WO2022039019A1 - 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜 - Google Patents

電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜 Download PDF

Info

Publication number
WO2022039019A1
WO2022039019A1 PCT/JP2021/028768 JP2021028768W WO2022039019A1 WO 2022039019 A1 WO2022039019 A1 WO 2022039019A1 JP 2021028768 W JP2021028768 W JP 2021028768W WO 2022039019 A1 WO2022039019 A1 WO 2022039019A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
electronic device
group
substituted
Prior art date
Application number
PCT/JP2021/028768
Other languages
English (en)
French (fr)
Inventor
昇太 広沢
千代子 竹村
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2022543360A priority Critical patent/JPWO2022039019A1/ja
Priority to CN202180050776.2A priority patent/CN116096563A/zh
Publication of WO2022039019A1 publication Critical patent/WO2022039019A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8423Metallic sealing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to an electronic device encapsulation composition, an electronic device encapsulation film forming method, and an electronic device encapsulation film, and in particular, prevents moisture permeation, has excellent encapsulation performance and bending resistance, and improves luminous efficiency.
  • the present invention relates to a composition for encapsulating an electronic device and the like.
  • organic electroluminescence devices are organic EL devices in order to prevent the organic materials and electrodes used from being deteriorated by moisture. It has been proposed to cover the surface of the electroluminescence with a sealing layer.
  • a monomer having no aromatic hydrocarbon group a monomer having an aromatic hydrocarbon group, and having an aromatic hydrocarbon group are included.
  • a composition containing two or more phenyl groups and heteroatoms as a monomer and mono (meth) acrylate and di (meth) acrylate is formed on the surface of an organic EL element by a method such as vapor deposition or inkjet.
  • the display device is disclosed.
  • the diffusion coefficient of the organic protective film is sufficiently low, moisture permeation becomes a problem under severe conditions such as 85 ° C., 85% RH, and 100 hours or more under high temperature and high humidity. Met.
  • there have been problems of stress difference between the organic protective film and the adjacent layer insufficient adhesive force, and bending resistance at the time of bending.
  • a first method formed by a dry method (CVD method) on the surface of the organic EL element so as to cover the organic EL element a first method formed by a dry method (CVD method) on the surface of the organic EL element so as to cover the organic EL element.
  • an organic EL device including a protective film and a second protective film formed on the surface of the first protective film by a wet method and for filling a non-adhered portion of the first protective film.
  • the second protective film is denatured in a high temperature and high humidity environment, and the stress of the second protective film is large, so that the temperature is 85 ° C. and 85% RH for 100 hours.
  • the interface between the first protective film and the second protective film (presumably) caused by the deterioration of the interfacial adhesion between the first protective film and the second protective film under the above high temperature and high humidity.
  • the present invention has been made in view of the above problems and situations, and the problems to be solved thereof are that it can prevent water permeation, have excellent sealing performance, have excellent bending resistance, and can further improve luminous efficiency. It is an object of the present invention to provide a composition for encapsulating an electronic device, a method for forming an electronic device encapsulating film, and an electronic device encapsulating film.
  • the present inventor has a photocurable monomer (A) having no aromatic hydrocarbon group and photocuring having an aromatic hydrocarbon group in the process of examining the cause of the above problem. It contains a sex monomer (B), has a specific structure of the photocurable monomer (B), and is further selected from a metal alkoxide compound, a metal chelate compound, a silane compound, a silazane compound, and a metal halide compound.
  • a metal alkoxide compound a metal chelate compound
  • silane compound a silazane compound
  • a metal halide compound a metal halide compound.
  • the photocurable monomer contains a photocurable monomer (A) having no aromatic hydrocarbon group and a photocurable monomer (B) having an aromatic hydrocarbon group.
  • the photocurable monomer (B) is a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups having a structure represented by the following general formula (1), or two or more substituted or unsubstituted hydrogen groups. Contains a heteroatomic hydrocarbon group containing a phenyl group and The photocurable monomer (B) contains at least a mono (meth) acrylate or a di (meth) acrylate.
  • a composition for encapsulating an electronic device containing a metal-containing compound (C) selected from a metal alkoxide compound, a metal chelate compound, a silane compound, a silazane compound and a metal halide compound a metal-containing compound (C) selected from a metal alkoxide compound, a metal chelate compound, a silane compound, a silazane compound and a metal halide compound.
  • P is a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups.
  • Z 1 and Z 2 each independently have a structure represented by the following general formula (2). a and b are integers of 0 to 2, respectively, and a + b are integers of 1 to 4.
  • * is a link portion of P to carbon.
  • X represents a single bond, O or S.
  • Y represents a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • c is an integer of 0 or 1.
  • composition for encapsulating an electronic device according to item 1, wherein the content of the metal-containing compound (C) with respect to the entire composition for encapsulating an electronic device is in the range of 0.1 to 15% by mass.
  • the photocurable monomer (A) is a mono (meth) acrylate having an amine group, a di (meth) acrylate having a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, and a di (meth) acrylate having an ethylene oxide group. , Which is at least one of a tri (meth) acrylate having an ethylene oxide group, a mono (meth) acrylate having a cyclic alkyl carbide group, and a di (meth) acrylate, according to any one of the items 1 to 3.
  • Composition for encapsulating electronic devices is a mono (meth) acrylate having an amine group, a di (meth) acrylate having a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, and a di (meth) acrylate having an ethylene oxide group.
  • the photocurable monomer (B) is 4- (meth) acrylicoxy-2-hydroxybenzophenone, ethyl-3,3-diphenyl (meth) acrylate, benzoyloxyphenyl (meth) acrylate, bisphenol A di (meth) acrylate.
  • the process of forming the first sealing layer on the electronic device by the vapor phase method A method for forming an electronic device encapsulation film, comprising a step of forming a second encapsulation layer by applying the composition for encapsulating an electronic device on the first encapsulation layer.
  • An electronic device encapsulation film that encloses an electronic device.
  • a first sealing layer containing silicon nitride, silicon oxide or silicon oxynitride,
  • An electronic device encapsulation film comprising a second encapsulation layer using the composition for encapsulating an electronic device according to any one of items 1 to 5.
  • Item 6 The item according to Item 9, wherein the second sealing layer contains a polymer having a structure represented by the following general formula (3A) and the following general formula (3B), and the metal-containing compound (C). Electronic device encapsulation film.
  • R 1 represents a hydrogen atom or a methyl group.
  • A is a structure having no aromatic hydrocarbon group.
  • B has an aromatic hydrocarbon group, and is a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups having a structure represented by the general formula (1), or two or more substituted or unsubstituted.
  • Item 6 The electronic device sealing film according to Item 9 or 10, wherein the second sealing layer has a third sealing layer containing silicon nitride, silicon oxide or silicon oxynitride.
  • Item 2 The electronic device seal according to any one of Items 9 to 11, wherein the content of the metal-containing compound (C) in the second sealing layer is in the range of 0.1 to 15% by mass. Still film.
  • electronic device encapsulation membranes can be provided.
  • the composition for encapsulating an electronic device of the present invention comprises the photocurable monomer (A) having no aromatic hydrocarbon group, the photocurable monomer (B) having the aromatic hydrocarbon group, and the metal. Since it contains the contained compound (C), the ligand of the metal-containing compound (C) has the photocurable monomer (A) having no aromatic hydrocarbon group and the aromatic hydrocarbon group.
  • a network is connected in an acrylic resin which is a polymer composed of a photocurable monomer (B), micro-brown movement and macro-brown movement of the polymer chain of the acrylic resin are suppressed, and an oxycarbonyl group in the polymer is combined with water. Since it has an interaction, it prevents the diffusion of water. Further, since the metal of the metal-containing compound (C) and the ligand interact with or react with water to suppress the movement of water, the diffusion of water is also prevented in this respect. As a result, moisture permeation is suppressed and the sealing performance is excellent.
  • the second encapsulation layer includes not only a polymer of an organic compound but also the metal-containing compound (C) having a chemical structural relative similarity to the compounds constituting the first encapsulation layer and the third encapsulation layer. And because it contains a compound derived from it, the inclination due to the difference in the refractive index between the layers of the first sealing layer / the second sealing layer / the third sealing layer adjacent to each other is alleviated, and the reflection of light between the layers is alleviated. By suppressing the above, the light extraction efficiency is improved, that is, the light emitting efficiency as an electronic device is improved.
  • the metal or ligand contained in the metal-containing compound (C) contained in the second sealing layer interacts with or has an affinity with the compound constituting the adjacent layer, for example, the adjacent first.
  • the interaction with the sealing layer or the third sealing layer becomes stronger, and the adhesion is improved.
  • the resistance to the stress between the layers generated by bending is increased, and the bending resistance is excellent.
  • the metal-containing compound (C) prevents the diffusion of water, reliability can be ensured even with a thin film. If the film is thin, the stress at the time of bending is low, and delamination is reduced.
  • the composition for encapsulating an electronic device of the present invention is a composition for encapsulating an electronic device containing a photocurable monomer and a photopolymerization initiator, and the photocurable monomer has an aromatic hydrocarbon group.
  • the photocurable monomer (B) contains a non-photocurable monomer (A) and a photocurable monomer (B) having an aromatic hydrocarbon group, and the photocurable monomer (B) has a structure represented by the following general formula (1).
  • Containes at least mono (meth) acrylate or di (meth) acrylate, and is further selected from a metal alkoxide compound, a metal chelate compound, a silane compound, a silazane compound and a metal halide compound (C). Contains. This feature is a technical feature common to or corresponding to each of the following embodiments.
  • the content of the metal-containing compound (C) with respect to the entire composition for encapsulating an electronic device is in the range of 0.1 to 15% by mass for encapsulating an electronic device.
  • the composition is preferable in that it can be photocured and that the luminous efficiency of the electronic device is improved.
  • the metal M constituting the metal-containing compound (C) is at least one of Ti, Si, Al and Zr in terms of suppressing the movement of water and suppressing water permeation.
  • the photocurable monomer (A) is a mono (meth) acrylate having an amine group, a di (meth) acrylate having a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, and a di (meth) having an ethylene oxide group.
  • Acrylate, tri (meth) acrylate having an ethylene oxide group, mono (meth) acrylate having a cyclic alkyl carbide group, and di (meth) acrylate should be at least one of them in terms of improving the reliability of the electronic device and inkjet. It is preferable in terms of ejection suitability.
  • the photocurable monomer (B) is 4- (meth) acrylicoxy-2-hydroxybenzophenone, ethyl-3,3-diphenyl (meth) acrylate, benzoyloxyphenyl (meth) acrylate, bisphenol A di (meth).
  • the method for forming an electronic device encapsulating film of the present invention is a method for forming an encapsulating film using the electronic device encapsulating composition, and forms a first encapsulating layer on an electronic device by a vapor phase method.
  • the inkjet method in the step of forming the second sealing layer because the layer can be formed with high accuracy.
  • the electronic device encapsulating film of the present invention is an electronic device encapsulating film for encapsulating an electronic device, the first encapsulating layer containing silicon nitride, silicon oxide or silicon oxynitride, and the first to fifth items. It has a second sealing layer using the composition for sealing an electronic device according to any one of the items up to the above item. This makes it possible to provide an electronic device encapsulating film that can prevent moisture permeation, have excellent encapsulation performance, have excellent bending resistance, and can further improve luminous efficiency.
  • (meth) acrylic means acrylic and / or methacrylic.
  • heterocycloalkyl group having 2 to 30 carbon atoms.
  • heteroatom means any one atom selected from the group consisting of N, O, S and P
  • hetero means selected from the group consisting of carbon atoms N, O, S and P. It means that it was replaced with any one of the atoms.
  • Alkylene group means an alkanediyl group linked with a hydrocarbon group saturated without a double bond between the (meth) acrylates at both ends. Further, the carbon number of the alkylene group means only the carbon number in the alkylene group itself excluding the carbon in the di (meth) acrylate group.
  • the "electronic device” in the present invention refers to an element that generates, amplifies, converts, or controls an electric signal by using the kinetic energy, potential energy, and the like possessed by the electron.
  • examples thereof include active elements such as light emitting diode elements, organic electroluminescence elements, photoelectric conversion elements and transistors.
  • passive elements such as resistors and capacitors that perform passive work such as "resisting" and "storing” against the action of others are also included in the electronic device. Therefore, the sealing composition of the present invention is used to form a sealing film for sealing the above-mentioned electronic device.
  • the electronic device encapsulating composition of the present invention (hereinafter, also simply referred to as “encapsulating composition”) is an electronic device encapsulating composition containing a photocurable monomer and a photopolymerization initiator.
  • the photocurable monomer contains a photocurable monomer (A) having no aromatic hydrocarbon group and a photocurable monomer (B) having an aromatic hydrocarbon group, and the photocurable monomer (B).
  • ) Contains a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups having a structure represented by the following general formula (1), or a hetero atom containing two or more substituted or unsubstituted phenyl groups.
  • the photocurable monomer (B) contains at least a mono (meth) acrylate or a di (meth) acrylate, and further contains a metal alkoxide compound, a metal chelate compound, a silane compound, and a silazane compound. And contains a metal-containing compound (C) selected from metal halide-based compounds.
  • the photocurable monomer means a photocurable monomer capable of undergoing a curing reaction with a photopolymerization initiator.
  • a photocurable monomer a non-silicon-based monomer containing no silicon (Si) may be used, and for example, a monomer consisting only of an element selected from C, H, O, N or S may be used. Good, but not limited to this.
  • the photocurable monomer may be synthesized and used by a usual synthetic method, or a commercially available product may be purchased and used.
  • the photocurable monomer contains the photocurable monomer (A) having no aromatic hydrocarbon group and the photocurable monomer (B) having the aromatic hydrocarbon group.
  • photocurable monomer (A) having no aromatic hydrocarbon group does not contain an aromatic hydrocarbon group and has a photocurable functional property.
  • group a monomer having 1 to 20 of one or more of a vinyl group, an acrylic group, and a methacrylic group, specifically 1 to 6 may be contained, for example, 1 to 3, 1 to 2, and so on. It may contain one or two.
  • the weight average molecular weight of the photocurable monomer (A) may be in the range of 100 to 500 g / mol, in the range of 130 to 400 g / mol, or in the range of 200 to 300 g / mol. It may be within the range of mol.
  • the photocurable monomer (A) may contain a monofunctional monomer having a photocurable functional group, a polyfunctional monomer, or a mixture thereof.
  • the photocurable monomer (A) may be a (meth) acrylate monomer, and may be an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a hydroxy group and 1 carbonic acid number.
  • the "multivalent alcohol” is an alcohol having two or more hydroxy groups, and means an alcohol having 2 to 20, preferably 2 to 10, and more preferably 2 to 6 hydroxy groups. obtain.
  • the (meth) acrylate monomer having no aromatic hydrocarbon group is a substituted or unsubstituted C1 to C20 (1 to 20 carbon atoms) alkyl group, substituted or substituted.
  • Di (meth) acrylate, tri (meth) acrylate, tetra (meth) acrylate and the like may be used.
  • the (meth) acrylate monomer having no aromatic hydrocarbon group includes methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and 2-hydroxy.
  • the photocurable monomer (A) is a non-aromatic system containing no aromatic group, and is a mono (meth) acrylate or amine group having an alkyl group having 1 to 20 carbon atoms.
  • the mono (meth) acrylate having a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms include decyl (meth) acrylate, undecyl (meth) acrylate, lauryl (meth) acrylate, and tridecyl (meth) acrylate.
  • the mono (meth) acrylate having an amine group may be, but is not limited to, 2-aminoethyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, or a mixture thereof.
  • the substituted or unsubstituted di (meth) acrylate having an alkylene group having 1 to 20 carbon atoms may be, for example, a di (meth) acrylate having an alkylene group having 1 to 20 carbon atoms, and may be substituted or unsubstituted. It may be a non-silicon-based di (meth) acrylate containing a long-chain alkylene group.
  • Di (meth) acrylates having substituted or unsubstituted alkylene groups having 1 to 20 carbon atoms are, for example, octanediol di (meth) acrylates, nonanediol di (meth) acrylates, decanediol di (meth) acrylates, and undecanediols. It may be, but is not limited to, di (meth) acrylate, dodecanediol di (meth) acrylate or a mixture thereof.
  • the sealing composition of the present invention may have a higher photocurability and a lower viscosity.
  • the di (meth) acrylate or tri (meth) acrylate having an ethylene oxide group is specifically an ethylene glycol di (meth) acrylate, a triethylene glycol di (meth) acrylate, a trimethylolpropane tri (meth) acrylate or a mixture thereof. However, it is not limited to this.
  • the mono (meth) acrylate and di (meth) acrylate having a cyclic alkyl carbide group include isobonyl (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate, and dicyclopentanyl (meth) acrylicate. , Dicyclopentenyloxyethyl (meth) acrylicate, dicyclopentenyl (meth) acrylicate, but is not limited thereto.
  • the photocurable monomer (A) monomer is contained in the range of 55 to 95% by mass with respect to the total mass of the photocurable monomer (photocurable monomer (A) and photocurable monomer (B)). It is preferably contained in the range of 60 to 90% by mass, and more preferably.
  • the viscosity of the sealing composition of the present invention is suitable for forming a sealing film for an electronic device.
  • Photocurable monomer (B) having an aromatic hydrocarbon group Two or more photocurable monomers (B) having an aromatic hydrocarbon group (hereinafter, also simply referred to as "photocurable monomer (B)") have a structure represented by the following general formula (1).
  • the photocurable monomer (B) contains at least a mono (meth) acrylate or a di (meth) acrylate.
  • P is a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups.
  • Z 1 and Z 2 each independently have a structure represented by the following general formula (2). a and b are integers of 0 to 2, respectively, and a + b are integers of 1 to 4. ]
  • * is a link portion of P to carbon.
  • X represents a single bond, O or S.
  • Y represents a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • c is an integer of 0 or 1.
  • P represents a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups. ..
  • the above-mentioned hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups is a substituted or unsubstituted two or more phenyls.
  • the above-mentioned hydrocarbon group containing two or more phenyl groups or a hetero atom-containing hydrocarbon group containing two or more phenyl groups may be substituted or unsubstituted biphenyl group, substituted or unsubstituted triphenylmethyl group, substituted.
  • Substituted or unsubstituted 2,2-diphenylpropane group substituted or unsubstituted diphenylmethane group, substituted or unsubstituted Kumilphenyl group, substituted or unsubstituted bisphenol F group, substituted or unsubstituted bisphenol A group, substituted or It may contain an unsubstituted biphenyloxy group, a substituted or unsubstituted terphenyloxy group, a substituted or unsubstituted quarter phenyloxy group, a substituted or unsubstituted kinkiphenyloxy group and structural isomers thereof. Not limited to this.
