WO2024024836A1 - 電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法 - Google Patents

電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法 Download PDF

Info

Publication number
WO2024024836A1
WO2024024836A1 PCT/JP2023/027382 JP2023027382W WO2024024836A1 WO 2024024836 A1 WO2024024836 A1 WO 2024024836A1 JP 2023027382 W JP2023027382 W JP 2023027382W WO 2024024836 A1 WO2024024836 A1 WO 2024024836A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
sealing
meth
acrylate
layer
Prior art date
Application number
PCT/JP2023/027382
Other languages
English (en)
French (fr)
Inventor
昇太 広沢
慎一郎 森川
理英子 れん
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2024024836A1 publication Critical patent/WO2024024836A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass

Definitions

  • the present invention relates to an electronic device encapsulation composition, an electronic device encapsulation film, and a method for forming an electronic device encapsulation film, and in particular, it has excellent ejection stability, luminescent properties, and crack resistance by inkjet method, and has a low dielectric constant.
  • the present invention relates to a composition for encapsulating an electronic device that can form a low-temperature encapsulating film for an electronic device.
  • Patent Document 1 describes a highly viscous organic EL ink composition that can be manufactured using an inexpensive printing technique other than the inkjet method, which contains an organic EL material, a liquid crystal compound with a band gap of 3.5 ev or more, A composition containing a solvent consisting of an organic compound and an organic compound is disclosed. Further, it is disclosed that the liquid crystal compound preferably has a molecular dipole moment of 4.0 Debye or less. It is said that such an ink composition can maintain high viscosity, high efficiency, and long-life luminescent properties, and can be widely applied to various coating methods.
  • Patent Document 2 describes a resin composition used in the electronics field containing a vinyl polymer powder having a glass transition temperature of 120° C. or higher and a mass average molecular weight of 100,000 or higher.
  • a synthetic resin composition is disclosed.
  • the molar volume of the monomer unit of the vinyl monomer is preferably 150 cm 3 /mol or more.
  • a sealing layer is required to be a sealing composition that does not affect the light emitting layer of the organic EL element, has excellent light emitting properties, and has excellent crack resistance after curing.
  • the material is difficult to polarize when an electric field is applied to the electronic device, and it is also desired that the dielectric constant is low.
  • the present invention was made in view of the above-mentioned problems and circumstances, and the object to be solved is to provide an electronic device sealing film that has excellent ejection stability, luminous properties, and crack resistance by inkjet method, and has a low dielectric constant.
  • An object of the present invention is to provide a composition for encapsulating an electronic device.
  • Another object of the present invention is to provide an electronic device sealing film and a method for forming an electronic device sealing film using the electronic device sealing composition.
  • the present inventors in the process of studying the causes of the above problems, discovered that the photopolymerizable monomer contains (meth)acrylate, and the dipole moment ( ⁇ ) and SP value of the photopolymerizable monomer are (Hydrogen bond term ⁇ H) and molecular volume (V) satisfy specific conditions, it is possible to form an electronic device sealing film with excellent ejection stability, luminous properties and crack resistance, and low dielectricity by inkjet method. We have discovered that this can be done and have come up with the present invention. That is, the above-mentioned problems related to the present invention are solved by the following means.
  • An electronic device encapsulation composition containing a photopolymerizable monomer and a photopolymerization initiator,
  • the photopolymerizable monomer contains (meth)acrylate,
  • S1 calculated based on the dipole moment ⁇ [Debye] of the photopolymerizable monomer, the molecular volume V [cm 3 ⁇ mol ⁇ 1 ], and the hydrogen bond term ⁇ H [MPa 1/2 ] is 0.10 ⁇ 10 ⁇ 2 to 1.10 ⁇ 10 ⁇ 2 [Debye/(cm 3 mol ⁇ 1 )], or the following S2 is 0.50 ⁇ 10 ⁇ 2 to 1.50 ⁇ 10 ⁇ 2 [MPa 1/2 /(cm 3 ⁇ mol ⁇ 1 )].
  • the S1 is within the range of 0.50 ⁇ 10 ⁇ 2 to 0.80 ⁇ 10 ⁇ 2 [Debye/(cm 3 ⁇ mol ⁇ 1 )], or the S2 is within the range of 0.50 ⁇ 10 ⁇ 2 to 1 .00 ⁇ 10 ⁇ 2 [MPa 1/2 /(cm 3 ⁇ mol ⁇ 1 )].
  • composition for encapsulating an electronic device according to item 1 wherein the hydrogen bond term ⁇ H is within a range of 1.9 to 3.5 MPa 1/2 .
  • An electronic device sealing film that seals an electronic device, a first sealing layer containing silicon nitride, silicon oxide or silicon oxynitride;
  • An electronic device sealing film comprising: a second sealing layer using the electronic device sealing composition according to any one of Items 1 to 3;
  • the electronic device sealing film according to item 4 further comprising a third sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride on the second sealing layer.
  • a composition for encapsulating an electronic device that has excellent ejection stability, luminescent properties, and crack resistance by an inkjet method, and is capable of forming an electronic device encapsulating film having a low dielectric constant. It is to be.
  • Another object of the present invention is to provide an electronic device sealing film and a method for forming an electronic device sealing film using the electronic device sealing composition.
  • the S1 calculated based on the dipole moment ⁇ [Debye] of the photopolymerizable monomer and the molecular volume V [cm 3 mol -1 ] is the dipole moment per unit volume of the molecule
  • the above S2 is a value indicating the dipole moment normalized by the size of the molecule, and is calculated based on the hydrogen bond term ⁇ H [MPa 1/2 ] and the molecular volume V [cm 3 ⁇ mol ⁇ 1 ]. It is ⁇ H per unit volume of , and is a value indicating the hydrogen bond term component ⁇ H of the SP value normalized by the size of the molecule.
  • the sealing layer formed from the sealing composition thermally shrinks. Furthermore, if the product is stored in a folded state in a low-temperature environment, it will undergo further thermal contraction and stress will be applied to the sealing layer, causing it to peel or crack. Here, it is thought that thermal contraction is affected by the structure in which the molecules are packed in the sealing layer and how the molecules interact with each other. Therefore, by setting S1 or S2 within the specific range, the molecular size and polarity of the components of the sealing layer (that is, the sealing composition) are within the appropriate range, and the influence of heat shrinkage can be reduced. It is inferred that the appearance condition (crack resistance) will be better when stored in a low temperature environment while being folded.
  • an organic EL element is difficult to polarize when an electric field is applied, and it is thought that whether polarization occurs depends on the directionality and ease of movement of the molecules of the components of the sealing film after the sealing composition is cured. It will be done. Therefore, it is preferable that the molecules move less easily. Therefore, by setting S1 or S2 within the specific range, the molecular size and polarity ratio of the components of the sealing composition are set in an appropriate range, and the interaction between molecules is maximized, causing molecules to move. It is presumed that the dielectric constant becomes low and the dielectricity becomes low (the relative dielectric constant becomes low).
  • the composition for encapsulating an electronic device of the present invention is a composition for encapsulating an electronic device containing a photopolymerizable monomer and a photopolymerization initiator, and contains (meth)acrylate as the photopolymerizable monomer,
  • S1 calculated based on the dipole moment ⁇ [Debye] of the photopolymerizable monomer, the molecular volume V [cm 3 ⁇ mol ⁇ 1 ], and the hydrogen bond term ⁇ H [MPa 1/2 ] is 0.10 ⁇ 10 ⁇ 2 to 1.10 ⁇ 10 ⁇ 2 [Debye/(cm 3 mol ⁇ 1 )], or the following S2 is 0.50 ⁇ 10 ⁇ 2 to 1.50 ⁇ 10 ⁇ 2 [MPa 1/2 /(cm 3 ⁇ mol ⁇ 1 )].
  • S1 is within the range of 0.50 ⁇ 10 ⁇ 2 to 0.80 ⁇ 10 ⁇ 2 [Debye/(cm 3 ⁇ mol ⁇ 1 )], or the S2 is 0.50 ⁇ 10 -2 to 1.00 ⁇ 10 -2 [MPa 1/2 / (cm 3 mol -1 )] is within the range of excellent ejection stability, luminous properties and crack resistance by inkjet method. Moreover, it is preferable in that an electronic device sealing film having a low dielectric constant can be formed. Further, from the viewpoint of crack resistance, it is preferable that the hydrogen bond term ⁇ H is within the range of 1.9 to 3.5 MPa 1/2 .
  • the electronic device sealing film of the present invention is an electronic device sealing film for sealing an electronic device, and includes a first sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride; and a second sealing layer using the composition.
  • a third sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride on the second sealing layer from the viewpoint of excellent sealing performance.
  • the electronic device sealing film forming method of the present invention is a method of forming an electronic device sealing film using the electronic device sealing composition, wherein a first sealing layer is formed on the electronic device by a vapor phase method. and a step of forming a second sealing layer by applying the electronic device sealing composition on the first sealing layer.
  • is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
  • the inkjet electronic device encapsulation composition (hereinafter also simply referred to as "encapsulation composition") of the present invention is an electronic device encapsulation composition containing a photopolymerizable monomer and a photopolymerization initiator.
  • the photopolymerizable monomer contains (meth)acrylate, and the photopolymerizable monomer has a dipole moment ⁇ [Debye], a molecular volume V [cm 3 ⁇ mol ⁇ 1 ], and a hydrogen bond term ⁇ H [MPa 1/2 ] is within the range of 0.10 ⁇ 10 ⁇ 2 to 1.10 ⁇ 10 ⁇ 2 [Debye/(cm 3 ⁇ mol ⁇ 1 )], or the following S2 is 0. It is within the range of 50 ⁇ 10 ⁇ 2 to 1.50 ⁇ 10 ⁇ 2 [MPa 1/2 /(cm 3 ⁇ mol ⁇ 1 )].
  • the dipole moment ( ⁇ ) can be calculated by using chemical structure information computer software.
  • Examples of the calculation software include the quantum chemical calculation program "Gaussian series" manufactured by HULINKS.
  • the dipole moment in the present invention was obtained from the information on the chemical structure, using Gaussian software manufactured by HULINKS, to obtain the dipole moment (unit: Debye) of each monomer.
  • PM6 which is a semi-empirical method, was used.
  • the dipole moment ( ⁇ ) of each photopolymerizable monomer is particularly important if S1 is within the range of 0.10 ⁇ 10 ⁇ 2 to 1.10 ⁇ 10 ⁇ 2 [Debye/(cm 3 ⁇ mol ⁇ 1 )]. Although there is no limit, it is preferably within the range of 0.5 to 1.7 Debye from the viewpoint of compatibility between photopolymerizable monomers and solubility of the photopolymerization initiator.
  • the molecular volume (V) indicates the molecular volume per unit mole.
  • Molar volume can be calculated from chemical structure information using computer software.
  • the molecular volume (V) in the present invention was obtained from the chemical structure information using Hansen Solubility Parameters in Practice (HSPiP) software (unit: cm 3 ⁇ mol -1 ) of each monomer. .
  • the molecular volume (V) of each photopolymerizable monomer is S1 of 0.10 ⁇ 10 ⁇ 2 to 1.10 ⁇ 10 ⁇ 2 [Debye/(cm 3 mol ⁇ 1 )] or S2 of 0.50 ⁇
  • the hydrogen bond term ( ⁇ H) represents the hydrogen bond term component of the Hansen solubility parameter.
  • the Hansen solubility parameter is calculated by assuming that the three interactions of dispersion force, dipole force, and hydrogen bond force are working on the Hildebrand solubility parameter, and the three interactions are dispersion term component ⁇ D, polar term component ⁇ P, and hydrogen bond term component ⁇ H, respectively. It is divided into components.
  • ⁇ H can be calculated from chemical structure information using computer software.
  • the hydrogen bond term ( ⁇ H) in the present invention is obtained by obtaining the hydrogen bond term ( ⁇ H) (unit: Mpa 1/2 ) of each monomer from the chemical structure information using Hansen Solubility Parameters in Practice (HSPiP) software. Ta.
  • the hydrogen bond term ⁇ H of each photopolymerizable monomer is preferably within the range of 1.9 to 3.5 MPa 1/2 .
  • the molar ratio m of the monomers refers to the molar ratio of each monomer when the total number of moles of all monomers is 1.
  • S1 calculated from the dipole moment ( ⁇ ) and molecular volume (V) of the photopolymerizable monomer is 0.10 ⁇ 10 ⁇ 2 to 1.10 ⁇ 10 ⁇ 2 [Debye/(cm 3 ⁇ mol ⁇ 1 )]
  • a photopolymerizable monomer having a structure with a low dipole moment and a large molecular volume can be used.
  • structures with low dipole moment include structures with few hydroxy groups, structures with few heteroatoms, structures with few ester groups, structures of alicyclic hydrocarbons, and structures with high symmetry that cancel out the dipole moment.
  • One example is having.
  • Examples of the structure having a large molecular volume include an alicyclic structure, a structure having a large molecular weight, and a structure having an alkylene group having 8 or more carbon chains.
  • S2 calculated from the molecular volume (V) and hydrogen bond term ( ⁇ H) of the photopolymerizable monomer is 0.50 ⁇ 10 ⁇ 2 to 1.50 ⁇ 10 ⁇ 2 [MPa 1/2 / (cm 3 mol ⁇ 1 )], for example, a photopolymerizable monomer having a structure with low hydrogen bonding properties and a large molecular volume can be used.
  • structures with low hydrogen bonding include structures with few hydroxy groups, structures with few heteroatoms, structures with few ester groups, methacrylate structures, alicyclic hydrocarbon structures, and structures containing fluorine. It will be done.
  • Examples of the structure having a large molecular volume include an alicyclic structure, a structure having a large molecular weight, and a structure having an alkylene group having 8 or more carbon chains.
  • composition of electronic device encapsulation composition contains a photopolymerizable monomer and a photopolymerization initiator.
  • the photopolymerizable monomer contains (meth)acrylate.
  • (meth)acrylate means at least one of acrylate and methacrylate.
  • the term “electronic device” in the present invention refers to an element that generates, amplifies, converts, or controls electrical signals by utilizing the kinetic energy, potential energy, etc. of electrons. Examples include active devices such as light emitting diode devices, organic electroluminescent devices, photoelectric conversion devices, and transistors.
  • electronic devices include passive elements such as resistors and capacitors that perform passive work such as “resistance” and "storage” in response to actions from others. Therefore, the sealing composition of the present invention is used to form a sealing film for sealing the electronic device described above.
  • Photopolymerizable monomer refers to a photopolymerizable monomer (“photocurable monomer”) that can perform a polymerization (curing) reaction by itself or a photopolymerization initiator absorbing light and producing active ions or radicals. Also referred to as ).
  • photopolymerizable monomer a non-silicon monomer that does not contain silicon (Si) may be used, for example, a monomer consisting only of elements selected from C, H, O, N, or S. Good, but not limited to this.
  • the photopolymerizable monomer may be synthesized and used by a conventional synthesis method, or a commercially available product may be purchased and used.
  • Examples of the photopolymerizable monomer include the photopolymerizable monomer (A) that does not have an aromatic hydrocarbon group, the photopolymerizable monomer (B) that has an aromatic hydrocarbon group, and the like, and S1 or S2
  • the photopolymerizable monomers (A) and (B) are appropriately selected so that the monomers meet the above-mentioned range.
  • photopolymerizable monomer (A) having no aromatic hydrocarbon group The photopolymerizable monomer (A) that does not have an aromatic hydrocarbon group (hereinafter also simply referred to as "photopolymerizable monomer (A)") does not contain an aromatic hydrocarbon group and has no photocurable functionality.
  • the group (photopolymerizable functional group) may include a monomer having 1 to 20, specifically 1 to 6, one or more of vinyl groups, acrylic groups, and methacrylic groups, for example, 1 to 3 It may contain 1 to 2, 1, or 2.
  • the weight average molecular weight of the photopolymerizable monomer (A) may be within the range of 100 to 500 g/mol, may be within the range of 130 to 400 g/mol, or may be within the range of 200 to 300 g/mol. It may be within the range of mol. By keeping the weight average molecular weight of the monomer within the range, more advantageous effects can be exhibited in terms of the process.
  • the photopolymerizable monomer (A) may include a monofunctional monomer having a photocurable functional group, a polyfunctional monomer, or a mixture thereof.
  • the photopolymerizable monomer (A) may be a (meth)acrylate monomer, and may include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a hydroxy group, and a hydroxyl group having 1 to 20 carbon atoms.
  • Unsaturated carboxylic acid esters having ⁇ 20 alkyl groups Unsaturated carboxylic acid esters having aminoalkyl groups having 1 to 20 carbon atoms; Vinyl esters of saturated or unsaturated carboxylic acids having 1 to 20 carbon atoms; Vinyl cyanide compounds ; unsaturated amide compound; monofunctional or polyfunctional (meth)acrylate of monoalcohol or polyhydric alcohol.
  • polyhydric alcohol means an alcohol having two or more hydroxy groups, preferably 2 to 20, preferably 2 to 10, more preferably 2 to 6 hydroxy groups. obtain.
  • the (meth)acrylate monomer that does not have an aromatic hydrocarbon group is a substituted or unsubstituted C1 to C20 (1 to 20 carbon atoms) alkyl group, a substituted or Mono(meth)acrylates having an unsubstituted C1 to C20 alkylsilyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C1 to C20 alkylene group, an amine group, an ethylene oxide group, etc.
  • Di(meth)acrylate, tri(meth)acrylate, tetra(meth)acrylate, etc. may be used.
  • (meth)acrylate monomers having no aromatic hydrocarbon group include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxy Butyl (meth)acrylate, hexyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, decanyl (meth)acrylate, undecanyl (meth)acrylate, dodecyl (meth)acrylate, cyclohexyl (meth)acrylate, etc.
  • Unsaturated carboxylic acid esters including meth)acrylic acid esters; unsaturated carboxylic acid aminoalkyl esters such as 2-aminoethyl (meth)acrylate and 2-dimethylaminoethyl (meth)acrylate; saturated or unsaturated carboxylic acid esters such as vinyl acetate Acid vinyl ester; vinyl cyanide compounds such as (meth)acrylonitrile; unsaturated amide compounds such as (meth)acrylamide; ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, trimethylolpropane tri(meth) Acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, octanediol di(meth)acrylate, nonanediol di(meth)acrylate, decanediol di(meth)acrylate, Undecanediol
  • the photopolymerizable monomer (A) is a non-aromatic type that does not contain an aromatic group, and is a mono(meth)acrylate having an alkyl group having 1 to 20 carbon atoms, or an amine group.
  • mono(meth)acrylates having a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms include decyl(meth)acrylate, undecyl(meth)acrylate, lauryl(meth)acrylate, tridecyl(meth)acrylate, It may be tetradecyl (meth)acrylate, pentadecyl (meth)acrylate, hexadecyl (meth)acrylate, heptadecyl (meth)acrylate, octadecyl (meth)acrylate, nonadecyl (meth)acrylate, arachidyl (meth)acrylate or a mixture thereof. However, it is not limited to this.
  • the mono(meth)acrylate having an amine group may be, but is not limited to, 2-aminoethyl (meth)acrylate, 2-dimethylaminoethyl (meth)acrylate, or a mixture thereof.
  • the di(meth)acrylate having a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms may be, for example, a di(meth)acrylate having an alkylene group having 1 to 20 carbon atoms; It may also be a non-silicon di(meth)acrylate containing a long-chain alkylene group.
  • Di(meth)acrylates having a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms include, for example, octanediol di(meth)acrylate, nonanediol di(meth)acrylate, decanediol di(meth)acrylate, undecanediol It may be, but is not limited to, di(meth)acrylate, dodecanediol di(meth)acrylate, or a mixture thereof.
  • the sealing composition of the present invention can further improve the photocuring rate and lower the viscosity.
  • the di(meth)acrylate or tri(meth)acrylate having an ethylene oxide group is ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, or a mixture thereof. may be used, but is not limited to this.
  • mono(meth)acrylates and di(meth)acrylates having a cyclic carbonized alkyl group include isobonyl(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, and dicyclopentanyl(meth)acrylate. , dicyclopentenyloxyethyl (meth)acrylate, and dicyclopentenyl (meth)acrylate, but are not limited thereto.
  • the photopolymerizable monomer (A) monomer is contained within a range of 55 to 95% by mass based on the total mass of the photopolymerizable monomers (photopolymerizable monomer (A) and photopolymerizable monomer (B)).
  • the content is preferably within the range of 60 to 90% by mass.
  • Photopolymerizable monomer (B) having an aromatic hydrocarbon group Two or more photopolymerizable monomers (B) having an aromatic hydrocarbon group (hereinafter also simply referred to as "photopolymerizable monomers (B)") have a structure represented by the following general formula (1). phenyl group and hetero atom, and the photopolymerizable monomer (B) contains at least mono(meth)acrylate or di(meth)acrylate.
  • P represents a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups.
  • Z 1 and Z 2 each independently have a structure represented by the following general formula (2). a and b are each an integer of 0 to 2, and a+b is an integer of 1 to 4. ]
  • * is a linking portion of P to carbon.
