid, and 1.0wt% oxalic acid to perform the first electrolytic corrosion, the action conditions: temperature 50 ° C, current is a sine wave Alternating current, current density 0.9A/cm 2 , frequency 45Hz, time 90s; then place it in a mixed solution of 8.0wt% hydrochloric acid, 0.9wt% sulfuric acid, 1.0wt% oxalic acid for the second electrolytic corrosion, working condition: temperature 50°C, the current is square wave alternating current, the current density is 0.5A/cm 2 , the frequency is 55Hz, and the time is 65s;
  • the combination of pre-acid etching treatment and pre-electrolysis can effectively improve the distribution uniformity of the initial corrosion points formed on the surface of the aluminum foil, thereby greatly improving the uniformity of subsequent electrolytic corrosion, and finally improving the consistency of the electrode foil capacity.
  • step S4 Rinse the first aluminum foil obtained in step S3 in tap water for 120 s; then in 5 wt% nitric acid solution for rinsing, operating conditions: temperature 50°C, for 120 s; again in pure water for rinsing , time 360s; finally placed in the oven, the action conditions: temperature 95 °C, time 60s;
  • step S5 Dip the first aluminum foil obtained in step S4 into the aluminum-based slurry to form a film layer on both sides, and then pass through an oven at a temperature of 350° C. and bake for 5 minutes to sinter on both the front and back sides of the first aluminum foil Form a slurry layer;
  • the aluminum-based slurry is uniformly mixed with aluminum powder, polyethylene glycol, and absolute ethanol, and the mass ratio of the three is 15:2:1.
  • the average particle size D50 of aluminum powder is controlled at 2-5 ⁇ m, and the average molecular weight of polyethylene glycol is controlled at 400;
  • step S7 Perform cold rolling treatment on the composite aluminum foil obtained in step S6, and the cold rolling feeding speed is controlled at 80m/h, and the pressure is controlled below 15Mpa;
  • step S8 Put the composite aluminum foil obtained in step S7 in an oven to perform high-temperature heat treatment; the working conditions of the oven are: the temperature is controlled at 350° C., and the time is controlled at 90 s.
  • step S9 cooling the composite aluminum foil obtained in step S8 to obtain a product.
  • step S2 Immerse the first aluminum foil, the second aluminum foil and the third aluminum foil obtained in step S1 in a 0.25wt% phosphoric acid solution, and apply a high-frequency pulse current to perform pre-electrolysis.
  • the action conditions are: temperature 40°C, time 40s, Frequency 14KHz;
  • step S3 Place the first aluminum foil, the second aluminum foil, and the third aluminum foil obtained in step S2 in a mixed solution of 9.0wt% hydrochloric acid, 1.0wt% sulfuric acid, and 1.0wt% oxalic acid for the first electrolytic corrosion.
  • the temperature is 50°C
  • the current is a sine wave alternating current
  • the current density is 0.9A/cm 2
  • the frequency is 45Hz
  • the time is 90s; then it is placed in a mixed solution of 8.0wt% hydrochloric acid, 0.9wt% sulfuric acid, and 1.0wt% oxalic acid for the second Secondary electrolytic corrosion, action conditions: temperature 50°C, current is square wave alternating current, current density 0.5A/cm 2 , frequency 55Hz, time 65s;
  • step S4 Rinse the first aluminum foil, the second aluminum foil and the third aluminum foil obtained in step S3 in tap water for 120s; then wash them in 5wt% nitric acid solution. Conditions: temperature 50°C, time 120s ;Rinse again in pure water for 360s; finally put it in an oven, working conditions: temperature 95°C, time 60s;
  • step S5 Dip the first aluminum foil obtained in step S4 into the aluminum-based slurry to form a film layer on both sides, and then pass through an oven at a temperature of 350° C. and bake for 5 minutes to sinter on both the front and back sides of the first aluminum foil Form a slurry layer;
  • the aluminum-based slurry is uniformly mixed with aluminum powder, polyethylene glycol, and absolute ethanol, and the mass ratio of the three is 15:2:1.
  • the average particle size D50 of aluminum powder is controlled at 2-5 ⁇ m, and the average molecular weight of polyethylene glycol is controlled at 400;
  • step S7 Perform cold rolling treatment on the composite aluminum foil obtained in step S6, and the cold rolling feeding speed is controlled at 80m/h, and the pressure is controlled below 15Mpa;
  • step S8 Put the composite aluminum foil obtained in step S7 in an oven to perform high-temperature heat treatment; the working conditions of the oven are: the temperature is controlled at 350° C., and the time is controlled at 90 s.
  • step S9 cooling the composite aluminum foil obtained in step S8 to obtain a product.
  • Embodiment 2 The main difference between Embodiment 2 and Embodiment 1 is that: the second aluminum foil and the third aluminum foil are also subjected to pre-electrolysis and electrolytic corrosion treatment, thus laying a good foundation for further improving the capacitance of the prepared low-voltage electrode foil , but its bending fatigue strength will also be slightly reduced.
  • step S2 Immerse the first aluminum foil, the second aluminum foil and the third aluminum foil obtained in step S1 in a 0.25wt% phosphoric acid solution, and apply a high-frequency pulse current to perform pre-electrolysis.