  • the substituted or unsubstituted monomer having two or more phenyl groups may be a mono (meth) acrylate, a di (meth) acrylate or a mixture thereof, and examples thereof include 4- (meth) acrylic oxy. -2-Hydroxybenzophenone, ethyl-3,3-diphenyl (meth) acrylate, benzoyloxyphenyl (meth) acrylate, bisphenol A di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, bisphenol F di (meth) Acrylate, ethoxylated bisphenol F di (meth) acrylate, 4-cumylphenoxyethyl acrylate, ethoxylated bisphenylfull orange acrylate, 2-phenylphenoxyethyl (meth) acrylate, 2,2'-phenylphenoxyethyldi (meth) Acrylate, 2-phenylphenoxypropyl
  • the (meth) acrylate referred to in the present invention is merely an example, and the present invention is not limited thereto.
  • the present invention includes all acrylates having a structural isomer relationship.
  • 2,2'-phenylphenoxyethyl di (meth) acrylate is mentioned as an example of the present invention, the present invention falls under this structural isomer, 3,2'-phenylphenoxyethyl.
  • Di (meth) acrylate, 3,3'-phenylphenoxyethyl di (meth) acrylate and the like are all included.
  • the monomer having two or more phenyl groups may be a mono (meth) acrylate represented by the following general formula (4).
  • R 2 is a hydrogen or a methyl group
  • R 3 is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms or substituted or unsubstituted carbon atoms 1 to 20.
  • R4 is a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups.
  • the above-mentioned hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups is two or more substituted or unsubstituted.
  • the phenyl group is not condensed and is a single bond, an oxygen atom, a sulfur atom, a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, an alkylene group having 3 to 6 carbon atoms substituted or substituted with a hetero atom, It means those linked by an ethenylene group, an ethynylene group or a carbonyl group.
  • the above-mentioned hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups is a substituted or unsubstituted biphenyl group.
  • Substituted or unsubstituted triphenylmethyl group substituted or unsubstituted terphenyl group, substituted or unsubstituted biphenylene group, substituted or unsubstituted terphenylene group, substituted or unsubstituted quarterphenylene group, substituted or unsubstituted 2-Phenyl-2- (phenylthio) ethyl group, substituted or unsubstituted 2,2-diphenylpropane group, substituted or unsubstituted diphenylmethane group, substituted or unsubstituted Kumilphenyl group, substituted or unsubstituted bisphenol F group, Includes substituted or unsubstituted bisphenol A group, substituted or unsubstituted biphenyloxy group, substituted or unsubstituted terphenyloxy group, substituted or unsubstituted quarter phenyloxy group, substituted or unsubstituted
  • the monomer having two or more phenyl groups may be a di (meth) acrylate represented by the following general formula (5).
  • R 5 and R 9 are independently hydrogen or methyl groups, respectively, and R 6 and R 8 are independently substituted or unsubstituted linear chains having 1 to 10 carbon atoms, respectively.
  • An alkylene group or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, R7 is a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or two or more substituted or unsubstituted. It is a heteroatomic hydrocarbon group containing a phenyl group.
  • the above-mentioned hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups is two or more substituted or unsubstituted.
  • the phenyl group is not condensed and is a single bond, an oxygen atom, a sulfur atom, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, an alkylene group having 3 to 6 carbon atoms substituted or substituted with a hetero atom, It means those linked by an ethenylene group, an ethynylene group or a carbonyl group.
  • the hydrocarbon group may be a substituted or unsubstituted biphenylene group, a substituted or unsubstituted triphenylmethylene group, a substituted or unsubstituted terphenylene group, a substituted or unsubstituted quarter phenylene group, 2-phenyl-2- (Phenylthio)
  • An ethylene group, a 2,2-diphenylpropylene group, a diphenylmethylene group and the like may be contained, but the present invention is not limited thereto.
  • a and b are integers of 0 to 2, respectively, a + b is an integer of 1 to 4, and in one example, a + b is an integer of 1 or 2.
  • the weight average molecular weight of the substituted or unsubstituted monomer having two or more phenyl groups is preferably in the range of 100 to 1000 g / mol, more preferably in the range of 130 to 700 g / mol, and more preferably 150 to 600 g. It is particularly preferable that it is in the range of / mol. By setting it within the above range, it is possible to provide a sealing film having a higher transmittance.
  • the photocurable monomer (B) having an aromatic hydrocarbon group is 5 to 45% by mass based on the total mass of the photocurable monomer (photocurable monomer (A) and photocurable monomer (B)). It is preferable that it is contained in the range of 10 to 40% by mass, and more preferably it is contained in the range of 10 to 40% by mass. By setting it within the above range, the viscosity becomes appropriate for the formation of the sealing film.
  • the metal-containing compound (C) is selected from a metal alkoxide compound, a metal chelate compound, a silane compound, a silazane compound and a metal halide compound.
  • the metal M constituting the metal-containing compound (C) include Ti, Si, Al, Zr, silicon, bismuth, strontium, calcium, copper, sodium and lithium.
  • cesium, magnesium, barium, vanadium, niobium, chromium, tantalum, tungsten, chromium, indium, iron and the like can be mentioned.
  • it is preferably at least one of Ti, Si, Al and Zr.
  • metal-containing compound (C) examples include tetrachlorosilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltri.
  • an organic titanium compound having a structure represented by the following general formulas (II) to (IV) can be mentioned.
  • R represents an alkyl group.
  • titanium tetra-2-ethylhexoxide titanium diisopropoxybis (acetylacetonate), titaniumtetraacetylacetonate, titanium dioctyroxybis (octylene glycolate), titanium diisopropoxybis (ethylacetoacetate).
  • titanium diisopropoxybis triethanol aminate
  • titanium lactate ammonium salt titanium lactate, titanium lactate, polyhydroxytitanium stearate and the like.
  • an organic zirconium compound having a structure represented by the following general formulas (V) to (VII) can be mentioned.
  • R represents an alkyl group.
  • zirconium tetranormal propoxide zirconium tetranormalbutoxide, zirconium tetraacetylacetonate, zirconium tributoxymonoacetylacetonate, zirconium monobutoxyacetylacetonate bis (ethylacetacetate), zirconium dibutoxybis (ethylacetoacetate)
  • examples include organic zirconium compounds such as zirconium tetraacetylacetonate, zirconium tributoxymonostearate and the like.
  • aluminum sec-butyrate aluminum isopropylate, monosec-butoxyaluminum diisopropyrate, aluminum ethylate, ethylacetate acetate aluminum diisopropyrate, aluminum (III) acetylacetonate, aluminum monoacetylacetonate bis (ethylacetate acetate).
  • Organic aluminum compounds such as aluminum-di-n-butoxide-monoethylacetate, aluminum-di-iso-propoxide-monomethylacetate, and the like.
  • metal halide compounds such as titanium dichloride, titanium trichloride, titanium tetrachloride, titanium fluoride, zirconium chloride, zirconium fluoride, aluminum chloride, aluminum fluoride and the like can be mentioned.
  • metal-containing compound (C) examples include tetra (2-ethylhexyl) titanium (product name: TA30, manufactured by Matsumoto Fine Chemical Co., Ltd.), aluminum sec-butylate (manufactured by Kawaken Fine Chemical Co., Ltd.), and cyclic aluminum oxide isopropylate (Kawaken).
  • the content of the metal-containing compound (C) with respect to the entire encapsulating composition is not limited as long as the encapsulating composition maintains the photocuring function, but is in the range of 0.1 to 15% by mass. It is preferably in the range of 5 to 10% by mass, more preferably.
  • the metal-containing compound (C) may be partially transformed into an oxide or a hydroxide having a metal M. From the viewpoint of transparency, these metal M oxides or hydroxides have a molar fraction in the range of 0.01 to 0.1 [mol / mol] with respect to the metal-containing compound (C). preferable.
  • the photopolymerization initiator is not particularly limited as long as it is a normal photopolymerization initiator capable of performing a photocurable reaction.
  • the photopolymerization initiator may contain, for example, triazine-based, acetophenone-based, benzophenone-based, thioxanthone-based, benzoin-based, phosphorus-based, oxime-based, or a mixture thereof.
  • Triazine-based initiators are 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis (trichloromethyl) -s-triazine, 2- (3', 4'-dimethoxystyryl) -4.
  • the acetophenone-based initiators are 2,2'-diethoxyacetophenone, 2,2'-dibutoxyacetophenone, 2-hydroxy-2-methylpropiophenone, pt-butyltrichloroacetophenone, and pt-butyldichloroacetophenone.
  • Benzophenone-based initiators include benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylicized benzophenone, 4,4'-bis (dimethylamino) benzophenone, 4,4'-dichlorobenzophenone, 3 , 3'-dimethyl-2-methoxybenzophenone or a mixture thereof.
  • the thioxanthone-based initiator may be thioxanthone, 2-methylthioxanthone, isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2-chlorothioxanthone or a mixture thereof.
  • the benzoin-based initiator may be benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl dimethyl ketal, or a mixture thereof.
  • the phosphorus-based initiator may be bisbenzoylphenylphosphine oxide, benzoyldiphenylphosphine oxide, or a mixture thereof.
  • Oxime systems include 2- (o-benzoyloxime) -1- [4- (phenylthio) phenyl] -1,2-octanedione and 1- (o-acetyloxime) -1- [9-ethyl-6- ( 2-Methylbenzoyl) -9H-carbazole-3-yl] etanone, or a mixture thereof.
  • the photopolymerization initiator is a total of 100 parts by mass of the photocurable monomer (photocurable monomer (A), photocurable monomer (B)) and the photopolymerization initiator in the sealing composition of the present invention. It is preferably contained in the range of about 0.1 to 20 parts by mass. By setting the content within the above range, photopolymerization sufficiently occurs during exposure, and it is possible to prevent the transmittance from being lowered by the remaining unreacted initiator after photopolymerization. Specifically, the photopolymerization initiator is preferably contained in the range of 0.5 to 10 parts by mass, more specifically 1 to 8 parts by mass.
  • the photopolymerization initiator is preferably contained in the sealing composition of the present invention in the range of 0.1 to 10% by mass based on the solid content, and more preferably 0.1. It is in the range of ⁇ 8% by mass. By setting the content within the above range, photopolymerization can be sufficiently performed, and it is possible to prevent the transmittance from being lowered by the remaining unreacted initiator.
  • a photoacid generator or a photopolymerization initiator such as carbazole-based, diketones, sulfonium-based, iodinenium-based, diazo-based, and biimidazole-based may be used.
  • the encapsulating composition of the present invention comprises other components including an antioxidant, a heat stabilizer, a photosensitizer, a dispersant, a thermal cross-linking agent and a surfactant within the range in which the effect of the present invention can be obtained. It may be further included. Only one kind of these components may be contained in the sealing composition of the present invention, or two or more kinds thereof may be contained.
  • the antioxidant can improve the thermal stability of the sealing layer.
  • the antioxidant may include, but is not limited to, one or more selected from the group consisting of phenol-based, quinone-based, amine-based and phosphite-based.
  • examples of the antioxidant include tetrakis [methylene (3,5-di-t-butyl-4-hydroxyhydrocinnamate)] methane, tris (2,4-di-tert-butylphenyl) phosphite and the like. be able to.
  • the antioxidant may be contained in the sealing composition in the range of 0.01 to 3 parts by mass with respect to 100 parts by mass in total of the photocurable monomer and the photopolymerization initiator. It is more preferably contained in the range of 0.01 to 1 part by mass. By setting it within the above range, excellent thermal stability can be exhibited.
  • the heat stabilizer is contained in the sealing composition and suppresses the change in viscosity of the sealing composition at room temperature
  • ordinary heat stabilizers can be used without limitation.
  • a sterically hidden phenolic heat stabilizer may be used, and specifically, poly (di-cyclopentadiene-co-p-cresol), octadecyl-3.
  • the heat stabilizer is 2000 ppm or less, preferably 0.01 to 2000 ppm, based on the solid content of the photocurable monomer and the photopolymerization initiator in the sealing composition. Of these, it is more preferably contained in the range of 100 to 1000 ppm. Within the above range, the heat stabilizer can further improve the storage stability and processability of the sealing composition in a liquid state.
  • the photosensitizer Since the photosensitizer has a function of transferring the absorbed light energy to the photopolymerization initiator, the original photopolymerizability even if the photopolymerization initiator used does not absorb light corresponding to the light from the light source. It is a compound that can have an initiator function.
  • the photosensitizer examples include anthracene derivatives such as 9,10-dibutoxyanthracene; benzoin derivatives such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether; Benzophenone, o-Methyl benzoyl benzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenylsulfide, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 2,4 , 6-trimethylbenzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyloxy) ethyl] benzenemethnaminium bromide, (4-benzoylbenzyl) trimethylammonium chloride, etc.
  • anthracene derivatives such as 9,10
  • Benzophenone derivative 2-Isopropylthioxanthone, 4-Isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3,4- Examples thereof include compounds such as thioxanthone derivatives such as dimethyl-9H thioxanthone-9-one mesochloride; Among them, it is preferable to use an anthracene derivative, a benzoin derivative, a benzophenone derivative, an anthraquinone derivative, and a thioxanthone derivative.
  • the sealing composition of the present invention is preferably, but not limited to, cured by irradiating with ultraviolet rays in the range of 10 to 500 mW / cm 2 for 1 to 100 seconds.
  • ultraviolet rays it is preferable to use an LED having a diameter of 395 nm from the viewpoint of preventing deterioration of the electronic device.
  • the viscosity of the sealing composition of the present invention is preferably in the range of 3 to 20 mPa ⁇ s from the viewpoint of further enhancing the ejection property from the inkjet head.
  • the surface tension is preferably 15 mN / m or more and less than 45 mN / m from the viewpoint of further enhancing the ejection property from the inkjet head.
  • the viscosity of the sealing composition of the present invention can be determined, for example, by measuring the temperature change of the dynamic viscoelasticity of the sealing composition with various reometers. In the present invention, these viscosities are values obtained by the following methods.
  • the encapsulating composition of the present invention is set in a stress-controlled leometer Physica MCR300 (cone plate diameter: 75 mm, cone angle: 1.0 °), manufactured by Antonio Par. Next, the sealing composition is heated to 100 ° C., and the sealing composition is cooled to 20 ° C. under the conditions of a temperature lowering rate of 0.1 ° C./s, a strain of 5%, and an angular frequency of 10 radian / s. To obtain the temperature change curve of dynamic viscoelasticity.
  • the sealing composition of the present invention may contain pigment particles. From the viewpoint of further enhancing the ejection property of the pigment particles from the inkjet head, the average particle size of the pigment particles when the sealing composition of the present invention contains the pigment is in the range of 0.08 to 0.5 ⁇ m. The maximum particle size is preferably in the range of 0.3 to 10 ⁇ m.
  • the average particle size of the pigment particles in the present invention means a value obtained by a dynamic light scattering method using Datasizer Nano ZSP, manufactured by Malvern. Since the sealing composition containing the coloring material has a high concentration and does not transmit light with this measuring device, the sealing composition is diluted 200 times before measurement. The measurement temperature is normal temperature (25 ° C).
  • the sealing composition of the present invention is an Ohnesorge represented by the following formula 1 having a density ⁇ thereof, a surface tension ⁇ of the sealing composition, a viscosity ⁇ of the sealing composition, and a nozzle diameter D 0 . It is preferable that the number (Oh) is in the range of 0.1 to 1 from the viewpoint of inkjet ejection property and droplet stabilization during ink flight.
  • the sealing composition of the present invention It is preferable to prepare the sealing composition of the present invention and provide a cured polymer having a Tg (glass transition point) of 80 ° C. or higher in the film after polymerization.
  • the Tg of the film after polymerization is preferably 80 ° C. or higher from the viewpoint of ensuring stability in the electronic device formation process, driving temperature, and reliability test.
  • the method for forming an electronic device encapsulating film of the present invention is a method for forming an encapsulating film using the above-mentioned composition for encapsulating an electronic device of the present invention, and is first sealed on an electronic device by a vapor phase method. It comprises a step of forming a stop layer and a step of forming a second sealing layer by applying the electronic device sealing composition on the first sealing layer. Further, it is preferable to provide a step of forming the third sealing layer on the second sealing layer by the vapor phase method in that the sealing performance of the electronic device can be further improved.
  • the first sealing layer forming step the first sealing layer is formed on the electronic device by the vapor phase method.
  • the vapor phase method includes a sputtering method (including a reactive sputtering method such as magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, and bipolar AC rotary magnetron sputtering), and a vapor deposition method (for example, resistance heating).
  • the first sealing layer contains silicon nitride (SiN), silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride.
  • the thickness of the first sealing layer is preferably in the range of, for example, 10 to 1000 nm, and more preferably in the range of 100 to 500 nm.
  • the second sealing layer is formed by applying the above-mentioned sealing composition of the present invention on the first sealing layer. Specifically, a step of applying the sealing composition on the first sealing layer (coating step) and irradiating the obtained coating film with vacuum ultraviolet rays under a nitrogen atmosphere to perform a reforming treatment. You may have.
  • any suitable method can be adopted as the coating method of the encapsulating composition, for example, a spin coating method, a roll coating method, a flow coating method, an inkjet method, a spray coating method, a printing method, and a dip coating method. , Casting film forming method, bar coating method, gravure printing method and the like. Above all, it is preferable to use the inkjet method in that fine patterning required when encapsulating an electronic device such as an organic EL element can be performed on demand.
  • the inkjet method As the inkjet method, a known method can be used.
  • the inkjet method can be roughly divided into two types, a drop-on-demand method and a continuous method, both of which can be used.
  • the drop-on-demand method includes an electric-mechanical conversion method (for example, single cavity type, double cavity type, bender type, piston type, shared mode type, shared wall type, etc.) and an electric-heat conversion method (for example, thermal).
  • an inkjet type a bubble jet (registered trademark) type, etc.)
  • an electrostatic suction method for example, an electric field control type, a slit jet type, etc.
  • a discharge method for example, a spark jet type, etc.
  • an electric-mechanical conversion method or an electric-heat conversion method head it is preferable to use an electric-mechanical conversion method or an electric-heat conversion method head.
  • a method of dropping a droplet (for example, a coating liquid) by an inkjet method may be referred to as an "inkjet method".
  • the sealing composition When applying the sealing composition, it is preferable to apply it in a nitrogen atmosphere.
  • the reforming treatment step may include a step of irradiating the obtained coating film with vacuum ultraviolet rays in a nitrogen atmosphere after the coating step to perform the reforming treatment.
  • the reforming treatment refers to a conversion reaction of polysilazane to silicon oxide or silicon nitride. Similarly, the reforming treatment is performed under a nitrogen atmosphere such as in a glove box or under reduced pressure.
  • a known method based on the conversion reaction of polysilazane can be selected.
  • a conversion reaction using plasma, ozone or ultraviolet rays, which can be converted at a low temperature is preferable. Conventionally known methods can be used for plasma and ozone.
  • it is preferable to form the second sealing layer according to the present invention by providing the coating film and irradiating it with vacuum ultraviolet light (also referred to as VUV) having a wavelength of 200 nm or less for modification treatment. ..
  • VUV vacuum ultraviolet light
  • the thickness of the second sealing layer is preferably in the range of 0.5 to 20 ⁇ m, more preferably in the range of 3 to 10 ⁇ m.
  • the entire layer may be modified, but the thickness of the modified layer to be modified is preferably in the range of 1 to 50 nm, and is preferably 1 to 30 nm. Within the range is more preferred.
  • the illuminance of the vacuum ultraviolet rays on the coating film surface received by the coating film is preferably in the range of 30 to 200 mW / cm 2 , and is preferably 50 to 160 mW / cm 2 . It is more preferable that it is within the range of.
  • the reforming efficiency can be sufficiently improved, and when it is 200 mW / cm 2 or less, the damage occurrence rate to the coating film is extremely suppressed, and the substrate is used. It is preferable because it can also reduce the damage of the illuminance.
  • the amount of vacuum ultraviolet irradiation energy on the coating film surface is preferably in the range of 1 to 10 J / cm 2 , and from the viewpoint of barrier properties and moist heat resistance for maintaining the desiccant function, 3 It is more preferably in the range of about 7 J / cm 2 .