  • X represents a single bond, O or S.
  • Y represents a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • c is an integer of 0 or 1.
  • P represents a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups.
  • the hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or the heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups is a substituted or unsubstituted hydrocarbon group containing two or more phenyl groups.
  • the hydrocarbon group containing two or more phenyl groups or the heteroatom-containing hydrocarbon group containing two or more phenyl groups may include a substituted or unsubstituted biphenyl group, a substituted or unsubstituted triphenylmethyl group, or a substituted or unsubstituted triphenylmethyl group.
  • substituted or unsubstituted terphenyl group substituted or unsubstituted biphenylene group, substituted or unsubstituted terphenylene group, substituted or unsubstituted quaterphenylene group, substituted or unsubstituted 2-phenyl-2-(phenylthio)ethyl group , substituted or unsubstituted 2,2-diphenylpropane group, substituted or unsubstituted diphenylmethane group, substituted or unsubstituted cumylphenyl group, substituted or unsubstituted bisphenol F group, substituted or unsubstituted bisphenol A group, substituted or It may include an unsubstituted biphenyloxy group, a substituted or unsubstituted terphenyloxy group, a substituted or unsubstituted quarterphenyloxy group, a substituted or unsubstituted quinchyphenyloxy group, and structural
  • the substituted or unsubstituted monomer having two or more phenyl groups may be mono(meth)acrylate, di(meth)acrylate, or a mixture thereof; examples thereof include 4-(meth)acryloxy -2-hydroxybenzophenone, ethyl-3,3-diphenyl (meth)acrylate, benzoyloxyphenyl (meth)acrylate, bisphenol A di(meth)acrylate, ethoxylated bisphenol A di(meth)acrylate, bisphenol F di(meth)acrylate Acrylate, ethoxylated bisphenol F di(meth)acrylate, 4-cumylphenoxyethyl acrylate, ethoxylated bisphenylfluorenediacrylate, 2-phenylphenoxyethyl (meth)acrylate, 2,2'-phenylphenoxyethyl di(meth) Acrylate, 2-phenylphenoxypropyl (meth)acrylate, 2,2'-phenylphenoxyprop
  • the (meth)acrylate mentioned in the present invention is only an example, and is not limited thereto.
  • the present invention includes all acrylates that are in structural isomer relationship.
  • 2,2'-phenylphenoxyethyl di(meth)acrylate is mentioned as an example of the present invention
  • the present invention also covers 3,2'-phenylphenoxyethyl di(meth)acrylate, which corresponds to this structural isomer. Includes di(meth)acrylate, 3,3'-phenylphenoxyethyl di(meth)acrylate, etc.
  • the monomer having two or more phenyl groups may be a mono(meth)acrylate represented by the following general formula (4).
  • R 2 is hydrogen or a methyl group
  • R 3 is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted linear alkylene group having 1 to 20 carbon atoms.
  • R 4 is a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups.
  • the hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or the heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups includes two or more substituted or unsubstituted phenyl groups.
  • a phenyl group is not fused, a single bond, an oxygen atom, a sulfur atom, a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, an alkylene group having 3 to 6 carbon atoms substituted or unsubstituted with a hetero atom, It means those connected by an ethenylene group, an ethynylene group, or a carbonyl group.
  • the hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or the heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups is a substituted or unsubstituted biphenyl group, Substituted or unsubstituted triphenylmethyl group, substituted or unsubstituted terphenyl group, substituted or unsubstituted biphenylene group, substituted or unsubstituted terphenylene group, substituted or unsubstituted quarterphenylene group, substituted or unsubstituted 2-phenyl-2-(phenylthio)ethyl group, substituted or unsubstituted 2,2-diphenylpropane group, substituted or unsubstituted diphenylmethane group, substituted or unsubstituted cumylphenyl group, substituted or unsubstituted bisphenol F group, Substituted bi
  • the monomer having two or more phenyl groups may be a di(meth)acrylate represented by the following general formula (5).
  • R 5 and R 9 are each independently hydrogen or a methyl group
  • R 6 and R 8 are each independently a substituted or unsubstituted linear chain having 1 to 10 carbon atoms.
  • R 7 is a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a substituted or unsubstituted two or more phenyl group. It is a heteroatom-containing hydrocarbon group including a phenyl group.
  • the hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or the heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups includes two or more substituted or unsubstituted phenyl groups.
  • a phenyl group is not fused, a single bond, an oxygen atom, a sulfur atom, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, an alkylene group having 3 to 6 carbon atoms substituted or unsubstituted with a hetero atom, It means a group connected by an ethenylene group, an ethynylene group, or a carbonyl group.
  • the hydrocarbon group is a substituted or unsubstituted biphenylene group, a substituted or unsubstituted triphenylmethylene group, a substituted or unsubstituted terphenylene group, a substituted or unsubstituted quarterphenylene group, a 2-phenyl-2- It may include, but is not limited to, a (phenylthio)ethylene group, a 2,2-diphenylpropylene group, a diphenylmethylene group, and the like.
  • a and b are each an integer of 0 to 2
  • a+b is an integer of 1 to 4
  • a+b is an integer of 1 or 2.
  • the weight average molecular weight of the monomer having two or more substituted or unsubstituted phenyl groups is preferably within the range of 100 to 1000 g/mol, more preferably within the range of 130 to 700 g/mol, and 150 to 600 g It is particularly preferable that the amount is within the range of /mol. By setting it within the above range, a sealing film with more excellent transmittance can be provided.
  • the photopolymerizable monomer (B) having an aromatic hydrocarbon group is 5 to 45% by mass based on the total mass of the photopolymerizable monomers (photopolymerizable monomer (A) and photopolymerizable monomer (B)).
  • the content is preferably within the range of 10 to 40% by mass, and more preferably 10 to 40% by mass. By setting it within the above range, the viscosity becomes suitable for forming a sealing film.
  • photopolymerizable monomers (A) and (B) include monomers listed in Examples described later. Further, preferred combinations of photopolymerizable monomers in the present invention are as described in the Examples below.
  • the photopolymerization initiator is not particularly limited as long as it is a normal photopolymerization initiator that can perform a photopolymerization reaction.
  • the photopolymerization initiator may include, for example, a triazine type, an acetophenone type, a benzophenone type, a thioxanthone type, a benzoin type, a phosphorus type, an oxime type, or a mixture thereof.
  • Triazine-based initiators include 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis(trichloromethyl)-s-triazine, 2-(3',4'-dimethoxystyryl)-4 , 6-bis(trichloromethyl)-s-triazine, 2-(4'-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(p-methoxyphenyl)-4,6- Bis(trichloromethyl)-s-triazine, 2-(p-tolyl)-4,6-bis(trichloromethyl)-s-triazine, 2-biphenyl-4,6-bis(trichloromethyl)-s-triazine, Bis(trichloromethyl)-6-styryl-s-triazine, 2-(naphth-1-yl)-4,6-bis(trichloromethyl)-
  • Acetophenone initiators include 2,2'-diethoxyacetophenone, 2,2'-dibutoxyacetophenone, 2-hydroxy-2-methylpropiophenone, pt-butyltrichloroacetophenone, pt-butyldichloroacetophenone , 4-chloroacetophenone, 2,2'-dichloro-4-phenoxyacetophenone, 2-methyl-1-(4-(methylthio)phenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino -1-(4-morpholinophenyl)-butan-1-one, and mixtures thereof.
  • Benzophenone initiators include benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4,4'-bis(dimethylamino)benzophenone, 4,4'-dichlorobenzophenone, 3 , 3'-dimethyl-2-methoxybenzophenone or a mixture thereof.
  • the thioxanthone initiator may be thioxanthone, 2-methylthioxanthone, isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2-chlorothioxanthone, or a mixture thereof.
  • the benzoin-based initiator may be benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl dimethyl ketal, or a mixture thereof.
  • the phosphorus initiator may be bisbenzoylphenylphosphine oxide, benzoyldiphenylphosphine oxide, or a mixture thereof.
  • Oxime systems include 2-(o-benzoyloxime)-1-[4-(phenylthio)phenyl]-1,2-octanedione and 1-(o-acetyloxime)-1-[9-ethyl-6-( 2-methylbenzoyl)-9H-carbazol-3-yl]ethanone, or a mixture thereof.
  • the photopolymerization initiator is contained in the sealing composition of the present invention in an amount of about 0.1 to 20 parts by mass based on 100 parts by mass of the photopolymerizable monomer and photoinitiator. Preferably. By setting it within the above range, photopolymerization can sufficiently occur during exposure, and it is possible to prevent transmittance from decreasing due to unreacted initiator remaining after photopolymerization.
  • the photopolymerization initiator is preferably contained in an amount of 0.5 to 10 parts by weight, more specifically 1 to 5 parts by weight.
  • the photopolymerization initiator is preferably contained in the sealing composition of the present invention in an amount of 0.1 to 10% by mass based on solid content, more preferably 0.1% by mass. It is within the range of ⁇ 5% by mass. By setting it within the above range, photopolymerization can sufficiently occur, and it is possible to prevent the transmittance from decreasing due to the remaining unreacted initiator.
  • a photoacid generator or photopolymerization initiator such as a carbazole type, diketone type, sulfonium type, iodonium type, diazo type, or biimidazole type may be used.
  • the encapsulating composition of the present invention may contain other components including an antioxidant, a heat stabilizer, a photosensitizer, a dispersant, a thermal crosslinking agent, and a surfactant within the range where the effects of the present invention can be obtained. It may further contain. Only one kind of these components may be contained in the sealing composition of the present invention, or two or more kinds thereof may be contained in the sealing composition of the present invention.
  • the antioxidant can improve the thermal stability of the sealing layer.
  • the antioxidant may include one or more selected from the group consisting of phenol, quinone, amine, and phosphite, but is not limited thereto.
  • examples of antioxidants include tetrakis[methylene(3,5-di-t-butyl-4-hydroxyhydrocinnamate)]methane, tris(2,4-di-tert-butylphenyl)phosphite, etc. be able to.
  • the antioxidant may be contained in the sealing composition in an amount of 0.01 to 3 parts by mass based on a total of 100 parts by mass of the photopolymerizable monomer and the photopolymerization initiator. It is preferably contained in a range of 0.01 to 1 part by mass. By setting it within the above range, excellent thermal stability can be exhibited.
  • the heat stabilizer is contained in the sealing composition and suppresses the change in viscosity of the sealing composition at room temperature, and any ordinary heat stabilizer can be used without any restriction.
  • a heat stabilizer a sterically hindered phenolic heat stabilizer may be used, specifically poly(di-cyclopentadiene-co-p-cresol), octadecyl-3 -(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, 2,6-di-tert-butyl-4-methylphenol, 2,2'-methano-bi(4-methyl-6-tert) -butyl-phenol), 6,6'-di-tert-butyl-2,2'-thiodi-p-cresol, tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, Triethylene glycol-bis(3-tert-butyl-4-hydroxy-5-methylphenyl), 4,
  • the heat stabilizer is present in the sealing composition in an amount of 2000 ppm or less, preferably in the range of 0.01 to 2000 ppm, based on the solid content of the total of the photopolymerizable monomer and the photopolymerization initiator. More preferably, the content is in the range of 100 to 1000 ppm. By setting it within the above range, the heat stabilizer can further improve the storage stability and processability of the sealing composition in a liquid state.
  • the photosensitizer has the function of transferring the absorbed light energy to the photopolymerization initiator, so even if the photopolymerization initiator used does not have absorption corresponding to the light from the light source, it will not have the original photopolymerizability. It is a compound that can have an initiator function.
  • photosensitizers include anthracene derivatives such as 9,10-dibutoxyanthracene; benzoin derivatives such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; Benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3',4,4'-tetra(t-butylperoxycarbonyl)benzophenone, 2,4 , 6-trimethylbenzophenone, 4-benzoyl-N,N-dimethyl-N-[2-(1-oxo-2-propenyloxy)ethyl]benzenemethanaminium bromide, (4-benzoylbenzyl)trimethylammonium chloride, etc.
  • anthracene derivatives such as 9,10-d
  • Benzophenone derivative 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-(3-dimethylamino-2-hydroxy)-3,4- Examples include compounds such as thioxanthone derivatives such as dimethyl-9Hthioxanthon-9-one mesochloride; Among these, it is preferable to use anthracene derivatives, benzoin derivatives, benzophenone derivatives, anthraquinone derivatives, and thioxanthone derivatives.
  • the ultraviolet rays irradiated to cure the sealing composition of the present invention can be any known means, and are not particularly limited as long as they are cured by irradiating ultraviolet rays within the range of 200 to 400 nm.
  • a 395 nm LED is preferably used from the viewpoint of preventing deterioration of the electronic device.
  • the environment for irradiating ultraviolet rays is not particularly limited as long as the sealing composition is cured by any known means, and is not particularly limited as long as it is cured by irradiating ultraviolet rays.
  • the irradiation is performed in an inert gas environment from the viewpoint of preventing deterioration of the electronic device and preventing the influence of oxygen from inhibiting curing.
  • the viscosity of the sealing composition of the present invention is preferably within the range of 3 to 30 mPa ⁇ s from the viewpoint of further improving ejection properties from an inkjet head.
  • the surface tension is preferably 15 mN/m or more and less than 45 mN/m from the viewpoint of further improving the ejection performance from the inkjet head.
  • the viscosity of the sealing composition of the present invention can be determined by measuring the temperature change in the dynamic viscoelasticity of the sealing composition using, for example, various rheometers. In the present invention, these viscosities are values obtained by the following method.
  • the sealing composition of the present invention is set in a stress-controlled rheometer Physica MCR300 (cone plate diameter: 75 mm, cone angle: 1.0°) manufactured by Anton Paar. Next, the sealing composition was heated to 100° C., and the sealing composition was cooled to 20° C. under the following conditions: a temperature decrease rate of 0.1° C./s, a strain of 5%, and an angular frequency of 10 radian/s. to obtain a temperature change curve of dynamic viscoelasticity.
  • the sealing composition of the present invention may contain pigment particles. From the viewpoint of further improving ejection properties from an inkjet head, when the sealing composition of the present invention contains a pigment, the average particle diameter of the pigment particles is within the range of 0.08 to 0.5 ⁇ m. The maximum particle size is preferably within the range of 0.3 to 10 ⁇ m.
  • the average particle diameter of pigment particles in the present invention means a value determined by a dynamic light scattering method using Datasizer Nano ZSP, manufactured by Malvern. Note that the sealing composition containing a coloring material has a high concentration and does not allow light to pass through this measuring device, so the sealing composition is diluted 200 times before measurement.
  • the measurement temperature is room temperature (25°C).
  • the sealing composition of the present invention is an Ohnesolge expressed by the following formula 1, which is expressed by the density ⁇ , the surface tension ⁇ of the sealing composition, the viscosity ⁇ of the sealing composition, and the nozzle diameter D0 . It is preferable that the number (Oh) is within the range of 0.1 to 1 from the viewpoint of inkjet ejection performance and stabilization of droplets during ink flight.
  • the encapsulating composition of the present invention prefferably to provide a cured polymer having a Tg (glass transition temperature) of 80° C. or higher in the polymerized film.
  • the Tg of the film after polymerization is preferably 80° C. or higher from the viewpoint of ensuring stability in the electronic device formation process, driving temperature, and reliability test.
  • the electronic device sealing film forming method of the present invention is a method of forming a sealing film using the above-described composition for electronic device sealing of the present invention, wherein a first sealing film is formed on the electronic device by a vapor phase method.
  • the method includes a step of forming a sealing layer, and a step of forming a second sealing layer by applying the electronic device sealing composition on the first sealing layer. Further, it is preferable to include a step of forming a third sealing layer on the second sealing layer by a vapor phase method, since the sealing performance of the electronic device can be further improved.
  • the first sealing layer is formed on the electronic device by a vapor phase method.
  • Gas phase methods include sputtering methods (for example, reactive sputtering methods such as magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotating magnetron sputtering, etc.), vapor deposition methods (for example, resistance heating evaporation, electron beam evaporation, ion beam evaporation, plasma-assisted deposition, etc.), thermal CVD, catalytic chemical vapor deposition (Cat-CVD), capacitively coupled plasma CVD (CCP-CVD), optical CVD, plasma CVD (PECVD), epitaxial growth method, and chemical vapor deposition method such as atomic layer deposition (ALD).
  • sputtering methods for example, reactive sputtering methods such as magnetron cathode sputtering, flat plate magnetron sputtering, bipolar
  • the first sealing layer contains silicon nitride (SiNx), silicon oxynitride (SiNOx), or silicon oxide (SiOx).
  • SiNx silicon nitride
  • SiNOx silicon oxynitride
  • SiOx silicon oxide
  • the pressure inside the chamber is reduced, and raw material gases such as silane (SiH 4 ), ammonia (NH 3 ), and hydrogen (H 2 ) are heated and supplied into the chamber.
  • a method of forming The thickness of the first sealing layer is, for example, preferably within the range of 10 to 1000 nm, more preferably within the range of 100 to 500 nm.
  • a second sealing layer is formed by applying the above-described sealing composition of the present invention on the first sealing layer. Specifically, the sealing composition is coated on the first sealing layer (coating step), and the resulting coating film is modified by irradiation with vacuum ultraviolet rays in a nitrogen atmosphere. May have.
  • any suitable method can be used to apply the sealing composition, such as spin coating, roll coating, flow coating, inkjet coating, spray coating, printing, and dip coating. , a casting film forming method, a bar coating method, a gravure printing method, and the like.
  • it is preferable to use the inkjet method because it allows on-demand fine patterning, which is required when sealing electronic devices such as organic EL elements.
  • Drop-on-demand methods include electro-mechanical conversion methods (e.g., single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.), electro-thermal conversion methods (e.g., thermal Ink jet type, bubble jet (registered trademark) type, etc.), electrostatic suction type (eg, electric field control type, slit jet type, etc.), and discharge type (eg, spark jet type, etc.).
  • electro-mechanical conversion methods e.g., single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.
  • electro-thermal conversion methods e.g., thermal Ink jet type, bubble jet (registered trademark) type, etc.
  • electrostatic suction type eg, electric field control type, slit jet type, etc.
  • discharge type eg, spark jet type, etc.
  • an electro-mechanical conversion type head or an electro-thermal conversion type head it is preferable to use an electro-mechanical conversion type head or an electro-thermal conversion type head.
  • a method of dropping droplets (for example, a coating liquid) using an inkjet method is sometimes referred to as an "inkjet method.”
  • the sealing composition When applying the sealing composition, it is preferable to apply it under a nitrogen atmosphere.
  • the modification treatment step may include, after the coating step, a step of irradiating the obtained coating film with vacuum ultraviolet rays in a nitrogen atmosphere to perform modification treatment.
  • the modification treatment refers to a conversion reaction of polysilazane to silicon oxide or silicon oxynitride.
  • the reforming treatment is similarly performed in a nitrogen atmosphere such as in a glove box or under reduced pressure.
  • a known method based on a conversion reaction of polysilazane can be selected.
  • a conversion reaction using plasma, ozone, or ultraviolet light which allows the conversion reaction to occur at a low temperature, is preferred. Conventionally known methods can be used for plasma and ozone.
  • it is preferable to form the second sealing layer according to the present invention by providing the coating film and performing a modification treatment by irradiating vacuum ultraviolet light (also referred to as VUV) with a wavelength of 200 nm or less. .
  • VUV vacuum ultraviolet light
  • the thickness of the second sealing layer is preferably within the range of 0.5 to 20 ⁇ m, more preferably within the range of 3 to 10 ⁇ m.
  • the entire layer may be a modified layer, but the thickness of the modified layer treated with modification is preferably within the range of 1 to 50 nm, and preferably 1 to 30 nm. More preferably within this range.