  • the action conditions are: temperature 40°C, time 40s, Frequency 14KHz;
  • step S3 Place the first aluminum foil, the second aluminum foil, and the third aluminum foil obtained in step S2 in a mixed solution of 9.0wt% hydrochloric acid, 1.0wt% sulfuric acid, and 1.0wt% oxalic acid for the first electrolytic corrosion.
  • the temperature is 50°C
  • the current is a sine wave alternating current
  • the current density is 0.9A/cm 2
  • the frequency is 45Hz
  • the time is 90s; then it is placed in a mixed solution of 8.0wt% hydrochloric acid, 0.9wt% sulfuric acid, and 1.0wt% oxalic acid for the second Secondary electrolytic corrosion, action conditions: temperature 50°C, current is square wave alternating current, current density 0.5A/cm 2 , frequency 55Hz, time 65s;
  • step S4 Rinse the first aluminum foil, the second aluminum foil and the third aluminum foil obtained in step S3 in tap water for 120s; then wash them in 5wt% nitric acid solution. Conditions: temperature 50°C, time 120s ;Rinse again in pure water for 360s; finally put it in an oven, working conditions: temperature 95°C, time 60s;
  • step S5 Dip the first aluminum foil obtained in step S4 into the aluminum-based slurry to form a film layer on both sides, and then pass through an oven at a temperature of 350° C. and bake for 5 minutes to sinter on both the front and back sides of the first aluminum foil Form a slurry layer;
  • the aluminum-based slurry is uniformly mixed with aluminum powder, polyethylene glycol, and absolute ethanol, and the mass ratio of the three is 15:2:1.
  • the average particle size D50 of aluminum powder is controlled at 2-5 ⁇ m, and the average molecular weight of polyethylene glycol is controlled at 400;
  • step S8 Perform cold rolling treatment on the composite aluminum foil obtained in step S7, and the cold rolling feeding speed is controlled at 80m/h, and the pressure is controlled below 15Mpa;
  • step S9 Put the composite aluminum foil obtained in step S8 in an oven to perform high-temperature heat treatment; the working conditions of the oven are: the temperature is controlled at 350° C., and the time is controlled at 90 s.
  • step S10 cooling the composite aluminum foil obtained in step S9 to obtain a product.
  • Embodiment 3 The main difference between Embodiment 3 and Embodiment 2 is that the thickness of the aluminum-based slurry layer is increased (due to the addition of the secondary slurry layer). It is known that during the process of sintering the aluminum-based paste at elevated temperature, a large number of voids are formed inside it due to the action of heat. Therefore, as the thickness of the aluminum-based paste layer increases, the formed low-voltage electrode foil has a higher capacitance, but it will affect the combination of the second electrode foil, the third electrode foil and the first electrode foil to a certain extent. Strength, which in turn leads to a small decrease in bending fatigue strength.
  • the manufactured low-voltage electrode foil has five different functional partitions, which are observed along the thickness direction of the low-voltage electrode foil, which are surface smooth foil layer, sintered layer, electrode foil middle core layer, sintered layer, and smooth foil layer.
  • the electrode foil used as the intermediate core layer is still fully corroded, thus effectively avoiding the occurrence of a large decrease in the capacitance of the low-voltage electrode foil caused by the change of the molding process.
  • the actual experimental data show that under the premise that the overall thickness remains unchanged, the layered structure has better bending fatigue strength than the one-piece structure, thereby avoiding the bending fatigue during its molding preparation or assembly process. Cracks occur in advance due to multiple bendings.
  • the aluminum-based slurry is preferably uniformly mixed with aluminum powder, polyethylene glycol, and absolute ethanol. It is known that both polyethylene glycol and anhydrous ethanol have good fluidity, and the molecular weight is relatively small, thereby ensuring that the aluminum-based slurry has excellent fluidity during the coating process, which is beneficial to ensure that the primary slurry layer and the secondary coating The overall uniformity of the slurry layer after forming, and the thickness of each area is consistent;
  • a dipping method is preferably used to coat the aluminum-based slurry on the first aluminum foil or the primary slurry layer, which is suitable for industrial continuous production requirements.
  • the thickness of the film layer can be adjusted through multiple dipping, so as to obtain different product specific volumes;
  • the second aluminum foil and the third aluminum foil are fixed together with the first aluminum foil by cold rolling.
  • it can effectively prevent the primary aluminum foil from being sintered on the surface of the first aluminum foil during the actual preparation and molding process and in practical application.
  • the paste layer and the secondary paste layer are peeled off due to external force; on the other hand, the cold rolling treatment method can also improve the overall tensile resistance of the low-voltage electrode foil to a certain extent, and avoid its subsequent winding process.