  • a rare gas excimer lamp is preferably used as a light source for vacuum ultraviolet rays. Since the vacuum ultraviolet light is absorbed by oxygen, the efficiency in the vacuum ultraviolet irradiation step tends to decrease. Therefore, it is preferable to irradiate the vacuum ultraviolet light in a state where the oxygen concentration is as low as possible. That is, the oxygen concentration during vacuum ultraviolet light irradiation is preferably in the range of 10 to 10000 ppm, more preferably in the range of 50 to 5000 ppm, further preferably in the range of 80 to 4500 ppm, and most preferably in the range of 100 to 1000 ppm. Is within the range of.
  • the reforming treatment can also be performed in combination with the heat treatment.
  • the heating conditions are preferably in the range of 50 to 300 ° C, more preferably in the range of 60 to 150 ° C, preferably in combination with heat treatment for 1 second to 60 minutes, more preferably 10 seconds to 10 minutes. By doing so, the dehydration condensation reaction at the time of modification can be promoted, and the modified form can be formed more efficiently.
  • Examples of the heat treatment include a method of contacting a base material with a heating element such as a heat block to heat the coating film by heat conduction, a method of heating the atmosphere with an external heater using a resistance wire or the like, and an infrared region such as an IR heater. Examples thereof include a method using the light of the above, but the method is not particularly limited. Further, a method capable of maintaining the smoothness of the coating film containing the silicon compound may be appropriately selected.
  • the third sealing layer is formed on the second sealing layer by the vapor phase method.
  • the vapor phase method is the same as the vapor phase method used in the first sealing layer forming step, such as a sputtering method (for example, magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotary magnetron sputtering, etc.).
  • a sputtering method for example, magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotary magnetron sputtering, etc.
  • vapor deposition method eg, resistance heating vapor deposition, electron beam vapor deposition, ion beam vapor deposition, plasma-assisted vapor deposition, etc.
  • thermal CVD method catalytic chemical vapor deposition method (Cat-CVD), capacity.
  • Cat-CVD catalytic chemical vapor deposition method
  • Examples thereof include a combined plasma CVD method (CCP-CVD), an optical CVD method, a plasma CVD method (PE-CVD), an epitaxial growth method, a chemical vapor deposition method such as an atomic layer growth method (ALD), and the like. Above all, it is preferable to form by the ALD method and the CVD method.
  • the third sealing layer contains silicon nitride (SiN), silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride.
  • the thickness of the third sealing layer is preferably in the range of, for example, 10 to 1000 nm, and more preferably in the range of 100 to 500 nm.
  • a conductive film for the touch sensor may be further formed.
  • the conductive film is, for example, ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • metal compound films such as, graphene film, metal nanowire film (for example, a film containing silver nanoparticles or copper nanoparticles), metal nanoparticles film (for example, silver nanoparticles or copper nanoparticles) having excellent flexibility.
  • metal nanoparticles film for example, silver nanoparticles or copper nanoparticles having excellent flexibility.
  • the electronic device encapsulating film of the present invention is an electronic device encapsulating film for encapsulating an electronic device, and is a first encapsulating layer containing silicon nitride, silicon oxide or silicon oxynitride, and the above-mentioned electron of the present invention. It has a second sealing layer using a device sealing composition.
  • the electronic device encapsulating film of the present invention is formed by the method for forming an electronic device encapsulating film. That is, the second encapsulation layer is formed by using the above-mentioned composition for encapsulating an electronic device of the present invention.
  • the electronic device encapsulation film of the present invention preferably has a third encapsulation layer further containing silicon nitride, silicon oxide or silicon oxynitride on the second encapsulation layer.
  • the first sealing layer is a layer formed on the electronic device by the above-mentioned vapor phase method. Specifically, it contains silicon nitride (SiN), silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride.
  • the second sealing layer is provided adjacent to the first sealing layer, and is formed by applying the sealing composition on the first sealing layer. Therefore, the second sealing layer contains a polymer having a structure represented by the following general formula (3A) and the following general formula (3B), and the metal-containing compound (C).
  • R 1 represents a hydrogen atom or a methyl group.
  • A is a structure having no aromatic hydrocarbon group.
  • B has an aromatic hydrocarbon group, and is a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups having a structure represented by the general formula (1), or two or more substituted or unsubstituted.
  • R 1 represents a hydrogen atom or a methyl group.
  • A has a structure having no aromatic hydrocarbon group. That is, it is synonymous with the above-mentioned photocurable monomer (A), does not contain an aromatic hydrocarbon group, and has one or more of a vinyl group, an acrylic group, and a methacrylic group as a photocurable functional group. It may contain a monomer having up to 20 pieces, specifically 1 to 6 pieces, and may contain, for example, 1 to 3 pieces, 1 to 2 pieces, 1 piece, or 2 pieces.
  • B is a structure having an aromatic hydrocarbon group.
  • photocurable monomer (B) contains two or more phenyl groups and heteroatoms having an aromatic hydrocarbon group and a structure represented by the general formula (1). Moreover, it contains at least mono (meth) acrylate or di (meth) acrylate.
  • the second sealing layer contains a polymer having a structure represented by the general formula (3A) and the general formula (3B) and the metal-containing compound (C).
  • Various conventionally known analytical methods such as chromatography, infrared spectroscopy, ultraviolet / visible spectroscopy, nuclear magnetic resonance analysis, X-ray diffraction, mass spectrometry, X-ray photoelectron spectroscopy and the like can be used.
  • the content of the metal-containing compound (C) in the second sealing layer is preferably in the range of 0.1 to 15% by mass, and more preferably in the range of 5 to 10% by mass. Further, the metal-containing compound (C) in the second sealing layer may be partially transformed into an oxide or a hydroxide having a metal M. From the viewpoint of transparency, these metal M oxides or hydroxides have a molar fraction in the range of 0.01 to 0.1 [mol / mol] with respect to the metal-containing compound (C). preferable.
  • the third sealing layer is a layer provided adjacent to the second sealing layer and formed by the above-mentioned vapor phase method. Specifically, it contains silicon nitride (SiN), silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride as in the first sealing layer.
  • examples of the electronic device to be sealed include an organic EL element, an LED element, a liquid crystal display element (LCD), a thin film, a touch panel, and an electronic paper. , Solar cell display (PV) and the like. From the viewpoint that the effect of the present invention can be obtained more efficiently, an organic EL element, a solar cell or an LED element is preferable, and an organic EL element is particularly preferable.
  • the organic EL element adopted as the electronic device according to the present invention may be a bottom emission type, that is, one in which light is taken out from the transparent substrate side.
  • the bottom emission type is configured by laminating a transparent electrode serving as a cathode, a light emitting functional layer, and a counter electrode serving as an anode on a transparent substrate in this order.
  • the organic EL element according to the present invention may be a top emission type, that is, one in which light is taken out from the transparent electrode side which is the cathode opposite to the substrate.
  • the top emission type has a configuration in which a counter electrode serving as an anode is provided on the substrate side, and a light emitting functional layer and a transparent electrode serving as a cathode are laminated in this order on the surface thereof.
  • the intermediate layer may be a charge generation layer or may have a multi-photon unit configuration.
  • Japanese Patent Application Laid-Open No. 2013-157634 Japanese Patent Application Laid-Open No. 2013-168552, Japanese Patent Application Laid-Open No. 2013-1773661, Japanese Patent Application Laid-Open No. 2013-187211, JP-A-2013 2013-191644, 2013-191804, 2013-225678, 2013-235994, 2013-243234, 2013-243236, 2013-2013 242366, 2013-243371, 2013-245179, 2014-003249, 2014-003299, 2014-013910, 2014-017493
  • Examples thereof include the configurations described in Japanese Patent Application Laid-Open No. 2014-017494.
  • a base material (hereinafter, also referred to as a support substrate, a substrate, a substrate, a support, etc.) that can be used for the organic EL element, specifically, glass or a resin film is preferably applied, and flexibility is required. If so, it is preferably a resin film. Further, it may be transparent or opaque. In the case of the so-called bottom emission type in which light is taken out from the base material side, the base material is preferably transparent.
  • Preferred resins include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, and cellulose acylate resin.
  • the base material is preferably made of a material having heat resistance. Specifically, a substrate having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used.
  • the base material meets the requirements for electronic component applications and laminated films for displays. That is, when the sealing film of the present invention is used for these applications, the substrate may be exposed to a step of 150 ° C. or higher. In this case, if the linear expansion coefficient of the base material exceeds 100 ppm / K, the substrate dimensions are not stable when the substrate is passed through the process at the above temperature, and the breaking performance is deteriorated due to thermal expansion and contraction. Or, the problem of not being able to withstand the thermal process is likely to occur. If it is less than 15 ppm / K, the film may be broken like glass and the flexibility may be deteriorated.
  • the Tg and the linear expansion coefficient of the base material can be adjusted by an additive or the like. More preferable specific examples of the thermoplastic resin that can be used as a base material include, for example, polyethylene terephthalate (PET: 70 ° C.), polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), and alicyclic type.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • alicyclic type alicyclic type.
  • Polyolefin for example, manufactured by Nippon Zeon Co., Ltd., Zeonoa (registered trademark) 1600: 160 ° C
  • polyarylate PAr: 210 ° C
  • polyethersulfone PES: 220 ° C
  • polysulfone PSF: 190 ° C
  • cycloolefin copolymer COC: Compound described in JP-A-2001-150584: 162 ° C
  • polyimide for example, manufactured by Mitsubishi Gas Chemicals Co., Ltd., Neoprim (registered trademark): 260 ° C
  • fluorene ring-modified polycarbonate BCF-PC: JP.
  • the base material is transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, an integrating sphere type light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
  • the base material listed above may be an unstretched film or a stretched film.
  • the substrate can be produced by a conventionally known general method.
  • the matters described in paragraphs “0051” to “0055” of International Publication No. 2013/002026 can be appropriately adopted.
  • the surface of the base material may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, plasma treatment, etc., and if necessary, the above treatments may be combined. May be. Further, the base material may be subjected to an easy-adhesion treatment.
  • the base material may be a single layer or a laminated structure of two or more layers.
  • each base material may be of the same type or may be of a different type.
  • the thickness of the base material according to the present invention is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m.
  • the film base material has a gas barrier layer.
  • the gas barrier layer for the film substrate may have a film of an inorganic substance, an organic substance, or a hybrid film of both formed on the surface of the film substrate, and is measured by a method according to JIS K 7129-1992. Further, it is preferable that the barrier film has a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2 )% RH) of 0.01 g / m 2.24 h or less, and further, JIS K 7126-. High gas barrier with oxygen permeability of 1 x 10 -3 mL / m 2.24 h.atm or less and water vapor transmission rate of 1 x 10 -3 g / m 2.24 h or less measured by a method according to 1987. It is preferably a sex film.
  • the material for forming the gas barrier layer may be any material having a function of suppressing infiltration of substances that cause deterioration of the element such as moisture and oxygen, and for example, silicon monoxide, silicon dioxide, silicon nitride, silicon oxynitride, and the like. Silicon carbide, acid silicon carbide and the like can be used.
  • the gas barrier layer is not particularly limited, but in the case of an inorganic gas barrier layer such as silicon monoxide, silicon dioxide, silicon nitride, silicon oxynitride, silicon carbide, silicon acid carbide, for example, the inorganic material is subjected to a sputtering method (for example).
  • Magnetron cathode sputtering flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotary magnetron sputtering, etc.
  • vapor deposition method for example, resistance heating vapor deposition, electron beam vapor deposition, ion beam vapor deposition, plasma-assisted vapor deposition, etc.
  • thermal CVD Method for example, catalytic chemical vapor deposition method (Cat-CVD), capacitively coupled plasma CVD method (CCP-CVD), optical CVD method, plasma CVD method (PE-CVD), epitaxial growth method, atomic layer deposition (ALD) method, reaction It is preferable to form a layer by a chemical vapor deposition method such as a sex sputtering method.
  • an inorganic gas barrier layer by applying a coating liquid containing an inorganic precursor such as polysilazane or tetraethyl orthosilicate (TEOS) onto the support and then performing a modification treatment by irradiation with vacuum ultraviolet light or the like.
  • the inorganic gas barrier layer is also formed by metal plating on a resin base material, film metallization technology such as adhering a metal foil and a resin base material, and the like.
  • the inorganic gas barrier layer may include an organic layer containing an organic polymer. That is, the inorganic gas barrier layer may be a laminate of an inorganic layer containing an inorganic material and an organic layer.
  • the organic layer is polymerized, for example, by applying an organic monomer or an organic oligomer to a resin substrate to form a layer, followed by using, for example, an electron beam device, a UV light source, a discharge device, or other suitable device. And, if necessary, it can be formed by cross-linking. It can also be formed, for example, by depositing an organic monomer or an organic oligomer capable of flash evaporation and radiation cross-linking, and then forming a polymer from the organic monomer or the organic oligomer. The coating efficiency can be improved by cooling the resin substrate.
  • Examples of the method for applying the organic monomer or the organic oligomer include roll coating (for example, gravure roll coating) and spray coating (for example, electrostatic spray coating). Further, as an example of the laminated body of the inorganic layer and the organic layer, for example, the laminated body described in International Publication No. 2012/003198, International Publication No. 2011/013341 and the like can be mentioned.
  • the thickness of each layer may be the same or different.
  • the thickness of the inorganic layer is preferably in the range of 3 to 1000 nm, more preferably in the range of 10 to 300 nm.
  • the thickness of the organic layer is preferably in the range of 100 nm to 100 ⁇ m, more preferably in the range of 1 to 50 ⁇ m.
  • the metal-containing compound (C) is added so as to have the types and parts by mass shown in Tables I to IV below, and the mixture is stirred for 1 hour, and each encapsulating composition 1-1 to 1-78, 2-1 to 2-3 and 2-5 to 2-8 were obtained.
  • the metal-containing compound (C) c8 and c9 dibutyl ether was previously removed by heating under reduced pressure with an evaporator.
  • the compound X and the compound Y were synthesized by the methods shown below.
  • the residual solvent was removed by distillation. 300 g of the obtained compound is placed in 1000 ml of acetonitrile (acenotille, Sigma-Aldrich Co., Ltd.), and 220 g of potassium carbonate (sigma-Aldrich Co., Ltd.) and 141 g of 2-phenylphenol (2-phenylphonol, Sigma-Aldrich Co., Ltd.) are added. And stirred at 80 ° C. The residual solvent and reaction residue were removed to obtain the compound Y (molecular weight 296.36) with an HPLC purity of 93%.
  • c1 Tetra (2-ethylhexyl) titanate (product name TA30, manufactured by Matsumoto Fine Chemical Co., Ltd.)
  • c2 Aluminum sec-butyrate (manufactured by Kawaken Fine Chemical Co., Ltd.)
  • c3 Cyclic aluminum oxide isopropylate (manufactured by Kawaken Fine Chemical Co., Ltd.)
  • c4 Titanium octylene glycol chelate (product name TC201, manufactured by Matsumoto Fine Chemical Co., Ltd.)
  • c5 Diisopropoxybis (ethylacetate acetate) titanium (product name TC750, manufactured by Matsumoto Fine Chemical Co., Ltd.)
  • c6 Normal butyl zirconeate (product name ZA65, manufactured by Matsumoto Fine Chemical Co., Ltd.)
  • c7 Zirconium tetraacetylacetonate (product name ZC150, manufactured by Matsumoto Fine Chemical Co
  • the thickness of the formed first electrode was 150 nm.
  • the thickness of the first electrode is a value measured by a contact type surface shape measuring instrument (DECTAK).
  • the Al film was formed using a resistance heating crucible made of tungsten after reducing the pressure to a vacuum degree of 1 ⁇ 10 -4 Pa using a vacuum vapor deposition apparatus.
  • each of the crucibles for vapor deposition in the vacuum vapor deposition apparatus was filled with the following materials constituting each layer of the organic functional layer in the optimum amount for manufacturing the device.
  • a crucible made of molybdenum or tungsten made of a resistance heating material was used as the crucible for vapor deposition.
  • Electron Injection Layer (Metal Affinity Layer)
  • a heating boat containing the following compound I-1 as an electron injection material is energized and heated, and the electron injection layer made of Liq is electron-transported. Formed on the layer.
  • the vapor deposition rate was set in the range of 0.01 to 0.02 nm / sec, and the thickness was set to 2 nm.
  • the electron injection layer functions as a metal affinity layer. As a result, an organic EL layer that emits white light was formed.
  • silicon nitride SiN, Vickers hardness HV900 having a thickness of 500 nm was used by a plasma CVD method. Formed.
  • Second Sealing Layer Formation of Second Sealing Layer
  • the cartridge-integrated head of the inkjet device was filled with the sealing composition 1-1 prepared above.
  • the organic EL element formed up to the first sealing layer was coated with the sealing composition 1-1 in a nitrogen environment by an inkjet method.
  • UV was irradiated with an integrated energy of 1 J / cm 2 by an air-cooled LED (manufactured by Phoenix technology) having a diameter of 395 nm to form a second sealing layer.
  • the thickness of the second sealing layer was set by adjusting the number of times the inkjet was applied, and the second sealing layer having the following two thicknesses was formed. ⁇ 3.3 ⁇ m (applied once) ⁇ 10 ⁇ m (applied 3 times)
  • silicon nitride SiN, Vickers hardness HV900 having a thickness of 500 nm was formed as a third sealing layer on the second sealing layer by a plasma CVD method, and the first was formed.
  • the organic EL element 1-1 for evaluation on which the third sealing layer was formed was obtained.
  • Each organic EL element 1-1 to 1-67 and 2-1 to 2-7 are wound around a metal roller having a diameter of 10 mm to maintain a constant temperature under high temperature and high humidity (temperature 60 ° C., relative humidity 90%).
  • the accelerated deterioration test was carried out by leaving it in a constant humidity bath.
  • the polyimide film which is a film substrate, is wound so as to be in contact with the metal roller.
  • each organic EL element was taken out from the constant temperature and humidity chamber, and the light emission state (dark spot area ratio) was confirmed under a microscope at room temperature. Ranks 3 to 5 of the following evaluation criteria were passed.
  • the luminous characteristics were evaluated by comparing the luminous efficiency with the organic EL element for comparison.
  • the organic EL element for comparison was prepared by using non-alkali glass instead of the film substrate in the organic EL element produced above. Further, instead of forming the first sealing layer, the second sealing layer and the third sealing layer, sealing was performed in a glass sealing can to which barium oxide was attached under a nitrogen atmosphere. An ultraviolet curable adhesive was used to bond the sealing can and the substrate of the organic EL element, and the two were adhered by irradiating with ultraviolet rays to prepare a sealing element (organic EL element for comparison).
  • the organic EL device on which the sealing layer using the sealing composition of the present invention is formed has higher sealing performance and bending resistance than the organic EL device of the comparative example. It can be seen that it is good and the luminous efficiency is excellent.
  • the present invention provides an electronic device encapsulation composition, an electronic device encapsulation film forming method, and an electronic device capable of preventing moisture permeation, excellent encapsulation performance, excellent bending resistance, and further improving luminous efficiency. It can be used as a sealing film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electroluminescent Light Sources (AREA)
  • Sealing Material Composition (AREA)