  • the illuminance of the vacuum ultraviolet rays on the coating film surface that the coating film receives is preferably within the range of 30 to 200 mW/cm 2 , and 50 to 160 mW/cm 2 It is more preferable that it be within the range of .
  • the modification efficiency can be sufficiently improved, and if it is 200 mW/cm 2 or less, the incidence of damage to the coating film can be extremely suppressed, and it can also cause damage to the base material. This is preferable because it can also reduce damage to.
  • the amount of energy irradiated with vacuum ultraviolet rays on the coated film surface is preferably within the range of 1 to 10 J/cm 2 , and from the viewpoint of barrier properties and moist heat resistance to maintain desiccant function, More preferably, it is within the range of 7 J/cm 2 .
  • a rare gas excimer lamp is preferably used as the vacuum ultraviolet light source. Since vacuum ultraviolet light is absorbed by oxygen, the efficiency in the vacuum ultraviolet irradiation process tends to decrease, so it is preferable to perform vacuum ultraviolet light irradiation in a state where the oxygen concentration is as low as possible. That is, the oxygen concentration during vacuum ultraviolet light irradiation is preferably within the range of 10 to 10,000 ppm, more preferably within the range of 50 to 5,000 ppm, still more preferably within the range of 80 to 4,500 ppm, and most preferably 100 to 1,000 ppm. is within the range of
  • Modification treatment can also be performed in combination with heat treatment.
  • the heating conditions are preferably in the range of 50 to 300°C, more preferably in the range of 60 to 150°C, preferably for 1 second to 60 minutes, more preferably for 10 seconds to 10 minutes, combined with heat treatment. By doing so, the dehydration condensation reaction during modification can be promoted and a modified product can be formed more efficiently.
  • Examples of heat treatment include: heating the coating film by heat conduction by bringing the substrate into contact with a heating element such as a heat block; heating the atmosphere with an external heater such as a resistance wire; and heating in an infrared region such as an IR heater. Examples include, but are not particularly limited to, methods using light. Further, any method that can maintain the smoothness of the coating film containing the silicon compound may be selected as appropriate.
  • a third sealing layer is formed on the second sealing layer by a vapor phase method.
  • gas phase method similar to the gas phase method used in the first sealing layer forming step, sputtering methods (for example, magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotating magnetron sputtering, etc.) are used.
  • the third sealing layer contains silicon nitride (SiNx), silicon oxynitride (SiNOx), or silicon oxide (SiOx).
  • the third sealing layer As a specific example of forming the third sealing layer, the pressure inside the chamber is reduced, and raw material gases such as silane (SiH 4 ), ammonia (NH 3 ), and hydrogen (H 2 ) are heated and supplied into the chamber.
  • raw material gases such as silane (SiH 4 ), ammonia (NH 3 ), and hydrogen (H 2 ) are heated and supplied into the chamber.
  • a method of forming The thickness of the third sealing layer is, for example, preferably within the range of 10 to 1000 nm, more preferably within the range of 100 to 500 nm.
  • a conductive film for a touch sensor may be further formed.
  • the conductive film may be, for example, a metal compound film such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), as well as a graphene film or a metal nanowire film (such as silver nanowire or copper nanowire film) that has excellent flexibility.
  • a film containing wires a metal nanoparticle film (for example, a film containing silver nanoparticles or copper nanoparticles).
  • it can be constructed of a laminated film of multiple metals such as Al film/Ti film/Al film, for example.
  • the electronic device sealing film of the present invention is an electronic device sealing film that seals an electronic device, and includes a first sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride, and the electronic device sealing film of the present invention as described above. and a second sealing layer using a device sealing composition.
  • the electronic device sealing film of the present invention is formed by the electronic device sealing film forming method described above. That is, the second sealing layer is formed using the electronic device sealing composition of the present invention described above.
  • the electronic device sealing film of the present invention further includes a third sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride on the second sealing layer.
  • the first sealing layer is a layer formed on the electronic device by the above-mentioned vapor phase method. Specifically, it contains silicon nitride, silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride.
  • the second sealing layer is provided adjacent to the first sealing layer, and is formed by applying the sealing composition on the first sealing layer. Therefore, the second sealing layer contains a polymer made of the specific photopolymerizable monomer contained in the sealing composition.
  • Methods for detecting that the second sealing layer contains the polymer include various conventionally known analytical methods, such as chromatography, infrared spectroscopy, ultraviolet/visible spectroscopy, nuclear magnetic resonance analysis, Line diffraction, mass spectrometry, X-ray photoelectron spectroscopy, etc. can be used.
  • the content of the polymer in the second sealing layer is preferably in the range of 85 to 100% by mass, more preferably in the range of 90 to 95% by mass.
  • the third sealing layer is a layer that is provided adjacent to the second sealing layer and is formed by the above-mentioned vapor phase method. Specifically, like the first sealing layer, it contains silicon nitride, silicon oxide (silicon monoxide, silicon dioxide, etc.), or silicon oxynitride.
  • Examples of electronic devices to be sealed include organic EL elements, LED elements, liquid crystal display elements (LCD), thin film transistors, touch panels, and electronic paper. , solar cells (PV), and the like. From the viewpoint that the effects of the present invention can be obtained more efficiently, organic EL elements, solar cells, or LED elements are preferable, and organic EL elements are particularly preferable.
  • the organic EL element employed as the electronic device according to the present invention may be of a bottom emission type, that is, one that extracts light from the transparent substrate side.
  • the bottom emission type is constructed by laminating, in this order, a transparent electrode serving as a cathode, a light emitting functional layer, and a counter electrode serving as an anode on a transparent base material.
  • the organic EL element according to the present invention may be of a top emission type, that is, the organic EL element may be of a top emission type, in which light is extracted from the side of the transparent electrode serving as the cathode, which is opposite to the base material.
  • the top emission type has a configuration in which a counter electrode that serves as an anode is provided on the base material side, and a light emitting functional layer and a transparent electrode that serves as a cathode are laminated in this order on the surface of this counter electrode.
  • the intermediate layer may be a charge generation layer or may have a multi-photon unit configuration.
  • organic EL elements applicable to the present invention, see, for example, JP-A No. 2013-157634, JP-A No. 2013-168552, JP-A No. 2013-177361, JP-A No. 2013-187211, and JP-A No. 2013-187211.
  • Examples include configurations described in publications such as Japanese Patent Application Publication No. 2014-017494.
  • a base material (hereinafter also referred to as a support substrate, substrate, substrate, support, etc.) that can be used in the organic EL element, glass or a resin film is preferably used, and flexibility is required.
  • the film is a resin film, it is preferable to use a resin film.
  • it may be transparent or opaque.
  • the base material is preferably transparent.
  • Preferred resins include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, and cellulose acylate resin.
  • base materials containing thermoplastic resins such as polyester resins and acryloyl compounds. These resins can be used alone or in combination of two or more.
  • the base material is preferably made of a heat-resistant material. Specifically, a base material having a linear expansion coefficient of 15 ppm/K or more and 100 ppm/K or less and a glass transition temperature (Tg) of 100° C. or more and 300° C. or less is used.
  • Tg glass transition temperature
  • the base material satisfies the requirements for use in electronic components and as a laminated film for displays. That is, when using the sealing film of the present invention for these uses, the base material may be exposed to a process at 150° C. or higher.
  • the linear expansion coefficient of the base material exceeds 100 ppm/K, the dimensions of the base material will not be stable when it is passed through the process at the above-mentioned temperature, and the barrier performance will deteriorate due to thermal expansion and contraction. , or the problem of not being able to withstand a thermal process is likely to occur. If it is less than 15 ppm/K, the film may break like glass and its flexibility may deteriorate.
  • thermoplastic resins that can be used as the base material include polyethylene terephthalate (PET: 70°C), polyethylene naphthalate (PEN: 120°C), polycarbonate (PC: 140°C), alicyclic resins, etc.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • alicyclic resins etc.
  • Polyolefin for example, Zeonor (registered trademark) 1600 manufactured by Nippon Zeon Co., Ltd.: 160°C
  • PAr polyarylate
  • PES polyethersulfone
  • PSF polysulfone
  • 190°C cycloolefin copolymer
  • COC Compound described in JP-A No.
  • the base material is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105:1981, that is, using an integrating sphere type light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
  • the above-mentioned base material may be an unstretched film or a stretched film.
  • the base material can be manufactured by a conventionally known general method. Regarding the manufacturing method of these base materials, the matters described in paragraphs "0051" to "0055" of International Publication No. 2013/002026 can be adopted as appropriate.
  • the surface of the base material may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatments may be combined as necessary. You can leave it there. Further, the base material may be subjected to adhesion-facilitating treatment.
  • the base material may be a single layer or may have a laminated structure of two or more layers.
  • each base material may be of the same type or of different types.
  • the thickness of the base material according to the present invention is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m.
  • a film base material it is preferably a film base material with a gas barrier layer.
  • the gas barrier layer for the film base material may have an inorganic film, an organic film, or a hybrid film of both formed on the surface of the film base material, and is measured by a method based on JIS K 7129-1992.
  • it is preferably a barrier film with a water vapor permeability (25 ⁇ 0.5°C, relative humidity (90 ⁇ 2)% RH) of 0.01 g/m 2 ⁇ 24 h or less, and furthermore, JIS K 7126- High gas barrier with an oxygen permeability of 1 ⁇ 10 -3 mL/m 2.24 h ⁇ atm or less and a water vapor permeability of 1 ⁇ 10 ⁇ 3 g/m 2.24 h or less, measured using a method based on the 1987 Act. It is preferable that the film is a transparent film.
  • the material forming the gas barrier layer may be any material that has the function of suppressing the infiltration of substances that cause deterioration of elements, such as moisture and oxygen, such as silicon monoxide, silicon dioxide, silicon nitride, silicon oxynitride, Silicon carbide, silicon oxycarbide, etc. can be used.
  • the gas barrier layer is not particularly limited, but for example, in the case of an inorganic gas barrier layer such as silicon monoxide, silicon dioxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, etc., the inorganic material is sputtered (e.g.
  • magnetron cathode sputtering flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotating magnetron sputtering, etc.
  • vapor deposition methods e.g., resistance heating evaporation, electron beam evaporation, ion beam evaporation, plasma assisted deposition, etc.
  • thermal CVD method catalytic chemical vapor deposition (Cat-CVD), capacitively coupled plasma CVD (CCP-CVD), optical CVD, plasma CVD (PE-CVD), epitaxial growth, atomic layer deposition (ALD), reaction
  • Cat-CVD catalytic chemical vapor deposition
  • CCP-CVD capacitively coupled plasma CVD
  • PE-CVD plasma CVD
  • epitaxial growth atomic layer deposition (ALD)
  • reaction is preferable to form the layer by a chemical vapor deposition method such as a chemical sputtering method.
  • a coating solution containing an inorganic precursor such as polysilazane or tetraethyl orthosilicate (TEOS) is applied onto a support, and then a modification treatment is performed by irradiation with vacuum ultraviolet light to form an inorganic gas barrier layer.
  • the inorganic gas barrier layer can also be formed by film metallization techniques such as metal plating on a resin base material, or bonding a metal foil and a resin base material.
  • the inorganic gas barrier layer may include an organic layer containing an organic polymer. That is, the inorganic gas barrier layer may be a laminate of an inorganic layer containing an inorganic material and an organic layer.
  • the organic layer can be formed by, for example, applying an organic monomer or an organic oligomer to a resin substrate to form a layer, followed by polymerization using, for example, an electron beam device, a UV light source, an electrical discharge device, or other suitable device. It can also be formed by crosslinking, if necessary. It can also be formed, for example, by flash evaporation and vapor deposition of radiation crosslinkable organic monomers or organic oligomers followed by formation of polymers from organic monomers or organic oligomers. Coating efficiency can be improved by cooling the resin substrate.
  • Examples of methods for applying the organic monomer or organic oligomer include roll coating (eg, gravure roll coating), spray coating (eg, electrostatic spray coating), and the like.
  • Examples of the laminate of an inorganic layer and an organic layer include the laminates described in International Publication No. 2012/003198 and International Publication No. 2011/013341.
  • the thickness of each layer may be the same or different.
  • the thickness of the inorganic layer is preferably within the range of 3 to 1000 nm, more preferably within the range of 10 to 300 nm.
  • the thickness of the organic layer is preferably within the range of 100 nm to 100 ⁇ m, more preferably within the range of 1 to 50 ⁇ m.
  • the monomers used to prepare the encapsulating composition are as follows. Further, the dipole moment ( ⁇ ), dispersion term ( ⁇ D), polar term ( ⁇ P), hydrogen bond term ( ⁇ H), and molecular volume (V) for each monomer are shown in the table below.
  • the dipole moment ( ⁇ ) of each monomer was obtained from the information on the chemical structure of the monomer using Gaussian software manufactured by HULINKS. In the calculation, PM6, which is a semi-empirical method, was used.
  • the hydrogen bond term ( ⁇ H) and molecular volume (V) of each monomer are calculated from the chemical structure information using the Hansen Solubility Parameters in Practice ( HSPiP ) software. V (unit: cm 3 ⁇ mol ⁇ 1 ) was obtained.
  • HSPiP Hansen Solubility Parameters in Practice
  • sealing compositions 1 to 78 Each monomer was weighed in a nitrogen environment so that the types and parts by weight were shown in Tables III to VI below. Furthermore, 5 parts by mass of a phosphorus initiator (manufactured by IGM, Omnirad 819) as a photopolymerization initiator and 0.5 parts by mass of 2-isopropylthioxanthone (manufactured by Merck) as a sensitizer were placed in a brown bottle, and the mixture was heated at 65°C. The mixture was stirred on a hot plate for 3 hours to obtain each of the sealing compositions 1 to 78.
  • a phosphorus initiator manufactured by IGM, Omnirad 819
  • 2-isopropylthioxanthone manufactured by Merck
  • each sealing composition is calculated by the following formula. S1 and S2 were calculated and shown in the table below.
  • a coating film of the sealing composition having a thickness of 50 ⁇ m was produced on a releasable film substrate having dimensions of 100 mm ⁇ 100 mm in a nitrogen environment.
  • This coating film was irradiated with ultraviolet rays with a wavelength of 395 nm (MZ 240 mm 395 nm UVLED manufactured by IST) under a nitrogen environment at 300 mW/cm 2 conditions so that the cumulative light amount was 1.5 mJ/cm 2 . hardened.
  • the obtained cured film was peeled off from the release film, and then Ag films were formed on both sides by sputtering to prepare a measurement sample.
  • the impedance of the measurement sample was measured using an impedance measuring device (126096 manufactured by Solartron) at a frequency of 100 kHz and AC 0.1 (V), and the relative dielectric constant was measured. If the dielectric constant was 3.1 or less, it was passed, and if it was larger than 3.1, it was rejected.
  • the sealing composition was filled into an inkjet head (KM1024i-MHE-D manufactured by Konica Minolta) under a nitrogen environment. Ink was ejected from the inkjet head at a frequency of 5 kHz, and 256 nozzles were observed. The presence or absence of droplet ejection from the 256 nozzles and the volume of droplets when ejected were observed, the average value, maximum value, and minimum value of the volume were measured, and the volume fluctuation rate was calculated from the following formula.
  • Volume fluctuation rate (maximum value - average value) ⁇ average value x 100
  • Volume fluctuation rate (average value - minimum value) ⁇ average value x 100
  • Judgments were made based on the results of whether or not droplets were ejected and the rate of volume variation based on the following evaluation criteria. Ranks 3 and 4 were considered passed.
  • Rank 1 The number of nozzles that do not eject is 10 or more, or the number of nozzles that do not eject is less than 10, and the volume variation rate is 20% or more.
  • Rank 2 The number of nozzles that do not eject is less than 10, and the volume variation rate is 10% or more and less than 20%.
  • Rank 3 The number of nozzles that do not discharge is less than 10 and the volume variation rate is 5% or more and less than 10%.
  • Rank 4 The number of nozzles that do not discharge is less than 10 and the volume variation rate is less than 5%.
  • first electrode metal layer
  • the thickness of the first electrode formed was 150 nm. Note that the thickness of the first electrode is a value measured using a contact type surface profile measuring device (DECTAK).
  • the Al film was formed using a tungsten resistance heating crucible after reducing the pressure to a degree of vacuum of 1 ⁇ 10 ⁇ 4 Pa using a vacuum evaporation device.
  • each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the materials listed below constituting each layer of the organic functional layer in amounts optimal for device fabrication.
  • the crucible for vapor deposition was made of a resistance heating material made of molybdenum or tungsten.
  • capping layer After that, it is transferred to the original vacuum chamber, and ⁇ -NPD (4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl) is deposited on the second electrode. was deposited to a thickness of 40 nm at a deposition rate of 0.1 to 0.2 nm/sec to form a capping layer for the purpose of improving light extraction.
  • ⁇ -NPD 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl
  • first sealing layer As a first sealing layer covering the light emitting part of the organic EL element produced above, silicon nitride (SiNx) with a thickness of 500 nm (Vickers hardness HV900) was formed by plasma CVD method. was formed.
  • the sealing composition 1 prepared above was filled into an inkjet head (KM1024i-MHE-D manufactured by Konica Minolta) in a nitrogen environment. Then, the organic EL element formed up to the first sealing layer was coated with the sealing composition 1 using an inkjet method in a nitrogen environment so that the coating thickness was 10 ⁇ m. Thereafter, a second sealing layer was formed by irradiating ultraviolet light with a wavelength of 395 nm (MZ 240 mm 395 nm UVLED manufactured by IST) under 300 mW/cm 2 conditions so that the cumulative light amount was 1.5 J/cm 2 .
  • MZ 240 mm 395 nm UVLED manufactured by IST 395 nm
  • silicon nitride (SiNx) with a thickness of 500 nm (Vickers hardness HV900) is formed as a third sealing layer on the second sealing layer by plasma CVD method.
  • An organic EL element 1 for evaluation in which the first to third sealing layers were formed was obtained.
  • organic EL elements 2 to 78 were prepared in the same manner except that the sealing composition 1 in forming the second sealing layer was changed as shown in the table below. Created.
  • the encapsulating composition of the present invention has excellent ejection stability by inkjet method compared to the encapsulating composition of the comparative example, and can form a encapsulating film with a low dielectric constant. can be formed. Furthermore, it can be seen that the organic EL device sealed using the sealing composition of the present invention has excellent luminescent properties and crack resistance.
  • the present invention relates to an electronic device encapsulating composition, an electronic device encapsulating film, and an electronic device encapsulating composition capable of forming an electronic device encapsulating film that has excellent ejection stability, luminescent properties, and crack resistance and has a low dielectric constant by an inkjet method. It can be used in the method of forming a stop film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明の封止用組成物は、光重合性モノマーとして(メタ)アクリレートを含有し、光重合性モノマーの双極子モーメントμ[Debye]と分子体積V[cm3・mol-1]と水素結合項δH[MPa1/2]に基づき計算されるS1が0.10×10-2~1.10×10-2[Debye/(cm3・mol-1)]の範囲内、又は、S2が0.50×10-2~1.50×10-2[MPa1/2/(cm3・mol-1)]の範囲内である。 S1=(m1×μ1+m2×μ2+・・・)/(m1×V1+m2×V2+・・・) S2=(m1×δH1+m2×δH2+・・・)/(m1×V1+m2×V2+・・・) (mはモノマーのモル比率、m、μ、V及びδHの添字はモノマーの番号である。)