  • two groups of comparative tests are also given below, specifically:
  • Table 1 is the test results of low-voltage electrode foil specific volume and bending resistance times obtained in Examples 1-3 and Comparative Test 1-2

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明涉及弯曲疲劳强度良好低压电极箔的制备方法,包括以下步骤:对第一铝箔、第二铝箔、第三铝箔执行除油操作;对第一铝箔依序执行预电解、电解腐蚀、清洗、烘干操作;将铝基浆料涂覆于第一铝箔上,以在其正、背面均形成有一次涂浆层;将第二铝箔、第三铝箔分别一一对应地贴附于一次涂浆层上,以形成复合铝箔;对复合铝箔执行冷轧处理;对复合铝箔依序执行升温、冷却处理即得到产品。在实际制造成型中,对用作中间芯层的电极箔仍作了充分地腐蚀,从而避免了因制备工艺路线改变而导致低压电极箔电容量大幅度下降现象的出现。另外,通过实际实验数据表明,在整体厚度保持不变的前提下,采取本方法所制备的低压电极箔具有更好的弯曲疲劳强度。

Description

一种弯曲疲劳强度良好低压电极箔的制备方法 技术领域
本发明涉及电极箔制造技术领域,尤其是一种弯曲疲劳强度良好低压电极箔的制备方法。
背景技术
电子元器件产品高容量、小型化的需求日益增加。在实际生产制造中,保证电极箔需要具备较高电容量的前提下,亦需要保证其具有良好的弯曲疲劳强度(电极箔在成型制备中以及组装过程中必不可免地需要经历多次弯折),以避免因弯折裂纹的生成而缩短其使用寿命现象的发生。
然而,根据以往制备经验,预提高电极箔的电容量,必然要求其表面得到更为充分的腐蚀,以形成深度较深的腐蚀孔。例如中国发明专利2021110678726公开了一种固态铝电解电容器用电极箔的制造方法,包括以下步骤:将铝箔浸于酸性溶液;将其再次浸于酸性溶液中,且施加高频脉冲电流进行预电解;顺序执行第一次电解腐蚀、第二次电解腐蚀;重复第一次电解腐蚀和第二次电解腐蚀操作至少三次;纯水冲洗;化学清洗液清洗;再次纯水冲洗;高温热处理、冷却。通过前期酸蚀处理与预电解配合,从而可有效地改善铝箔表面所形成初始腐蚀点的分布均匀性,进而大幅地提升后续电解腐蚀的均匀性,后续借由电解腐蚀工艺在电极箔的表面形成大深度的腐蚀孔,以达到电极箔的电容量得到大幅度提升的设计目标。
然而,根据理论常识可知,电极箔的电容量和弯曲疲劳强度为一对矛盾参数,即电极箔表面残留的腐蚀孔必然会影响到其弯曲疲劳强度,且随着腐蚀孔深度的增加其弯曲疲劳强度急剧地下降。因而,如何制备出同时具有高容量特性以及高弯曲疲劳强度特性的电极箔成为业界亟待解决的技术问题。
发明内容
故,本发明设计人员鉴于上述现有的问题以及缺陷,乃搜集相关资料,经由多方的评估及考量,并经过从事于此行业的多年研发经验技术人员的不断实验以及修改,最终导致该弯曲疲劳强度良好低压电极箔的制备方法的出现。
为了解决上述技术问题,本发明涉及了一种弯曲疲劳强度良好低压电极箔的制备方法,其包括以下步骤:
S1、对第一铝箔、第二铝箔、第三铝箔执行除油操作;
S2、将步骤S1得到的第一铝箔浸于酸性溶液中,且施加高频脉冲电流进行预电解;
S3、对步骤S2得到的第一铝箔执行电解腐蚀操作;
S4、对步骤S3中所得到的第一铝箔执行清洗、烘干操作;
S5、将铝基浆料均匀地涂覆于步骤S4中所得到第一铝箔的正面及背面,且随后执行升温处理直至铝基浆料完全地固化、烧结,以在第一铝箔的正、背面均形成有一次涂浆层;
S6、将第二铝箔、第三铝箔分别一一对应地贴附于步骤S5中所得到的一次涂浆层上,以形成复合铝箔;
S7、对步骤S6中所得到的复合铝箔执行冷轧处理;
S8、将步骤S7得到的复合铝箔置于烘箱内,以执行高温热处理操作;
S9、对步骤S8得到的复合铝箔进行冷却,即得到产品。
作为本发明所公开技术方案的进一步改进,在步骤S5中,铝基浆料优选由铝粉和粘接剂混合搅拌而成。
作为本发明所公开技术方案的更进一步改进,粘接剂优选由聚乙二醇和无水乙醇混合而成。
作为本发明所公开技术方案的更进一步改进,铝粉的平均粒径D50优选地控制在2~5μm,聚乙二醇的平均分子量优选地控制在300~800。
作为本发明所公开技术方案的进一步改进,在步骤S5中,涂浆后的第一铝箔被置于烘箱内进行升温,烘烤条件:温度300~500℃,时间60~180s。
作为本发明所公开技术方案的进一步改进,步骤S5包括有子步骤S51,当一次涂浆层成形后,步骤S51用来将铝基浆料再次均匀地涂覆于一次涂浆层上,且随后执行升温固化、烧结处理,以在第一铝箔的正、背面均形成有二次涂浆层。
作为本发明所公开技术方案的进一步改进,在步骤S6中,预执行将第二铝箔、所述第三铝箔贴附于步骤S5中所得到第一铝箔的正面、背面前,对第二铝箔、第三铝箔均依序执行预电解、电解腐蚀操作。
作为本发明所公开技术方案的进一步改进,在步骤S1中,将第一铝箔、第二铝箔、第三铝箔均浸于质量百分比浓度为0.1~0.5%的氢氧化钠溶液中,作用条件为:温度30~60℃,时间60~180s。
作为上述技术方案的另一种改型设计,在步骤S1中,第一铝箔、第二铝箔、第三铝箔亦可均浸于有机溶液中。有机溶液优选为香蕉水、松节油、酒精、汽油和火油中的任一种。