Abstract

本発明の電子デバイス封止用組成物は、光硬化性モノマー及び光重合開始剤を含有する封止用組成物で、前記光硬化性モノマーが、芳香族炭化水素基を有さない光硬化性モノマー(A)と、芳香族炭化水素基を有する光硬化性モノマー(B)を含有し、光硬化性モノマー(B)が、特定構造を有する置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を含み、光硬化性モノマー(B)が、少なくともモノ(メタ)アクリレート又はジ(メタ)アクリレートを含み、さらに、金属アルコキシド化合物、金属キレート化合物、シラン系化合物、シラザン系化合物及び金属ハロゲン化物系化合物から選ばれる金属含有化合物(C)を含有する。

Description

電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜
 本発明は、電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜に関し、特に、水分透過を防止し、封止性能及び屈曲耐性に優れ、発光効率を向上させることができる電子デバイス封止用組成物等に関する。
 電子デバイス、特に有機エレクトロルミネッセンスデバイス(以下、「有機ELデバイス」又は「有機EL素子」ともいう。)は、用いられている有機材料や電極が水分により劣化することを防止するため、有機EL素子の表面を封止層により覆うことが提案されている。
 有機EL素子を封止する技術として、例えば、特許文献1に記載の技術では、芳香族炭化水素基を有さないモノマー、芳香族炭化水素基を有するモノマーを含み、芳香族炭化水素基を有するモノマーが2個以上のフェニル基及びヘテロ原子と、モノ(メタ)アクリレート及びジ(メタ)アクリレートとを含む組成物を、有機EL素子の表面上に蒸着やインクジェットなどの方法により有機保護膜を形成したディスプレイ装置が開示されている。
 しかしながら、前記特許文献1に記載のディスプレイ装置では、有機保護膜の拡散係数が十分低くいため、85℃、85%RH、100時間以上のような高温高湿下の過酷な条件では水分透過が問題であった。さらに、有機保護膜と隣接する層との応力差や接着力不足、屈曲時の屈曲耐性が問題とされていた。
 一方、有機EL素子を封止する技術として、例えば、特許文献2に記載の技術では、有機EL素子を覆うように有機EL素子の表面上に乾式法(CVD法)により形成された第1の保護膜と、当該第1の保護膜の表面上に湿式法により形成され、かつ、第1の保護膜の未付着部分を穴埋めするための第2の保護膜とを備えた有機EL装置が開示されている。
 しかしながら、前記特許文献2に記載の有機EL装置では、第2の保護膜が高温高湿環境で変性してしまうこと、また第2の保護膜の応力が大きいため、85℃・85%RH100時間以上の高温高湿下において、第1の保護膜と第2の保護膜との界面密着が劣化することに起因する(と推定される)第1の保護膜と第2の保護膜との界面における水分透過の問題があり、封止性能が劣っていた。また、このような封止をした場合、有機EL素子の発光効率が劣化するという問題があった。
特表2018-504735号公報 特開2005-56587号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、水分透過を防止し、封止性能に優れ、かつ、屈曲耐性に優れ、さらに発光効率を向上させることができる電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、芳香族炭化水素基を有さない光硬化性モノマー(A)と、芳香族炭化水素基を有する光硬化性モノマー(B)とを含有し、前記光硬化性モノマー(B)を特定の構造とし、さらに、金属アルコキシド化合物、金属キレート化合物、シラン系化合物、シラザン系化合物及び金属ハロゲン化物系化合物から選ばれる金属含有化合物(C)を含有することによって、封止性能、屈曲耐性及び発光効率に優れた電子デバイス封止用組成物等を提供することができることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.光硬化性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物であって、
 前記光硬化性モノマーが、芳香族炭化水素基を有さない光硬化性モノマー(A)と、芳香族炭化水素基を有する光硬化性モノマー(B)を含有し、
 前記光硬化性モノマー(B)が、下記一般式(1)で表される構造を有する置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を含み、かつ、
 前記光硬化性モノマー(B)が、少なくともモノ(メタ)アクリレート又はジ(メタ)アクリレートを含み、
 さらに、金属アルコキシド化合物、金属キレート化合物、シラン系化合物、シラザン系化合物及び金属ハロゲン化物系化合物から選ばれる金属含有化合物(C)を含有する電子デバイス封止用組成物。
Figure JPOXMLDOC01-appb-C000004
[前記一般式(1)において、Pは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を表す。Z及びZは、それぞれ独立的に下記一般式(2)で表される構造を有する。a及びbは、それぞれ0~2の整数であり、a+bは、1~4の整数である。]
Figure JPOXMLDOC01-appb-C000005
[前記一般式(2)において、*は、Pの炭素に対する連結部である。Xは、単一結合、O又はSを表す。Yは、置換又は非置換の炭素数1~10の直鎖状アルキレン基、又は置換又は非置換の炭素数1~20のアルコキシ基を表す。Rは、水素原子又は炭素数1~5のアルキル基を表す。cは、0又は1の整数である。]
 2.前記金属含有化合物(C)の、電子デバイス封止用組成物全体に対する含有量が、0.1~15質量%の範囲内である第1項に記載の電子デバイス封止用組成物。
 3.前記金属含有化合物(C)を構成する金属Mが、Ti、Si、Al及びZrのうち少なくともいずれかである第1項又は第2項に記載の電子デバイス封止用組成物。
 4.前記光硬化性モノマー(A)が、アミン基を有するモノ(メタ)アクリレート、置
換又は非置換の炭素数1~20のアルキレン基を有するジ(メタ)アクリレート、エチレンオキシド基を有するジ(メタ)アクリレート、エチレンオキシド基を有するトリ(メタ)アクリレート、環状炭化アルキル基を有するモノ(メタ)アクリレート及びジ(メタ)アクリレートのうち少なくともいずれかである第1項から第3項までのいずれか一項に記載の電子デバイス封止用組成物。
 5.前記光硬化性モノマー(B)が、4-(メタ)アクリルオキシ-2-ヒドロキシベンゾフェノン、エチル-3,3-ジフェニル(メタ)アクリレート、ベンゾイルオキシフェニル(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、2-フェニルフェノキシエチル(メタ)アクリレート、2,2’-フェニルフェノキシエチルジ(メタ)アクリレート、2-フェニルフェノキシプロピル(メタ)アクリレート、2,2’-フェニルフェノキシプロピルジ(メタ)アクリレート、2-フェニルフェノキシブチル(メタ)アクリレート、2,2’-フェニルフェノキシブチルジ(メタ)アクリレート、2-(3-フェニルフェニル)エチル(メタ)アクリレート、2-(4-ベンジルフェニル)エチル(メタ)アクリレート、2-フェニル-2-(フェニルチオ)エチル(メタ)アクリレート、2-(トリフェニルメチルオキシ)エチル(メタ)アクリレート、4-(トリフェニルメチルオキシ)ブチル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)ブチル(メタ)アクリレート、2-(ビフェニル-2-イルオキシ)ブチル(メタ)アクリレート、4-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、2-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、4-(ビフェニル-2-イルオキシ)エチル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)エチル(メタ)アクリレート、2-(4-ベンジルフェニル)エチル(メタ)アクリレート、4,4’-ジ(アクリロイルオキシメチル)ビフェニル、2,2’-ジ(2-アクリロイルオキシエトキシ)ビフェニル、これらの構造異性質体又はこれらの混合物のうちのいずれかである第1項から第4項までのいずれか一項に記載の電子デバイス封止用組成物。
 6.第1項から第5項までのいずれか一項に記載の電子デバイス封止用組成物を用いて、封止膜を形成する方法であって、
 電子デバイス上に気相法により第1封止層を形成する工程と、
 前記第1封止層上に前記電子デバイス封止用組成物を塗布することにより第2封止層を形成する工程と、を備える電子デバイス封止膜形成方法。
 7.前記第2封止層上に、気相法により第3封止層を形成する工程を備える第6項に記載の電子デバイス封止膜形成方法。
 8.前記第2封止層を形成する工程が、インクジェット法を用いる第6項又は第7項に記載の電子デバイス封止膜形成方法。
 9.電子デバイスを封止する電子デバイス封止膜であって、
 窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、
 第1項から第5項までのいずれか一項に記載の電子デバイス封止用組成物を用いた第2封止層と、を有する電子デバイス封止膜。
 10.前記第2封止層が、下記一般式(3A)及び下記一般式(3B)で表される構造を有する重合体と、前記金属含有化合物(C)と、を含有する第9項に記載の電子デバイス封止膜。
Figure JPOXMLDOC01-appb-C000006
[前記一般式(3A)及び前記一般式(3B)において、Rは水素原子又はメチル基を表す。Aは芳香族炭化水素基を有さない構造である。Bは芳香族炭化水素基を有し、前記一般式(1)で表される構造を有する置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を含み、かつ、少なくともモノ(メタ)アクリレート又はジ(メタ)アクリレートを含む。]
 11.前記第2封止層上に、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第3封止層を有する第9項又は第10項に記載の電子デバイス封止膜。
 12.前記第2封止層における前記金属含有化合物(C)の含有量が、0.1~15質量%の範囲内である第9項から第11項までのいずれか一項に記載の電子デバイス封止膜。
 本発明の上記手段により、水分透過を防止し、封止性能に優れ、かつ、屈曲耐性に優れ、さらに発光効率を向上させることができる電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜を提供することができる。
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 (水分透過)
 本発明の電子デバイス封止用組成物は、前記芳香族炭化水素基を有さない光硬化性モノマー(A)と、前記芳香族炭化水素基を有する光硬化性モノマー(B)と、前記金属含有化合物(C)を含有するので、前記金属含有化合物(C)の配位子が、前記芳香族炭化水素基を有さない光硬化性モノマー(A)と、前記芳香族炭化水素基を有する光硬化性モノマー(B)からなる重合体であるアクリル樹脂中でネットワークをつなぎ、アクリル樹脂の高分子鎖のミクロブラウン運動及びマクロブラウン運動を抑制し、かつ重合体中のオキシカルボニル基が水と相互作用をもつため、水の拡散を防ぐ。また、前記金属含有化合物(C)の金属と配位子が水と相互作用又は反応し、水の移動を抑制するため、この点においても水の拡散を防ぐ。その結果、水分透過を抑制し、封止性能に優れる。
 (電子デバイスの発光効率)
 第2封止層には、有機化合物の重合体だけではなく、第1封止層及び第3封止層を構成する化合物と化学構造的に相対的類似性を有する前記金属含有化合物(C)及びそれに由来する化合物を含有するため、相互に隣接する第1封止層/第2封止層/第3封止層の層間の屈折率の相違差による傾斜を緩和し、層間における光の反射を抑制することにより、光取り出し効率が向上、すなわち電子デバイスとしての発光効率が向上する。
 (屈曲耐性)
 第2封止層に含有される前記金属含有化合物(C)に含まれている金属又は配位子が、隣接層を構成する化合物と相互作用又は親和性を持つため、例えば、隣接する第1封止層又は第3封止層との相互作用が強くなり、密着性が上がる。その結果、折り曲げて発生する層間の応力への耐性が上がり、屈曲耐性に優れる。
 また、前記金属含有化合物(C)が水の拡散を防ぐため、薄い膜でも信頼性を担保できる。薄い膜であれば、曲げたときの応力が低くなり、層間剥離が低減される。
 本発明の電子デバイス封止用組成物は、光硬化性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物であって、前記光硬化性モノマーが、芳香族炭化水素基を有さない光硬化性モノマー(A)と、芳香族炭化水素基を有する光硬化性モノマー(B)を含有し、前記光硬化性モノマー(B)が、下記一般式(1)で表される構造を有する置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を含み、かつ、前記光硬化性モノマー(B)が、少なくともモノ(メタ)アクリレート又はジ(メタ)アクリレートを含み、さらに、金属アルコキシド化合物、金属キレート化合物、シラン系化合物、シラザン系化合物及び金属ハロゲン化物系化合物から選ばれる金属含有化合物(C)を含有する。
 この特徴は、下記各実施形態に共通又は対応する技術的特徴である。
 本発明の実施態様としては、前記金属含有化合物(C)の、電子デバイス封止用組成物全体に対する含有量が、0.1~15質量%の範囲内であることが、電子デバイス封止用組成物が光硬化可能な点、電子デバイスの発光効率向上の点で好ましい。
 また、前記金属含有化合物(C)を構成する金属Mが、Ti、Si、Al及びZrのうち少なくともいずれかであることが、水の移動を抑制し、水分透過抑制の点で好ましい。
 また、前記光硬化性モノマー(A)が、アミン基を有するモノ(メタ)アクリレート、置換又は非置換の炭素数1~20のアルキレン基を有するジ(メタ)アクリレート、エチレンオキシド基を有するジ(メタ)アクリレート、エチレンオキシド基を有するトリ(メタ)アクリレート、環状炭化アルキル基を有するモノ(メタ)アクリレート及びジ(メタ)アクリレートのうち少なくともいずれかであることが、電子デバイスの信頼性向上の点及びインクジェット吐出適性の点で好ましい。
 さらに、前記光硬化性モノマー(B)が、4-(メタ)アクリルオキシ-2-ヒドロキシベンゾフェノン、エチル-3,3-ジフェニル(メタ)アクリレート、ベンゾイルオキシフェニル(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、2-フェニルフェノキシエチル(メタ)アクリレート、2,2’-フェニルフェノキシエチルジ(メタ)アクリレート、2-フェニルフェノキシプロピル(メタ)アクリレート、2,2’-フェニルフェノキシプロピルジ(メタ)アクリレート、2-フェニルフェノキシブチル(メタ)アクリレート、2,2’-フェニルフェノキシブチルジ(メタ)アクリレート、2-(3-フェニルフェニル)エチル(メタ)アクリレート、2-(4-ベンジルフェニル)エチル(メタ)アクリレート、2-フェニル-2-(フェニルチオ)エチル(メタ)アクリレート、2-(トリフェニルメチルオキシ)エチル(メタ)アクリレート、4-(トリフェニルメチルオキシ)ブチル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)ブチル(メタ)アクリレート、2-(ビフェニル-2-イルオキシ)ブチル(メタ)アクリレート、4-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、2-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、4-(ビフェニル-2-イルオキシ)エチル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)エチル(メタ)アクリレート、2-(4-ベンジルフェニル)エチル(メタ)アクリレート、4,4’-ジ(アクリロイルオキシメチル)ビフェニル、2,2’-ジ(2-アクリロイルオキシエトキシ)ビフェニル、これらの構造異性質体又はこれらの混合物のうちのいずれかであることが、電子デバイスの信頼性向上の点及びインクジェット吐出適性の点で好ましい。
 本発明の電子デバイス封止膜形成方法は、前記電子デバイス封止用組成物を用いて、封止膜を形成する方法であって、電子デバイス上に気相法により第1封止層を形成する工程と、前記第1封止層上に前記電子デバイス封止用組成物を塗布することにより第2封止層を形成する工程と、を備える。これにより、水分透過を防止し、封止性能に優れ、かつ、屈曲耐性に優れ、さらに発光効率を向上させることができる電子デバイス封止膜形成方法を提供することができる。
 また、前記第2封止層上に、気相法により第3封止層を形成する工程を備えることが、封止性能により優れる点で好ましい。
 さらに、前記第2封止層を形成する工程が、インクジェット法を用いることが、高精度に層形成できる点で好ましい。
 本発明の電子デバイス封止膜は、電子デバイスを封止する電子デバイス封止膜であって、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、第1項から第5項までのいずれか一項に記載の電子デバイス封止用組成物を用いた第2封止層と、を有する。これにより、水分透過を防止し、封止性能に優れ、かつ、屈曲耐性に優れ、さらに発光効率を向上させることができる電子デバイス封止膜を提供することができる。
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 本明細書において、「(メタ)アクリル」は、アクリル及び/又はメタクリルを意味する。
 また、「置換された」は、別の定義がない限り、本発明の官能基のうち一つ以上の水素原子が、ヒドロキシ基、ニトロ基、イミノ基(=NH、=NR、Rは、炭素数1~10のアルキル基である。)、アミジノ基、ヒドラジン又はヒドラゾン基、カルボキシ基、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数3~30のヘテロアリール基、炭素数2~30のヘテロシクロアルキル基に置換されることを意味する。
 さらに、「ヘテロ原子」は、N、O、S及びPからなる群から選ばれるいずれか一つの原子を意味し、「ヘテロ」は、炭素原子がN、O、S及びPからなる群から選ばれるいずれか一つの原子に置換されたことを意味する。
 「アルキレン基」は、両側末端の(メタ)アクリレート間において二重結合無しで飽和された炭化水素基で連結されたアルカンジイル基を意味する。また、アルキレン基の炭素数は、ジ(メタ)アクリレート基にある炭素を除いたアルキレン基自体にある炭素数のみを意味する。
 また、本発明における「電子デバイス」とは、電子のもつ運動エネルギー、位置エネルギーなどを利用して電気信号の発生、増幅、変換、又は制御などを行う素子をいう。例えば、発光ダイオード素子、有機エレクトロルミネッセンス素子、光電変換素子及びトランジスターなどの能動素子が挙げられる。また、本発明においては、他からの働きかけに対し、「抵抗する」「蓄える」などの受け身的な仕事をする受動素子、例えば、抵抗器・コンデンサーなども電子デバイスに含める。
 したがって、本発明の封止用組成物は、前記した電子デバイスを封止するための封止膜を形成するために用いられる。
[電子デバイス封止用組成物]
 本発明の電子デバイス封止用組成物(以下、単に「封止用組成物」ともいう。)は、光硬化性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物であって、前記光硬化性モノマーが、芳香族炭化水素基を有さない光硬化性モノマー(A)と、芳香族炭化水素基を有する光硬化性モノマー(B)を含有し、前記光硬化性モノマー(B)が、下記一般式(1)で表される構造を有する置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を含み、かつ、前記光硬化性モノマー(B)が、少なくともモノ(メタ)アクリレート又はジ(メタ)アクリレートを含み、さらに、金属アルコキシド化合物、金属キレート化合物、シラン系化合物、シラザン系化合物及び金属ハロゲン化物系化合物から選ばれる金属含有化合物(C)を含有する。
 前記光硬化性モノマーは、光重合開始剤によって硬化反応を行える光硬化性モノマーを意味する。前記光硬化性モノマーとしては、シリコン(Si)を含まない非-シリコン系モノマーを使用してもよく、例えば、C、H、O、N又はSから選ばれる元素のみからなるモノマーであってもよいが、これに限定されない。光硬化性モノマーは、通常の合成方法で合成して使用してもよく、商業的に販売する製品を購入して使用してもよい。
 前記光硬化性モノマーは、前記芳香族炭化水素基を有さない光硬化性モノマー(A)と、前記芳香族炭化水素基を有する光硬化性モノマー(B)を含有する。
<芳香族炭化水素基を有さない光硬化性モノマー(A)>
 前記芳香族炭化水素基を有さない光硬化性モノマー(A)(以下、単に「光硬化性モノマー(A)」ともいう。)は、芳香族炭化水素基を含んでおらず、光硬化官能基として、ビニル基、アクリル基、及びメタクリル基のうちの一つ以上を1~20個、具体的に1~6個有するモノマーを含んでもよく、例えば、1~3個、1~2個、1個、又は2個含んでもよい。
 本発明において、前記光硬化性モノマー(A)の重量平均分子量は、100~500g/molの範囲内であってもよく、130~400g/molの範囲内であってもよく、200~300g/molの範囲内であってもよい。前記モノマーの重量平均分子量の範囲内とすることにより、工程的により有利な効果を示すことができる。