Description

電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法
 本発明は、電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法に関し、特に、インクジェット法による吐出安定性、発光特性及び耐クラック性に優れ、比誘電率が低い電子デバイス封止膜を形成することができる電子デバイス封止用組成物等に関する。
 電子デバイス、特に有機エレクトロルミネッセンスデバイス(以下、「有機ELデバイス」又は「有機EL素子」ともいう。)の発光層等の薄膜を形成するための有機EL薄膜用インク組成物が従来提案されている。例えば特許文献1には、インクジェット法以外の安価な印刷技術での製造を可能とする高粘度な有機ELインク組成物として、有機EL材料と、バンドギャップが3.5ev以上である液晶性化合物と、有機化合物からなる溶媒とを含有する組成物が開示されている。また、前記液晶性化合物は、分子の双極子モーメントが4.0Debye以下であることが好ましいことが開示されている。そして、このようなインク組成物によって、高粘度で、高効率、長寿命の発光特性を維持でき、様々な塗布法に広く適用することができるとされている。
 また、特許文献2には、エレクトロニクス分野で使用される樹脂組成物として、ガラス転移温度が120℃以上で、質量平均分子量が10万以上のビニル重合体からなるビニル重合体粉体を含有する硬化性樹脂組成物が開示されている。特に、ビニル単量体の単量体単位のモル体積が150cm/mol以上が好ましいことが開示されている。そして、このような技術により、硬化性樹脂組成物への分散性が良好で、短時間の加熱によって速やかに硬化性樹脂組成物をゲル状態にでき、また、線膨張係数を低くして、耐クラック性がよい硬化物を提供することができるとされている。
 一方で、電子デバイスは、用いられている有機材料や電極が水分により劣化することを防止するため、有機EL素子の表面を封止層により覆うことが提案されている。
 しかしながら、このような封止層は、有機EL素子の発光層への影響がなく発光特性に優れ、さらに硬化した後の耐クラック性に優れた封止用組成物であることが求められている。また、インクジェット法により形成する際に、ノズルから封止用組成物を安定して吐出することが望まれている。
 さらに、電子デバイスに電界を印加したときに分極しにくいことが好ましく、比誘電率が低いことも望まれている。
国際公開第2010/143431号 国際公開第2013/062123号
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、インクジェット法による吐出安定性、発光特性及び耐クラック性に優れ、また、比誘電率が低い電子デバイス封止膜を形成することができる電子デバイス封止用組成物を提供することである。また、当該電子デバイス封止用組成物を用いた電子デバイス封止膜及び電子デバイス封止膜の形成方法を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、光重合性モノマーとして(メタ)アクリレートを含有し、光重合性モノマーの双極子モーメント(μ)、SP値(水素結合項δH)及び分子体積(V)が特定の条件を満たすことによって、インクジェット法による吐出安定性、発光特性及び耐クラック性に優れ、低誘電な電子デバイス封止膜を形成することができることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.光重合性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物であって、
 前記光重合性モノマーとして、(メタ)アクリレートを含有し、
 前記光重合性モノマーの双極子モーメントμ[Debye]と分子体積V[cm・mol-1]と水素結合項δH[MPa1/2]に基づき計算される下記S1が0.10×10-2~1.10×10-2[Debye/(cm・mol-1)]の範囲内、又は、下記S2が0.50×10-2~1.50×10-2[MPa1/2/(cm・mol-1)]の範囲内である電子デバイス封止用組成物。
 S1=(m1×μ1+m2×μ2+・・・)/(m1×V1+m2×V2+・・・)
 S2=(m1×δH1+m2×δH2+・・・)/(m1×V1+m2×V2+・・・)
(前記式中、mはモノマーのモル比率であり、m、μ、V及びδHの添字はモノマーの番号である。)
 2.前記S1が、0.50×10-2~0.80×10-2[Debye/(cm・mol-1)]の範囲内、又は、前記S2が、0.50×10-2~1.00×10-2[MPa1/2/(cm・mol-1)]の範囲内である第1項に記載の電子デバイス封止用組成物。
 3.前記水素結合項δHが、1.9~3.5MPa1/2の範囲内である第1項に記載の電子デバイス封止用組成物。
 4.電子デバイスを封止する電子デバイス封止膜であって、
 窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、
 第1項から第3項までのいずれか一項に記載の電子デバイス封止用組成物を用いた第2封止層と、を有する電子デバイス封止膜。
 5.前記第2封止層上に、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第3封止層を有する第4項に記載の電子デバイス封止膜。
 6.第1項から第3項までのいずれか一項に記載の電子デバイス封止用組成物を用いて、電子デバイス封止膜を形成する方法であって、
 電子デバイス上に気相法により第1封止層を形成する工程と、
 前記第1封止層上に前記電子デバイス封止用組成物を塗布することにより第2封止層を形成する工程と、を備える電子デバイス封止膜形成方法。
 7.前記第2封止層上に、気相法により第3封止層を形成する工程を備える第6項に記載の電子デバイス封止膜形成方法。
 8.インクジェット法により前記第2封止層を形成する第6項に記載の電子デバイス封止膜形成方法。
 本発明の上記手段により、インクジェット法による吐出安定性、発光特性及び耐クラック性に優れ、また、比誘電率が低い電子デバイス封止膜を形成することができる電子デバイス封止用組成物を提供することである。また、当該電子デバイス封止用組成物を用いた電子デバイス封止膜及び電子デバイス封止膜の形成方法を提供することである。
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 本発明において、前記光重合性モノマーの双極子モーメントμ[Debye]と分子体積V[cm・mol-1]に基づき計算される前記S1は、分子の単位体積あたりの双極子モーメントであり、分子の大きさで規格化された双極子モーメントを示す値であり、水素結合項δH[MPa1/2]と分子体積V[cm・mol-1]に基づき計算される前記S2は、分子の単位体積あたりのδHであり、分子の大きさで規格化されたSP値の水素結合項成分δHを示す値である。
 (吐出安定性)
 インクジェットヘッドは微小な液滴を射出する。そのため、液の質量当たりの表面積が大きく、揮発性が高い材料、例えば、有機溶媒を用いると、インクジェットヘッドのノズル付近で揮発し粘度が上昇してしまう。
 これに対して、本発明では、光重合性モノマーとして(メタ)アクリレートを含有し、アクリル系のモノマーであるため、アクリル系の材料は揮発性が低いことからノズルから本発明の封止用組成物を安定して吐出することができる。さらに、前記S1又は前記S2が前記特定範囲内であることで、極性が適切な範囲となり、封止用組成物中のモノマー同士の相互作用が強くなり、より揮発性が低くなり、この点においても吐出安定性に優れると推察される。
 (発光特性)
 通常、電子デバイス(例えば、有機EL素子)を高温(例えば、85℃)で保存すると、封止層の成分が拡散し、拡散が速いと、封止している有機EL素子へ到達してしまう。
 そこで、有機EL素子に封止層の成分が到達しても、有機EL素子の有機層や電極へ影響を及ぼさなければ問題ない。したがって、拡散しやすいかどうか、また有機層や電極へ影響を及ぼすかどうかは、封止層(すなわち、封止用組成物)の成分の分子の大きさと極性に関係すると推察される。
 そこで、前記S1又は前記S2が前記特定範囲内であることで、発光特性に優れた電子デバイスが得られると推察される。
 (耐クラック性(折り曲げながら低温環境で保存したときの外観状態))
 低温環境では、封止用組成物により形成された封止層は熱収縮する。また、折り曲げた状態で低温環境に保存した場合は、さらに熱収縮することで、封止層に応力がかかり、剥離したり、クラックが入る。ここで、熱収縮は封止層中において分子がどのような構造で充填されているか、分子同士がどのように相互作用しているかが影響していると考えらえる。
 そこで、前記S1又は前記S2が前記特定の範囲内であることで、封止層(すなわち、封止用組成物)の成分の分子サイズと極性が適正な範囲となり、熱収縮の影響を減らせ、折り曲げながら低温環境で保存したときの外観状態(耐クラック性)が良好となると推察される。
 (低誘電)
 有機EL素子は電界を印加したときに分極しにくいことが好ましく、分極するかどうかは封止用組成物が硬化した後の封止膜の成分の分子の方向性と動きやすさに依存すると考えられる。そのため、より分子が動きにくいことが好ましい。
 そこで、前記S1又は前記S2が前記特定範囲内であることで、封止用組成物の成分の分子サイズ及び極性の比が適切な範囲とされ、分子間の相互作用が極大化し、分子が動きにくくなり、低誘電となる(比誘電率が低くなる。)と推察される。
 本発明の電子デバイス封止用組成物は、光重合性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物であって、前記光重合性モノマーとして、(メタ)アクリレートを含有し、前記光重合性モノマーの双極子モーメントμ[Debye]と分子体積V[cm・mol-1]と水素結合項δH[MPa1/2]に基づき計算される下記S1が0.10×10-2~1.10×10-2[Debye/(cm・mol-1)]の範囲内、又は、下記S2が0.50×10-2~1.50×10-2[MPa1/2/(cm・mol-1)]の範囲内である。
 S1=(m1×μ1+m2×μ2+・・・)/(m1×V1+m2×V2+・・・)
 S2=(m1×δH1+m2×δH2+・・・)/(m1×V1+m2×V2+・・・)
(前記式中、mはモノマーのモル比率であり、m、μ、V及びδHの添字はモノマーの番号である。)
 この特徴は、下記各実施形態に共通又は対応する技術的特徴である。
 本発明の実施態様としては、S1が0.50×10-2~0.80×10-2[Debye/(cm・mol-1)]の範囲内、又は、前記S2が、0.50×10-2~1.00×10-2[MPa1/2/(cm・mol-1)]の範囲内であることが、インクジェット法による吐出安定性、発光特性及び耐クラック性に優れ、また、比誘電率が低い電子デバイス封止膜を形成できる点で好ましい。
 また、前記水素結合項δHが、1.9~3.5MPa1/2の範囲内であることが、耐クラック性の点で好ましい。
 本発明の電子デバイス封止膜は、電子デバイスを封止する電子デバイス封止膜であって、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、前記電子デバイス封止用組成物を用いた第2封止層と、を有する。
 これにより、インクジェット法による吐出安定性、発光特性及び耐クラック性に優れ、また、比誘電率が低い電子デバイス封止膜とすることができる。
 前記第2封止層上に、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第3封止層を有することが、封止性能に優れる点で好ましい。
 本発明の電子デバイス封止膜形成方法は、前記電子デバイス封止用組成物を用いて、電子デバイス封止膜を形成する方法であって、電子デバイス上に気相法により第1封止層を形成する工程と、前記第1封止層上に前記電子デバイス封止用組成物を塗布することにより第2封止層を形成する工程と、を備える。
 これにより、インクジェット法による吐出安定性、発光特性及び耐クラック性に優れ、また、比誘電率が低い電子デバイス封止膜を形成することができる。
 前記第2封止層上に、気相法により第3封止層を形成する工程を備えることが、封止性能に優れる点で好ましい。
 また、インクジェット法により前記第2封止層を形成することが、高精度に層形成できる点で好ましい。
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
[本発明のインクジェット用の電子デバイス封止用組成物の概要]
 本発明のインクジェット用の電子デバイス封止用組成物(以下、単に「封止用組成物」ともいう。)は、光重合性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物であって、前記光重合性モノマーとして、(メタ)アクリレートを含有し、前記光重合性モノマーの双極子モーメントμ[Debye]と分子体積V[cm・mol-1]と水素結合項δH[MPa1/2]に基づき計算される下記S1が0.10×10-2~1.10×10-2[Debye/(cm・mol-1)]の範囲内、又は、下記S2が0.50×10-2~1.50×10-2[MPa1/2/(cm・mol-1)]の範囲内である。
 S1=(m1×μ1+m2×μ2+・・・)/(m1×V1+m2×V2+・・・)
 S2=(m1×δH1+m2×δH2+・・・)/(m1×V1+m2×V2+・・・)
(前記式中、mはモノマーのモル比率であり、m、μ、V及びδHの添字はモノマーの番号である。)
<双極子モーメント(μ)>
 前記双極子モーメント(μ)は、化学構造情報コンピューターソフトウエアを用いることによって計算できる。計算ソフトとしては、例えば、HULINKS社製の量子化学計算プログラム「Gaussian シリーズ」等が挙げられる。
 本発明における双極子モーメントは化学構造の情報から、HULINKS社製Gaussianソフトウェアを用いて、各モノマーの双極子モーメント(単位:Debye)を得た。計算においては、半経験的手法のPM6を用いた。
 各光重合性モノマーの双極子モーメント(μ)は、S1が0.10×10-2~1.10×10-2[Debye/(cm・mol-1)]の範囲内であれば特に制限はないが、0.5~1.7Debyeの範囲内であることが、光重合性モノマー同士の相溶性、光重合開始剤の溶解性の観点で好ましい。
<分子体積(V)>
 前記分子体積(V)は、単位モルあたりの分子体積を示す。モル体積は、化学構造情報からコンピューターソフトウエアを用いることによって計算できる。
 本発明における分子体積(V)は化学構造の情報から、Hansen Solubility Parameters in Practice(HSPiP)のソフトウェアを用いて、各モノマーの分子体積(V)(単位:cm・mol-1)を得た。
 各光重合性モノマーの分子体積(V)は、S1が0.10×10-2~1.10×10-2[Debye/(cm・mol-1)]又はS2が、0.50×10-2~1.50×10-2[MPa1/2/(cm・mol-1)]の範囲内であれば特に制限はされないが、150~600(cm・mol-1)の範囲内であることが、光重合性モノマーの粘度を調整する上で好ましい。
<水素結合項(δH)>
 前記水素結合項(δH)は、ハンセン溶解度パラメーターの水素結合項成分を示す。ハンセン溶解度パラメーターは、ヒルデブラントの溶解度パラメーターを分散力、双極子間力、水素結合力の3相互作用が働いているとして、それぞれ分散項成分δD、極性項成分δP、水素結合項成分δHの3成分に分割したものである。δHは、化学構造情報からコンピューターソフトウエアを用いることによって計算できる。
 本発明における水素結合項(δH)は、化学構造の情報から、Hansen Solubility Parameters in Practice(HSPiP)のソフトウェアを用いて、各モノマーの水素結合項(δH)(単位:Mpa1/2)を得た。
 各光重合性モノマーの水素結合項δHは、1.9~3.5MPa1/2の範囲内であることが好ましい。
 前記モノマーのモル比率mとは、全モノマーの合計モル数を1としたときの、各モノマーのモル比率をいう。
 光重合性モノマーの双極子モーメント(μ)と分子体積(V)により計算されるS1を0.10×10-2~1.10×10-2[Debye/(cm・mol-1)]の範囲内とするためには、例えば、双極子モーメントが低い構造で、分子体積が大きい構造の光重合性モノマーを採用することができる。
 双極子モーメントが低い構造としては、例えば、ヒドロキシ基が少ない構造、ヘテロ原子数が少ない構造、エステル基が少ない構造、脂環式炭化水素の構造、双極子モーメントを打ち消し合う対称性の高い構造を有することが挙げられる。
 分子体積が大きい構造としては、例えば、脂環式の構造、分子量の大きい構造、炭素鎖が8以上のアルキレン基を有する構造を有することが挙げられる。
 また、光重合性モノマーの分子体積(V)と水素結合項(δH)により計算されるS2が0.50×10-2~1.50×10-2[MPa1/2/(cm・mol-1)]の範囲内とするためには、例えば、水素結合性が低い構造で、分子体積が大きい構造の光重合性モノマーを採用することができる。
 水素結合性が低い構造としては、例えば、ヒドロキシ基が少ない構造、ヘテロ原子数が少ない構造、エステル基が少ない構造、メタクリレート構造、脂環式炭化水素の構造、フッ素を含む構造を有することが挙げられる。
 分子体積が大きい構造としては、例えば、脂環式の構造、分子量の大きい構造、炭素鎖が8以上のアルキレン基を有する構造を有することが挙げられる。
[電子デバイス封止用組成物の組成]
 本発明の電子デバイス封止用組成物は、光重合性モノマー及び光重合開始剤を含有する。
 光重合性モノマーとしては、(メタ)アクリレートを含有する。
 本明細書において、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの少なくとも一方を意味する。
 また、本発明における「電子デバイス」とは、電子のもつ運動エネルギー、位置エネルギーなどを利用して電気信号の発生、増幅、変換、又は制御などを行う素子をいう。例えば、発光ダイオード素子、有機エレクトロルミネッセンス素子、光電変換素子及びトランジスターなどの能動素子が挙げられる。また、本発明においては、他からの働きかけに対し、「抵抗する」「蓄える」などの受け身的な仕事をする受動素子、例えば、抵抗器・コンデンサーなども電子デバイスに含める。
 したがって、本発明の封止用組成物は、前記した電子デバイスを封止するための封止膜を形成するために用いられる。
<光重合性モノマー>
 「光重合性モノマー」とは、それ自体又は光重合開始剤が光を吸収し、活性なイオン又はラジカルを生成することによって重合(硬化)反応を行える光重合性モノマー(「光硬化性モノマー」ともいう。)を意味する。
 前記光重合性モノマーとしては、シリコン(Si)を含まない非-シリコン系モノマーを使用してもよく、例えば、C、H、O、N又はSから選ばれる元素のみからなるモノマーであってもよいが、これに限定されない。光重合性モノマーは、通常の合成方法で合成して使用してもよく、商業的に販売する製品を購入して使用してもよい。
 前記光重合性モノマーとしては、下記の芳香族炭化水素基を有さない光重合性モノマー(A)や、芳香族炭化水素基を有する光重合性モノマー(B)等が挙げられ、S1又はS2が前記した範囲を満たすように、これら光重合性モノマー(A)及び(B)から適宜選択する。