作为本发明所公开技术方案的进一步改进,在步骤S2中,所用的酸性溶液为质量百分比浓度0.1~0.5%的磷酸溶液,作用条件为:温度20~50℃,时间30~120s;高频脉冲电流的频率控制在10~20KHz。
作为本发明所公开技术方案的进一步改进,在步骤S3中,将步骤S2得到的第一铝箔置于盐酸、硫酸、草酸的混合溶液中进行一次电解腐蚀,作用条件:温度30~60℃,电流为正弦波交流电,频率40~70Hz,时间60~200s;随后将第一铝箔继续置于盐酸、硫酸、草酸的混合溶液中进行二次电解腐蚀,作用条件:温度30~60℃,电流为方波交流电,频率40~70Hz,时间100~400s。
作为本发明所公开技术方案的更进一步改进,在步骤S3中,一次电解腐蚀和二次电解腐蚀的重复次数不小于2。
作为本发明所公开技术方案的更进一步改进,在步骤S4中,将步骤S3中所得到的第一铝箔置于自来水中进行冲洗,时间100~200s;再置于质量百分比浓度为2~8%硝酸溶液中进行清洗,作用条件:温度40~80℃,时间100~300s;再次置于纯水中进行冲洗,时间300~600s;最后置于烘箱内,作用条件:温度85~100℃,时间40~60s。
作为本发明所公开技术方案的进一步改进,在步骤S8中,烘箱的工作条件为:温度控制在300~500℃,时间控制在60~180s。
作为本发明所公开技术方案的进一步改进,第一铝箔的厚度控制在80~100μm;而第二铝箔和第三铝箔的厚度均控制在5~10μm。
相较于传统的低压电极箔制造方法,在本发明所公开的技术方案中,首先,所制成的低压电极箔具有五个不同功能分区,且沿着低压电极箔的厚度方向进行观测,依次为表面光箔层、烧结层、电极箔中间芯层、烧结层、光箔层。在实际制造成型中,对用作中间芯层电极箔仍作了充分地腐蚀,从而有效地避免了因成型工艺改变而导致的低压电极箔电容量大幅度降低现象的发生。更为重要的是,通过实际实验数据表明,在整体厚度保持不变的前提下,分层式结构相较于一体式结构具有更好的弯曲疲劳强度,进而避免其成型制备中或组装过程中因经历多次弯折而提前出现裂纹现象的发生。
具体实施方式
为了加深对本发明的理解,下面将结合实施例对本发明作进一步详述,该实施例仅用于解释本发明,并不构成对本发明保护范围的限定。所述方法无特别说明的均为常规方法。
实施例1
S1、将纯度99.98%,厚度100μm的第一铝箔、第二铝箔、第三铝箔均浸于0.5wt%的氢氧 化钠溶液中,作用条件:温度50℃,时间60s;
S2、将步骤S1中所得到的第一铝箔浸于0.25wt%的磷酸溶液中,施加高频脉冲电流进行预电解,作用条件:温度40℃,时间40s,频率14KHz;
S3、将步骤S2中所得到的第一铝箔置于9.0wt%盐酸、1.0wt%硫酸、1.0wt%草酸的混合溶液中进行第一次电解腐蚀,作用条件:温度50℃,电流为正弦波交流电,电流密度0.9A/cm 2,频率45Hz,时间90s;接着将其置于8.0wt%盐酸、0.9wt%硫酸、1.0wt%草酸的混合溶液中进行第二次电解腐蚀,作用条件:温度50℃,电流为方波交流电,电流密度0.5A/cm 2,频率55Hz,时间65s;
备注:通过前期酸蚀处理与预电解配合,从而可有效地改善铝箔表面所形成初始腐蚀点的分布均匀性,进而大幅地提升后续电解腐蚀的均匀性,最终提升电极箔容量的一致性。
S4、将步骤S3中所得的第一铝箔置于自来水中进行冲洗,时间120s;再置于5wt%硝酸溶液中进行清洗,作用条件:温度50℃,时间120s;再次置于纯水中进行冲洗,时间360s;最后置于烘箱内,作用条件:温度95℃,时间60s;
S5、将步骤S4中所得的第一铝箔浸渍在铝基浆料中,使其双面形成被膜层,然后通过温度350℃的烘箱,烘烤5分钟而在第一铝箔的正面、背面均烧结成型出一次涂浆层;
在此步骤中,铝基浆料是由铝粉、聚乙二醇、无水乙醇混合均匀而成,且三者的质量比为15:2:1。铝粉的平均粒径D50控制在2~5μm,聚乙二醇的平均分子量控制在400;
S6、将纯度99.98%,厚度10μm的第二铝箔、第三铝箔分别一一对应地贴附于步骤S5中所得到的一次涂浆层上,以形成复合铝箔;
S7、对步骤S6中所得到的复合铝箔执行冷轧处理,且冷轧送料速度控制在80m/h,压力控制在15Mpa以下;
S8、将步骤S7得到的复合铝箔置于烘箱内,以执行高温热处理操作;烘箱的工作条件为:温度控制在350℃,时间控制在90s。
S9、对步骤S8得到的复合铝箔进行冷却,即得到产品。
实施例2
S1、将纯度99.98%,厚度100μm的第一铝箔,以及纯度99.98%,厚度10μm第二铝箔、第三铝箔均浸于0.5wt%的氢氧化钠溶液中,作用条件:温度50℃,时间60s;
S2、将步骤S1中所得到的第一铝箔、第二铝箔、第三铝箔均浸于0.25wt%的磷酸溶液中,施加高频脉冲电流进行预电解,作用条件:温度40℃,时间40s,频率14KHz;
S3、将步骤S2中所得到的第一铝箔、第二铝箔、第三铝箔均置于9.0wt%盐酸、1.0wt%硫 酸、1.0wt%草酸的混合溶液中进行第一次电解腐蚀,作用条件:温度50℃,电流为正弦波交流电,电流密度0.9A/cm 2,频率45Hz,时间90s;接着将其置于8.0wt%盐酸、0.9wt%硫酸、1.0wt%草酸的混合溶液中进行第二次电解腐蚀,作用条件:温度50℃,电流为方波交流电,电流密度0.5A/cm 2,频率55Hz,时间65s;