 前記光硬化性モノマー(A)は、光硬化官能基を有する単官能モノマー、多官能モノマー、又はこれらの混合物を含んでもよい。
 具体的に、前記光硬化性モノマー(A)は、(メタ)アクリレートモノマーであってもよく、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、ヒドロキシ基及び炭素数1~20のアルキル基を有する不飽和カルボン酸エステル;炭素数1~20のアミノアルキル基を有する不飽和カルボン酸エステル;炭素数1~20の飽和又は不飽和カルボン酸のビニルエステル;シアン化ビニル化合物;不飽和アミド化合物;モノアルコール又は多価アルコールの単官能又は多官能(メタ)アクリレートなどになってもよい。
 前記「多価アルコール」は、ヒドロキシ基を2個以上有するアルコールであって、ヒドロキシ基を2個~20個、好ましくは2個~10個、より好ましくは2個~6個有するアルコールを意味し得る。
 一例において、光硬化性モノマー(A)のうち、芳香族炭化水素基を有さない(メタ)アクリレートモノマーは、置換又は非置換のC1~C20(炭素数1~20)のアルキル基、置換又は非置換のC1~C20のアルキルシリル基、置換又は非置換のC3~C20のシクロアルキル基、置換又は非置換のC1~C20のアルキレン基、アミン基、エチレンオキシド基などを有するモノ(メタ)アクリレート、ジ(メタ)アクリレート、トリ(メタ)アクリレート、テトラ(メタ)アクリレートなどであってもよい。
 具体的に、芳香族炭化水素基を有さない(メタ)アクリレートモノマーは、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デカニル(メタ)アクリレート、ウンデカニル(メタ)アクリレート、ドデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレートなどの(メタ)アクリル酸エステルを含む不飽和カルボン酸エステル;2-アミノエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレートなどの不飽和カルボン酸アミノアルキルエステル;ビニルアセテートなどの飽和又は不飽和カルボン酸ビニルエステル;(メタ)アクリロニトリルなどのシアン化ビニル化合物;(メタ)アクリルアミドなどの不飽和アミド化合物;エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、オクタンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、ウンデカンジオールジ(メタ)アクリレート、ドデカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート又はこれらの混合物を含んでもよいが、これに限定されない。
 本発明の一例において、前記光硬化性モノマー(A)は、芳香族基を含まない非-芳香族系であって、炭素数1~20のアルキル基を有するモノ(メタ)アクリレート、アミン基を有するモノ(メタ)アクリレート、置換又は非置換の炭素数1~20のアルキレン基を有するジ(メタ)アクリレート、エチレンオキシド基を有するジ(メタ)アクリレート、エチレンオキシド基を有するトリ(メタ)アクリレート、環状炭化アルキル基を有するモノ(メタ)アクリレート及びジ(メタ)アクリレートのうち少なくともいずれかを含んでもよい。
 置換又は非置換の炭素数1~20のアルキル基を有するモノ(メタ)アクリレートは、具体的に、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、アラキジル(メタ)アクリレート又はこれらの混合物であってもよいが、これに限定されない。
 アミン基を有するモノ(メタ)アクリレートは、2-アミノエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート又はこれらの混合物であってもよいが、これに限定されない。
 置換又は非置換の炭素数1~20のアルキレン基を有するジ(メタ)アクリレートは、例えば、炭素数1~20のアルキレン基を有するジ(メタ)アクリレートであってもよく、置換又は非置換の長鎖のアルキレン基を含む非-シリコン系ジ(メタ)アクリレートであってもよい。
 置換又は非置換の炭素数1~20のアルキレン基を有するジ(メタ)アクリレートは、例えば、オクタンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、ウンデカンジオールジ(メタ)アクリレート、ドデカンジオールジ(メタ)アクリレート又はこれらの混合物であってもよいが、これに限定されない。
 前記置換又は非置換の炭素数1~20のアルキレン基を有する(メタ)アクリレートを含む場合、本発明の封止用組成物は、光硬化率がさらに向上し、粘度が低くなり得る。
 エチレンオキシド基を有するジ(メタ)アクリレート又はトリ(メタ)アクリレートは、具体的に、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート又はこれらの混合物であってもよいが、これに限定されない。
 環状炭化アルキル基を有するモノ(メタ)アクリレート及びジ(メタ)アクリレートは、具体的に、イソボニル(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンテニル(メタ)アクリレ-トであってもよいが、これに限定されない。
 前記光硬化性モノマー(A)モノマーは、光硬化性モノマー(光硬化性モノマー(A)及び光硬化性モノマー(B))の総質量に対して55~95質量%の範囲内で含有されていることが好ましく、60~90質量%の範囲内で含有されていることがより好ましい。前記範囲内とすることにより、本発明の封止用組成物の粘度が電子デバイスの封止膜形成に適切となる。
<芳香族炭化水素基を有する光硬化性モノマー(B)>
 前記芳香族炭化水素基を有する光硬化性モノマー(B)(以下、単に「光硬化性モノマー(B)」ともいう。)が、下記一般式(1)で表される構造を有する2個以上のフェニル基及びヘテロ原子を含み、かつ、前記光硬化性モノマー(B)が、少なくともモノ(メタ)アクリレート又はジ(メタ)アクリレートを含む。
Figure JPOXMLDOC01-appb-C000007
[前記一般式(1)において、Pは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を表す。Z及びZは、それぞれ独立的に下記一般式(2)で表される構造を有する。a及びbは、それぞれ0~2の整数であり、a+bは、1~4の整数である。]
Figure JPOXMLDOC01-appb-C000008
[前記一般式(2)において、*は、Pの炭素に対する連結部である。Xは、単一結合、O又はSを表す。Yは、置換又は非置換の炭素数1~10の直鎖状アルキレン基、又は置換又は非置換の炭素数1~20のアルコキシ基を表す。Rは、水素原子又は炭素数1~5のアルキル基を表す。cは、0又は1の整数である。]
 前記一般式(1)において、Pは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を表す。
 前記置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換の2個以上のフェニル基が縮合されず、単一結合、酸素原子、硫黄原子、置換又は非置換の炭素数1~5のアルキル基、ヘテロ原子に置換又は非置換された炭素数3~6のアルキレン基、エテニレン基、エチニレン基又はカルボニル基によって連結されたものを意味する。
 例えば、前記2個以上のフェニル基を含む炭化水素基又は2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換のビフェニル基、置換又は非置換のトリフェニルメチル基、置換又は非置換のターフェニル基、置換又は非置換のビフェニレン基、置換又は非置換のターフェニレン基、置換又は非置換のクォーターフェニレン基、置換又は非置換の2-フェニル-2-(フェニルチオ)エチル基、置換又は非置換の2,2-ジフェニルプロパン基、置換又は非置換のジフェニルメタン基、置換又は非置換のクミルフェニル基、置換又は非置換のビスフェノールF基、置換又は非置換のビスフェノールA基、置換又は非置換のビフェニルオキシ基、置換又は非置換のターフェニルオキシ基、置換又は非置換のクォーターフェニルオキシ基、置換又は非置換のキンキフェニルオキシ基及びこれらの構造異性質体などを含んでもよいが、これに限定されない。
 前記置換又は非置換の2個以上のフェニル基を有するモノマーは、モノ(メタ)アクリレート、ジ(メタ)アクリレート又はこれらの混合物であってもよく、その例としては、4-(メタ)アクリルオキシ-2-ヒドロキシベンゾフェノン、エチル-3,3-ジフェニル(メタ)アクリレート、ベンゾイルオキシフェニル(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、4-クミルフェノキシエチルアクリレート、エトキシ化ビスフェニルフルオレンジアクリレート、2-フェニルフェノキシエチル(メタ)アクリレート、2,2’-フェニルフェノキシエチルジ(メタ)アクリレート、2-フェニルフェノキシプロピル(メタ)アクリレート、2,2’-フェニルフェノキシプロピルジ(メタ)アクリレート、2-フェニルフェノキシブチル(メタ)アクリレート、2,2’-フェニルフェノキシブチルジ(メタ)アクリレート、2-(3-フェニルフェニル)エチル(メタ)アクリレート、2-(4-ベンジルフェニル)エチル(メタ)アクリレート、2-フェニル-2-(フェニルチオ)エチル(メタ)アクリレート、2-(トリフェニルメチルオキシ)エチル(メタ)アクリレート、4-(トリフェニルメチルオキシ)ブチル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)ブチル(メタ)アクリレート、2-(ビフェニル-2-イルオキシ)ブチル(メタ)アクリレート、4-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、2-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、4-(ビフェニル-2-イルオキシ)エチル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)エチル(メタ)アクリレート、2-(4-ベンジルフェニル)エチル(メタ)アクリレート、4,4’-ジ(アクリロイルオキシメチル)ビフェニル、2,2’-ジ(2-アクリロイルオキシエトキシ)ビフェニル、これらの構造異性質体又はこれらの混合物を含んでもよいが、これに制限されるものではない。
 また、本発明で言及した(メタ)アクリレートは一例に過ぎなく、これに限定されるものではない。
 さらに、本発明は、構造異性質体関係にあるアクリレートを全て含む。例えば、本発明の一例として、2,2’-フェニルフェノキシエチルジ(メタ)アクリレートのみが言及されているとしても、本発明は、この構造異性質体に該当する3,2’-フェニルフェノキシエチルジ(メタ)アクリレート、3,3’-フェニルフェノキシエチルジ(メタ)アクリレートなどを全て含む。
 本発明の一例において、2個以上のフェニル基を有するモノマーは、下記一般式(4)で表されるモノ(メタ)アクリレートであってもよい。
Figure JPOXMLDOC01-appb-C000009
 前記一般式(4)において、Rは、水素又はメチル基で、Rは、置換又は非置換の炭素数1~10の直鎖状アルキレン基、又は置換又は非置換の炭素数1~20のアルコキシ基で、Rは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基である。
 例えば、前記置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換の2個以上のフェニル基が縮合されず、単一結合、酸素原子、硫黄原子、置換又は非置換の炭素数1~3のアルキル基、ヘテロ原子に置換又は非置換された炭素数3~6のアルキレン基、エテニレン基、エチニレン基又はカルボニル基によって連結されたものを意味する。
 例えば、前記置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換のビフェニル基、置換又は非置換のトリフェニルメチル基、置換又は非置換のターフェニル基、置換又は非置換のビフェニレン基、置換又は非置換のターフェニレン基、置換又は非置換のクォーターフェニレン基、置換又は非置換の2-フェニル-2-(フェニルチオ)エチル基、置換又は非置換の2,2-ジフェニルプロパン基、置換又は非置換のジフェニルメタン基、置換又は非置換のクミルフェニル基、置換又は非置換のビスフェノールF基、置換又は非置換のビスフェノールA基、置換又は非置換のビフェニルオキシ基、置換又は非置換のターフェニルオキシ基、置換又は非置換のクォーターフェニルオキシ基、置換又は非置換のキンキフェニルオキシ基などを含んでもよいが、これに限定されない。
 本発明の一例において、2個以上のフェニル基を有するモノマーは、下記の一般式(5)で表されるジ(メタ)アクリレートであってもよい。
Figure JPOXMLDOC01-appb-C000010
 前記一般式(5)において、R、Rは、それぞれ独立的に水素又はメチル基で、R、Rは、それぞれ独立的に置換又は非置換の炭素数1~10の直鎖状アルキレン基、又は置換又は非置換の炭素数1~20のアルコキシ基で、Rは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基である。
 例えば、前記置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換の2個以上のフェニル基が縮合されず、単一結合、酸素原子、硫黄原子、置換又は非置換の炭素数1~4のアルキル基、ヘテロ原子に置換又は非置換された炭素数3~6のアルキレン基、エテニレン基、エチニレン基又はカルボニル基によって連結されたものを意味する。
 例えば、前記炭化水素基は、置換又は非置換のビフェニレン基、置換又は非置換のトリフェニルメチレン基、置換又は非置換のターフェニレン基、置換又は非置換のクォーターフェニレン基、2-フェニル-2-(フェニルチオ)エチレン基、2,2-ジフェニルプロピレン基、ジフェニルメチレン基などを含んでもよいが、これに限定されない。
 前記一般式(1)において、a、bは、それぞれ0~2の整数で、a+bは、1~4の整数であり、一例において、a+bは、1又は2の整数である。
 前記置換又は非置換の2個以上のフェニル基を有するモノマーの重量平均分子量は、100~1000g/molの範囲内が好ましく、130~700g/molの範囲内であることがより好ましく、150~600g/molの範囲内であることが特に好ましい。
 前記範囲内とすることにより、透過率により優れた封止膜を提供することができる。
 前記芳香族炭化水素基を有する光硬化性モノマー(B)は、前記光硬化性モノマー(光硬化性モノマー(A)及び光硬化性モノマー(B))の総質量に対して5~45質量%の範囲内で含有されていることが好ましく、10~40質量%の範囲内で含有されていることがより好ましい。前記範囲内とすることにより、粘度が封止膜の形成に適切となる。
<金属含有化合物(C)>
 前記金属含有化合物(C)は、金属アルコキシド化合物、金属キレート化合物、シラン系化合物、シラザン系化合物及び金属ハロゲン化物系化合物から選ばれる。金属含有化合物(C)を構成する金属Mとしては、例えば、Ti、Si、Al、Zr、ケイ素、ビスマス、ストロンチウム、カルシウム、銅、ナトリウム、リチウムが挙げられる。また、セシウム、マグネシウム、バリウム、バナジウム、ニオブ、クロム、タンタル、タングステン、クロム、インジウム、鉄などが挙げられる。特にTi、Si、Al及びZrのうち少なくともいずれかであることが好ましい。
 以下に、金属含有化合物(C)の具体例を示すがこれらに限定されない。
 例えば、テトラクロロシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシラザン、パーヒドロポリシラザン、メチルポリシラザン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、テトライソシアネートシラン、メチルトリイソシアネートシラン等のシラン系化合物などが挙げられる。
 又は、下記の一般式(II)~(IV)で表される構造を有する有機チタン化合物などが挙げられる。下記一般式中、Rはアルキル基を表す。
Figure JPOXMLDOC01-appb-C000011
 また、チタンテトラ-2-エチルヘキソキシド、チタンジイソプロポキシビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタンジオクチロキシビス(オクチレングリコレート)、チタンジイソプロポキシビス(エチルアセトアセテート)、チタンジイソプロポキシビス(トリエタノールアミネート)、チタンラクテートアンモニウム塩、チタンラクテート、チタンラクテート、ポリヒドロキシチタンステアレート等のような有機チタン化合物が挙げられる。
 又は、下記の一般式(V)~(VII)で表される構造を有する有機ジルコニウム化合物
などが挙げられる。下記一般式中、Rはアルキル基を表す。
Figure JPOXMLDOC01-appb-C000012
 また、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラノルマルブトキシド、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムジブトキシビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノステアレート等のような有機ジルコニウム化合物が挙げられる。
 また、アルミニウムsec-ブチレート、アルミニウムイソプロピレート、モノsec-ブトキシアルミニウムジイソプロピレート、アルミニウムエチレート、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウム(III)アセチルアセトナート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウム-ジ-n-ブトキシド-モノエチルアセトアセテート、アルミニウム-ジ-イソ-プロポキシド-モノメチルアセトアセテート等のような有機アルミニウム化合物などが挙げられる。
 さらに、二塩化チタン、三塩化チタン、四塩化チタン、フッ化チタン、塩化ジルコニウム、フッ化ジルコニウム、塩化アルミニウム、フッ化アルミニウム等のような金属ハロゲン化物系化合物などが挙げられる。
 前記金属含有化合物(C)の市販品として、テトラ(2-エチルヘキシル)チタネート(製品名 TA30、マツモトファインケミカル社製)、アルミニウムsec-ブチレート(川研ファインケミカル社製)、環状アルミニウムオキサイドイソプロピレート(川研ファインケミカル社製)、チタンオクチレングリコールキレート(製品名 TC201、マツモトファインケミカル社製)、ジイソプロポキシビス(エチルアセトアセテート)チタン(製品名 TC750、マツモトファインケミカル社製)、ノルマルブチルジルコネート(製品名 ZA65、マツモトファインケミカル社製)、ジルコニウムテトラアセチルアセトネート(製品名 ZC150、マツモトファインケミカル社製)、ペルヒドロポリシラザン (製品名 NN120、AZ社製)、チルポリシラザン(製品名 アクアミカ LExp MHPS-20DB、AZ社製)、3-アミノプロピルトリメトキシシラン (製品名 KBM-903、信越化学工業社製)が好適に用いられる。
 前記金属含有化合物(C)の、前記封止用組成物全体に対する含有量は、封止用組成物が光硬化する機能を維持すれば限定されないが、0.1~15質量%の範囲内が好ましく、5~10質量%の範囲内がより好ましい。
 また、金属含有化合物(C)は、その一部が金属Mを有する酸化物又は水酸化物へ変質していていもよい。これらの金属Mの酸化物又は水酸化物は、金属含有化合物(C)に対するモル分率として、0.01~0.1[mol/mol]の範囲内であることが、透明性の観点で好ましい。
<光重合開始剤>
 前記光重合開始剤は、光硬化性反応を行える通常の光重合開始剤であれば特に限定されない。
 光重合開始剤としては、例えば、トリアジン系、アセトフェノン系、ベンゾフェノン系、チオキサントン系、ベンゾイン系、リン系、オキシム系又はこれらの混合物を含んでもよい。
 トリアジン系開始剤は、2,4,6-トリクロロ-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ビフェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、ビス(トリクロロメチル)-6-スチリル-s-トリアジン、2-(ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-トリクロロメチル(ピペロニル)-6-トリアジン、2,4-(トリクロロメチル(4’-メトキシスチリル)-6-トリアジン又はこれらの混合物であってもよい。
 アセトフェノン系開始剤は、2,2’-ジエトキシアセトフェノン、2,2’-ジブトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルトリクロロアセトフェノン、p-t-ブチルジクロロアセトフェノン、4-クロロアセトフェノン、2,2’-ジクロロ-4-フェノキシアセトフェノン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、及びこれらの混合物であってもよい。
 ベンゾフェノン系開始剤は、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、3,3’-ジメチル-2-メトキシベンゾフェノン又はこれらの混合物であってもよい。