<芳香族炭化水素基を有さない光重合性モノマー(A)>
 前記芳香族炭化水素基を有さない光重合性モノマー(A)(以下、単に「光重合性モノマー(A)」ともいう。)は、芳香族炭化水素基を含んでおらず、光硬化官能基(光重合性官能基)として、ビニル基、アクリル基、及びメタクリル基のうちの一つ以上を1~20個、具体的に1~6個有するモノマーを含んでもよく、例えば、1~3個、1~2個、1個、又は2個含んでもよい。
 本発明において、前記光重合性モノマー(A)の重量平均分子量は、100~500g/molの範囲内であってもよく、130~400g/molの範囲内であってもよく、200~300g/molの範囲内であってもよい。前記モノマーの重量平均分子量の範囲内とすることにより、工程的により有利な効果を示すことができる。
 前記光重合性モノマー(A)は、光硬化官能基を有する単官能モノマー、多官能モノマー、又はこれらの混合物を含んでもよい。
 具体的に、前記光重合性モノマー(A)は、(メタ)アクリレートモノマーであってもよく、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、ヒドロキシ基及び炭素数1~20のアルキル基を有する不飽和カルボン酸エステル;炭素数1~20のアミノアルキル基を有する不飽和カルボン酸エステル;炭素数1~20の飽和又は不飽和カルボン酸のビニルエステル;シアン化ビニル化合物;不飽和アミド化合物;モノアルコール又は多価アルコールの単官能又は多官能(メタ)アクリレートなどになってもよい。
 前記「多価アルコール」は、ヒドロキシ基を2個以上有するアルコールであって、ヒドロキシ基を2個~20個、好ましくは2個~10個、より好ましくは2個~6個有するアルコールを意味し得る。
 一例において、光重合性モノマー(A)のうち、芳香族炭化水素基を有さない(メタ)アクリレートモノマーは、置換又は非置換のC1~C20(炭素数1~20)のアルキル基、置換又は非置換のC1~C20のアルキルシリル基、置換又は非置換のC3~C20のシクロアルキル基、置換又は非置換のC1~C20のアルキレン基、アミン基、エチレンオキシド基などを有するモノ(メタ)アクリレート、ジ(メタ)アクリレート、トリ(メタ)アクリレート、テトラ(メタ)アクリレートなどであってもよい。
 具体的に、芳香族炭化水素基を有さない(メタ)アクリレートモノマーは、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デカニル(メタ)アクリレート、ウンデカニル(メタ)アクリレート、ドデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレートなどの(メタ)アクリル酸エステルを含む不飽和カルボン酸エステル;2-アミノエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレートなどの不飽和カルボン酸アミノアルキルエステル;ビニルアセテートなどの飽和又は不飽和カルボン酸ビニルエステル;(メタ)アクリロニトリルなどのシアン化ビニル化合物;(メタ)アクリルアミドなどの不飽和アミド化合物;エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、オクタンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、ウンデカンジオールジ(メタ)アクリレート、ドデカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート又はこれらの混合物を含んでもよいが、これに限定されない。
 本発明の一例において、前記光重合性モノマー(A)は、芳香族基を含まない非-芳香族系であって、炭素数1~20のアルキル基を有するモノ(メタ)アクリレート、アミン基を有するモノ(メタ)アクリレート、置換又は非置換の炭素数1~20のアルキレン基を有するジ(メタ)アクリレート、エチレンオキシド基を有するジ(メタ)アクリレート、エチレンオキシド基を有するトリ(メタ)アクリレート、環状炭化アルキル基を有するモノ(メタ)アクリレート及びジ(メタ)アクリレートのうち少なくともいずれかを含んでもよい。
 置換又は非置換の炭素数1~20のアルキル基を有するモノ(メタ)アクリレートは、具体的に、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、アラキジル(メタ)アクリレート又はこれらの混合物であってもよいが、これに限定されない。
 アミン基を有するモノ(メタ)アクリレートは、2-アミノエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート又はこれらの混合物であってもよいが、これに限定されない。
 置換又は非置換の炭素数1~20のアルキレン基を有するジ(メタ)アクリレートは、例えば、炭素数1~20のアルキレン基を有するジ(メタ)アクリレートであってもよく、置換又は非置換の長鎖のアルキレン基を含む非-シリコン系ジ(メタ)アクリレートであってもよい。
 置換又は非置換の炭素数1~20のアルキレン基を有するジ(メタ)アクリレートは、例えば、オクタンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、ウンデカンジオールジ(メタ)アクリレート、ドデカンジオールジ(メタ)アクリレート又はこれらの混合物であってもよいが、これに限定されない。
 前記置換又は非置換の炭素数1~20のアルキレン基を有する(メタ)アクリレートを含む場合、本発明の封止用組成物は、光硬化率がさらに向上し、粘度が低くなり得る。
 エチレンオキシド基を有するジ(メタ)アクリレート又はトリ(メタ)アクリレートは、具体的に、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート又はこれらの混合物であってもよいが、これに限定されない。
 環状炭化アルキル基を有するモノ(メタ)アクリレート及びジ(メタ)アクリレートは、具体的に、イソボニル(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンテニル(メタ)アクリレ-トであってもよいが、これに限定されない。
 前記光重合性モノマー(A)モノマーは、光重合性モノマー(光重合性モノマー(A)及び光重合性モノマー(B))の総質量に対して55~95質量%の範囲内で含有されていることが好ましく、60~90質量%の範囲内で含有されていることがより好ましい。前記範囲内とすることにより、本発明の封止用組成物の粘度が電子デバイスの封止膜形成に適切となる。
<芳香族炭化水素基を有する光重合性モノマー(B)>
 前記芳香族炭化水素基を有する光重合性モノマー(B)(以下、単に「光重合性モノマー(B)」ともいう。)が、下記一般式(1)で表される構造を有する2個以上のフェニル基及びヘテロ原子を含み、かつ、前記光重合性モノマー(B)が、少なくともモノ(メタ)アクリレート又はジ(メタ)アクリレートを含む。
Figure JPOXMLDOC01-appb-C000001
[前記一般式(1)において、Pは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を表す。Z及びZは、それぞれ独立的に下記一般式(2)で表される構造を有する。a及びbは、それぞれ0~2の整数であり、a+bは、1~4の整数である。]
Figure JPOXMLDOC01-appb-C000002
[前記一般式(2)において、*は、Pの炭素に対する連結部である。Xは、単一結合、O又はSを表す。Yは、置換又は非置換の炭素数1~10の直鎖状アルキレン基、又は置換又は非置換の炭素数1~20のアルコキシ基を表す。Rは、水素原子又は炭素数1~5のアルキル基を表す。cは、0又は1の整数である。]
 前記一般式(1)において、Pは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を表す。
 前記置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換の2個以上のフェニル基が縮合されず、単一結合、酸素原子、硫黄原子、置換又は非置換の炭素数1~5のアルキル基、ヘテロ原子に置換又は非置換された炭素数3~6のアルキレン基、エテニレン基、エチニレン基又はカルボニル基によって連結されたものを意味する。
 例えば、前記2個以上のフェニル基を含む炭化水素基又は2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換のビフェニル基、置換又は非置換のトリフェニルメチル基、置換又は非置換のターフェニル基、置換又は非置換のビフェニレン基、置換又は非置換のターフェニレン基、置換又は非置換のクォーターフェニレン基、置換又は非置換の2-フェニル-2-(フェニルチオ)エチル基、置換又は非置換の2,2-ジフェニルプロパン基、置換又は非置換のジフェニルメタン基、置換又は非置換のクミルフェニル基、置換又は非置換のビスフェノールF基、置換又は非置換のビスフェノールA基、置換又は非置換のビフェニルオキシ基、置換又は非置換のターフェニルオキシ基、置換又は非置換のクォーターフェニルオキシ基、置換又は非置換のキンキフェニルオキシ基及びこれらの構造異性質体などを含んでもよいが、これに限定されない。
 前記置換又は非置換の2個以上のフェニル基を有するモノマーは、モノ(メタ)アクリレート、ジ(メタ)アクリレート又はこれらの混合物であってもよく、その例としては、4-(メタ)アクリルオキシ-2-ヒドロキシベンゾフェノン、エチル-3,3-ジフェニル(メタ)アクリレート、ベンゾイルオキシフェニル(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、4-クミルフェノキシエチルアクリレート、エトキシ化ビスフェニルフルオレンジアクリレート、2-フェニルフェノキシエチル(メタ)アクリレート、2,2’-フェニルフェノキシエチルジ(メタ)アクリレート、2-フェニルフェノキシプロピル(メタ)アクリレート、2,2’-フェニルフェノキシプロピルジ(メタ)アクリレート、2-フェニルフェノキシブチル(メタ)アクリレート、2,2’-フェニルフェノキシブチルジ(メタ)アクリレート、2-(3-フェニルフェニル)エチル(メタ)アクリレート、2-(4-ベンジルフェニル)エチル(メタ)アクリレート、2-フェニル-2-(フェニルチオ)エチル(メタ)アクリレート、2-(トリフェニルメチルオキシ)エチル(メタ)アクリレート、4-(トリフェニルメチルオキシ)ブチル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)ブチル(メタ)アクリレート、2-(ビフェニル-2-イルオキシ)ブチル(メタ)アクリレート、4-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、2-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、4-(ビフェニル-2-イルオキシ)エチル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)エチル(メタ)アクリレート、2-(4-ベンジルフェニル)エチル(メタ)アクリレート、4,4’-ジ(アクリロイルオキシメチル)ビフェニル、2,2’-ジ(2-アクリロイルオキシエトキシ)ビフェニル、これらの構造異性質体又はこれらの混合物を含んでもよいが、これに制限されるものではない。
 また、本発明で言及した(メタ)アクリレートは一例に過ぎなく、これに限定されるものではない。
 さらに、本発明は、構造異性質体関係にあるアクリレートを全て含む。例えば、本発明の一例として、2,2’-フェニルフェノキシエチルジ(メタ)アクリレートのみが言及されているとしても、本発明は、この構造異性質体に該当する3,2’-フェニルフェノキシエチルジ(メタ)アクリレート、3,3’-フェニルフェノキシエチルジ(メタ)アクリレートなどを全て含む。
 本発明の一例において、2個以上のフェニル基を有するモノマーは、下記一般式(4)で表されるモノ(メタ)アクリレートであってもよい。
Figure JPOXMLDOC01-appb-C000003
 前記一般式(4)において、Rは、水素又はメチル基で、Rは、置換又は非置換の炭素数1~10の直鎖状アルキレン基、又は置換又は非置換の炭素数1~20のアルコキシ基で、Rは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基である。
 例えば、前記置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換の2個以上のフェニル基が縮合されず、単一結合、酸素原子、硫黄原子、置換又は非置換の炭素数1~3のアルキル基、ヘテロ原子に置換又は非置換された炭素数3~6のアルキレン基、エテニレン基、エチニレン基又はカルボニル基によって連結されたものを意味する。
 例えば、前記置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換のビフェニル基、置換又は非置換のトリフェニルメチル基、置換又は非置換のターフェニル基、置換又は非置換のビフェニレン基、置換又は非置換のターフェニレン基、置換又は非置換のクォーターフェニレン基、置換又は非置換の2-フェニル-2-(フェニルチオ)エチル基、置換又は非置換の2,2-ジフェニルプロパン基、置換又は非置換のジフェニルメタン基、置換又は非置換のクミルフェニル基、置換又は非置換のビスフェノールF基、置換又は非置換のビスフェノールA基、置換又は非置換のビフェニルオキシ基、置換又は非置換のターフェニルオキシ基、置換又は非置換のクォーターフェニルオキシ基、置換又は非置換のキンキフェニルオキシ基などを含んでもよいが、これに限定されない。
 本発明の一例において、2個以上のフェニル基を有するモノマーは、下記の一般式(5)で表されるジ(メタ)アクリレートであってもよい。
Figure JPOXMLDOC01-appb-C000004
 前記一般式(5)において、R、Rは、それぞれ独立的に水素又はメチル基で、R、Rは、それぞれ独立的に置換又は非置換の炭素数1~10の直鎖状アルキレン基、又は置換又は非置換の炭素数1~20のアルコキシ基で、Rは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基である。
 例えば、前記置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換の2個以上のフェニル基が縮合されず、単一結合、酸素原子、硫黄原子、置換又は非置換の炭素数1~4のアルキル基、ヘテロ原子に置換又は非置換された炭素数3~6のアルキレン基、エテニレン基、エチニレン基又はカルボニル基によって連結されたものを意味する。
 例えば、前記炭化水素基は、置換又は非置換のビフェニレン基、置換又は非置換のトリフェニルメチレン基、置換又は非置換のターフェニレン基、置換又は非置換のクォーターフェニレン基、2-フェニル-2-(フェニルチオ)エチレン基、2,2-ジフェニルプロピレン基、ジフェニルメチレン基などを含んでもよいが、これに限定されない。
 前記一般式(1)において、a、bは、それぞれ0~2の整数で、a+bは、1~4の整数であり、一例において、a+bは、1又は2の整数である。
 前記置換又は非置換の2個以上のフェニル基を有するモノマーの重量平均分子量は、100~1000g/molの範囲内が好ましく、130~700g/molの範囲内であることがより好ましく、150~600g/molの範囲内であることが特に好ましい。
 前記範囲内とすることにより、透過率により優れた封止膜を提供することができる。
 前記芳香族炭化水素基を有する光重合性モノマー(B)は、前記光重合性モノマー(光重合性モノマー(A)及び光重合性モノマー(B))の総質量に対して5~45質量%の範囲内で含有されていることが好ましく、10~40質量%の範囲内で含有されていることがより好ましい。前記範囲内とすることにより、粘度が封止膜の形成に適切となる。
 なお、光重合性モノマー(A)及び(B)の具体例としては、前記したモノマー以外にも後述する実施例で挙げるモノマー等が挙げられる。また、本発明における光重合性モノマーとして好ましい組み合わせは後述する実施例に記載のとおりである。
<光重合開始剤>
 前記光重合開始剤は、光重合反応を行える通常の光重合開始剤であれば特に限定されない。
 光重合開始剤としては、例えば、トリアジン系、アセトフェノン系、ベンゾフェノン系、チオキサントン系、ベンゾイン系、リン系、オキシム系又はこれらの混合物を含んでもよい。
 トリアジン系開始剤は、2,4,6-トリクロロ-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ビフェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、ビス(トリクロロメチル)-6-スチリル-s-トリアジン、2-(ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-トリクロロメチル(ピペロニル)-6-トリアジン、2,4-(トリクロロメチル(4’-メトキシスチリル)-6-トリアジン又はこれらの混合物であってもよい。
 アセトフェノン系開始剤は、2,2’-ジエトキシアセトフェノン、2,2’-ジブトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルトリクロロアセトフェノン、p-t-ブチルジクロロアセトフェノン、4-クロロアセトフェノン、2,2’-ジクロロ-4-フェノキシアセトフェノン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、及びこれらの混合物であってもよい。
 ベンゾフェノン系開始剤は、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、3,3’-ジメチル-2-メトキシベンゾフェノン又はこれらの混合物であってもよい。
 チオキサントン系開始剤は、チオキサントン、2-メチルチオキサントン、イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロチオキサントン又はこれらの混合物であってもよい。
 ベンゾイン系開始剤は、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール又はこれらの混合物であってもよい。
 リン系開始剤は、ビスベンゾイルフェニルホスフィンオキシド、ベンゾイルジフェニルホスフィンオキシド又はこれらの混合物であってもよい。
 オキシム系は、2-(o-ベンゾイルオキシム)-1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン及び1-(o-アセチルオキシム)-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン、又はこれらの混合物であってもよい。
 前記光重合開始剤は、本発明の封止用組成物中に、前記光重合性モノマーと光重合開始剤の合計100質量部に対して約0.1~20質量部の範囲内含まれていることが好ましい。前記範囲内とすることにより、露光時に光重合が十分に起こり、光重合後、残った未反応開始剤によって透過率が低下することを防止することができる。
