WO2006092943A1 - 有機エレクトロルミネッセンス素子、表示装置及び照明装置 - Google Patents

有機エレクトロルミネッセンス素子、表示装置及び照明装置 Download PDF

Info

Publication number
WO2006092943A1
WO2006092943A1 PCT/JP2006/302327 JP2006302327W WO2006092943A1 WO 2006092943 A1 WO2006092943 A1 WO 2006092943A1 JP 2006302327 W JP2006302327 W JP 2006302327W WO 2006092943 A1 WO2006092943 A1 WO 2006092943A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
compound
organic layer
gas
Prior art date
Application number
PCT/JP2006/302327
Other languages
English (en)
French (fr)
Inventor
Shuichi Sugita
Hiroshi Kita
Hideo Taka
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2007505834A priority Critical patent/JPWO2006092943A1/ja
Priority to US11/817,271 priority patent/US7888859B2/en
Priority to GB0716598A priority patent/GB2438772B/en
Publication of WO2006092943A1 publication Critical patent/WO2006092943A1/ja
Priority to US12/983,362 priority patent/US8405301B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/186Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • Organic electoluminescence device display device and lighting device
  • the present invention relates to an organic electoluminescence device, a display device using the organic electoluminescence device, and an illumination device.
  • ELD electoric luminescence display
  • organic EL devices organic electroluminescence devices
  • An organic EL element has a structure in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode.
  • excitons excitons Is a device that emits light using the emission of light (fluorescence / phosphorescence) when this exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Therefore, it is a thin-film, completely solid element that has a wide viewing angle and high visibility, and is attracting attention from the viewpoints of space saving and portability.
  • an EL element that forms an organic thin film by vapor deposition of an organic compound is known (for example, Applied Physics Letters, 51, p. 913 to (1987)).
  • the organic EL device described in this document has a laminated structure of an electron transport material and a hole transport material, and its light emission characteristics are greatly improved as compared with a conventional single layer type device.
  • This stacked element is formed by evaporating a low molecular organic material as an element material.
  • Patent Document 1 a technique for forming an element by vapor-depositing organic molecules having 10 or less repeating units generated by polymerizing a compound having a polymerizable group is disclosed (for example, Patent Document 1). See also.) O Also disclosed is a technique in which a compound having a polymerizable group is polymerized to provide a first layer, and a compound having a polymerizable group is polymerized thereon to provide a second layer ( For example, see Patent Document 2.) 0
  • Patent Document 1 Japanese Patent Laid-Open No. 5-247547
  • Patent Document 2 JP 2004-103401 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-73666
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-86377
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an organic electoluminescence device having a multilayer structure that emits light with good luminous efficiency, has few dark spots, and has a long lifetime. It is to provide a display device and a lighting device using the same.
  • an organic electroluminescent device having a cathode and an anode on a substrate and having a plurality of organic layers between the cathode and the anode, at least one of the organic layers has a small number of polymerizable groups.
  • An organic electroluminescent device characterized by being a first organic layer containing 10 or less organic molecules obtained by coating and polymerizing a compound having at least one compound.
  • An organic electroluminescent device having a cathode and an anode on a substrate and having a plurality of organic layers between the cathode and the anode, a compound having a polymerizable group or a reactive group. Formed by coating and polymerizing a first organic layer formed by coating and applying a polymer having a polymerizable group or a reactive group on the first organic layer. And an organic electroluminescence device having a second organic layer, wherein a part of the interface of each organic layer is bonded via a covalent bond.
  • the compound contained in the first organic layer is a compound having an aromatic tertiary amine structure
  • the compound contained in the second organic layer is a compound having an organometallic complex structure.
  • the substrate force The organic electroluminescence device according to any one of 1 to 10 above, which is a transparent gas-nore film.
  • a display device comprising the organic-electric-luminescence element described in 12 above.
  • An illuminating device comprising the organic electoluminescence device as described in 12 above.
  • a display device comprising the illumination device according to 14 and a liquid crystal element as display means.
  • an organic electoluminescence device that emits light with good luminous efficiency in a multilayer structure, has few dark spots, and has a long lifetime, and a display device and an illumination device using the same. It was.
  • FIG. 1 is a schematic diagram showing an example of a layer structure of a transparent gas nootropic film according to the present invention and an example of its density profile.
  • FIG. 2 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a type that treats a substrate between counter electrodes useful for the present invention.
  • FIG. 3 is a diagram showing a discharge and film forming process of the organic EL element OLED1-1 of the present invention.
  • FIG. 4 is a schematic view showing an example of a display device constituted by the organic EL element cover of the present invention.
  • FIG. 5 is a schematic diagram of display unit A.
  • FIG. 6 is a schematic view of a lighting device.
  • FIG. 7 is a cross-sectional view of the lighting device.
  • the present invention includes a compound having at least one polymerizable group (organic EL material), which is polymerized by adjusting the irradiation energy, and containing an organic molecule having 10 or less repeating units.
  • the basic feature is to form an organic layer.
  • the second organic layer is formed through the same process as application and polymerization of a compound having at least one polymerizable group. Is the preferred form.
  • the third feature is that, when laminated according to the present invention, the first organic layer and the second organic layer are joined at their interfaces and partly via a covalent bond.
  • the organic layer is formed by a coating method, and it is particularly preferable to form the organic layer by an ink jet recording method.
  • the polymerization reaction according to the present invention may be performed by energy irradiation.
  • energy irradiation include ultraviolet, electron, ion, heat, radical beam or radiation irradiation energy.
  • the electron energy means a current supplied when the light emitting element is driven, and specifically, a polymerizable radical compound ion radical or anode formed by electrons injected from the cathode.
  • the polymerization reaction proceeds with the radical cation of the polymerizable compound formed by the holes injected from the catalyst.
  • the repeating unit in the present invention has the same meaning as the number average degree of polymerization.
  • examples of the polymerizable group include a bur group, an epoxy group, and an oxetane group.
  • the reaction is likely to stop, and the polymerization is carried out under a polymerization condition. It can be easily obtained by carrying out the reaction.
  • a method of controlling the polymerization initiator or catalyst concentration a method of using a chain transfer agent or a polymerization terminator in combination, or a method of controlling the irradiation energy amount of ultraviolet rays, electrons, ions, heat, radical beams or radiation, etc. .
  • radical polymerization initiator used in the present invention examples include 2, 2′-azobispropylonitrile, 2,2′-azobiscyclohexanecarbonitryl, 1,1′-azobis (cyclohexane-1-carbo- Tolyl), 2, 2'-azobis (2-methylbuty-tolyl), 2, 2'-azobis (2,4-dimethylvale-tolyl), 2, 2'-azobis (4-methoxy-1,2,4) —Dimethylbare-tolyl), 4, 4 ′ —Azobis (4 cyanovaleric acid), 2, 2 ′ —Azobis dimethyl isobutyrate, 2, 2 ′ —Azobis (2-methylpropionamidoxime), 2, 2 ′ — Azobis (2- (2-Imidazoline-2-yl) propane), 2, 2 '—azobis (2, 4, 4 trimethylpentane) and other initiators, benzoyl peroxide, and peroxide peroxide Peroxide initiators such as butyl,
  • disulfide initiators such as tetraethylthiilam disulfide, -troxyl initiators such as 2, 2, 6, 6-tetramethylpiperidine 1-oxyl, 4, 4 '—di-tert-butyl 2, 2' — Libbing radical polymerization initiators such as biviridine copper complex and trichloromethyl acetate complex can also be used.
  • Examples of the acid catalyst used in the present invention include clays such as activated clay and acid clay, mineral acids such as sulfuric acid and hydrochloric acid, organic acids such as p-toluenesulfonic acid and trifluoroacetic acid, and sodium chloride aluminum.
  • Lewis such as ferric chloride, stannic chloride, titanium trichloride, titanium tetrachloride, boron trifluoride, hydrogen fluoride, boron tribromide, aluminum bromide, gallium chloride, gallium bromide
  • Various acids such as acids, solid acids such as zeolite, silica, alumina, silica'alumina, cation exchange resin, heteropolyacids (e.g. phosphotungstic acid, phosphomolybdic acid, keytungstic acid, keymolybdic acid) Can be used.
  • Examples of the basic catalyst used in the present invention include Li CO, Na CO, and K CO.
  • alkali metal carbonates such as BaCO, CaCO, Li 0, Na
  • alkali metal oxides such as K 2 O
  • alkaline earth metal oxides such as BaO and CaO
  • alkali metals such as a and K
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • alkoxides such as sodium, potassium, rubidium and cesium.
  • the molecular weight of the produced oligomer can be controlled by the amount of the polymerization initiator or catalyst used. That is, if the amount of the polymerization initiator or the catalyst used for the compound containing at least one polymerizable group that is a monomer is increased, the molecular weight of the resulting oligomer will decrease.