S4、将步骤S3中所得的第一铝箔、第二铝箔、第三铝箔均置于自来水中进行冲洗,时间120s;再置于5wt%硝酸溶液中进行清洗,作用条件:温度50℃,时间120s;再次置于纯水中进行冲洗,时间360s;最后置于烘箱内,作用条件:温度95℃,时间60s;
S5、将步骤S4中所得的第一铝箔浸渍在铝基浆料中,使其双面形成被膜层,然后通过温度350℃的烘箱,烘烤5分钟而在第一铝箔的正面、背面均烧结成型出一次涂浆层;
在此步骤中,铝基浆料是由铝粉、聚乙二醇、无水乙醇混合均匀而成,且三者的质量比为15:2:1。铝粉的平均粒径D50控制在2~5μm,聚乙二醇的平均分子量控制在400;
S6、将步骤S4中所得到的第二铝箔、第三铝箔分别一一对应地贴附于步骤S5中所得到的一次涂浆层上,以形成复合铝箔;
S7、对步骤S6中所得到的复合铝箔执行冷轧处理,且冷轧送料速度控制在80m/h,压力控制在15Mpa以下;
S8、将步骤S7得到的复合铝箔置于烘箱内,以执行高温热处理操作;烘箱的工作条件为:温度控制在350℃,时间控制在90s。
S9、对步骤S8得到的复合铝箔进行冷却,即得到产品。
实施例2相相较于实施1的主要区别点在于:对第二铝箔、第三铝箔同样执行了预电解、电解腐蚀处理,从而为进一步提升所制备成低压电极箔的电容量作了良好铺垫,但是其弯曲疲劳强度亦会有出现稍许降低现象。
实施例3
S1、将纯度99.98%,厚度100μm的第一铝箔,以及纯度99.98%,厚度10μm第二铝箔、第三铝箔均浸于0.5wt%的氢氧化钠溶液中,作用条件:温度50℃,时间60s;
S2、将步骤S1中所得到的第一铝箔、第二铝箔、第三铝箔均浸于0.25wt%的磷酸溶液中,施加高频脉冲电流进行预电解,作用条件:温度40℃,时间40s,频率14KHz;
S3、将步骤S2中所得到的第一铝箔、第二铝箔、第三铝箔均置于9.0wt%盐酸、1.0wt%硫酸、1.0wt%草酸的混合溶液中进行第一次电解腐蚀,作用条件:温度50℃,电流为正弦波交流电,电流密度0.9A/cm 2,频率45Hz,时间90s;接着将其置于8.0wt%盐酸、0.9wt%硫酸、1.0wt%草酸的混合溶液中进行第二次电解腐蚀,作用条件:温度50℃,电流为方波交 流电,电流密度0.5A/cm 2,频率55Hz,时间65s;
S4、将步骤S3中所得的第一铝箔、第二铝箔、第三铝箔均置于自来水中进行冲洗,时间120s;再置于5wt%硝酸溶液中进行清洗,作用条件:温度50℃,时间120s;再次置于纯水中进行冲洗,时间360s;最后置于烘箱内,作用条件:温度95℃,时间60s;
S5、将步骤S4中所得的第一铝箔浸渍在铝基浆料中,使其双面形成被膜层,然后通过温度350℃的烘箱,烘烤5分钟而在第一铝箔的正面、背面均烧结成型出一次涂浆层;
在此步骤中,铝基浆料是由铝粉、聚乙二醇、无水乙醇混合均匀而成,且三者的质量比为15:2:1。铝粉的平均粒径D50控制在2~5μm,聚乙二醇的平均分子量控制在400;
S6、在一次涂浆层的外表面继续涂覆铝基浆料,且通过温度350℃的烘箱,烘烤5分钟而在一次涂浆层的外表面烧结成型出二次涂浆层;
S7、将步骤S4中所得到的第二铝箔、第三铝箔分别一一对应地贴附于步骤S6中所得到的二次涂浆层上,以形成复合铝箔;
S8、对步骤S7中所得到的复合铝箔执行冷轧处理,且冷轧送料速度控制在80m/h,压力控制在15Mpa以下;
S9、将步骤S8得到的复合铝箔置于烘箱内,以执行高温热处理操作;烘箱的工作条件为:温度控制在350℃,时间控制在90s。
S10、对步骤S9得到的复合铝箔进行冷却,即得到产品。
实施例3相相较于实施2的主要区别点在于:铝基浆料层厚度的增加(因二次涂浆层的增设)。已知,在对铝基浆料进行升温烧结的进程中,其内部因受到热量作用而形成大量的空穴。因此,随着铝基浆料层厚度的增加,制备成型后的低压电极箔具有更高的电容量,但是会在一定程度上影响第二电极箔、第三电极箔与第一电极箔的结合强度,进而导致弯曲疲劳强度小幅度地下降。
所制成的低压电极箔具有五个不同功能分区,且沿着低压电极箔的厚度方向进行观测,依次为表面光箔层、烧结层、电极箔中间芯层、烧结层、光箔层。在实际制造成型中,对用作中间芯层电极箔仍作了充分地腐蚀,从而有效地避免了因成型工艺改变而导致的低压电极箔电容量大幅度降低现象的发生。更为重要的是,通过实际实验数据表明,在整体厚度保持不变的前提下,分层式结构相较于一体式结构具有更好的弯曲疲劳强度,进而避免其成型制备中或组装过程中因经历多次弯折而提前出现裂纹现象的发生。
在此还需要说明以下几点:
1)铝基浆料优选由铝粉、聚乙二醇、无水乙醇均匀混合而成。已知,聚乙二醇和无水乙醇 均具有良好的流动性,且分子量相对较小,进而确保铝基浆料在涂覆进程中具有优良的流动性,利于确保一次涂浆层、二次涂浆层成型后的整体均匀性,各区域厚薄度相一致;
2)优选采用浸渍方法在将铝基浆料涂覆于第一铝箔或一次涂浆层上,适合于工业化的连续生产要求。另外,通过多次浸渍还可调整被膜层的厚度,从而得到不同的产品比容;
3)第二铝箔、第三铝箔采用冷轧方式而与第一铝箔固定为一体,如此一来,一方面,在实际制备成型进程中以及实际应用中可有效防止烧结于第一铝箔表面的一次涂浆层、二次涂浆层因受到外力作用而剥落现象的发生;另一方面,冷轧处理方式还可以在一定程度上提升低压电极箔的整体抗拉延性,避免其在后续卷绕进程中因受到拉力作用而被拉裂现象的发生;为了更加直观地展现出本发明技术方案所产生的有益效果,以下还给出了两组对比试验,具体为:
对比试验1:
1、将纯度99.98%,厚度100μm的铝箔浸于0.5wt%的氢氧化钠溶液中,作用条件:温度50℃,时间60s,得到S1;
2、将S1浸于0.25wt%的磷酸溶液中,施加高频脉冲电流进行预电解,作用条件:温度40℃,时间60s,频率14KHz,得到S2;
3、将S2置于9.0wt%盐酸、1.0wt%硫酸、1.0wt%草酸的混合溶液中进行第一次电解腐蚀,作用条件:温度50℃,电流为正弦波交流电,电流密度1.0A/cm 2,频率45Hz,时间100s;接着置于8.0wt%盐酸、0.9wt%硫酸、1.0wt%草酸的混合溶液中进行第二次电解腐蚀,作用条件:温度50℃,电流为方波交流电,电流密度0.6A/cm 2,频率55Hz,时间60s;重复第一次电解腐蚀和第二次电解腐蚀操作五次得到S3;
4、将S3置于自来水中进行冲洗,时间120s;再置于5wt%硝酸溶液中进行清洗,作用条件:温度50℃,时间120s;再次置于纯水中进行冲洗,时间360s;最后置于烘箱内,作用条件:温度95℃,时间60s;得到成品。
对比试验2:
1、将纯度99.98%,厚度100μm的铝箔浸于0.5wt%的氢氧化钠溶液中,作用条件:温度50℃,时间60s,得到S1;
2、将S1浸于0.25wt%的磷酸溶液中,施加高频脉冲电流进行预电解,作用条件:温度40℃,时间40s,频率14KHz,得到S2;
3、将S2置于9.0wt%盐酸、1.0wt%硫酸、1.0wt%草酸的混合溶液中进行第一次电解腐蚀,作用条件:温度50℃,电流为正弦波交流电,电流密度0.9A/cm 2,频率45Hz,时间90s; 接着置于8.0wt%盐酸、0.9wt%硫酸、1.0wt%草酸的混合溶液中进行第二次电解腐蚀,作用条件:温度50℃,电流为方波交流电,电流密度0.5A/cm 2,频率55Hz,时间65s;重复第一次电解腐蚀和第二次电解腐蚀操作五次得到S3;
4、将S3置于自来水中进行冲洗,时间120s;再置于5wt%硝酸溶液中进行清洗,作用条件:温度50℃,时间120s;再次置于纯水中进行冲洗,时间360s;最后置于烘箱内,作用条件:温度95℃,时间60s;得到成品。
表1是实施例1-3和对比试验1-2得到的低压电极箔比容以及抗弯折次数的测试结果
腐蚀工艺 样品厚度 21V化成电容量(μf/cm2) 弯折(次)
对比试验 91 138.2 58
对比试验二 93 130.4 61
实施例 108 138.7 85
实施例二 105 140.8 83
实施例三 107.5 143 81
表1
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,包括以下步骤:
    S1、对第一铝箔、第二铝箔、第三铝箔执行除油操作;
    S2、将步骤S1得到的所述第一铝箔浸于酸性溶液中,且施加高频脉冲电流进行预电解;
    S3、对步骤S2得到的所述第一铝箔执行电解腐蚀操作;
    S4、对步骤S3中所得到的所述第一铝箔执行清洗、烘干操作;
    S5、将铝基浆料均匀地涂覆于步骤S4中所得到所述第一铝箔的正面及背面,且随后执行升温处理直至所述铝基浆料完全地固化、烧结,以在所述第一铝箔的正、背面均形成有一次涂浆层;
    S6、将所述第二铝箔、所述第三铝箔分别一一对应地贴附于步骤S5中所得到的所述一次涂浆层上,以形成复合铝箔;
    S7、对步骤S6中所得到的所述复合铝箔执行冷轧处理;
    S8、将步骤S7得到的所述复合铝箔置于烘箱内,以执行高温热处理操作;
    S9、对步骤S8得到的所述复合铝箔进行冷却,即得到产品。
  2. 根据权利要求1所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,在步骤S5中,所述铝基浆料由铝粉和粘接剂混合搅拌而成。
  3. 根据权利要求2所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,所述粘接剂由聚乙二醇和无水乙醇混合而成。
  4. 根据权利要求3所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,所述铝粉的平均粒径D50控制在2~5μm,所述聚乙二醇的平均分子量控制在300~800。
  5. 根据权利要求1所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,在步骤S5中,涂浆后的所述第一铝箔被置于烘箱内进行升温,烘烤条件:温度300~500℃,时间60~180s。
  6. 根据权利要求1所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,步骤S5包括有子步骤S51;当所述一次涂浆层成形后,步骤S51用来将所述铝基浆料再次均匀地涂覆于所述一次涂浆层上,且随后执行升温固化、烧结处理,以在所述第一铝箔的正、背面均形成有二次涂浆层。
  7. 根据权利要求1所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,在步骤S6中,预执行将所述第二铝箔、所述第三铝箔贴附于步骤S5中所得到所述第一铝箔的正面、背面前,对所述第二铝箔、所述第三铝箔均依序执行预电解、电解腐蚀操作。