 具体的に、前記光重合開始剤は、0.5~10質量部、より具体的に1~5質量部の範囲内で含有されることが好ましい。
 また、前記光重合開始剤は、本発明の封止用用組成物中に、固形分を基準にして0.1~10質量%の範囲内で含有されること好ましく、より好ましくは0.1~5質量%の範囲内である。前記範囲内とすることにより、光重合が十分に起こり、残った未反応開始剤によって透過率が低下することを防止することができる。
 また、前記光重合開始剤の代わりに、カルバゾール系、ジケトン類、スルホニウム系、ヨードニウム系、ジアゾ系、ビイミダゾール系などの光酸発生剤又は光重合開始剤を使用してもよい。
<その他の添加剤>
 本発明の封止用組成物は、本発明の効果が得られる範囲において、酸化防止剤、熱安定化剤、光増感剤、分散剤、熱架橋剤及び界面活性剤を含むその他の成をさらに含んでいてもよい。これらの成分は、本発明の封止用組成物中に、一種のみが含まれていてもよく、二種類以上が含まれていてもよい。
 前記酸化防止剤は、封止層の熱的安定性を向上させることができる。酸化防止剤は、フェノール系、キノン系、アミン系及びホスファイト系からなる群から選ばれる1種以上を含んでもよいが、これらに制限されるものではない。例えば、酸化防止剤としては、テトラキス[メチレン(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナメート)]メタン、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイトなどを挙げることができる。
 前記酸化防止剤は、前記封止用組成物中に、前記光重合性モノマーと前記光重合開始剤の合計100質量部に対して0.01~3質量部の範囲内含有されていることが好ましく、0.01~1質量部の範囲内含有されていることがより好ましい。前記範囲内とすることにより、優れた熱安定性を示すことができる。
 前記熱安定化剤は、封止用組成物に含まれ、当該封止用組成物の常温での粘度変化を抑制するものであって、通常の熱安定化剤を制限なく使用可能である。
 例えば、熱安定化剤としては、立体障害のある(sterically hindered)フェノール性熱安定剤を使用してもよく、具体的に、ポリ(ジ-シクロペンタジエン-co-p-クレゾール)、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、2,6-ジ-tert-ブチル-4-メチルフェノール、2,2’-メタノ-ビ(4-メチル-6-tert-ブチル-フェノール)、6,6’-ジ-tert-ブチル-2,2’-チオジ-p-クレゾール、トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、トリエチレングリコール-ビス(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、3,3’-ビス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-N,N’-ヘキサメチレン-ジプロピオンアミド、ペンタエリスリトールテトラキス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、ステアリル-3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオネート、ペンタエリスリトールテトラキス1,3,5-トリス(2,6-ジ-メチル-3-ヒドロキシ-4-tert-ブチル-ベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレート-トリス(3,5-ジ-tert-ブチルヒドロキシフェニルプロピオネート)のうちの一つ以上を含んでもよいが、これに制限されない。
 前記熱安定化剤は、前記封止用組成物中に、固形分を基準にして前記光重合性モノマーと前記光重合開始剤の合計に対して2000ppm以下、好ましくは0.01~2000ppmの範囲内、より好ましくは100~1000ppmの範囲内含有されている。前記範囲内とすることにより、熱安定化剤は、封止用組成物の液状状態の貯蔵安定性と工程性をさらに良好にすることができる。
 前記光増感剤は、吸収した光エネルギーを光重合開始剤にエネルギー移動させる働きを有するため、使用する光重合開始剤に、光源からの光に対応した吸収がなくとも、本来の光重合性開始剤機能を持たせることができる化合物である。
 光増感剤としては、例えば、9,10-ジブトキシアントラセン等のアントラセン誘導体;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン誘導体;
 ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン誘導体;
 2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9Hチオキサントン-9-オンメソクロリド等のチオキサントン誘導体;などの化合物が挙げられる。なかでも、アントラセン誘導体、ベンゾイン誘導体、ベンゾフェノン誘導体、アントラキノン誘導体、チオキサントン誘導体を用いることが好ましい。
<紫外線硬化>
 本発明の封止用組成物を硬化するために照射する紫外線としては、公知の手段を使用することができ、200~400nmの範囲内で、紫外線を照射することで硬化すれば特に限定されない。好ましくは、電子デバイスの劣化を防ぐ観点で395nmのLEDを用いることが好ましい。
 紫外線を照射する環境は、封止用組成物が硬化すれば公知の手段を使うことができ、紫外線を照射することで硬化すれば特に限定されない。好ましくは、電子デバイスの劣化を防ぐ観点、酸素による硬化阻害の影響を防ぐ観点で、不活性ガス環境で照射するのが好ましい。特に窒素やアルゴンガス雰囲気下で照射することが好ましい。
<物性>
 本発明の封止用組成物の粘度は3~30mPa・sの範囲内であることが、インクジェットヘッドからの吐出性をより高める観点から好ましい。表面張力は、15mN/m以上45mN/m未満であることがインクジェットヘッドからの吐出性をより高める観点から好ましい。
 本発明の封止用組成物の粘度は、例えば各種レオメーターにより、封止用組成物の動的粘弾性の温度変化を測定することにより求めることができる。
 本発明において、これらの粘度は、以下の方法によって得られた値である。本発明の封止用組成物をストレス制御型レオメーターPhysica MCR300(コーンプレートの直径:75mm、コーン角:1.0°)、Anton Paar社製にセットする。次いで、前記封止用組成物を100℃に加熱し、降温速度0.1℃/s、歪み5%、角周波数10radian/sで、の条件で20℃まで前記封止用組成物を冷却して、動的粘弾性の温度変化曲線を得る。
 本発明の封止用組成物は顔料粒子を含んでいても良い。顔料粒子は、インクジェットヘッドからの吐出性をより高める観点からは、本発明の封止用組成物が顔料を含有するときの顔料粒子の平均粒径は0.08~0.5μmの範囲内であり、最大粒径は0.3~10μmの範囲内であることが好ましい。
 本発明における顔料粒子の平均粒径とは、データサイザーナノZSP、Malvern社製を使用して動的光散乱法によって求めた値を意味する。なお、着色材を含む封止用組成物は濃度が高く、この測定機器では光が透過しないので、封止用組成物を200倍で希釈してから測定する。測定温度は常温(25℃)とする。
 また、本発明の封止用組成物は、その密度ρ、前記封止用組成物の表面張力σ、前記封止用組成物の粘度μ、ノズル直径Dでされる下記式1に示すオーネゾルゲ数(Oh)が0.1~1の範囲内であることがインクジェットの吐出性、インクの飛翔時の液滴安定化の観点で好ましい。
Figure JPOXMLDOC01-appb-M000005
 本発明の封止用組成物を調製し、重合後の膜において、80℃又はそれよりも高いTg(ガラス転移点)を有する硬化ポリマーを提供することが好ましい。重合後の膜のTgは、電子デバイスの形成プロセス、駆動温度、信頼性試験における安定性確保の観点で、80℃以上であることが好ましい。
[電子デバイス封止膜形成方法]
 本発明の電子デバイス封止膜形成方法は、前記した本発明の電子デバイス封止用組成物を用いて、封止膜を形成する方法であって、電子デバイス上に気相法により第1封止層を形成する工程と、前記第1封止層上に前記電子デバイス封止用組成物を塗布することにより第2封止層を形成する工程と、を備える。
 また、前記第2封止層上に、気相法により第3封止層を形成する工程を備えることが、電子デバイスの封止性能をより高めることができる点で好ましい。
<第1封止層形成工程>
 第1封止層形成工程は、電子デバイス上に気相法により第1封止層を形成する。
 気相法としては、スパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、二極AC平板マグネトロンスパッタリング、二極AC回転マグネトロンスパッタリングなど、反応性スパッタ法を含む。)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PECVD)、エピタキシャル成長法、原子層成長法(ALD)等の化学蒸着法等が挙げられる。中でも、ALD法、CVD法により形成することが好ましい。
 第1封止層は、窒化ケイ素(SiNx)、酸窒化ケイ素(SiNOx)又は酸化ケイ素(SiOx)を含有する。
 第1封止層を形成する具体例としては、チャンバー内を減圧しておき、原料ガスとして、シラン(SiH)、アンモニア(NH)、水素(H)を加熱してチャンバー内に供給し形成する方法が挙げられる。
 第1封止層の厚さは、例えば、10~1000nmの範囲内であることが好ましく、100~500nmの範囲内であることがより好ましい。
<第2封止層形成工程>
 第2封止層形成工程は、前記第1封止層上に前記した本発明の封止用組成物を塗布することにより第2封止層を形成する。
 具体的には、前記第1封止層上に、前記封止用組成物を塗布し(塗布工程)、得られた塗布膜に窒素雰囲気下にて真空紫外線照射して改質処理する工程を有してもよい。
 (塗布工程)
 封止用組成物の塗布方法としては、任意の適切な方法を採用することができ、例えば、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。中でも、インクジェット法を用いることが有機EL素子などの電子デバイスを封止する際に求められる微細なパターニングをオンデマンドで行える点で好ましい。
 インクジェット方式としては、公知の方法を用いることができる。
 インクジェット方式は、大別するとドロップオンデマンド方式とコンティニュアス方式二つに分けられ、どちらも使用することができる。ドロップオンデマンド方式としては、電気-機械変換方式(例えば、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型、シェアードウォール型等)、電気-熱変換方式(例えば、サーマルインクジェット型、バブルジェット(登録商標)型等)、静電吸引方式(例えば、電界制御型、スリットジェット型等)及び放電方式(例えば、スパークジェット型等)等がある。インクジェットヘッドのコストや生産性の観点からは、電気-機械変換方式、又は電気-熱変換方式のヘッドを用いることが好ましい。なお、インクジェット方式により、液滴(例えば、塗布液)を滴下させる方法を「インクジェット法」と呼ぶ場合がある。
 前記封止用組成物を塗布する際には、窒素雰囲気下にて行うことが好ましい。
 (改質処理工程)
 前記改質処理工程では、塗布工程後、得られた塗布膜に窒素雰囲気下にて真空紫外線照射して改質処理する工程を有してもよい。
 改質処理とは、ポリシラザンの酸化ケイ素又は酸窒化ケイ素への転化反応をいう。改質処理も、同様に、グローブボックス内といった窒素雰囲気下や減圧下で行う。
 本発明における改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができる。本発明においては、低温で転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。プラズマやオゾンは従来公知の方法を用いることができる。本発明においては、上記塗布膜を設け、波長200nm以下の真空紫外光(VUVともいう。)を照射して改質処理することにより、本発明に係る第2封止層を形成することが好ましい。
 第2封止層の厚さは、0.5~20μmの範囲内が好ましく、より好ましくは3~10μmの範囲内である。
 当該第2封止層のうち、層全体が改質された層であってもよいが、改質処理された改質層の厚さは、1~50nmの範囲内が好ましく、1~30nmの範囲内がさらに好ましい。
 前記真空紫外線を照射して改質処理する工程において、塗布膜が受ける塗布膜面での該真空紫外線の照度は30~200mW/cmの範囲内であることが好ましく、50~160mW/cmの範囲内であることがより好ましい。真空紫外線の照度を30mW/cm以上とすることで、改質効率を十分に向上することができ、200mW/cm以下では、塗布膜への損傷発生率を極めて抑え、また、基材への損傷も低減させることができるため、好ましい。
 真空紫外線の照射は、塗布膜面における真空紫外線の照射エネルギー量は、1~10J/cmの範囲内であることが好ましく、デシカント機能を維持するためのバリア性及び湿熱耐性の観点から、3~7J/cmの範囲内であることがより好ましい。
 なお、真空紫外線の光源としては、希ガスエキシマランプが好ましく用いられる。真空紫外光は、酸素による吸収があるため真空紫外線照射工程での効率が低下しやすいことから、真空紫外光の照射は、可能な限り酸素濃度の低い状態で行うことが好ましい。すなわち、真空紫外光照射時の酸素濃度は、10~10000ppmの範囲内とすることが好ましく、より好ましくは50~5000ppmの範囲内、さらに好ましくは80~4500ppmの範囲内、最も好ましくは100~1000ppmの範囲内である。
 改質処理は、加熱処理と組み合わせて行うこともできる。加熱条件としては、好ましくは50~300℃の範囲内、より好ましくは60~150℃の範囲内の温度で、好ましくは1秒~60分間、より好ましくは10秒~10分間、加熱処理を併用することで、改質時の脱水縮合反応を促進し、より効率的に改質体を形成することができる。
 加熱処理としては、例えば、ヒートブロック等の発熱体に基材を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターのような赤外領域の光を用いた方法等が挙げられるが、特に限定されない。また、ケイ素化合物を含有する塗膜の平滑性を維持できる方法を適宜選択してよい。
<第3封止層形成工程>
 第3封止層形成工程は、前記第2封止層上に気相法により第3封止層を形成する。
 気相法としては、第1封止層形成工程で用いた気相法と同様に、スパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、二極AC平板マグネトロンスパッタリング、二極AC回転マグネトロンスパッタリングなど、反応性スパッタ法を含む。)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長法(ALD)等の化学蒸着法等が挙げられる。中でも、ALD法、CVD法により形成することが好ましい。
 第3封止層は、窒化ケイ素(SiNx)、酸窒化ケイ素(SiNOx)又は酸化ケイ素(SiOx)を含有する。
 第3封止層を形成する具体例としては、チャンバー内を減圧しておき、原料ガスとして、シラン(SiH)、アンモニア(NH)、水素(H)を加熱してチャンバー内に供給し形成する方法が挙げられる。
 第3封止層の厚さは、例えば、10~1000nmの範囲内であることが好ましく、100~500nmの範囲内であることがより好ましい。
 なお、前記したように封止膜形成後に、さらにタッチセンサー用の導電膜を形成してもよい。
 前記導電膜は、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の金属化合物膜のほか、フレキシブル性に優れた、グラフェン膜、金属ナノワイヤー膜(例えば、銀ナノワイヤー又は銅ナノワイヤーを含む膜)、金属ナノ粒子膜(例えば、銀ナノ粒子又は銅ナノ粒子を含む膜)で構成することができる。また、例えばAl膜/Ti膜/Al膜のような複数金属の積層膜で構成することができる。
[電子デバイス封止膜]
 本発明の電子デバイス封止膜は、電子デバイスを封止する電子デバイス封止膜であって、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、前記した本発明の電子デバイス封止用組成物を用いた第2封止層と、を有する。
 本発明の電子デバイス封止膜は、前記電子デバイス封止膜形成方法により形成される。すなわち、前記した本発明の電子デバイス封止用組成物を用いて第2封止層が形成される。
 また、本発明の電子デバイス封止膜は、前記第2封止層上に、さらに窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第3封止層を有することが好ましい。
<第1封止層>
 第1封止層は、電子デバイス上に前記した気相法により形成される層である。具体的には、窒化ケイ素、酸化ケイ素(一酸化ケイ素、二酸化ケイ素等)又は酸窒化ケイ素を含有する。
<第2封止層>
 第2封止層は、前記第1封止層に隣接して設けられ、前記第1封止層上に前記封止用組成物を塗布することにより形成される。
 したがって、第2封止層は、前記封止用組成物に含有される特定の光重合性モノマーからなる重合体を含有する。
 前記第2封止層が、前記重合体を含有することを検出する方法としては、従来公知の種々の分析法、例えばクロマトグラフィー、赤外線分光法、紫外・可視分光法、核磁気共鳴分析、X線回折法、及び質量分析、X線光電子分光法等を用いることができる。
 前記第2封止層における前記重合体の含有量は、85~100質量%の範囲内であることが好ましく、90~95質量%の範囲内であることがより好ましい。
<第3封止層>
 第3封止層は、前記第2封止層に隣接して設けられ、前記した気相法により形成される層である。具体的には、第1封止層と同様に窒化ケイ素、酸化ケイ素(一酸化ケイ素、二酸化ケイ素等)又は酸窒化ケイ素を含有する。
[電子デバイス]
 本発明の電子デバイス封止膜形成方法及び電子デバイス封止膜において、封止される電子デバイスとしては、例えば、有機EL素子、LED素子、液晶表示素子(LCD)、薄膜トランジスター、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、有機EL素子、太陽電池又はLED素子が好ましく、有機EL素子が特に好ましい。
<有機EL素子>
 本発明に係る電子デバイスとして採用される有機EL素子は、ボトムエミッション型、すなわち、透明基材側から光を取り出すようにしたものであってもよい。
 ボトムエミッション型は、具体的には、透明基材上に、カソードとなる透明電極、発光機能層、アノードとなる対向電極をこの順で積層することにより構成されている。
 また、本発明に係る有機EL素子は、トップエミッション型、すなわち、基材とは逆のカソードとなる透明電極側から光を取り出すようにしたものであってもよい。
 トップエミッション型は、具体的には、基材側にアノードとなる対向電極を設け、この表面に発光機能層、カソードとなる透明電極を順に積層した構成である。
 以下に、有機EL素子の構成の代表例を示す。