  • the amount of the polymerization initiator or catalyst used is in the range of 0.1 to L00% by mass, preferably 1 to 20% by mass with respect to the compound having at least one polymerizable group.
  • Examples of the chain transfer agent or polymerization terminator used in the present invention include acids such as hydrochloric acid, sulfuric acid and acetic acid, polyhalogenated methane, halogenated hydrocarbons, mercaptans, a methylstyrene dimer, alcohol and the like. Active hydrogen compounds, 2,2-disubstituted olefins such as 2,4 diphenyl-4methyl-1 pentene, and transition metal complexes such as cobalt complexes can be used.
  • the amount of chain transfer agent or polymerization terminator used is preferably 0.01 to 0.5 molar ratio to the compound having at least one polymerizable group.
  • the compound having a polymerizable group or a reactive group according to the present invention is used, it is characterized in that a part of the interface of each organic layer is bonded through a covalent bond. It is important that the interface formed between the first organic layer and the second organic layer having a function has a condition that allows bonding through a bond such as a covalent bond.
  • the ability to use a compound having a self-polymerizable group such as a vinyl group or an epoxy group as a compound constituting each of the organic layer and the second organic layer, or the first organic layer, It is preferable to apply a compound having a reactive group as shown below and a compound having a reactive group as shown in Group II below to the second organic layer.
  • the compound having a polymerizable group or a reactive group according to the present invention is a compound in which single compounds can react with each other to form a multimer, or two different compounds react with each other. It represents a compound capable of forming a covalent bond.
  • Preferred is a compound having no molecular elimination in the polymerization reaction, and particularly preferably a compound having a radically polymerizable functional group such as a bull group or a ring-opening polymerization such as an epoxy group.
  • the compound which has a functional group which can be mentioned is mentioned, Most preferably, the compound which has a bull group is mentioned.
  • the compound used in the first organic layer and the compound used in the second organic layer are preferably separated from each other for the purpose of improving the performance of the device. It is preferable that the materials, electron transporting materials, and structures described as examples of the light emitting layer are separately provided.
  • a compound having an aromatic tertiary amine structure or a compound having an organometallic complex structure is preferred. More preferably, the compound used in the first organic layer is a compound having an aromatic tertiary amine structure, and the compound used in the second organic layer is a compound having an organometallic complex structure.
  • the compound according to the present invention is contained as a main component in at least two organic layers constituting the organic EL device of the present invention, but may further contain another compound.
  • each organic layer represented by the first organic layer or the second organic layer described above it is preferable to apply (form) each organic layer represented by the first organic layer or the second organic layer described above by an ink jet recording method. .
  • an energy generating means for discharging a solution containing a compound having at least one polymerizable group for forming the organic layer according to the present invention, and discharging the solution Ink jet head equipped with a nozzle for discharging, an electric circuit for supplying an ink jet head drive signal, and a discharge failure recovery means for ensuring stable discharge of a solution containing a compound having at least one polymerizable group (maintenance)
  • the ink-jet head is configured by a capping means for covering the nozzle surface with a cap member so that the ink-jet head does not solidify due to evaporation of the solution at the standby position when not in use.
  • an electromechanical conversion method for example, single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.
  • electrothermal conversion Methods for example, thermal ink jet type, bubble jet (registered trademark) type, etc.
  • electrostatic attraction methods for example, electric field control type, slit jet type, etc.
  • discharge methods for example, spark jet type, etc.
  • the electro-mechanical conversion method is preferable, but any discharge method may be used.
  • each organic layer typified by the first organic layer or the second organic layer according to the present invention is applied (formed) and then irradiated with energy rays.
  • the energy ray is an ultraviolet ray, an electron, an ion, heat, a radical beam or radiation.
  • an ultraviolet ray source a mercury lamp, a metal halide lamp, an excimer lamp, an ultraviolet laser, an LED, or the like can be used.
  • details of electron beam irradiation equipment are described in “Development of UV'EB Curing Technology” (edited by Radtech Research Institute, published by CMC Co., Ltd.
  • an electron beam accelerator for such electron beam irradiation is of a curtain beam type that is relatively inexpensive and can provide a large output. Used.
  • the acceleration voltage upon electron beam irradiation is preferably 100 to 300 kV.
  • the absorbed dose is preferably 0.5 to LOMrad.
  • Examples of the compound contained in the organic EL device of the present invention include fluorescent compounds and phosphorescent compounds, and the fluorescent compound or phosphorescent compound contained as light emission of the organic EL device.
  • Luminescence derived from is obtained.
  • the fluorescent compound a compound having a high quantum yield used for a laser dye is preferable.
  • the fluorescent compound is a compound having a high fluorescence quantum yield in a solution state.
  • the fluorescence quantum yield is preferably 10% or more, particularly preferably 30% or more.
  • Specific fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squame dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylenes. Dyes, stilbene dyes, polythiophene dyes, or rare earth complex phosphors.
  • the fluorescence quantum yield here can be measured by the method described in the fourth edition of Experimental Chemistry Course 7, Spectroscopy II, page 362 (1992 edition, Maruzen).
  • the phosphorescent compound in the present invention is a compound in which light emission from an excited triplet is observed, and is a compound having a phosphorescence quantum yield of 0.001 or more at 25 ° C.
  • the phosphorescent quantum yield is preferably 0.01 or more, more preferably 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectra II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 7 of the 4th edition.
  • the phosphorescent quantum yield in solution can be measured using various solvents.
  • the phosphorescent compound used in the present invention can achieve the above phosphorescent quantum yield in any solvent. That's fine.
  • the phosphorescent compound used in the present invention is preferably a complex compound containing a Group VIII metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or Platinum compounds (platinum complex compounds), and most preferred are iridium compounds.
  • phosphorescent compound used in the present invention are shown below, but are not limited thereto. These compounds can be synthesized, for example, by the method described in Inorg. Chem. 40 ⁇ , 1704-1711.
  • the fluorescent compound and phosphorescent compound contained may or may not have a polymerizable group or a reactive group.
  • the light emitting layer according to the present invention is a layer that emits light when an electric current is applied to an electrode having a cathode and an anodic force. Specifically, an electric current is applied to an electrode having a cathode and an anodic force. This refers to a layer containing a compound that emits light.
  • the organic EL device of the present invention has a structure in which a hole transport layer, an electron transport layer, a positive electrode buffer layer, a negative electrode buffer layer, and the like are provided in addition to the light emitting layer as needed, and is sandwiched between the negative electrode and the positive electrode.
  • At least two adjacent layers contain the first organic layer containing the first compound according to the present invention and the present invention.
  • the light emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light-emitting portion is the same as the light-emitting layer even in the light-emitting layer. It may be an interface with an adjacent layer
  • the materials used for the light-emitting layer are known materials used for the light-emitting layers of organic EL devices, which are preferably organic compounds or complexes that emit fluorescence or phosphorescence.
  • the force can also be appropriately selected and used.
  • a luminescent material is mainly an organic compound, and compounds described in Macromol. Synth., 125 ⁇ , pages 17 to 25 can be used depending on the desired color tone.
  • the organic EL device of the present invention most of the hole transport materials and electron transport materials that may have a hole transport function and an electron transport function in addition to the light emission performance emit light. It can also be used as a material.
  • the light emitting material may be a polymer material such as ⁇ -polyphenylene biylene or polyfluorene, and the light emitting material is further introduced into the polymer chain, or the polymer material having the light emitting material as the main chain of the polymer. May be used.
  • the film thickness of the light-emitting layer thus formed can be appropriately selected according to the situation where there is no particular limitation, but it is preferable to adjust the film thickness in the range of 5 nm to 5 m.
  • the hole injection layer and hole transport layer used in the present invention have a function of transmitting holes injected from the anode to the light emitting layer.
  • the hole injection layer and hole transport layer are formed of an anode and a light emitting layer. By interposing them, many holes are injected into the light emitting layer with a lower electric field, and on top of that, in the light emitting layer.
  • the electrons injected from the cathode, the electron injection layer, or the electron transport layer are accumulated at the interface in the light emitting layer due to the electron barrier existing at the interface between the light emitting layer and the hole injecting layer or the hole transport layer. As a result, the light emitting performance is improved.
  • the material of the hole injection layer and hole transport layer (hereinafter referred to as hole injection material and hole transport material) has a function of transmitting holes injected from the anode to the light emitting layer.
  • hole injection material and hole transport material has a function of transmitting holes injected from the anode to the light emitting layer.
  • conventional photoconductive materials commonly used as hole charge injection / transport materials and known materials used for hole injection layers and hole transport layers of organic EL devices are not particularly limited. Any force can be selected and used.