 チオキサントン系開始剤は、チオキサントン、2-メチルチオキサントン、イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロチオキサントン又はこれらの混合物であってもよい。
 ベンゾイン系開始剤は、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール又はこれらの混合物であってもよい。
 リン系開始剤は、ビスベンゾイルフェニルホスフィンオキシド、ベンゾイルジフェニルホスフィンオキシド又はこれらの混合物であってもよい。
 オキシム系は、2-(o-ベンゾイルオキシム)-1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン及び1-(o-アセチルオキシム)-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン、又はこれらの混合物であってもよい。
 前記光重合開始剤は、本発明の封止用組成物中に、前記光硬化性モノマー(光硬化性モノマー(A)、光硬化性モノマー(B))と光重合開始剤の合計100質量部に対して約0.1~20質量部の範囲内含まれていることが好ましい。前記範囲内とすることにより、露光時に光重合が十分に起こり、光重合後、残った未反応開始剤によって透過率が低下することを防止することができる。
 具体的に、前記光重合開始剤は、0.5~10質量部、より具体的に1~8質量部の範囲内で含有されることが好ましい。
 また、前記光重合開始剤は、本発明の封止用用組成物中に、固形分を基準にして0.1~10質量%の範囲内で含有されること好ましく、より好ましくは0.1~8質量%の範囲内である。前記範囲内とすることにより、光重合が十分に起こり、残った未反応開始剤によって透過率が低下することを防止することができる。
 また、前記光重合開始剤の代わりに、カルバゾール系、ジケトン類、スルホニウム系、ヨードニウム系、ジアゾ系、ビイミダゾール系などの光酸発生剤又は光重合開始剤を使用してもよい。
<その他の添加剤>
 本発明の封止用組成物は、本発明の効果が得られる範囲において、酸化防止剤、熱安定化剤、光増感剤、分散剤、熱架橋剤及び界面活性剤を含むその他の成をさらに含んでいてもよい。これらの成分は、本発明の封止用組成物中に、一種のみが含まれていてもよく、二種類以上が含まれていてもよい。
 前記酸化防止剤は、封止層の熱的安定性を向上させることができる。酸化防止剤は、フェノール系、キノン系、アミン系及びホスファイト系からなる群から選ばれる1種以上を含んでもよいが、これらに制限されるものではない。例えば、酸化防止剤としては、テトラキス[メチレン(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナメート)]メタン、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイトなどを挙げることができる。
 前記酸化防止剤は、前記封止用組成物中に、前記光硬化性モノマーと前記光重合開始剤の合計100質量部に対して0.01~3質量部の範囲内含有されていることが好ましく、0.01~1質量部の範囲内含有されていることがより好ましい。前記範囲内とすることにより、優れた熱安定性を示すことができる。
 前記熱安定化剤は、封止用組成物に含まれ、当該封止用組成物の常温での粘度変化を抑制するものであって、通常の熱安定化剤を制限なく使用可能である。
 例えば、熱安定化剤としては、立体障害のある(sterically hindered)フェノール性熱安定剤を使用してもよく、具体的に、ポリ(ジ-シクロペンタジエン-co-p-クレゾール)、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、2,6-ジ-tert-ブチル-4-メチルフェノール、2,2’-メタノ-ビ(4-メチル-6-tert-ブチル-フェノール)、6,6’-ジ-tert-ブチル-2,2’-チオジ-p-クレゾール、トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、トリエチレングリコール-ビス(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、3,3’-ビス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-N,N’-ヘキサメチレン-ジプロピオンアミド、ペンタエリスリトールテトラキス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、ステアリル-3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオネート、ペンタエリスリトールテトラキス1,3,5-トリス(2,6-ジ-メチル-3-ヒドロキシ-4-tert-ブチル-ベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレート-トリス(3,5-ジ-tert-ブチルヒドロキシフェニルプロピオネート)のうちの一つ以上を含んでもよいが、これに制限されない。
 前記熱安定化剤は、前記封止用組成物中に、固形分を基準にして前記光硬化性モノマーと前記光重合開始剤の合計に対して2000ppm以下、好ましくは0.01~2000ppmの範囲内、より好ましくは100~1000ppmの範囲内含有されている。前記範囲内とすることにより、熱安定化剤は、封止用組成物の液状状態の貯蔵安定性と工程性をさらに良好にすることができる。
 前記光増感剤は、吸収した光エネルギーを光重合開始剤にエネルギー移動させる働きを有するため、使用する光重合開始剤に、光源からの光に対応した吸収がなくとも、本来の光重合性開始剤機能を持たせることができる化合物である。
 光増感剤としては、例えば、9,10-ジブトキシアントラセン等のアントラセン誘導体;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン誘導体;
 ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン誘導体;
 2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9Hチオキサントン-9-オンメソクロリド等のチオキサントン誘導体;などの化合物が挙げられる。なかでも、アントラセン誘導体、ベンゾイン誘導体、ベンゾフェノン誘導体、アントラキノン誘導体、チオキサントン誘導体を用いることが好ましい。
<紫外線硬化>
 本発明の封止用組成物は、紫外線を10~500mW/cmの範囲内で1~100秒間照射して硬化することが好ましいが、これに限定されるものではない。
 紫外線としては、電子デバイスの劣化を防ぐ観点で395nmのLEDを用いることが好ましい。
<物性>
 本発明の封止用組成物の粘度は3~20mPa・sの範囲内であることが、インクジェットヘッドからの吐出性をより高める観点から好ましい。表面張力は、15mN/m以上45mN/m未満であることがインクジェットヘッドからの吐出性をより高める観点から好ましい。
 本発明の封止用組成物の粘度は、例えば各種レオメーターにより、封止用組成物の動的粘弾性の温度変化を測定することにより求めることができる。
 本発明において、これらの粘度は、以下の方法によって得られた値である。本発明の封止用組成物をストレス制御型レオメーターPhysica MCR300(コーンプレートの直径:75mm、コーン角:1.0°)、Anton Paar社製にセットする。次いで、前記封止用組成物を100℃に加熱し、降温速度0.1℃/s、歪み5%、角周波数10radian/sで、の条件で20℃まで前記封止用組成物を冷却して、動的粘弾性の温度変化曲線を得る。
 本発明の封止用組成物は顔料粒子を含んでいても良い。顔料粒子は、インクジェットヘッドからの吐出性をより高める観点からは、本発明の封止用組成物が顔料を含有するときの顔料粒子の平均粒径は0.08~0.5μmの範囲内であり、最大粒径は0.3~10μmの範囲内であることが好ましい。
 本発明における顔料粒子の平均粒径とは、データサイザーナノZSP、Malvern社製を使用して動的光散乱法によって求めた値を意味する。なお、着色材を含む封止用組成物は濃度が高く、この測定機器では光が透過しないので、封止用組成物を200倍で希釈してから測定する。測定温度は常温(25℃)とする。
 また、本発明の封止用組成物は、その密度ρ、前記封止用組成物の表面張力σ、前記封止用組成物の粘度μ、ノズル直径Dでされる下記式1に示すオーネゾルゲ数(Oh)が0.1~1の範囲内であることがインクジェットの吐出性、インクの飛翔時の液滴安定化の観点で好ましい。
Figure JPOXMLDOC01-appb-M000013
 本発明の封止用組成物を調製し、重合後の膜において、80℃又はそれよりも高いTg(ガラス転移点)を有する硬化ポリマーを提供することが好ましい。重合後の膜のTgは、電子デバイスの形成プロセス、駆動温度、信頼性試験における安定性確保の観点で、80℃以上であることが好ましい。
[電子デバイス封止膜形成方法]
 本発明の電子デバイス封止膜形成方法は、前記した本発明の電子デバイス封止用組成物を用いて、封止膜を形成する方法であって、電子デバイス上に気相法により第1封止層を形成する工程と、前記第1封止層上に前記電子デバイス封止用組成物を塗布することにより第2封止層を形成する工程と、を備える。
 また、前記第2封止層上に、気相法により第3封止層を形成する工程を備えることが、電子デバイスの封止性能をより高めることができる点で好ましい。
<第1封止層形成工程>
 第1封止層形成工程は、電子デバイス上に気相法により第1封止層を形成する。
 気相法としては、スパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、二極AC平板マグネトロンスパッタリング、二極AC回転マグネトロンスパッタリングなど、反応性スパッタ法を含む。)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長法(ALD)等の化学蒸着法等が挙げられる。中でも、ALD法、CVD法により形成することが好ましい。
 第1封止層は、窒化ケイ素(SiN)、酸化ケイ素(一酸化ケイ素、二酸化ケイ素等)又は酸窒化ケイ素を含有する。
 第1封止層の厚さは、例えば、10~1000nmの範囲内であることが好ましく、100~500nmの範囲内であることがより好ましい。
<第2封止層形成工程>
 第2封止層形成工程は、前記第1封止層上に前記した本発明の封止用組成物を塗布することにより第2封止層を形成する。
 具体的には、前記第1封止層上に、前記封止用組成物を塗布し(塗布工程)、得られた塗布膜に窒素雰囲気下にて真空紫外線照射して改質処理する工程を有してもよい。
 (塗布工程)
 封止用組成物の塗布方法としては、任意の適切な方法を採用することができ、例えば、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。中でも、インクジェット法を用いることが有機EL素子などの電子デバイスを封止する際に求められる微細なパターニングをオンデマンドで行える点で好ましい。
 インクジェット方式としては、公知の方法を用いることができる。
 インクジェット方式は、大別するとドロップオンデマンド方式とコンティニュアス方式二つに分けられ、どちらも使用することができる。ドロップオンデマンド方式としては、電気-機械変換方式(例えば、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型、シェアードウォール型等)、電気-熱変換方式(例えば、サーマルインクジェット型、バブルジェット(登録商標)型等)、静電吸引方式(例えば、電界制御型、スリットジェット型等)及び放電方式(例えば、スパークジェット型等)等がある。インクジェットヘッドのコストや生産性の観点からは、電気-機械変換方式、又は電気-熱変換方式のヘッドを用いることが好ましい。なお、インクジェット方式により、液滴(例えば、塗布液)を滴下させる方法を「インクジェット法」と呼ぶ場合がある。
 前記封止用組成物を塗布する際には、窒素雰囲気下にて行うことが好ましい。
 (改質処理工程)
 前記改質処理工程では、塗布工程後、得られた塗布膜に窒素雰囲気下にて真空紫外線照射して改質処理する工程を有してもよい。
 改質処理とは、ポリシラザンの酸化ケイ素又は酸窒化ケイ素への転化反応をいう。改質処理も、同様に、グローブボックス内といった窒素雰囲気下や減圧下で行う。
 本発明における改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができる。本発明においては、低温で転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。プラズマやオゾンは従来公知の方法を用いることができる。本発明においては、上記塗布膜を設け、波長200nm以下の真空紫外光(VUVともいう。)を照射して改質処理することにより、本発明に係る第2封止層を形成することが好ましい。
 第2封止層の厚さは、0.5~20μmの範囲内が好ましく、より好ましくは3~10μmの範囲内である。
 当該第2封止層のうち、層全体が改質された層であってもよいが、改質処理された改質層の厚さは、1~50nmの範囲内が好ましく、1~30nmの範囲内がさらに好ましい。
 前記真空紫外線を照射して改質処理する工程において、塗布膜が受ける塗布膜面での該真空紫外線の照度は30~200mW/cmの範囲内であることが好ましく、50~160mW/cmの範囲内であることがより好ましい。真空紫外線の照度を30mW/cm以上とすることで、改質効率を十分に向上することができ、200mW/cm以下では、塗布膜への損傷発生率を極めて抑え、また、基材への損傷も低減させることができるため、好ましい。
 真空紫外線の照射は、塗布膜面における真空紫外線の照射エネルギー量は、1~10J/cmの範囲内であることが好ましく、デシカント機能を維持するためのバリアー性及び湿熱耐性の観点から、3~7J/cmの範囲内であることがより好ましい。
 なお、真空紫外線の光源としては、希ガスエキシマランプが好ましく用いられる。真空紫外光は、酸素による吸収があるため真空紫外線照射工程での効率が低下しやすいことから、真空紫外光の照射は、可能な限り酸素濃度の低い状態で行うことが好ましい。すなわち、真空紫外光照射時の酸素濃度は、10~10000ppmの範囲内とすることが好ましく、より好ましくは50~5000ppmの範囲内、さらに好ましくは80~4500ppmの範囲内、最も好ましくは100~1000ppmの範囲内である。
 改質処理は、加熱処理と組み合わせて行うこともできる。加熱条件としては、好ましくは50~300℃の範囲内、より好ましくは60~150℃の範囲内の温度で、好ましくは1秒~60分間、より好ましくは10秒~10分間、加熱処理を併用することで、改質時の脱水縮合反応を促進し、より効率的に改質体を形成することができる。
 加熱処理としては、例えば、ヒートブロック等の発熱体に基材を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターのような赤外領域の光を用いた方法等が挙げられるが、特に限定されない。また、ケイ素化合物を含有する塗膜の平滑性を維持できる方法を適宜選択してよい。
<第3封止層形成工程>
 第3封止層形成工程は、前記第2封止層上に気相法により第3封止層を形成する。
 気相法としては、第1封止層形成工程で用いた気相法と同様に、スパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、二極AC平板マグネトロンスパッタリング、二極AC回転マグネトロンスパッタリングなど、反応性スパッタ法を含む。)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長法(ALD)等の化学蒸着法等が挙げられる。中でも、ALD法、CVD法により形成することが好ましい。
 第3封止層は、窒化ケイ素(SiN)、酸化ケイ素(一酸化ケイ素、二酸化ケイ素等)又は酸窒化ケイ素を含有する。
 第3封止層の厚さは、例えば、10~1000nmの範囲内であることが好ましく、100~500nmの範囲内であることがより好ましい。
 なお、前記したように封止膜形成後に、さらにタッチセンサー用の導電膜を形成してもよい。
 前記導電膜は、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)
等の金属化合物膜のほか、フレキシブル性に優れた、グラフェン膜、金属ナノワイヤー膜(例えば、銀ナノワイヤー又は銅ナノワイヤーを含む膜)、金属ナノ粒子膜(例えば、銀ナノ粒子又は銅ナノ粒子を含む膜)で構成することができる。また、例えばAl膜/Ti膜/Al膜のような複数金属の積層膜で構成することができる。
[電子デバイス封止膜]
 本発明の電子デバイス封止膜は、電子デバイスを封止する電子デバイス封止膜であって、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、前記した本発明の電子デバイス封止用組成物を用いた第2封止層と、を有する。
 本発明の電子デバイス封止膜は、前記電子デバイス封止膜形成方法により形成される。すなわち、前記した本発明の電子デバイス封止用組成物を用いて第2封止層が形成される。
 また、本発明の電子デバイス封止膜は、前記第2封止層上に、さらに窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第3封止層を有することが好ましい。
<第1封止層>
 第1封止層は、電子デバイス上に前記した気相法により形成される層である。具体的には、窒化ケイ素(SiN)、酸化ケイ素(一酸化ケイ素、二酸化ケイ素等)又は酸窒化ケイ素を含有する。
<第2封止層>
 第2封止層は、前記第1封止層に隣接して設けられ、前記第1封止層上に前記封止用組成物を塗布することにより形成される。
 したがって、第2封止層は、下記一般式(3A)及び下記一般式(3B)で表される構造を有する重合体と、前記金属含有化合物(C)と、を含有する。
Figure JPOXMLDOC01-appb-C000014
[前記一般式(3A)及び前記一般式(3B)において、Rは水素原子又はメチル基を表す。Aは芳香族炭化水素基を有さない構造である。Bは芳香族炭化水素基を有し、前記一般式(1)で表される構造を有する置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を含み、かつ、少なくともモノ(メタ)アクリレート又はジ(メタ)アクリレートを含む。]
 前記一般式(3A)及び前記一般式(3B)において、Rは水素原子又はメチル基を表す。
 また、前記一般式(3A)及び一般式(3B)において、Aは、芳香族炭化水素基を有さない構造である。すなわち、前記した光硬化性モノマー(A)と同義であり、芳香族炭化水素基を含んでおらず、光硬化官能基として、ビニル基、アクリル基、及びメタクリル基のうちの一つ以上を1~20個、具体的に1~6個有するモノマーを含んでもよく、例えば、1~3個、1~2個、1個、又は2個含んでもよい。
 前記一般式(3A)及び一般式(3B)において、Bは芳香族炭化水素基を有する構造である。すなわち、前記した光硬化性モノマー(B)と同義であり、芳香族炭化水素基を有し、前記一般式(1)で表される構造を有する2個以上のフェニル基及びヘテロ原子を含み、かつ、少なくともモノ(メタ)アクリレート又はジ(メタ)アクリレートを含む。
 前記第2封止層が、前記一般式(3A)及び一般式(3B)で表される構造を有する重合体と、前記金属含有化合物(C)と、を含有することを検出する方法としては、従来公知の種々の分析法、例えばクロマトグラフィー、赤外線分光法、紫外・可視分光法、核磁気共鳴分析、X線回折法、及び質量分析、X線光電子分光法等を用いることができる。
 前記第2封止層における前記金属含有化合物(C)の含有量は、0.1~15質量%の範囲内であることが好ましく、5~10質量%の範囲内であることより好ましい。
 また、第2封止層における金属含有化合物(C)は、その一部が金属Mを有する酸化物又は水酸化物へ変質していていもよい。これらの金属Mの酸化物又は水酸化物は、金属含有化合物(C)に対するモル分率として、0.01~0.1[mol/mol]の範囲内であることが、透明性の観点で好ましい。
<第3封止層>
 第3封止層は、前記第2封止層に隣接して設けられ、前記した気相法により形成される層である。具体的には、第1封止層と同様に窒化ケイ素(SiN)、酸化ケイ素(一酸化ケイ素、二酸化ケイ素等)又は酸窒化ケイ素を含有する。
[電子デバイス]
 本発明の電子デバイス封止膜形成方法及び電子デバイス封止膜において、封止される電子デバイスとしては、例えば、有機EL素子、LED素子、液晶表示素子(LCD)、薄膜トランジスター、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、有機EL素子、太陽電池又はLED素子が好ましく、有機EL素子が特に好ましい。
<有機EL素子>
 本発明に係る電子デバイスとして採用される有機EL素子は、ボトムエミッション型、すなわち、透明基材側から光を取り出すようにしたものであってもよい。
 ボトムエミッション型は、具体的には、透明基材上に、カソードとなる透明電極、発光機能層、アノードとなる対向電極をこの順で積層することにより構成されている。
 また、本発明に係る有機EL素子は、トップエミッション型、すなわち、基材とは逆のカソードとなる透明電極側から光を取り出すようにしたものであってもよい。
 トップエミッション型は、具体的には、基材側にアノードとなる対向電極を設け、この表面に発光機能層、カソードとなる透明電極を順に積層した構成である。
 以下に、有機EL素子の構成の代表例を示す。
 (i)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
 (ii)陽極/正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層/陰極