 (i)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
 (ii)陽極/正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層/陰極
 (iii)陽極/正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層/
陰極
 (iv)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 (v)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 (vi)陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 さらに、有機EL素子は、非発光性の中間層を有していても良い。中間層は電荷発生層であっても良く、マルチフォトンユニット構成であっても良い。
 本発明に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。
<基材>
 前記有機EL素子に用いることのできる基材(以下、支持基板、基体、基板、支持体等ともいう。)としては、具体的には、ガラス又は樹脂フィルムの適用が好ましく、フレキシブル性を要求される場合は、樹脂フィルムであることが好ましい。
 また、透明であっても不透明であってもよい。基材側から光を取り出す、いわゆるボトムエミッション型の場合には、基材は透明であることが好ましい。
 好ましい樹脂としては、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂を含む基材が挙げられる。該樹脂は、単独でも又は2種以上組み合わせても用いることができる。
 基材は、耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつガラス転移温度(Tg)が100℃以上300℃以下の基材が使用される。
 該基材は、電子部品用途、ディスプレイ用積層フィルムとしての必要条件を満たしている。すなわち、これらの用途に本発明の封止膜を用いる場合、基材は、150℃以上の工程に曝されることがある。この場合、基材の線膨張係数が100ppm/Kを超えると、前記のような温度の工程に流す際に基板寸法が安定せず、熱膨張及び収縮に伴い、遮断性性能が劣化する不都合や、又は熱工程に耐えられないという不具合が生じやすくなる。15ppm/K未満では、フィルムがガラスのように割れてしまいフレキシビリティが劣化する場合がある。
 基材のTgや線膨張係数は、添加剤などによって調整することができる。
 基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF-PC:特開2000-227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:特開2000-227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002-80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内温度はTgを示す)。
 本発明に係る電子デバイスは、有機EL素子等の電子デバイスであることから、基材は透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率及び散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。
 また、上記に挙げた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。当該基材は、従来公知の一般的な方法により製造することが可能である。これらの基材の製造方法については、国際公開第2013/002026号の段落「0051」~「0055」の記載された事項を適宜採用することができる。
 基材の表面は、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、又はプラズマ処理等を行っていてもよく、必要に応じて上記処理を組み合わせて行っていてもよい。また、基材には易接着処理を行ってもよい。
 該基材は、単層でもよいし2層以上の積層構造であってもよい。該基材が2層以上の積層構造である場合、各基材は同じ種類であってもよいし異なる種類であってもよい。
 本発明に係る基材の厚さ(2層以上の積層構造である場合はその総厚)は、10~200μmであることが好ましく、20~150μmであることがより好ましい。
 また、フィルム基材の場合は、ガスバリアー層付きフィルム基材であることが好ましい。
 前記フィルム基材用のガスバリアー層は、フィルム基材の表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/m・24h以下のバリアー性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/m・24h・atm以下、水蒸気透過度が、1×10-3g/m・24h以下の高ガスバリアー性フィルムであることが好ましい。
 前記ガスバリアー層を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、一酸化ケイ素、二酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素等を用いることができる。
 当該ガスバリアー層は、特に限定されないが、例えば、一酸化ケイ素、二酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素等の無機ガスバリアー層の場合は、無機材料をスパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、二極AC平板マグネトロンスパッタリング、二極AC回転マグネトロンスパッタリングなど)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長(ALD)法、反応性スパッタ法等の化学蒸着法等によって層形成することが好ましい。
 さらに、ポリシラザン、オルトケイ酸テトラエチル(TEOS)などの無機前駆体を含む塗布液を支持体上に塗布した後、真空紫外光の照射などにより改質処理を行い、無機ガスバリアー層を形成する方法や、樹脂基材への金属めっき、金属箔と樹脂基材とを接着させる等のフィルム金属化技術などによっても、無機ガスバリアー層は形成される。
 また、無機ガスバリアー層は、有機ポリマーを含む有機層を含んでいてもよい。すなわち、無機ガスバリアー層は、無機材料を含む無機層と有機層との積層体であってもよい。
 有機層は、例えば、有機モノマー又は有機オリゴマーを樹脂基材に塗布し、層を形成し、続いて、例えば、電子ビーム装置、UV光源、放電装置、又はその他の好適な装置を使用して重合及び必要に応じて架橋することにより形成することができる。また、例えば、フラッシュ蒸発及び放射線架橋可能な有機モノマー又は有機オリゴマーを蒸着した後、有機モノマー又は有機オリゴマーからポリマーを形成することによっても形成することができる。コーティング効率は、樹脂基材を冷却することにより改善され得る。
 有機モノマー又は有機オリゴマーの塗布方法としては、例えば、ロールコーティング(例えば、グラビアロールコーティング)、スプレーコーティング(例えば、静電スプレーコーティング)等が挙げられる。また、無機層と有機層との積層体の例としては、例えば、国際公開第2012/003198号、国際公開第2011/013341号に記載の積層体などが挙げられる。
 無機層と有機層との積層体である場合、各層の厚さは同じでもよいし、異なっていてもよい。無機層の厚さは、好ましくは3~1000nmの範囲内、より好ましくは10~300nmの範囲内である。有機層の厚さは、好ましくは100nm~100μmの範囲内、より好ましくは1~50μmの範囲内である。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」及び「部」は、それぞれ、「質量%」及び「質量部」を意味する。
[モノマー]
 封止用組成物の調製に使用するモノマーは以下のとおりである。
 また、各モノマーについての双極子モーメント(μ)、分散項(δD)、極性項(δP)、水素結合項(δH)及び分子体積(V)を下記表に示す。
 モノマーの双極子モーメント(μ)は、モノマーの化学構造の情報から、HULINKS社製Gaussianソフトウェアを用いて、各モノマーの双極子モーメントμ(Debye単位)を得た。計算においては、半経験的手法のPM6を用いた。
 また、モノマーの水素結合項(δH)と分子体積(V)は化学構造の情報から、Hansen Solubility Parameters in Practice(HSPiP)のソフトウェアを用いて、各モノマーのδH(単位:MPa1/2)とV(単位:cm・mol-1)を得た。また、同時に分散項成分δD、極性項成分δPも得た(単位:MPa1/2)。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
[封止用組成物1~78の調製]
 各モノマーを下記表III~表VIに示す種類及び質量部となるように窒素環境下で秤量し
た。
 さらに、光重合開始剤として、リン系開始剤(IGM社製、Omnirad 819)5質量部、増感剤として2-イソプロピルチオキサントン(Merck社製)0.5質量部を褐色瓶へ入れ、65℃のホットプレート上で3時間撹拌し、各封止用組成物1~78を得た。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
[S1及びS2]
 前記で得られた各モノマーについての双極子モーメント(μ)、分散項(δD)、極性項(δP)、水素結合項(δH)及び分子体積(V)から下記式により各封止用組成物におけるS1及びS2を算出し、下記表に示した。
 S1=(m1×μ1+m2×μ2+・・・)/(m1×V1+m2×V2+・・・)
 S2=(m1×δH1+m2×δH2+・・・)/(m1×V1+m2×V2+・・・)
(前記式中、mはモノマーのモル比率であり、m、μ、V及びδHの添字はモノマーの番号である。)
 なお、下記表に、「各モノマーの双極子モーメントのモル比換算の平均値(μ)[Debye](m1×μ1+m2×μ2+・・・)」、「各モノマーの水素結合項のモル比換算の平均値(δH)[MPa1/2](m1×δH1+m2×δH2+・・・)」及び「各モノマーの分子体積のモル比換算の平均値(V)[cm・mol-1](m1×V1+m2×V2+・・・)」も示した。
[評価]
<比誘電率>
 窒素環境下にて、100mm×100mmの寸法を有する離型性フィルム基板上に、厚さ50μmの封止用組成物の塗膜を作製した。この塗膜に、窒素環境下で、300mW/cm条件で積算光量が1.5mJ/cmになるように395nmの波長の紫外線(IST社製 MZ 240mm 395nm UVLED)を照射して、塗膜を硬化させた。得られた硬化膜を離型性フィルムから剥離し、次いで両面にAg膜をスパッタリング法により成膜して測定サンプルとした。測定サンプルはインピーダンス測定装置(:Solartron製126096)により周波数100kHz、AC 0.1(V)でインピーダンス測定し、比誘電率を測定した。比誘電率が3.1以下を合格、3.1より大きいものを不合格とした。
<インクジェット吐出安定性>
 窒素環境下にて、封止用組成物をインクジェットヘッド(コニカミノルタ社製 KM1024i-MHE-D)へ充填した。インクジェットヘッドからインクを周波数5kHzの周期で吐出させ、256ノズルを観察した。256ノズルの液滴吐出有無及び吐出された場合における液滴の体積を観察し、体積の平均値と最大値、最小値を測定し、下記式より体積変動率を計算した。
 体積変動率=(最大値-平均値)÷平均値×100
 又は
 体積変動率=(平均値-最小値)÷平均値×100 
 上記2つの体積変動率のうち数値の大きい値を採用した。
 液滴吐出有無及び体積変動率の結果から、以下の評価基準で判定した。ランク3及び4を合格とした。
 (評価基準)
 ランク1:吐出しないノズルが10ノズル以上、又は、吐出しないノズルが10ノズル未満かつ体積変動率が20%以上
 ランク2:吐出しないノズルが10ノズル未満かつ体積変動率が10%以上、20%未満
 ランク3:吐出しないノズルが10ノズル未満かつ体積変動率が5%以上、10%未満
 ランク4:吐出しないノズルが10ノズル未満かつ体積変動率が5%未満
[有機EL素子の作製]
(1)基板の準備
 フィルム基板として、15μmのポリイミドフィルムを準備した。さらに、このポリイミドフィルムに、フィルム基材用のガスバリアー層(SiO膜:250nm/SiNx膜:50nm/SiO膜:500nm(上層/中間層/下層))をプラズマCVD法で成膜した。
(2)第1電極の形成
 前記基板の一方の面に、第1電極(金属層)として下記条件でAl膜を形成した。形成した第1電極の厚さは150nmであった。なお、第1電極の厚さは、接触式表面形状測定器(DECTAK)により測定した値である。
 Al膜は、真空蒸着装置を用い、真空度1×10-4Paまで減圧した後、タングステン製の抵抗加熱用るつぼを使用して形成した。
(3)有機EL層の形成
 まず、真空蒸着装置内の蒸着用るつぼの各々に、有機機能層の各層を構成する下記に示す材料を各々素子作製に最適の量で充填した。蒸着用るつぼは、モリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
(3-1)正孔注入層の形成
 真空度1×10-4Paまで減圧した後、下記化合物A-1の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で第1電極(金属層側)上に蒸着し、厚さ10nmの正孔注入層を形成した。
(3-2)正孔輸送層の形成
 次に、下記化合物M-2の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で正孔注入層上に蒸着し、厚さ30nmの正孔輸送層を形成した。
(3-3)発光層の形成
 次に、下記化合物BD-1及び下記化合物H-1を、化合物BD-1が7質量%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、厚さ15nmの青色発光を呈する発光層(蛍光発光層)を形成した。
 次に、下記化合物GD-1、下記化合物RD-1及び下記化合物H-2を、化合物GD-1が20質量%、RD-1が0.5質量%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、厚さ15nmの黄色を呈する発光層(リン光発光層)を形成した。
(3-4)電子輸送層の形成
 その後、電子輸送材料として下記化合物T-1の入った加熱ボートを通電し、Alq(トリス(8-キノリノール))よりなる電子輸送層を、発光層上に形成した。この際、蒸着速度を0.1~0.2nm/秒の範囲内とし、厚さを30nmとした。
(3-5)電子注入層(金属親和性層)の形成
 次に、電子注入材料として下記化合物I-1の入った加熱ボートに通電して加熱し、Liqよりなる電子注入層を、電子輸送層上に形成した。この際、蒸着速度を0.01~0.02nm/秒の範囲内とし、厚さを2nmとした。なお、この電子注入層は金属親和性層の機能を果たす。
 以上により、白色に発光する有機EL層を形成した。
Figure JPOXMLDOC01-appb-C000018
(4)第2電極の形成
 さらに、Mg/Ag混合物(Mg:Ag=1:9(vol比))を厚さ10nmで蒸着して第2電極と、その取り出し電極を形成した。
(5)キャッピング層の形成
 その後、元の真空槽内に移送し、第2電極上に、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1~0.2nm/秒の範囲内で厚さが40nmとなるまで蒸着し、光取り出し改良を目的とするキャッピング層を形成した。
(6)第1封止層の形成
 次に、前記で作製した有機EL素子の発光部を覆う第1封止層として、プラズマCVD法により厚さ500nmの窒化珪素(SiNx)、ビッカース硬度HV900)を形成した。
(7)第2封止層の形成
 次に、前記で調製した封止用組成物1について、窒素環境下にてインクジェットヘッド(コニカミノルタ社製 KM1024i-MHE-D)へ充填した。そして、前記第1封止層まで形成した有機EL素子を窒素環境下にてインクジェット法を用いて封止用組成物1を塗布厚みが10μmなるように塗布した。その後、300mW/cm条件で積算光量が1.5J/cmになるように395nmの波長の紫外線(IST社製 MZ 240mm 395nm UVLED)を照射して、第2封止層を形成した。
(8)第3封止層の形成
 次に、第2封止層上に第3封止層として、プラズマCVD法により厚さ500nmの窒化珪素(SiNx)、ビッカース硬度HV900)を形成し、第1~第3封止層が形成された評価用の有機EL素子1を得た。
[有機EL素子2~78の作製]
 前記有機EL素子1の作製において、前記第2封止層の形成における封止用組成物1を下記表に示すとおりにそれぞれ変更した以外は同様にして、評価用の有機EL素子2~78を作製した。
[評価]
<発光特性(発光残存率)>
 評価用の各有機EL素子を高温環境下(温度85℃)の恒温槽に放置し、加速劣化試験を行った。200時間後に恒温槽から各有機EL素子を取り出して室温下で定電圧駆動にて発光させ、発光強度を測定した。加速劣化試験前の発光強度に対する加速劣化試験後の発光強度の比率(%)を測定し、下記基準で判定した。ランク2~4を合格とした。
 (評価基準)
 ランク1:80%未満
 ランク2:80%以上、90%未満
 ランク3:90%以上、95%未満
 ランク4:95%以上
<耐クラック性>
 フィルム基板として、15μmのポリイミドフィルムを準備した。さらに、このポリイミドフィルムに、前記した(6)第1封止層の形成、(7)第2封止層の形成、(8)第3封止層の形成と同様の方法で封止層を形成し、評価用サンプルとした。
 評価用サンプルを、ポリイミドフィルム側が凸になるようにR=1.5mmの屈曲半径で折り曲げた。折り曲げた状態で固定し、-20℃の環境に24時間保持した。評価用サンプルを取り出し、顕微鏡にてクラックの有無及び膜の剥離を観察し、以下の評価基準で判定した。ランク2~4を合格とした。
 (評価基準)
 ランク1:膜の剥離が発生している、又は、クラックが10箇所以上発生
 ランク2:膜の剥離が発生していない、かつ、クラックが5箇所以上~10箇所未満
 ランク3:膜の剥離が発生していない、かつ、クラックが2箇所以上~5箇所未満
 ランク4:膜の剥離が発生していない、かつ、クラックが2箇所未満
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 上記結果に示されるように、本発明の封止用組成物は、比較例の封止用組成物に比べて、インクジェット法による吐出安定性に優れ、また、比誘電率が低い封止膜を形成することができる。さらに、本発明の封止用組成物を用いて封止した有機EL素子は発光特性及び耐クラック性にも優れることが分かる。
 本発明は、インクジェット法による吐出安定性、発光特性及び耐クラック性に優れ、比誘電率が低い電子デバイス封止膜を形成できる電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法に利用できる。