  • the hole injection material and the hole transport material have either one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • Examples of the hole injecting material and hole transporting material include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and virazolone derivatives, fluorenedamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives.
  • Oxazole derivatives styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline-based copolymers, or conductive polymer oligomers, particularly thiophene oligomers.
  • aromatic tertiary amine compound and the styrylamine compound include N, N, N ', N'-tetraphenyl-1,4'-diamineamino; N , N ′ —Diphenyl N, N ′ —Bis (3-methylphenol) 1 [1, 1 ′ —Biphenyl] 4,4 ′ —Diamine (TPD); 2, 2 Bis (4 1,1-bis (4 di-p-tolylaminophenyl) cyclohexane; N, N, N ', N' —tetra-p-tolyl 4,4'-diaminobiphenol 1, 1 Bis (4 di-triarylaminophenol) 4 Phenyl Cyclohexane; Bis (4-dimethylamino 2-methylphenol) Phenylmethane; Bis (4-diditriarylaminophenol) Phenylmethane , N, N '— Diphenyl N, N' — Di (TPD); 2, 2 Bis (4
  • inorganic compounds such as ⁇ -type Si and p-type SiC can also be used as the hole injection material or the hole transport material.
  • the hole injecting layer and hole transporting layer are formed by using the above-described hole injecting material and hole transporting material by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. Can be formed.
  • the film thicknesses of the hole injection layer and the hole transport layer are not particularly limited, but are preferably adjusted in the range of 5 nm to 5 ⁇ m @.
  • the hole injection layer and the hole transport layer may be a single layer structure of one or more of the above materials, or may be a laminated structure including a plurality of layers having the same composition or different compositions.
  • Electron Transport Layer Electron Transport Material
  • the electron transport layer according to the present invention only needs to have a function of transmitting electrons injected from the cathode to the light-emitting layer, and as a material thereof, a medium-arbitrary arbitrary compound known in the art can be selected and used. Can do.
  • electron transport materials examples include: -to-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, and heterocyclic rings such as naphthalene perylene.
  • Tetracarboxylic anhydride, carbodiimide, fluorenili Examples include denmethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and organometallic complexes.
  • thiadiazole derivatives in which the oxygen atom of the oxaziazole ring is substituted with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron withdrawing group can also be used as the electron transporting material.
  • quinoxaline derivatives having a quinoxaline ring known as an electron withdrawing group can also be used as the electron transporting material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • a metal complex of an 8 quinolinol derivative such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dibromo 8 Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Metal complexes replacing Mg, Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine and those having a terminal substituted with an alkyl group or a sulfonic acid group can be preferably used as an electron transporting material.
  • the distyrylvirazine derivative exemplified as the material for the light-emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, n-type mono-Si, n-type—such as SiC A semiconductor can also be used as an electron transport material.
  • the film thickness of the electron transport layer is not particularly limited, but it is preferable to prepare it in the range of 5 ⁇ to 5 / ⁇ m.
  • the electron transport layer may have a single layer structure that is one or two or more of these electron transport materials, or may have a laminated structure that includes a plurality of layers having the same composition or different compositions.
  • the fluorescent compound is not limited to the light emitting layer alone.
  • the hole transport layer adjacent to the light emitting layer or the host compound of the phosphorescent compound in the electron transport layer is used.
  • the luminous efficiency of the EL device can be further increased by including at least one fluorescent compound having a fluorescence maximum wavelength in the same region as the fluorescent compound to be a compound.
  • the fluorescent compound contained in these hole transport layer and electron transport layer has a fluorescence maximum wavelength of 350 to 440 nm, more preferably 390 to 410 nm, as in the light emitting layer. Fluorescent compounds in the range are used.
  • a method such as vapor deposition or sputtering is performed on a suitable substrate so that a desired electrode material, for example, a thin film having a material force for an anode has a thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm.
  • a thin film having a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a Z electron injection layer force, which are element materials is formed thereon.
  • a buffer layer electrode interface layer
  • the nofer layer is a layer provided between the electrode and the organic layer in order to lower the driving voltage and improve the luminous efficiency.
  • the organic EL element and its industrial front line June 30, 1998) 2) Chapter 2 “Electrode Materials” (pages 123 to 166) of “Nuichi” Co., Ltd.), and has an anode buffer layer and a cathode buffer layer.
  • anode buffer layer The details of the anode buffer layer are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc., and a specific example is represented by copper phthalocyanine.
  • a specific example is represented by copper phthalocyanine.
  • examples thereof include a phthalocyanine buffer layer, an acid buffer layer typified by acid vanadium, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyarine (emeraldine) or polythiophene.
  • cathode buffer layer The details of the cathode buffer layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium and aluminum are described.
  • Metal buffer layer typified by lithium
  • alkali metal compound buffer layer typified by lithium fluoride
  • alkaline earth metal compound buffer layer typified by magnesium fluoride
  • acid salt typified by aluminum oxide
  • lithium oxide lithium oxide
  • the buffer layer be a very thin film.
  • layers having other functions may be laminated as necessary.
  • layers having other functions may be laminated as necessary.
  • JP-A-11 204258, JP11-204359, and “Organic EL devices and their industrial front line” (published on November 30, 1998 by NTT).
  • Etc. and may have a functional layer such as a hole blocking layer.
  • the electrode of the organic EL element of the present invention also has a negative electrode and an anodic force.
  • a material having a high work function (4 eV or more) metal, alloy, electrically conductive compound or a mixture thereof is preferably used as the anode in the organic EL device of the present invention.
  • Specific examples of such electrode materials include metals such as Au, conductive transparent materials such as Cul, indium tinoxide (ITO), SnO, and ZnO.
  • the anode may be formed by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or the pattern accuracy is not much required. If not (about 100 m or more), a pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. In the case where light emission is extracted from this anode, it is desirable that the transmittance be greater than 10%, or the sheet resistance as the anode is preferably several hundred ⁇ / mouth or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • the cathode those having a small work function! / ⁇ (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof are preferably used.
  • an electron injecting metal referred to as an electron injecting metal
  • an alloy an electrically conductive compound and a mixture thereof are preferably used.
  • Specific examples of such electrode materials include sodium and sodium-potassium alloys.
  • a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium Z silver mixture , Magnesium Z Aluminum Mixture, Magnesium Z Indium Mixture, Aluminum Z Acid Aluminium (Ai o) Mixture,
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • the film thickness is usually selected in the range of 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • the organic EL element of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a type that directly recognizes a still image or a moving image. It may be used as a display device (display).
  • the drive method may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full color display device can be produced by using two or more kinds of the organic EL elements of the present invention having different emission colors.
  • the organic EL device of the present invention is subjected to prism or lens processing on the surface of the substrate, or a prism sheet or lens sheet is provided on the surface of the substrate. You can paste it.
  • the organic EL device of the present invention may have a low refractive index layer between the transparent electrode and the transparent substrate.
  • low refractive index layer examples include air mouth gel, porous silica, magnesium fluoride, and fluorine-based polymer.
  • the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low-refractive index layer is reduced when the thickness of the low-refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the organic EL device of the present invention may have a diffraction grating in any layer or in a medium (in a transparent substrate or a transparent electrode). It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because the light emitted from the light emitting layer is randomly emitted in all directions. Therefore, in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted, and the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency increases.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1Z2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a Herman lattice.
  • the base material is a transparent gas noreia film having a gas nore layer.
  • the gas nore layer according to the present invention is a layer that prevents the passage of oxygen and water vapor.
  • the composition and the like are not particularly limited.
  • Specific examples of the material constituting the gas barrier layer according to the present invention include silicon oxide, acid aluminum, silicon oxynitride, silicon oxynitride, magnesium oxide, zinc oxide, which are preferably inorganic oxides, Examples thereof include indium oxide and tin oxide.
  • the thickness of the gas noria layer according to the present invention varies depending on the type and configuration of the material used, and is preferably in the range of 5 to 2000 nm as appropriate. This is because when the thickness of the gas noble layer is smaller than the above range, a uniform film cannot be obtained, and it is difficult to obtain noria properties for the gas. If the thickness of the gas nolia layer is thicker than the above range, it is difficult to maintain the flexibility of the gas noria film, and it is difficult to keep the gas noria film due to external factors such as bending and pulling after film formation. This is a force that may cause cracks.
  • the gas nore layer according to the present invention is prepared by spraying a raw material described later on a substrate, for example, a transparent flexible film, by a spray method, a spin coating method, a sputtering method, an ion assist method, a plasma CVD method described later, and a method described later.
  • a substrate for example, a transparent flexible film
  • a spray method for example, a spin coating method, a sputtering method, an ion assist method, a plasma CVD method described later, and a method described later.