  8. 根据权利要求1所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,在步骤S1 中,将所述第一铝箔、所述第二铝箔、所述第三铝箔均浸于质量百分比浓度为0.1~0.5%的氢氧化钠溶液中,作用条件为:温度30~60℃,时间60~180s。
  9. 根据权利要求1所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,在步骤S1中,将所述第一铝箔、所述第二铝箔、所述第三铝箔均浸于有机溶液中;所述有机溶液为香蕉水、松节油、酒精、汽油和火油中的任一种。
  10. 根据权利要求1所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,在步骤S2中,所用的所述酸性溶液为质量百分比浓度0.1~0.5%的磷酸溶液,作用条件为:温度20~50℃,时间30~120s;所述高频脉冲电流的频率控制在10~20KHz。
  11. 根据权利要求1所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,在步骤S3中,将步骤S2得到的所述第一铝箔置于盐酸、硫酸、草酸的混合溶液中进行一次电解腐蚀,作用条件:温度30~60℃,电流为正弦波交流电,频率40~70Hz,时间60~200s;随后将所述第一铝箔继续置于盐酸、硫酸、草酸的混合溶液中进行二次电解腐蚀,作用条件:温度30~60℃,电流为方波交流电,频率40~70Hz,时间100~400s。
  12. 根据权利要求11所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,在步骤S3中,所述一次电解腐蚀和所述二次电解腐蚀的重复次数不小于2。
  13. 根据权利要求12所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,在步骤S4中,将步骤S3中所得到的所述第一铝箔置于自来水中进行冲洗,时间100~200s;再置于质量百分比浓度为2~8%硝酸溶液中进行清洗,作用条件:温度40~80℃,时间100~300s;再次置于纯水中进行冲洗,时间300~600s;最后置于烘箱内,作用条件:温度85~100℃,时间40~60s。
  14. 根据权利要求1所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,在步骤S8中,烘箱的工作条件为:温度控制在300~500℃,时间控制在60~180s。
  15. 根据权利要求1所述弯曲疲劳强度良好低压电极箔的制备方法,其特征在于,所述第一铝箔的厚度控制在80~100μm;而所述第二铝箔和所述第三铝箔的厚度均控制在5~10μm。
PCT/CN2022/077207 2021-12-08 2022-02-22 一种弯曲疲劳强度良好低压电极箔的制备方法 WO2023103181A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111492074.8 2021-12-08
CN202111492074.8A CN114141539B (zh) 2021-12-08 2021-12-08 一种弯曲疲劳强度良好低压电极箔的制备方法

Publications (1)

Publication Number Publication Date
WO2023103181A1 true WO2023103181A1 (zh) 2023-06-15

Family

ID=80385052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077207 WO2023103181A1 (zh) 2021-12-08 2022-02-22 一种弯曲疲劳强度良好低压电极箔的制备方法

Country Status (2)

Country Link
CN (1) CN114141539B (zh)
WO (1) WO2023103181A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116121844B (zh) * 2023-04-04 2023-07-07 南通海星电子股份有限公司 一种铝箔发孔阶段所用复合电极的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020149902A1 (en) * 2001-02-14 2002-10-17 Matsushita Electric Industrial Co., Ltd. Electrode foil for aluminum electrolytic capacitor and method of manufacturing the same
US20020186521A1 (en) * 2001-06-11 2002-12-12 Kemet Electronics Corporation Surface mount aluminum capacitor having anode foil anodized in an aqueous phosphate solution
US20060076243A1 (en) * 2004-10-12 2006-04-13 Tatsuji Aoyama Electrode foil for electrolytic capacitor and method for manufacturing the same