 (iii)陽極/正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層/陰極
 (iv)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 (v)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 (vi)陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 さらに、有機EL素子は、非発光性の中間層を有していても良い。中間層は電荷発生層であっても良く、マルチフォトンユニット構成であっても良い。
 本発明に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。
<基材>
 前記有機EL素子に用いることのできる基材(以下、支持基板、基体、基板、支持体等ともいう。)としては、具体的には、ガラス又は樹脂フィルムの適用が好ましく、フレキシブル性を要求される場合は、樹脂フィルムであることが好ましい。
 また、透明であっても不透明であってもよい。基材側から光を取り出す、いわゆるボトムエミッション型の場合には、基材は透明であることが好ましい。
 好ましい樹脂としては、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂を含む基材が挙げられる。該樹脂は、単独でも又は2種以上組み合わせても用いることができる。
 基材は、耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつガラス転移温度(Tg)が100℃以上300℃以下の基材が使用される。
 該基材は、電子部品用途、ディスプレイ用積層フィルムとしての必要条件を満たしている。すなわち、これらの用途に本発明の封止膜を用いる場合、基材は、150℃以上の工程に曝されることがある。この場合、基材の線膨張係数が100ppm/Kを超えると、前記のような温度の工程に流す際に基板寸法が安定せず、熱膨張及び収縮に伴い、遮断性性能が劣化する不都合や、又は熱工程に耐えられないという不具合が生じやすくなる。15ppm/K未満では、フィルムがガラスのように割れてしまいフレキシビリティが劣化する場合がある。
 基材のTgや線膨張係数は、添加剤などによって調整することができる。
 基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF-PC:特開2000-227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:特開2000-227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002-80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内温度はTgを示す)。
 本発明に係る電子デバイスは、有機EL素子等の電子デバイスであることから、基材は透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率及び散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。
 また、上記に挙げた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。当該基材は、従来公知の一般的な方法により製造することが可能である。これらの基材の製造方法については、国際公開第2013/002026号の段落「0051」~「0055」の記載された事項を適宜採用することができる。
 基材の表面は、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、又はプラズマ処理等を行っていてもよく、必要に応じて上記処理を組み合わせて行っていてもよい。また、基材には易接着処理を行ってもよい。
 該基材は、単層でもよいし2層以上の積層構造であってもよい。該基材が2層以上の積層構造である場合、各基材は同じ種類であってもよいし異なる種類であってもよい。
 本発明に係る基材の厚さ(2層以上の積層構造である場合はその総厚)は、10~200μmであることが好ましく、20~150μmであることがより好ましい。
 また、フィルム基材の場合は、ガスバリアー層付きフィルム基材であることが好ましい。
 前記フィルム基材用のガスバリアー層は、フィルム基材の表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/m・24h以下のバリアー性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/m・24h・atm以下、水蒸気透過度が、1×10-3g/m・24h以下の高ガスバリアー性フィルムであることが好ましい。
 前記ガスバリアー層を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、一酸化ケイ素、二酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素等を用いることができる。
 当該ガスバリアー層は、特に限定されないが、例えば、一酸化ケイ素、二酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素等の無機ガスバリアー層の場合は、無機材料をスパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、二極AC平板マグネトロンスパッタリング、二極AC回転マグネトロンスパッタリングなど)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長(ALD)法、反応性スパッタ法等の化学蒸着法等によって層形成することが好ましい。
 さらに、ポリシラザン、オルトケイ酸テトラエチル(TEOS)などの無機前駆体を含む塗布液を支持体上に塗布した後、真空紫外光の照射などにより改質処理を行い、無機ガスバリアー層を形成する方法や、樹脂基材への金属めっき、金属箔と樹脂基材とを接着させる等のフィルム金属化技術などによっても、無機ガスバリアー層は形成される。
 また、無機ガスバリアー層は、有機ポリマーを含む有機層を含んでいてもよい。すなわち、無機ガスバリアー層は、無機材料を含む無機層と有機層との積層体であってもよい。
 有機層は、例えば、有機モノマー又は有機オリゴマーを樹脂基材に塗布し、層を形成し、続いて、例えば、電子ビーム装置、UV光源、放電装置、又はその他の好適な装置を使用して重合及び必要に応じて架橋することにより形成することができる。また、例えば、フラッシュ蒸発及び放射線架橋可能な有機モノマー又は有機オリゴマーを蒸着した後、有機モノマー又は有機オリゴマーからポリマーを形成することによっても形成することができる。コーティング効率は、樹脂基材を冷却することにより改善され得る。
 有機モノマー又は有機オリゴマーの塗布方法としては、例えば、ロールコーティング(例えば、グラビアロールコーティング)、スプレーコーティング(例えば、静電スプレーコーティング)等が挙げられる。また、無機層と有機層との積層体の例としては、例えば、国際公開第2012/003198号、国際公開第2011/013341号に記載の積層体などが挙げられる。
 無機層と有機層との積層体である場合、各層の厚さは同じでもよいし、異なっていてもよい。無機層の厚さは、好ましくは3~1000nmの範囲内、より好ましくは10~300nmの範囲内である。有機層の厚さは、好ましくは100nm~100μmの範囲内、より好ましくは1~50μmの範囲内である。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」及び「部」は、それぞれ、「質量%」及び「質量部」を意味する。
[封止用組成物1-1~1-78、2-1~2-3及び2-5~2-8の調製]
 モノマー(A)及びモノマー(B)を下記表I~表IVに示す種類及び質量部になるように窒素換気用下で秤量した。
 さらに、光重合開始剤として、リン系開始剤(BASF社製、IRGACURE TPO)5質量部、増感剤として2-イソプロピルチオキサントン(Merck社製)0.5質量部、安定化剤としてIRGASTAB UV10(BASF社製)0.1質量部を褐色瓶へ入れ、65℃のホットプレート上で3時間撹拌した。
 さらに、金属含有化合物(C)を、下記表I~表IVに示す種類及び質量部になるように加え1時間撹拌し、各封止用組成物1-1~1-78、2-1~2-3及び2-5~2-8を得た。
 ただし、金属含有化合物(C)であるc8及びc9はあらかじめジブチルエーテルをエバポレーターによる減圧加熱により除去したものを用いた。
[封止用組成物2-4の調製]
 濃度20質量%のポリシラザン(NL-120:クラリアントジャパン社製)を封止用組成物2-4とした。
<モノマー(A)>
 a1:トリエチレングリコールジアクリレート(SARTOMER社製)
 a2:イソアミルアクリレート(共栄社化学社製)
 a3:イソボニルアクリレート(共栄社化学社製)
 a4:ジシクロペンタニルアクリレート(東京化成工業社製)
 a5:1,10-デカンジオールジアクリレート(新中村化学社製)
 a6:トリエチレングリコールジメタクリレート(BASF社製)
 a7:ラウリルアクリレート(SARTOMER社製)
 a8:ジメチルアミノプロピルアクリルアミド(東京化成工業社製)
 a9:EO変性トリメチロールプロパントリアクリレート(第一工業製薬社製)
Figure JPOXMLDOC01-appb-C000015
<モノマー(B)>
 b1:2-Phenylphenoxyethyl acrylate(新中村化学社製)
 b2:(3-phenoxyphenyl)methyl prop-2-enoate(共栄社化学社製)
 b3:下記化合物X
 b4:下記化合物Y
Figure JPOXMLDOC01-appb-C000016
 なお、前記化合物X及び前記化合物Yは、以下に示す方法により合成した。
 (化合物Xの合成)
 冷却管及び撹拌機を備えた2000mlのフラスコにアセトニトリル(acetonitrile、フィッシャー株式会社)800mlを充填し、ポタシウムカーボネート(potassium carbonate、シグマアルドリッチ株式会社)180g及びアクリル酸108gを0℃で撹拌しながら4,4’-ビス(クロロメチル)ビフェニル(4,4’-bis(chloromethyl)biphenyl、東京化成工業株式会社)150gをゆっくり添加した。温度を70℃に上げた後、12時間撹拌した。アセトニトリルを減圧蒸留して除去した後、シリカゲルカラムを通じて前記化合物X 177gをHPLC純度97%で得た。
 (化合物Yの合成)
 冷却管及び撹拌機を備えた3000mlの反応器にジクロロメタン(dichloromethane、シグマアルドリッチ株式会社)300mlを入れ、4-ヒドロキシブチルアクリレート(4-hydroxibutyl acrylate、新中村化学工業株式会社)200g及びトリエチルアミン168gを入れ、フラスコ内の温度を0℃に下げた後、p-トルエンスルホニルクロリド(p-toluene sulfonyl chloride、シグマアルドリッチ株式会社)278gをジクロロメタン500mlに溶かした溶液を2時間にわたって滴下しながら撹拌した。さらに、5時間撹拌した後、残留溶媒を蒸留で除去した。得られた化合物300gをアセトニトリル(acetonitrile、シグマアルドリッチ株式会社)1000mlに入れ、ポタシウムカーボネート(potassium carbonate、シグマアルドリッチ株式会社)220g及び2-フェニルフェノール(2-phenylphonol、シグマアルドリッチ株式会社)141gを追加して80℃で撹拌した。残留溶媒と反応残留物を除去し、前記化合物Y(分子量296.36)をHPLC純度93%で得た。
<金属含有化合物(C)>
 c1:テトラ(2-エチルヘキシル)チタネート(製品名 TA30、マツモトファインケミカル社製)
 c2:アルミニウムsec-ブチレート(川研ファインケミカル社製)
 c3:環状アルミニウムオキサイドイソプロピレート(川研ファインケミカル社製)
 c4:チタンオクチレングリコールキレート(製品名 TC201、マツモトファインケミカル社製)
 c5:ジイソプロポキシビス(エチルアセトアセテート)チタン(製品名 TC750、マツモトファインケミカル社製)
 c6:ノルマルブチルジルコネート(製品名 ZA65、マツモトファインケミカル社製)
 c7:ジルコニウムテトラアセチルアセトネート(製品名 ZC150、マツモトファインケミカル社製)
 c8:ペルヒドロポリシラザン (製品名 NN120、AZ社製)
 c9:メチルポリシラザン(製品名 アクアミカ LExp MHPS-20DB、AZ社製)
 c10:3-アミノプロピルトリメトキシシラン (製品名 KBM-903、信越化学工業社製)
 C11: 4塩化チタン(和光純薬株式会社製)
<有機EL素子1-1の作製>
(1)基板の準備
 フィルム基板として、15μmのポリイミドフィルムを準備した。さらに、このポリイミドフィルムに、フィルム基材用のガスバリアー層(SiO膜:250nm/SiNx膜:50nm/SiO膜:500nm(上層/中間層/下層))をプラズマCVD法で成膜した。
(2)第1電極の形成
 前記基板の一方の面に、第1電極(金属層)として下記条件でAl膜を形成した。形成した第1電極の厚さは150nmであった。なお、第1電極の厚さは、接触式表面形状測定器(DECTAK)により測定した値である。
 Al膜は、真空蒸着装置を用い、真空度1×10-4Paまで減圧した後、タングステン製の抵抗加熱用るつぼを使用して形成した。
(3)有機EL層の形成
 まず、真空蒸着装置内の蒸着用るつぼの各々に、有機機能層の各層を構成する下記に示す材料を各々素子作製に最適の量で充填した。蒸着用るつぼは、モリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
(3-1)正孔注入層の形成
 真空度1×10-4Paまで減圧した後、下記化合物A-1の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で第1電極(金属層側)上に蒸着し、厚さ10nmの正孔注入層を形成した。
(3-2)正孔輸送層の形成
 次に、下記化合物M-2の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で正孔注入層上に蒸着し、厚さ30nmの正孔輸送層を形成した。
(3-3)発光層の形成
 次に、下記化合物BD-1及び下記化合物H-1を、化合物BD-1が7質量%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、厚さ15nmの青色発光を呈する発光層(蛍光発光層)を形成した。
 次に、下記化合物GD-1、下記化合物RD-1及び下記化合物H-2を、化合物GD-1が20質量%、RD-1が0.5質量%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、厚さ15nmの黄色を呈する発光層(リン光発光層)を形成した。
(3-4)電子輸送層の形成
 その後、電子輸送材料として下記化合物T-1の入った加熱ボートを通電し、Alq(トリス(8-キノリノール))よりなる電子輸送層を、発光層上に形成した。この際、蒸着速度を0.1~0.2nm/秒の範囲内とし、厚さを30nmとした。
(3-5)電子注入層(金属親和性層)の形成
 次に、電子注入材料として下記化合物I-1の入った加熱ボートに通電して加熱し、Liqよりなる電子注入層を、電子輸送層上に形成した。この際、蒸着速度を0.01~0.02nm/秒の範囲内とし、厚さを2nmとした。なお、この電子注入層は金属親和性層の機能を果たす。
 以上により、白色に発光する有機EL層を形成した。
Figure JPOXMLDOC01-appb-C000017
(4)第2電極の形成
 さらに、Mg/Ag混合物(Mg:Ag=1:9(vol比))を厚さ10nmで蒸着して第2電極と、その取り出し電極を形成した。
(5)キャッピング層の形成
 その後、元の真空槽内に移送し、第2電極上に、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1~0.2nm/秒の範囲内で厚さが40nmとなるまで蒸着し、光取り出し改良を目的とするキャッピング層を形成した。
(6)第1封止層の形成
 次に、前記で作製した有機EL素子の発光部を覆う第1封止層として、プラズマCVD法により厚さ500nmの窒化珪素(SiN、ビッカース硬度HV900)を形成した。
(7)第2封止層の形成
 次に、窒素環境下で、インクジェット装置のカートリッジ一体型ヘッドへ、前記で調製した封止用組成物1-1を充填した。そして、前記第1封止層まで形成した有機EL素子を窒素環境下にてインクジェット法を用いて封止用組成物1-1を塗布した。その後、395nmの空冷LED(Phoseon technology社製)によって1J/cmの積算エネルギーだけUVを照射し、第2封止層を形成した。第2封止層はインクジェットの塗付回数を調整することで厚さを設定し、以下の2種類の厚さの第2封止層を形成した。
・3.3μm(1回塗付)
・10μm(3回塗付)
(8)第3封止層の形成
 次に、第2封止層上に第3封止層として、プラズマCVD法により厚さ500nmの窒化珪素(SiN、ビッカース硬度HV900)を形成し、第1~第3封止層が形成された評価用の有機EL素子1-1を得た。
<有機EL素子1-2~1-78、2-1~2-3及び2-5~2-8の作製>
 前記有機EL素子1-1の作製において、前記第2封止層の形成における封止用組成物1-1を下記表に示すとおりにそれぞれ変更した以外は同様にして、評価用の有機EL素子1-2~1-78、2-1~2-3及び2-5~2-8を作製した。
<有機EL素子2-4の作製>
 前記有機EL素子1-1の作製の前記第2封止層の形成において、封止用組成物1-1を封止用組成物2-4に変更し、かつ、回転数500rpmとしたスピナーを用いて、第1封止層上に封止用組成物2-4を塗布した後、ホットプレートを用いて温度90℃で30分間乾燥させた。これら塗布及び乾燥を繰り返し行うことで、3.3μm及び10μmの2種類の厚さの第2封止層を形成した。
 なお、インクジェットによる塗付は、封止用組成物2-4の液の蒸気圧及び粘度がインクジェットに不適切な範囲であり、吐出できなかった。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
[評価]
<封止性能(信頼性)>
 評価用の各有機EL素子を高温高湿下(温度85℃、相対湿度85%)の恒温恒湿槽に放置し加速劣化試験を行った。一定時間ごとに恒温恒湿槽から各有機EL素子を取り出して室温下で発光させ、85℃85%での加速劣化時のダークスポット(DS)の有無を確認した。発光領域内におけるダークスポット面積比率が0.5%に到達するまでの時間を寿命と定義し、寿命を評価した。寿命が長いほど、封止性能が高いことを示している。下記評価基準のランク3~5を合格とした。
 (評価基準)
 ランク1:寿命50時間未満
 ランク2:寿命50時間以上100時間未満
 ランク3:寿命100時間以上300時間未満
 ランク4:寿命300時間以上500時間未満
 ランク5:寿命500時間以上
<屈曲耐性>
 各有機EL素子1-1~1-67及び2-1~2-7を、直径10mmの金属製ローラーの周囲に巻き付かせて高温高湿下(温度60℃、相対湿度90%)の恒温恒湿槽に放置して加速劣化試験を行った。このとき、フィルム基板であるポリイミドフィルムが金属製ローラーへ接するように巻き付かせている。1500時間後に恒温恒湿槽から各有機EL素子を取り出し室温下で顕微鏡確認及び発光状態(ダークスポット面積比率)を確認した。下記評価基準のランク3~5を合格とした。
 (評価基準)
 ランク1:封止層の剥離又は非発光
 ランク2:ダークスポット面積比率が1%以上
 ランク3:ダークスポット面積比率が0.5%以上1%未満
 ランク4:ダークスポット面積比率が0.1%以上0.5%未満
 ランク5:ダークスポット面積比率が0.1%未満
<発光特性>
 比較用の有機EL素子との発光効率を比較することで、発光特性を評価した。
 比較用の有機EL素子は、前記で作製した有機EL素子におけるフィルム基板の代わりに、無アルカリガラスを用いて準備した。
 また、第1封止層、第2封止層及び第3封止層を形成する代わりに、窒素雰囲気下で酸化バリウムを添付したガラス製の封止缶にて封止を行った。封止缶と有機EL素子の基板との接着には紫外線硬化型の接着剤を用い、紫外線を照射することで両者を接着し封止素子(比較用の有機EL素子)を作製した。
 得られた比較用の有機EL素子及び前記で作製した有機EL素子1-1~1-67及び2-1~2-7を、2.5mA/cmの一定電流を印加した時の正面発光スペクトルを測定し、発光効率(lm/W)を評価した。
 なお、測定には分光放射輝度計CS-1000(コニカミノルタ社製)を用いた。比較用の有機EL素子の発光効率に対する、前記有機EL素子1-1~1-67及び2-1~2-7の発光効率の比を下記評価基準により評価した。下記のランク3~5を合格とした。
 (評価基準)
 ランク1:発光効率が90%以下
 ランク2:90%より大きく100%以下
 ランク3:100%より大きく110%以下
 ランク4:110%より大きく120%以下
 ランク5:120%より大きい
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 上記結果に示されるように、本発明の封止用組成物を用いた封止層が形成された有機EL素子は、比較例の有機EL素子に比べて、封止性能が高く、屈曲耐性が良好で、さらに発光効率に優れることが分かる。
 本発明は、水分透過を防止し、封止性能に優れ、かつ、屈曲耐性に優れ、さらに発光効率を向上させることができる電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜に利用することができる。