  • It can be formed by applying a CVD method or the like.
  • the film is formed by a plasma CVD method or the like.
  • the atmospheric pressure plasma CVD method does not require a decompression chamber and the like, and high-speed film formation can be achieved.
  • the film method is preferred. This is because by forming the gas barrier layer by the atmospheric pressure plasma CVD method, it is possible to relatively easily form a film having a uniform and smooth surface.
  • Force which is a plasma CVD method, a plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure Particularly preferably, it is formed using a plasma CVD method under a pressure near atmospheric pressure or near atmospheric pressure. The details of the layer formation conditions of the plasma CVD method will be described later.
  • the gas noria layer obtained by the plasma CVD method, or the plasma CVD method under atmospheric pressure or near atmospheric pressure is composed of the raw materials (also referred to as raw materials) such as organometallic compounds, decomposition gas, decomposition temperature, and input power.
  • raw materials also referred to as raw materials
  • metal carbide, metal nitride, metal oxide, metal sulfide, metal halide, and mixtures of these (metal oxynitride, metal oxide halide, metal nitride carbide, etc.) can also be created. Since it can be divided, it is preferable.
  • silicon oxide is generated.
  • zinc compound is used as a raw material compound and -carbon sulfide is used as cracking gas, zinc sulfate is produced. This is because highly active charged particles and active radicals are present in the plasma space at a high density, so that multistage chemical reactions are accelerated very rapidly in the plasma space, and the elements present in the plasma space are heated. This is because it is converted into a mechanically stable compound in a very short time.
  • a raw material of such an inorganic substance it may be in a gas, liquid, or solid state at normal temperature and pressure as long as it contains a typical or transition metal element.
  • gas it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is vaporized by means such as heating, publishing, decompression or ultrasonic irradiation.
  • organic solvents such as methanol, ethanol, n-hexane, and mixed solvents thereof may be used as a solvent that may be diluted with a solvent. Since these diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, the influence can be almost ignored.
  • silicon compounds include, for example, silane, tetramethoxysilane, tetraethoxysilane, tetra n propoxy silane, tetraisopropoxy silane, tetra n butoxy silane, tetra t butoxy silane, dimethylenoresimethoxy.
  • titanium compounds include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium tetraisoporooxide, titanium n-butoxide, titanium diisopropoxide (bis 2, 4 pentanedionate). ), Titanium diisopropoxide (bis 2,4 ethyl acetoacetate), titanium di-n-butoxide (bis 1,2,4 pentanedionate), titanium acetyl cetate, butyl titanate dimer, etc. .
  • zirconium compound examples include zirconium n-propoxide, zirconium n-butoxide, zirconium t-butoxide, zirconium tri-n-butoxide acetyl. Acetate, Zirconium di-n-Butoxide Bisacetylacetonate, Zirconium Acetylacetonate, Zirconium Acetate, Zirconium Hexafluoropentane Dionate and the like.
  • Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylacetonate, and triethyldialuminum trioxide. -s-butoxide and the like.
  • Examples of the boron compound include diborane, tetraborane, boron fluoride, boron chloride, boron bromide, borane-jetyl ether complex, borane THF complex, borane dimethyl sulfide complex, boron trifluoride jetyl ether complex, Examples include triethylborane, trimethoxyborane, triethoxyborane, tri (isopropoxy) borane, borazole, trimethylborazole, triethylborazole, triisopropylborazole, and the like.
  • Examples of the tin compound include tetraethyltin, tetramethyltin, diethylene tin diacetate, tetrabutyltin, tetraoctyltin, tetraethoxytin, methyltriethoxytin, dimethyljetoxytin, triisopropylethoxytin, Jetyl tin, dimethyl tin, diisopropyl tin, dibutyl tin, methoxy tin, dimethoxy tin, diisopropoxy tin, dibutoxy tin, tin dibutyrate, tin diacetate, ethyl tin caseate, ethoxy tin caseate,
  • Examples of tin halides such as dimethyltin diacetate toner, tin hydrogen compounds, etc. include tin dichloride, tetrasalt bismuth tin, and the like.
  • organometallic compounds include, for example, antimony ethoxide, arsenic triethoxide, norlium 2, 2, 6, 6-tetramethylheptanedionate, beryllium acetylacetonate, bismuth hexaful.
  • Olopentanedionate dimethylcadmium, calcium 2, 2, 6, 6-tetramethylheptanedionate, chromium trifluoropentanedioate, cobalt acetylacetonate, copper hexafluoropentanedi Ionate, magnesium hexafluoropentanedionate-dimethyl ether complex, gallium ethoxide, tetraethoxygermane, tetramethoxygermane, hafnium t-butoxide, hafnium ethoxide, indium acetylacetate, indium 2, 6 dimethyl Aminoheptaneate, Hue , Lanthanum isopropoxide, lead acetate, tetraethyl lead, Neojiumua Cetylacetonate, platinum hexafluoropentanedionate, trimethylcyclopentagel platinum, rhodium dicarboxyl cetylacetonate, str
  • the decomposition gas for decomposing the raw material gas containing these metals to obtain an inorganic compound includes, for example, hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas. , Nitrogen gas, ammonia gas, nitrous oxide gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor, fluorine gas, hydrogen fluoride, trifluoroalcohol, trifluorotoluene, hydrogen sulfide, sulfur dioxide, carbon disulfide And chlorine gas.
  • metal carbides, metal nitrides, metal oxides, metal halides, and metal sulfides can be obtained by appropriately selecting a source gas containing metal element and a decomposition gas.
  • a discharge gas that tends to be in a plasma state is mainly mixed with these reactive gases, and the gas is sent to the plasma discharge generator.
  • a discharge gas nitrogen gas and Z or an 18th group atom of the periodic table, specifically helium, neon, argon, krypton, xenon, radon, etc. are used. Of these, nitrogen, helium, and argon are particularly preferably used.
  • the discharge gas and the reactive gas are mixed and supplied to a plasma discharge generator (plasma generator) as a mixed gas to form a film.
  • a plasma discharge generator plasma generator
  • the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained.
  • FIG. 2 is a schematic diagram showing an example of an atmospheric pressure plasma discharge treatment apparatus that treats a substrate between counter electrodes useful for the present invention.
  • An atmospheric pressure plasma discharge treatment apparatus is an apparatus having at least a plasma discharge treatment apparatus 30, an electric field application means 40 having two power supplies, a gas supply means 50, and an electrode temperature adjustment means 60. is there.
  • Fig. 2 shows the roll rotating electrode (first electrode) 35 and the square tube fixed electrode group (second electrode) 36 facing each other. Between the electrodes (discharge space) 32, the substrate F is subjected to plasma discharge treatment to form a thin film.
  • a pair of rectangular tube-shaped fixed electrode group (second electrode) 36 and roll rotating electrode (first electrode) 35 form one electric field. Is formed.
  • Fig. 2 shows an example of a configuration with a total of five units with such a configuration, and the types of raw materials and output voltages supplied by each unit can be controlled independently and arbitrarily. As a result, a laminated transparent gas nolia layer having a constitutional force defined in the present invention can be continuously formed.
  • the high frequency electric field of 2 is applied.
  • a first filter 43 is installed between the roll rotating electrode (first electrode) 35 and the first power supply 41, and the first filter 43 generates a current from the first power supply 41 to the first electrode. It is designed to facilitate passage, ground the current from the second power source 42, and pass the current from the second power source 42 to the first power source.
  • a second filter 44 is installed between the square tube type fixed electrode group (second electrode) 36 and the second power source 42, and the second filter 44 is connected from the second power source 42 to the second electrode. It is designed to facilitate the passage of current, ground the current from the first power supply 41, and pass the current from the first power supply 41 to the second power supply!
  • the roll rotating electrode 35 may be the second electrode, and the square tube type fixed electrode group 36 may be the first electrode.
  • the first power source is connected to the first electrode, and the second power source is connected to the second electrode.
  • the first power supply has a higher high-frequency electric field strength (V> V) than the second power supply.
  • the frequency has the ability to satisfy ⁇ ⁇ .
  • the current is preferably I and I.
  • the current I of the first high-frequency electric field is preferably 0
  • the current I of the second high-frequency electric field is preferably 10 to 100 mAZcm 2 , more preferably 20 to 100 mAZcm 2 .
  • the gas G generated by the gas generator 51 of the gas supply means 50 is controlled by controlling the flow rate. Then, it is introduced into the plasma discharge treatment vessel 31.
  • the base material F is illustrated, and the original winding force is unwound and transported from the former or transported from the previous stage, and is accompanied by the base roll 65 through the guide roll 64.