Claims (8)

  1.  光重合性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物であって、
     前記光重合性モノマーとして、(メタ)アクリレートを含有し、
     前記光重合性モノマーの双極子モーメントμ[Debye]と分子体積V[cm・mol-1]と水素結合項δH[MPa1/2]に基づき計算される下記S1が0.10×10-2~1.10×10-2[Debye/(cm・mol-1)]の範囲内、又は、下記S2が0.50×10-2~1.50×10-2[MPa1/2/(cm・mol-1)]の範囲内である電子デバイス封止用組成物。
     S1=(m1×μ1+m2×μ2+・・・)/(m1×V1+m2×V2+・・・)
     S2=(m1×δH1+m2×δH2+・・・)/(m1×V1+m2×V2+・・・)
    (前記式中、mはモノマーのモル比率であり、m、μ、V及びδHの添字はモノマーの番号である。)
  2.  前記S1が、0.50×10-2~0.80×10-2[Debye/(cm・mol-1)]の範囲内、又は、前記S2が、0.50×10-2~1.00×10-2[MPa1/2/(cm・mol-1)]の範囲内である請求項1に記載の電子デバイス封止用組成物。
  3.  前記水素結合項δHが、1.9~3.5MPa1/2の範囲内である請求項1に記載の電子デバイス封止用組成物。
  4.  電子デバイスを封止する電子デバイス封止膜であって、
     窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、
     請求項1から請求項3までのいずれか一項に記載の電子デバイス封止用組成物を用いた第2封止層と、を有する電子デバイス封止膜。
  5.  前記第2封止層上に、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第3封止層を有する請求項4に記載の電子デバイス封止膜。
  6.  請求項1から請求項3までのいずれか一項に記載の電子デバイス封止用組成物を用いて、電子デバイス封止膜を形成する方法であって、
     電子デバイス上に気相法により第1封止層を形成する工程と、
     前記第1封止層上に前記電子デバイス封止用組成物を塗布することにより第2封止層を形成する工程と、を備える電子デバイス封止膜形成方法。
  7.  前記第2封止層上に、気相法により第3封止層を形成する工程を備える請求項6に記載の電子デバイス封止膜形成方法。
  8.  インクジェット法により前記第2封止層を形成する請求項6に記載の電子デバイス封止膜形成方法。
PCT/JP2023/027382 2022-07-29 2023-07-26 電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法 WO2024024836A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-121151 2022-07-29
JP2022121151 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024836A1 true WO2024024836A1 (ja) 2024-02-01

Family

ID=89706583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027382 WO2024024836A1 (ja) 2022-07-29 2023-07-26 電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法

Country Status (1)

Country Link
WO (1) WO2024024836A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051732A1 (ja) * 2016-09-15 2018-03-22 Jnc株式会社 インク組成物およびこれを用いた有機電界発光素子
WO2022039019A1 (ja) * 2020-08-19 2022-02-24 コニカミノルタ株式会社 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051732A1 (ja) * 2016-09-15 2018-03-22 Jnc株式会社 インク組成物およびこれを用いた有機電界発光素子
WO2022039019A1 (ja) * 2020-08-19 2022-02-24 コニカミノルタ株式会社 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜

Similar Documents

Publication Publication Date Title
JP7203903B2 (ja) 有機エレクトロルミネッセンス表示素子用封止剤
TWI588198B (zh) 用於封裝顯示器的組成物以及含有其的顯示器 裝置
US20190211219A1 (en) Ink composition and organic electroluminescent element using the same
US7442428B2 (en) Gas barrier substrate
CN107851730B (zh) 有机发光显示器
TWI618238B (zh) 有機發光二極體顯示裝置
WO2006092943A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006279007A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2022039019A1 (ja) 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜
KR20180102038A (ko) 광경화 조성물, 이를 포함하는 유기보호층, 및 이를 포함하는 장치
JP2016101694A (ja) ガスバリアーフィルム
JP4164885B2 (ja) 有機電界発光素子及びその製造方法
WO2014119717A1 (ja) 硬化性樹脂組成物、樹脂保護膜、有機光デバイス、及び、バリアフィルム
JP2005235467A (ja) 有機el素子
WO2018070488A1 (ja) 組成物
WO2024024836A1 (ja) 電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法
WO2024024841A1 (ja) 電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法
WO2024024942A1 (ja) 電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法
WO2023032372A1 (ja) 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜
JP2014143195A (ja) 有機薄膜素子保護用蒸着材料、樹脂保護膜、及び、有機光デバイス
TWI837499B (zh) 電子裝置密封用組成物、電子裝置密封膜形成方法及電子裝置密封膜
JP2008218421A (ja) 有機電界発光素子及びその製造方法
WO2022230637A1 (ja) 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846566

Country of ref document: EP

Kind code of ref document: A1