Claims (12)

  1.  光硬化性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物であって、
     前記光硬化性モノマーが、芳香族炭化水素基を有さない光硬化性モノマー(A)と、芳香族炭化水素基を有する光硬化性モノマー(B)を含有し、
     前記光硬化性モノマー(B)が、下記一般式(1)で表される構造を有する置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を含み、かつ、
     前記光硬化性モノマー(B)が、少なくともモノ(メタ)アクリレート又はジ(メタ)アクリレートを含み、
     さらに、金属アルコキシド化合物、金属キレート化合物、シラン系化合物、シラザン系化合物及び金属ハロゲン化物系化合物から選ばれる金属含有化合物(C)を含有する電子デバイス封止用組成物。
    Figure JPOXMLDOC01-appb-C000001
    [前記一般式(1)において、Pは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を表す。Z及びZは、それぞれ独立的に下記一般式(2)で表される構造を有する。a及びbは、それぞれ0~2の整数であり、a+bは、1~4の整数である。]
    Figure JPOXMLDOC01-appb-C000002
    [前記一般式(2)において、*は、Pの炭素に対する連結部である。Xは、単一結合、O又はSを表す。Yは、置換又は非置換の炭素数1~10の直鎖状アルキレン基、又は置換又は非置換の炭素数1~20のアルコキシ基を表す。Rは、水素原子又は炭素数1~5のアルキル基を表す。cは、0又は1の整数である。]
  2.  前記金属含有化合物(C)の、電子デバイス封止用組成物全体に対する含有量が、0.1~15質量%の範囲内である請求項1に記載の電子デバイス封止用組成物。
  3.  前記金属含有化合物(C)を構成する金属Mが、Ti、Si、Al及びZrのうち少なくともいずれかである請求項1又は請求項2に記載の電子デバイス封止用組成物。
  4.  前記光硬化性モノマー(A)が、アミン基を有するモノ(メタ)アクリレート、置換又は非置換の炭素数1~20のアルキレン基を有するジ(メタ)アクリレート、エチレンオキシド基を有するジ(メタ)アクリレート、エチレンオキシド基を有するトリ(メタ)アクリレート、環状炭化アルキル基を有するモノ(メタ)アクリレート及びジ(メタ)アクリレートのうち少なくともいずれかである請求項1から請求項3までのいずれか一項に記載の電子デバイス封止用組成物。
  5.  前記光硬化性モノマー(B)が、4-(メタ)アクリルオキシ-2-ヒドロキシベンゾフェノン、エチル-3,3-ジフェニル(メタ)アクリレート、ベンゾイルオキシフェニル(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、2-フェニルフェノキシエチル(メタ)アクリレート、2,2’-フェニルフェノキシエチルジ(メタ)アクリレート、2-フェニルフェノキシプロピル(メタ)アクリレート、2,2’-フェニルフェノキシプロピルジ(メタ)アクリレート、2-フェニルフェノキシブチル(メタ)アクリレート、2,2’-フェニルフェノキシブチルジ(メタ)アクリレート、2-(3-フェニルフェニル)エチル(メタ)アクリレート、2-(4-ベンジルフェニル)エチル(メタ)アクリレート、2-フェニル-2-(フェニルチオ)エチル(メタ)アクリレート、2-(トリフェニルメチルオキシ)エチル(メタ)アクリレート、4-(トリフェニルメチルオキシ)ブチル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)ブチル(メタ)アクリレート、2-(ビフェニル-2-イルオキシ)ブチル(メタ)アクリレート、4-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、2-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、4-(ビフェニル-2-イルオキシ)エチル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)エチル(メタ)アクリレート、2-(4-ベンジルフェニル)エチル(メタ)アクリレート、4,4’-ジ(アクリロイルオキシメチル)ビフェニル、2,2’-ジ(2-アクリロイルオキシエトキシ)ビフェニル、これらの構造異性質体又はこれらの混合物のうちのいずれかである請求項1から請求項4までのいずれか一項に記載の電子デバイス封止用組成物。
  6.  請求項1から請求項5までのいずれか一項に記載の電子デバイス封止用組成物を用いて、封止膜を形成する方法であって、
     電子デバイス上に気相法により第1封止層を形成する工程と、
     前記第1封止層上に前記電子デバイス封止用組成物を塗布することにより第2封止層を形成する工程と、を備える電子デバイス封止膜形成方法。
  7.  前記第2封止層上に、気相法により第3封止層を形成する工程を備える請求項6に記載の電子デバイス封止膜形成方法。
  8.  前記第2封止層を形成する工程が、インクジェット法を用いる請求項6又は請求項7に記載の電子デバイス封止膜形成方法。
  9.  電子デバイスを封止する電子デバイス封止膜であって、
     窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、
     請求項1から請求項5までのいずれか一項に記載の電子デバイス封止用組成物を用いた第2封止層と、を有する電子デバイス封止膜。
  10.  前記第2封止層が、下記一般式(3A)及び下記一般式(3B)で表される構造を有する重合体と、前記金属含有化合物(C)と、を含有する請求項9に記載の電子デバイス封止膜。
    Figure JPOXMLDOC01-appb-C000003
    [前記一般式(3A)及び前記一般式(3B)において、Rは水素原子又はメチル基を表す。Aは芳香族炭化水素基を有さない構造である。Bは芳香族炭化水素基を有し、前記一般式(1)で表される構造を有する置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を含み、かつ、少なくともモノ(メタ)アクリレート又はジ(メタ)アクリレートを含む。]
  11.  前記第2封止層上に、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第3封止層を有する請求項9又は請求項10に記載の電子デバイス封止膜。
  12.  前記第2封止層における前記金属含有化合物(C)の含有量が、0.1~15質量%の範囲内である請求項9から請求項11までのいずれか一項に記載の電子デバイス封止膜。
PCT/JP2021/028768 2020-08-19 2021-08-03 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜 WO2022039019A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022543360A JPWO2022039019A1 (ja) 2020-08-19 2021-08-03
CN202180050776.2A CN116096563A (zh) 2020-08-19 2021-08-03 电子设备封装用组合物、电子设备封装膜形成方法和电子设备封装膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020138397 2020-08-19
JP2020-138397 2020-08-19

Publications (1)

Publication Number Publication Date
WO2022039019A1 true WO2022039019A1 (ja) 2022-02-24

Family

ID=80322672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028768 WO2022039019A1 (ja) 2020-08-19 2021-08-03 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜

Country Status (3)

Country Link
JP (1) JPWO2022039019A1 (ja)
CN (1) CN116096563A (ja)
WO (1) WO2022039019A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230637A1 (ja) * 2021-04-30 2022-11-03 コニカミノルタ株式会社 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜
WO2024024836A1 (ja) * 2022-07-29 2024-02-01 コニカミノルタ株式会社 電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092037A (ja) * 2005-09-02 2007-04-12 Dainippon Ink & Chem Inc シール剤用光硬化性組成物、液晶シール剤、及び液晶パネル
JP2010030290A (ja) * 2008-06-26 2010-02-12 Fujifilm Corp バリア性積層体、ガスバリアフィルム、デバイスおよび積層体の製造方法
WO2012115175A1 (ja) * 2011-02-25 2012-08-30 富士フイルム株式会社 バリア性積層体およびバリア性積層体の製造方法
JP2014002285A (ja) * 2012-06-19 2014-01-09 Hitachi Chemical Co Ltd 隔壁形成材料、これを用いた感光性エレメント、隔壁の形成方法及び画像表示装置の製造方法
WO2015002100A1 (ja) * 2013-07-04 2015-01-08 Jsr株式会社 有機el素子
WO2019182119A1 (ja) * 2018-03-23 2019-09-26 リンテック株式会社 ガスバリア性積層体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6099198B2 (ja) * 2013-03-29 2017-03-22 日本化薬株式会社 エネルギー線硬化型樹脂組成物及びその硬化物
KR20160049953A (ko) * 2014-10-28 2016-05-10 삼성에스디아이 주식회사 광경화 조성물, 이를 포함하는 유기보호층, 및 이를 포함하는 장치
KR101943687B1 (ko) * 2015-06-19 2019-01-30 삼성에스디아이 주식회사 유기발광표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092037A (ja) * 2005-09-02 2007-04-12 Dainippon Ink & Chem Inc シール剤用光硬化性組成物、液晶シール剤、及び液晶パネル
JP2010030290A (ja) * 2008-06-26 2010-02-12 Fujifilm Corp バリア性積層体、ガスバリアフィルム、デバイスおよび積層体の製造方法
WO2012115175A1 (ja) * 2011-02-25 2012-08-30 富士フイルム株式会社 バリア性積層体およびバリア性積層体の製造方法
JP2014002285A (ja) * 2012-06-19 2014-01-09 Hitachi Chemical Co Ltd 隔壁形成材料、これを用いた感光性エレメント、隔壁の形成方法及び画像表示装置の製造方法
WO2015002100A1 (ja) * 2013-07-04 2015-01-08 Jsr株式会社 有機el素子
WO2019182119A1 (ja) * 2018-03-23 2019-09-26 リンテック株式会社 ガスバリア性積層体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230637A1 (ja) * 2021-04-30 2022-11-03 コニカミノルタ株式会社 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜
WO2024024836A1 (ja) * 2022-07-29 2024-02-01 コニカミノルタ株式会社 電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法

Also Published As

Publication number Publication date
TW202219232A (zh) 2022-05-16
CN116096563A (zh) 2023-05-09
JPWO2022039019A1 (ja) 2022-02-24

Similar Documents

Publication Publication Date Title
TWI593736B (zh) 用於封裝顯示器的組成物以及含有其的顯示器 裝置
JP6936330B2 (ja) 有機エレクトロルミネッセンス表示素子用封止剤
CN107851730B (zh) 有机发光显示器
TWI618238B (zh) 有機發光二極體顯示裝置
KR101611001B1 (ko) 봉지용 조성물, 이를 포함하는 장벽층 및 이를 포함하는 봉지화된 장치
WO2022039019A1 (ja) 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜
KR101943689B1 (ko) 유기발광표시장치
KR101518498B1 (ko) 광경화 조성물 및 상기 조성물로 형성된 보호층을 포함하는 광학 부재
KR20180102038A (ko) 광경화 조성물, 이를 포함하는 유기보호층, 및 이를 포함하는 장치
JP2005235467A (ja) 有機el素子
WO2014119717A1 (ja) 硬化性樹脂組成物、樹脂保護膜、有機光デバイス、及び、バリアフィルム
TWI759752B (zh) 用於封裝有機發光二極體裝置的組合物和顯示裝置
TWI837499B (zh) 電子裝置密封用組成物、電子裝置密封膜形成方法及電子裝置密封膜
JP2014143195A (ja) 有機薄膜素子保護用蒸着材料、樹脂保護膜、及び、有機光デバイス
WO2022230637A1 (ja) 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜
WO2024024836A1 (ja) 電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法
WO2024024841A1 (ja) 電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法
WO2023032372A1 (ja) 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜
WO2024024942A1 (ja) 電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法
KR101549722B1 (ko) 광경화 조성물, 상기 조성물로 형성된 보호층 및 이를 포함하는 광학 부재
KR20230123787A (ko) 광경화성 조성물, 봉지층 및 화상표시장치
TW202300532A (zh) 封裝有機發光二極體的組成物以及包括使用其形成的有機層之有機發光二極體顯示裝置
CN115491157A (zh) 光固化封装组合物、封装结构和半导体器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543360

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858167

Country of ref document: EP

Kind code of ref document: A1