  • the air that is coming in is cut off, and while being in contact with the roll rotating electrode 35, it is transferred to and from the square tube fixed electrode group 36 while being wound, and the roll rotating electrode (first electrode) 35 and the square tube fixed electrode group (first An electric field is applied from both of the two electrodes (36) and discharge plasma is generated between the counter electrodes (discharge space) 32.
  • the base material F forms a thin film with a gas in a plasma state while being wound while being in contact with the roll rotating electrode 35.
  • Substrate F passes through -roll 66 and guide roll 67, and is taken up by a winder (not shown) and transferred to the next process.
  • the inorganic compound according to the present invention obtains, for example, a film containing at least one of O atoms and N atoms, and Si atoms by further combining oxygen gas and nitrogen gas in a predetermined ratio with the organic silicon compound. be able to.
  • SiO is highly transparent, it has a slight gas nooricity.
  • the light transmittance T is preferably 80% or more.
  • the specific ratio of oxygen and nitrogen atoms can be determined according to the application.
  • xZ (x + y) of 0.4 or more and 0.95 is preferable because the light transmission and waterproof properties can be balanced.
  • xZ (x + y) is 0 or more and less than 0.4 for applications where it is preferable to absorb or block light, such as an anti-reflection film provided on the rear surface of the light emitting element of the display device. It is preferable.
  • the gas nolia layer according to the present invention is preferably transparent. This is because when the gas nolia layer is transparent, the gas nolia film can be made transparent, and can be used for applications such as a transparent substrate of an organic EL element.
  • FIG. 1 is a schematic diagram showing an example of the layer structure and density profile of a transparent gas nore film according to the present invention.
  • the transparent gas noreal film 1 according to the present invention has a configuration in which layers having different densities are laminated on a substrate 2.
  • the present invention is characterized in that the medium density layer 4 according to the present invention is provided between the low density layer 3 and the high density layer 5, and further, the medium density layer 4 is provided on the high density layer.
  • the unit consisting of a low density layer, medium density layer, high density layer, and medium density layer is one unit, and Fig. 1 shows an example in which two units are stacked. At this time, the density distribution in each density layer is uniform, and the density change between adjacent layers is stepped.
  • the force shown with the medium density layer 4 as one layer may be composed of two or more layers as required.
  • the substrate used in the transparent gas nore film according to the present invention is not particularly limited as long as it is a film formed of an organic material capable of holding the above-described gas noria layer having a barrier property.
  • PO polyolefin
  • APO cyclic polyolefin
  • PET polyethylene terephthalate
  • PEN polyethylene 2,6 naphthalate
  • PVA resin polybulal alcohol-based resin such as ethylene butyl alcohol copolymer (EVOH), polyimide (PI) resin, polyester terimide (PEI) resin, polysulfone (PS) resin, polyethersal Hong (PES) , Polyetheretherketone (PEEK) resin, Polycarbonate (PC) resin, Polyvinyl butyrate (PVB) resin, Polyarylate (PAR) resin, Ethylene tetrafluoroethylene copolymer (ETFE), Trifluoro Perfluoroethylene (PFA), tetrafluorinated styrene perfluorinated alkyl butyl ether copolymer (FEP), vinylidene fluoride (PVDF), vinylene fluoride (PVF), non-noreo ethylene and perfluoropropylene Fluorine-based resin such as perfluoro-vinyl ether copolymer (EPA) can be used.
  • PI ethylene butyl alcohol cop
  • a rosin composition comprising an acrylate compound having a radical-reactive unsaturated compound, and a mercapto compound having a thiol group and the above acrylate complex.
  • a photocurable resin such as a resin composition prepared by dissolving an oligomer such as epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, etc. in a polyfunctional acrylate monomer, and a mixture thereof. Etc. can also be used.
  • ZEONEX ZEONOR manufactured by Nippon Zeon Co., Ltd.
  • amorphous cyclopolyolefin resin film ARTON manufactured by GSJ
  • polycarbonate film pure ace manufactured by Teijin Limited
  • cellulose triacetate film Commercial products such as Co-Kaminoltac KC4UX and KC8UX (manufactured by Koryo Minoltaput Co., Ltd.) can be preferably used.
  • the substrate is preferably transparent. Since the substrate is transparent and the layer formed on the substrate is also transparent, it becomes possible to make a transparent gas-nore film, so that it is possible to make a transparent substrate such as an organic EL element. is there.
  • the substrate according to the present invention using the above-described resin or the like may be an unstretched film or a stretched film.
  • the substrate according to the present invention can be manufactured by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting the resin as a material with an extruder, extruding it with an annular die or T-die, and quenching it.
  • the flow of the base material can be measured by a known method such as -axial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, and tubular-type simultaneous biaxial stretching.
  • a stretched substrate can be produced by stretching in the (vertical axis) direction or in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
  • surface treatment such as corona treatment, flame treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, etc. is performed before forming the deposited film. Also good.
  • an anchor coat layer may be formed on the surface of the substrate according to the present invention for the purpose of improving the adhesion to the deposited film.
  • the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, bur modified resin, epoxy resin, modified styrene resin, One or more kinds of modified silicone resin and alkyl titanate can be used in combination. Conventionally known additives can be added to these anchor coating agents.
  • the anchor coat agent is coated on the substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and the solvent, diluent, etc. are removed by drying to remove the anchor coating layer. Can be formed.
  • the application amount of the above-mentioned anchor coat agent is preferably about 0.1 to 5 gZm 2 (dry state).
  • the substrate As the substrate, a long product wound up in a roll shape is convenient. Further, the substrate used in the present invention has a film thickness of 10 to 200 m, more preferably 50 to: LOO ⁇ m.
  • the water vapor transmission rate of the gas nootropic film according to the present invention is determined from the viewpoint that an organic EL display, a high-definition color liquid crystal display, etc. require a high water vapor barrier property, measured according to JIS K7129 B method. It is preferable that the degree is 1. OgZm 2 Zday or less. Furthermore, in the case of the organic EL display application according to the present invention, a dark spot that grows even at a very small amount is generated, and the display life of the display is reduced. Since it may become extremely short, the water vapor permeability is preferably less than 0.1 lgZm 2 Zday. Example
  • PEN polyethylene terephthalate film
  • a transparent gas barrier film was prepared by laminating three units composed of a low density layer, a medium density layer, a high density layer, and a medium density layer.
  • a set of a roll electrode covered with a dielectric and a plurality of rectangular tube electrodes was prepared as follows.
  • the roll electrode which is the first electrode, is coated with a high-density, high-adhesion alumina sprayed film by an atmospheric plasma method on a titanium alloy T64 jacket roll metal base material that has cooling means using cooling water.
  • the roll diameter was 1000 mm.
  • the square electrode of the second electrode is a hollow square tube type titanium alloy T64 covered with lmm of the same dielectric material as the above under the same conditions, and is opposed to the opposing square tube type fixed electrode group. did.
  • the first electrode (roll rotating electrode) and the second electrode (square tube fixed electrode group) are adjusted and kept at 80 ° C, and the roll rotating electrode is rotated by a drive to form a thin film. Went.
  • the following first layer low density layer 1
  • the following 6 are used for forming the following second layer (medium density layer 1).
  • the following 8 pieces are used for forming the third layer (high density layer 1)
  • the remaining 6 pieces are used for forming the fourth layer (medium density layer 2).
  • Plasma discharge was performed under the following conditions to form a low density layer 1 having a thickness of about 90 nm.
  • Thin film forming gas hexamethinoresinsiloxane
  • the density of the formed first layer (low density layer) was 1.90 as a result of measurement by the X-ray reflectivity method using MXP21 manufactured by MacScience.
  • Plasma discharge was performed under the following conditions to form a medium density layer 1 having a thickness of about 90 nm.
  • Thin film forming gas hexamethinoresinsiloxane
  • the density of the formed second layer was 2.55 as a result of measurement by the X-ray reflectivity method using MXP21 manufactured by Mac Science.
  • Plasma discharge was performed under the following conditions to form a high-density layer 1 having a thickness of about 90 nm.
  • Thin film forming gas hexamethinoresinsiloxane
  • Second electrode side power supply type High frequency power supply manufactured by Pearl Industrial Co., Ltd.
  • the density of the formed third layer was 2.20 as a result of measurement by the X-ray reflectivity method using MXP21 manufactured by Mac Science Co., Ltd. described above.
  • the medium density layer 2 was formed under the same conditions as the second layer (medium density layer 1).
  • JIS-K-result of measuring the water vapor transmission rate by a method according to 7129B was less than 1 X 10- 3 g Zm 2 Zday .
  • JIS-K-Results oxygen permeability was measured boss by a method according to 7126B, it was less than 1 X 10- 3 g / m 2 / day.