CN108172321A (zh) * 2017-12-19 2018-06-15 宇东箔材科技南通有限公司 一种固态电容碳箔及其制备方法
CN110517892A (zh) * 2019-09-18 2019-11-29 南通海星电子股份有限公司 一种固态铝电解电容器用电极箔的制造方法
CN113502476A (zh) * 2021-09-13 2021-10-15 南通海星电子股份有限公司 一种固态铝电解电容器用电极箔的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020149902A1 (en) * 2001-02-14 2002-10-17 Matsushita Electric Industrial Co., Ltd. Electrode foil for aluminum electrolytic capacitor and method of manufacturing the same
US20020186521A1 (en) * 2001-06-11 2002-12-12 Kemet Electronics Corporation Surface mount aluminum capacitor having anode foil anodized in an aqueous phosphate solution
US20060076243A1 (en) * 2004-10-12 2006-04-13 Tatsuji Aoyama Electrode foil for electrolytic capacitor and method for manufacturing the same
CN108172321A (zh) * 2017-12-19 2018-06-15 宇东箔材科技南通有限公司 一种固态电容碳箔及其制备方法
CN110517892A (zh) * 2019-09-18 2019-11-29 南通海星电子股份有限公司 一种固态铝电解电容器用电极箔的制造方法
CN113502476A (zh) * 2021-09-13 2021-10-15 南通海星电子股份有限公司 一种固态铝电解电容器用电极箔的制造方法

Also Published As

Publication number Publication date
CN114141539B (zh) 2023-03-31
CN114141539A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CN109585173B (zh) 一种长寿命低压用铝电解电容器化成箔的制造方法
EP3019644B1 (de) Verfahren zur herstellung eines korrosionsbeständigen und verschleissfähigen aluminiumsubstrats
CN103361692B (zh) 中高压电子铝箔电沉积弥散锡晶核的方法
WO2023103181A1 (zh) 一种弯曲疲劳强度良好低压电极箔的制备方法
WO2024027122A1 (zh) 一种高介电复合粉末烧结箔的制备方法
WO2023236572A1 (zh) 一种聚酰亚胺-铝复合箔制备工艺
CN108257717B (zh) 一种新能源逆变器用大宽厚比聚酰亚胺漆包铜扁线
CN102324324B (zh) 100~150v低压化成箔的制造方法
CN103451713B (zh) 中高压电子铝箔阳极氧化沉积锌或锡晶核的腐蚀预处理方法
CN113035596B (zh) 一种多效减极处理铝阳极箔化成方法
CN104357886A (zh) 中高压阳极用高纯铝箔表面化学沉积弥散锡、锌晶核的方法
JP4705181B2 (ja) 電解コンデンサ電極用アルミニウム箔の製造方法
JP4068742B2 (ja) 耐熱割れ性及び耐食性に優れた半導体製造装置用陽極酸化皮膜被覆部材の製造方法
JP2024523606A (ja) 曲げ疲労強度に優れた低圧電極箔の製造方法
JP5937937B2 (ja) アルミニウム陽極酸化皮膜
CN109183116A (zh) 一种制备含TiO2介质层电子铝箔的前处理工艺
CN113322454A (zh) 一种低压化成箔的化成方法及制得的低压化成箔
CN113913895A (zh) 笔式电容器用腐蚀、化成箔的制造方法
TWI830505B (zh) 內凹曲面上具有陶瓷絕緣層的絕緣套件及其抗電壓擊穿之用途
CN114411219B (zh) 高耐酸低压化成箔、制备方法及其应用
CN114411232B (zh) 一种软态低压腐蚀箔的制备方法
CN107034471A (zh) 一种铝或铝合金表面预处理用光化处理液以及化学清洗的方法
CN114686960B (zh) 一种制备中高压腐蚀箔的预处理方法及其应用
JP2008282994A (ja) アルミニウム電解コンデンサ用電極箔の製造方法
CN107177879B (zh) 一种穿孔箔的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023579861

Country of ref document: JP

Kind code of ref document: A