  • the substrate with the ITO transparent electrode was ultrasonically washed with isopropyl alcohol and dried. It was dried with nitrogen gas and UV ozone cleaning was performed for 5 minutes. Was fixed to a substrate holder of a commercially available vacuum deposition apparatus, the pressure was reduced to a vacuum degree 4 X 10- 4 Pa, to prepare a IT O board 100.
  • ITO indium tin oxide
  • the ink jet recording head 10 moves at a high speed against the ITO substrate 100.
  • the fluid D containing the exemplary compound B6 as a hole transport material is ejected toward the upper surface of the substrate 100 while being relatively moved, whereby the droplet D containing the exemplary compound B6 is landed.
  • the landed droplet (fluid D) has a diameter of several tens / zm.
  • a predetermined amount of fluid D was discharged to form a hole transport layer 111.
  • polymerization was carried out at 200 ° C. for 1 hour to form a polymer thin film.
  • the formed polymer had an average molecular weight of about 10000 (repeating unit was 16.6) and a film thickness of 50 nm.
  • the fluid D containing the exemplary compound B7 as an electron transport material is discharged from the inkjet recording head 10 toward the upper surface of the substrate 100 having the hole transport layer 111.
  • a droplet containing the exemplified compound B7 is landed.
  • the landed droplet has a diameter of about several tens of meters.
  • a predetermined amount of fluid was discharged to form the electron transport layer 112.
  • Polymerization was further carried out at 200 ° C for 1 hour to form a polymer thin film.
  • the average molecular weight of the polymer formed was about 20000 (repeating unit 40.5) and the film thickness was 50 nm.
  • An organic EL element OLED2-1 of the present invention was produced in the same manner as in the production of the organic EL element OLED1-1 except that the configurations of the hole transport layer and the electron transport layer were changed as follows.
  • Exemplified Compound A7 and dodecyl mercabtan (molar ratio 10: 1) as hole transport materials The fluid D was discharged toward the upper surface of the substrate 100 to form the hole transport layer 111. Next, polymerization was performed under heating conditions of 100 ° C. for 1 hour to form a polymer thin film.
  • the average molecular weight of the formed polymer was about 5000 (repeating unit 9.2), and the film thickness was 50 nm.
  • fluid D containing Exemplified Compound A12 and Octadecyl Alcohol (molar ratio 10: 1) was discharged toward the upper surface of the substrate 100 to form an electron transport layer 112.
  • polymerization was carried out at 100 ° C. for 1 hour to form a polymer thin film.
  • the average molecular weight of the formed polymer was about 4000 (repeating unit 8.0), and the film thickness was 50 nm.
  • the organic EL element OLED3-1 of the present invention was produced in the same manner except that the configurations of the hole transport layer and the electron transport layer were changed as follows.
  • ⁇ -NPD As a hole transport layer on an ITO substrate, ⁇ -NPD was applied in the same manner as described above in a thickness of 50 nm, formed into a film, dried at 100 ° C for 30 minutes, and then used as an electron transporting light-emitting material. Alq 50
  • An organic EL device OLED4-1 of the present invention was produced in the same manner as in the production of the organic EL device OLED1-1, except that the configurations of the hole transport layer and the electron transport layer were changed as follows.
  • Fluid D containing exemplary compound B6 as a hole transport material was discharged toward the upper surface of substrate 100 to form hole transport layer 111.
  • polymerization was performed under the conditions of an irradiation electron current of 5 mA and an electron irradiation energy of 50 eV to form a polymer thin film.
  • the average molecular weight of the polymer formed was about 18000 (repeating unit 30.0), and the film thickness was 50 °.
  • fluid D containing exemplary compound B8 as an electron transporting material was discharged toward the upper surface of substrate 100 to form electron transporting layer 112.
  • a polymer thin film was formed by polymerization under conditions of an irradiation electron current of 5 mA and an electron irradiation energy of 50 eV.
  • the average molecular weight of the formed polymer was about 15000 (repeating unit 28.3), and the film thickness was 50 nm.
  • the organic EL element OLED3-1 In the organic EL element OLED3-1, current began to flow at an initial drive voltage of 4V, and green light was emitted. With respect to the organic EL element OLED1-1 and the organic EL element OLED2-1, the light emission luminance (cdZm 2 ) and the light emission efficiency (lmZW) were measured when a temperature of 23 ° C and a DC voltage of 10 V were applied. Luminance and luminous efficiency are expressed as relative values when the organic EL element OLED3-1 is 100. The emission luminance was measured using a spectral radiance meter CS-1000 (manufactured by Co-Camino Norta Sensing).
  • the half-life time which was the time required for the initial luminance to drop to half of the original, was measured, and this was used as an indicator of durability.
  • the half-life time is expressed as a relative value when the organic EL element OLED3-1 is set to 100.
  • Organic EL elements OLED5-1 to 5-3 having the materials and film thicknesses shown in Table 2 below were manufactured under the same conditions as the conditions for manufacturing the organic EL element OLEDl-l described in Example 1.
  • organic EL elements OLED5-4-5-6 having the materials and film thickness composition shown in Table 2 below were manufactured under the same conditions as those for manufacturing organic EL element OLED2-1.
  • a comparative organic EL element OLED5-7 made of the materials and film thicknesses shown in Table 2 below was manufactured under the same conditions as those for manufacturing the organic EL element OLED3-1.
  • the organic EL elements having the constitution defined in the present invention are superior to the comparative examples in terms of emission luminance and lifetime, and are dark. It can be seen that this is a highly durable element in which the generation of spots is suppressed.
  • the organic EL device OLED5-3 which is a combination of a compound having a polymerizable group and a compound having a reactive group, is more than the organic EL device OLED5-1 using a compound having a reactive group in the electron transport material.
  • Durability has been improved significantly, and the organic EL element OLED5-2 has the same durability improvement effect, so at least a part forms a covalent bond near the interface between the light emitting layer and the electron transport layer, I understand that it is more preferable.
  • Example 2 Except that the phosphorescent compound of the organic EL device 5-2 of the present invention produced in Example 2 and the organic EL device OLED5-2 of the present invention produced in Example 2 was replaced with the exemplified compound Ir1, the same manner was carried out.
  • the green light-emitting organic EL device manufactured in the same manner as above and the red light-emitting organic EL device manufactured in the same manner are the same except that the phosphorescent compound of the organic EL device OLED5-2 of the present invention is replaced with the exemplified compound Ir9.
  • the active matrix type full-color display device shown in Fig. 4 was fabricated side by side on the substrate.
  • FIG. 5 shows only a schematic diagram of the display part A of the produced full-color display device.
  • a wiring portion including a plurality of scanning lines 205 and data lines 206 and a plurality of pixels 203 arranged in parallel on the same substrate (e.g., light emission color of red region pixel, green region pixel, blue region pixel, etc.)
  • Each of the scanning lines 205 and the plurality of data lines 206 in the wiring portion is made of a conductive material, and the scanning lines 205 and the data lines 206 are orthogonal to each other in a lattice shape and are connected to the pixels 203 at the orthogonal positions (details) Is not shown).
  • Each of the plurality of pixels 3 has a It is driven by an active matrix system that includes an organic EL element corresponding to the light color, a switching transistor that is an active element, and a drive transistor.
  • an active matrix system that includes an organic EL element corresponding to the light color, a switching transistor that is an active element, and a drive transistor.
  • a scanning signal is applied from the scanning line 205, an image is displayed from the data line 206.
  • a data signal is received, and light is emitted according to the received image data.
  • full-color display is possible.
  • a clear full-color moving image display was obtained.
  • the non-light emitting surface of each of the blue light emitting, green light emitting, and red light emitting organic EL elements produced in Example 3 was covered with a glass case to obtain a lighting device.
  • the illuminating device could be used as a thin illuminating device that emits white light with high luminous efficiency and long emission life.
  • FIG. 6 is a schematic view of the lighting device
  • FIG. 7 is a cross-sectional view of the lighting device.
  • the organic EL element 301 was covered with a glass cover 302. 305 is a cathode, 306 is an organic EL layer, and 307 is a glass substrate with a transparent electrode.
  • the glass cover 302 is filled with nitrogen gas 308 and a water catching agent 309 is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、多層構成で良好な発光効率で発光し、ダークスポットが少なく、かつ寿命が長い有機エレクトロルミネッセンス素子と、それを用いた表示装置及び照明装置を提供する。この有機エレクトロルミネッセンス素子は、基板上に陰極と陽極とを有し、該陰極と陽極間に複数の有機層を有する有機エレクトロルミネッセンス素子において、該有機層の少なくとも1層は、重合性基を少なくとも一つ有する化合物を塗布、重合することにより得られる、繰り返し単位が10個以下の有機分子を含有する第1の有機層であることを特徴とする。

Description

明 細 書
有機エレクト口ルミネッセンス素子、表示装置及び照明装置
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子、該有機エレクト口ルミネッセンス素子 を用いた表示装置及び照明装置に関する。
背景技術
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(ELD)がある。 ELDの構成要素としては、無機エレクト口ルミネッセンス素子や有 機エレクト口ルミネッセンス素子(以下、有機 EL素子ともいう)が挙げられる。
[0003] 有機 EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を 有し、発光層に電子及び正孔を注入して、再結合させることにより励起子 (エキシトン )を生成させ、このエキシトンが失活する際の光の放出(蛍光 ·燐光)を利用して発光 する素子であり、数 V〜数十 V程度の電圧で発光が可能であり、更に自己発光型で あるために視野角に富み、視認性が高ぐ薄膜型の完全固体素子であるため、省ス ペースや携帯性等の観点から注目されて 、る。
[0004] 例えば、有機化合物の蒸着により有機薄膜を形成する EL素子が知られている(例 えば、 Applied Physics Letters, 51, p. 913〜(1987) )。該文献記載の有機 E L素子は、電子輸送材料と正孔輸送材料の積層構造を有し、従来の単層型素子に 比べてその発光特性が大幅に向上している。この積層型素子は、素子材料として低 分子有機材料を蒸着することにより形成している。
[0005] また、重合性基を有する化合物を重合することにより生成した繰り返し単位が 10個 以下である有機分子を蒸着することにより素子を形成する技術が開示されている(例 えば、特許文献 1参照。 ) oまた、重合性基を有する化合物を重合して第 1の層を設け 、その上に重合性基を有する化合物を重合して第 2の層を設けた技術が開示されて いる(例えば、特許文献 2参照。 )0
[0006] し力しながら、このような蒸着を用いる形成方法は、素子の生産工程において、材 料の利用効率、大面積化、高精細化等の点で大きな課題を抱えている。 [0007] Nature, 397 (1999) 121には、ポリパラフエ-レンビ-レン(PPV)やこの誘導体( MEH— PPV)のような π電子共役系高分子が発光材料になりうることが記載されて おり、時計のバックライト等で一部用いられ始めている。これら高分子系材料はキャス ティング法で成膜ができるため、生産工程上のメリットとなるだけでなぐ低分子系発 光材料に比べて耐久性に優れているというメリットを有する。し力しながら、有機高分 子材料を塗布方式で用いる場合、溶媒に対する溶解性が低ぐ発光効率が低いとい うデメリットを有する。この問題を回避するためには、ポリマープレカーサ一を用いて、 塗布後にポリマー化することにより、不溶ィ匕させて溶出を防ぐ方法がある。この例とし ては、 Cambridge Display Technology社が提案している、 PPV(p—フエ-レン ビ-レン)前駆体を用いる方法を挙げることができる。この方法については、 ORGAN IC ELECTRO - LUMINESCENT MATERIALS AND DEVICES, 199 7の p. 73〜に詳述されている。し力しながら、この方法ではポリマーの構造が限定さ れるため、発光素子を形成するための種々の化合物に適用することができない。
[0008] また、別の方法として、モノマーを用いて成膜した後、ポリマー化することにより不溶 化し、溶出を防ぐ方法がある(例えば、特許文献 3、 4参照。;)。これらの方法では、積 層構造をとることが可能となり発光効率が向上した力 いまだ十分でなぐダークスポ ットが発生しやすぐまた界面が乱れることにより素子の寿命が短いという問題を有し ていた。
特許文献 1:特開平 5— 247547号公報
特許文献 2:特開 2004 - 103401号公報
特許文献 3:特開 2003 - 73666号公報
特許文献 4:特開 2003— 86377号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、上記課題を鑑みてなされたものであり、その目的は、多層構成で良好な 発光効率で発光し、ダークスポットが少なぐかつ寿命が長い有機エレクト口ルミネッ センス素子と、それを用いた表示装置及び照明装置を提供することにある。
課題を解決するための手段 [0010] 本発明の上記目的は、下記構成により達成された。
[0011] 1.基板上に陰極と陽極とを有し、該陰極と陽極間に複数の有機層を有する有機ェ レクト口ルミネッセンス素子において、該有機層の少なくとも 1層は、重合性基を少なく とも一つ有する化合物を塗布、重合することにより得られる、繰り返し単位が 10個以 下の有機分子を含有する第 1の有機層であることを特徴とする有機エレクト口ルミネッ センス素子。
[0012] 2.前記第 1の有機層上に、重合性基を少なくとも一つ含有する化合物を塗布、重 合することにより得られる、繰り返し単位が 10個以下の有機分子を含有する第 2の有 機層を積層することを特徴とする前記 1に記載の有機エレクト口ルミネッセンス素子。
[0013] 3.基板上に陰極と陽極とを有し、該陰極と陽極間に複数の有機層を有する有機ェ レクト口ルミネッセンス素子にぉ 、て、重合性基または反応性基を有する化合物を塗 布し、重合することにより形成された第 1の有機層を有し、該第 1の有機層の上に、重 合性基または反応性基を有する化合物を塗布し、重合することにより形成され第 2の 有機層を有し、かつ各有機層の界面の一部が共有結合を介して接合していることを 特徴とする有機エレクト口ルミネッセンス素子。
[0014] 4.前記重合性基が、ビュル基であることを特徴とする前記 1乃至 3のいずれか 1項 に記載の有機エレクト口ルミネッセンス素子。
[0015] 5.前記塗布が、インクジェット記録方式により行われることを特徴とする前記 1乃至 4のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0016] 6.前記重合が、エネルギー線照射によって行われることを特徴とする前記 1乃至 5 のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0017] 7.前記エネルギー線照射力 紫外線、電子、イオン、熱、ラジカルビームまたは放 射線の照射であることを特徴とする前記 6に記載の有機エレクト口ルミネッセンス素子
[0018] 8.前記第 1の有機層が含有する化合物が、芳香族第三級ァミン構造を有する化合 物であり、前記第 2の有機層が含有する化合物が、有機金属錯体構造を有する化合 物であることを特徴とする前記 2乃至 7のいずれか 1項に記載の有機エレクトロルミネ ッセンス素子。 [0019] 9.前記第 1の有機層または前記第 2の有機層が、更に燐光性化合物を含有するこ とを特徴とする前記 2乃至 8のいずれ力 1項に記載の有機エレクト口ルミネッセンス素 子。
[0020] 10.前記第 1の有機層が電子輸送層であって、かつ前記第 2の有機層が正孔輸送 層であることを特徴とする前記 2乃至 9のいずれか 1項に記載の有機エレクトロルミネ ッセンス素子。
[0021] 11.前記基板力 透明ガスノリア性フィルムであることを特徴とする前記 1乃至 10 のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0022] 12.発光が、白色であることを特徴とする前記 1乃至 11のいずれか 1項に記載の有 機エレクト口ルミネッセンス素子。
[0023] 13.前記 12に記載の有機エレクト口ルミネッセンス素子を有することを特徴とする表 示装置。
[0024] 14.前記 12に記載の有機エレクト口ルミネッセンス素子を有することを特徴とする照 明装置。
[0025] 15.前記 14に記載の照明装置と、表示手段としての液晶素子とを有することを特 徴とする表示装置。
発明の効果
[0026] 本発明により、多層構成で良好な発光効率で発光し、ダークスポットが少なぐかつ 寿命が長い有機エレクト口ルミネッセンス素子と、それを用いた表示装置及び照明装 置を提供することができた。
図面の簡単な説明
[0027] [図 1]本発明に係る透明ガスノ リア性フィルムの層構成と、その密度プロファイルの一 例を示す模式図である。
[図 2]本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処 理装置の一例を示す概略図である。
[図 3]本発明の有機 EL素子 OLED1— 1の吐出及び成膜工程を示す図である。
[図 4]本発明の有機 EL素子カゝら構成される表示装置の一例を示す模式図である。
[図 5]表示部 Aの模式図である。 [図 6]照明装置の概略図である。
[図 7]照明装置の断面図である。
符号の説明
[0028] 30 プラズマ放電処理室
25、 35 ロール電極
36 電極
41、 42 電源
51 ガス供給装置
55 電極冷却ユニット
100 ITO基板
111 正孔輸送層
112 電子輸送層
113、 303 陰極
114 ガスバリア膜
10 インクジェット式ヘッド
D 液滴
201 ディスプレイ
203 画素
205 走査線
A 表示部
B 制御部
302 ガラスカバー
306 有機 EL層
307 透明電極付きガラス基板
308 窒素ガス
309 補水剤
発明を実施するための最良の形態
[0029] 以下、本発明の各構成要件について詳細に説明する。 [0030] 本発明は、重合性基を少なくとも一つ有する化合物 (有機 EL用素材)を塗布し、こ れに照射エネルギーをカ卩えて重合し、繰り返し単位が 10個以下である有機分子を含 有する有機層を形成することを基本的な特徴としている。また、有機層を積層する場 合、第 1の有機層を形成した後、重合性基を少なくとも一つ有する化合物の塗布、重 合と 、う同じプロセスを経て第 2の有機層を形成することが好ま 、形態である。更に 、本発明によって積層されたとき、第 1の有機層と第 2の有機層とがその界面におい て、一部が共有結合を介して接合していることを第 3の特徴としている。これらに加え て、有機層形成が塗布方式で行うことを特徴としており、特にインクジェット記録方式 により有機層を形成することが好ましい。
本発明に係る重合反応は、エネルギー照射によって行ってもよい。エネルギー照射 としては、例えば、紫外線、電子、イオン、熱、ラジカルビームまたは放射線の照射ェ ネルギ一等が挙げられる。このうち、電子エネルギーとは、発光素子の駆動時に供給 される電流のことを意味し、具体的には陰極から注入される電子によって形成される 重合性ィ匕合物のァ-オンラジカルや陽極カゝら注入される正孔によって形成される重 合性ィ匕合物のラジカルカチオンが発端となって重合反応が進行することである。なお 、本発明でいう繰り返し単位とは、数平均重合度と同義である。
[0031] 本発明に係る重合性基を少なくとも一つ有する化合物において、重合性基としては 、例えば、ビュル基、エポキシ基、ォキセタン基等が挙げられる。本発明において、重 合性基を少なくとも一つ有する化合物を重合することにより、繰り返し単位が 10個以 下である有機分子を得る方法として、反応の停止が起こりやす 、重合条件でモノマ 一の重合反応を行うことにより簡便に得ることができる。例えば、重合開始剤もしくは 触媒濃度をコントロールする方法、連鎖移動剤もしくは重合停止剤を併用する方法、 または紫外線、電子、イオン、熱、ラジカルビームまたは放射線の照射エネルギー量 をコントロールする方法等が挙げられる。
[0032] 本発明で用いられるラジカル重合開始剤としては、例えば、 2, 2' —ァゾビスプチ ロニトリル、 2, 2' —ァゾビスシクロへキサンカルボ二トリル、 1, 1' ーァゾビス(シクロ へキサン— 1—カルボ-トリル)、 2, 2' —ァゾビス(2—メチルブチ口-トリル)、 2, 2 ' —ァゾビス(2, 4—ジメチルバレ口-トリル)、 2, 2' —ァゾビス(4—メトキシ一 2, 4 —ジメチルバレ口-トリル)、 4, 4' —ァゾビス(4 シァノ吉草酸)、 2, 2' —ァゾビス イソ酪酸ジメチル、 2, 2' —ァゾビス(2—メチルプロピオンアミドキシム)、 2, 2' — ァゾビス(2— (2—イミダゾリン一 2—ィル)プロパン)、 2, 2' —ァゾビス(2, 4, 4 ト リメチルペンタン)などのァゾ系開始剤、過酸化べンゾィル、過酸化ジー tーブチル、 t ーブチルヒドロペルォキシド、タメンヒドロペルォキシドなどの過酸化物系開始剤、ジ ェトキシァセトフエノン、 2—ヒドロキシ一 2—メチル 1—フエ-ルプロパン一 1 オン 、ベンジルジメチルケタール、ベンジルー βーメトキシェチルァセタール、 1 (4ーィ ソプロピルフエ-ル) 2 ヒドロキシ一 2—メチルプロパン一 1—オン、 4— (2 ヒドロ キシエトキシ)フエ-ルー(2—ヒドロキシ一 2—プロピル)ケトン、 1—ヒドロキシシクロへ キシルフェニルケトン、 4ーフエノキシジクロロアセトフエノン、 4—tーブチルジクロロア セトフエノン、 4—t—ブチルトリクロロアセトフエノン、 1— (4 ドデシルフェ-ル) 2 —ヒドロキシ一 2—メチルプロパン一 1—オンなどの芳香族カルボ-ル系開始剤など が挙げられる。また、テトラエチルチイラムジスルフイドなどのジスルフイド系開始剤、 2 , 2, 6, 6—テトラメチルピペリジン 1ーォキシルなどの-トロキシル開始剤、 4, 4' —ジ一 t—ブチル 2, 2' —ビビリジン銅錯体一トリクロ口酢酸メチル複合体などのリ ビングラジカル重合開始剤を用いることもできる。
[0033] 本発明で用いられる酸触媒としては、例えば、活性白土,酸性白土などの白土類、 硫酸,塩酸などの鉱酸類、 p—トルエンスルホン酸、トリフルォロ酢酸などの有機酸、 塩ィ匕アルミニウム、塩化第二鉄、塩化第二スズ、三塩ィ匕チタン、四塩化チタン、三フッ 化硼素、フッ化水素、三臭化硼素、臭化アルミニウム、塩ィ匕ガリウム、臭化ガリウムな どのルイス酸、更に、固体酸、例えば、ゼォライト、シリカ、アルミナ、シリカ 'アルミナ、 カチオン交換榭脂、ヘテロポリ酸 (例えば、リンタングステン酸、リンモリブデン酸、ケ ィタングステン酸、ケィモリブデン酸)など各種のものが使用できる。
[0034] 本発明で用いられる塩基性触媒としては、例えば、 Li CO、 Na CO、 K COなど
2 3 2 3 2 3 のアルカリ金属炭酸塩、 BaCO、 CaCOなどのアルカリ土類金属炭酸塩、 Li 0、 Na
3 3 2
0、 K Oなどのアルカリ金属酸化物、 BaO、 CaOなどのアルカリ土類金属酸化物、 N
2 2
a、 Kなどのアルカリ金属、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化 物、あるいはナトリウム、カリウム、ルビジウム、セシウム等のアルコキシド等を挙げるこ とがでさる。
[0035] 本発明において、重合開始剤もしくは触媒の使用量によって、生成するオリゴマー の分子量を制御することができる。即ち、モノマーである重合性基を少なくとも一つ含 有する化合物に対する重合開始剤もしくは触媒の使用量を多くすれば、得られるオリ ゴマーの分子量は低下する。重合開始剤もしくは触媒の使用量は、重合性基を少な くとも一つ有する化合物に対して 0. 1〜: L00質量%、好ましくは 1〜20質量%の範 囲である。
[0036] 本発明で用いられる連鎖移動剤もしくは重合停止剤としては、例えば、塩酸、硫酸 、酢酸等の酸類、ポリハロゲン化メタンやハロゲン化炭化水素、メルカプタン類、 a メチルスチレンダイマー、アルコール等の活性水素化合物、 2, 4 ジフエ-ルー 4 メチルー 1 ペンテン等の 2, 2—二置換ォレフィン等及びコバルト錯体のような遷移 金属錯体が使用できる。連鎖移動剤もしくは重合停止剤の使用量は、重合性基を少 なくとも一つ有する化合物に対して 0. 01〜0. 5モル比が望ましい。
[0037] 以下に重合性基を少なくとも一つ有する化合物の具体的な例を挙げるが、本発明 はこれらに限定されるものではない。
[0038] [化 1]
ίΖ^] [6S00]
Figure imgf000010_0001
εΐ?6Ζ60/900Ζ OAV A13 A14
Figure imgf000011_0001
[0040] 本発明に係る重合性基または反応性基を有する化合物を用いる場合、各有機層 の界面の一部が共有結合を介して接合していることを特徴とし、具体的には、異なる 機能を有する第 1の有機層及び第 2の有機層の間で形成される界面が、共有結合等 の結合を介して接合しうる条件を整えてやることが肝要であり、そのためには第 1の有 機層と第 2の有機層のそれぞれを構成する化合物に、ビニル基やエポキシ基のよう な自己重合性基を有するものを用いる力 または第 1の有機層には、下記第 I群で示 すような反応性基を有する化合物を、第 2の有機層には下記第 II群で示すような反応 性基を有する化合物を、それぞれ適用することが好ま Uヽ。
[0041] [化 3] 第 I群
— OH — NH, — SH H
Figure imgf000012_0001
第 u群
— COOH — COOR16 — RRS -I NCO — NCS
Figure imgf000012_0002
し H "=し "1^22
—COSH ― COSR23
[0042] 以上の反応性基の組み合わせのうち、好ま 、ものは H O等の生成のな 、付加反
2
応可能な組み合わせのものである。
[0043] 本発明に係る重合性基または反応性基を有する化合物とは、単一の化合物同士 が反応し多量体を形成することが可能な化合物、または異なる 2つの化合物が互 、 に反応し共有結合を形成することが可能な化合物のことを表す。好ましくは重合反応 にお 、て分子の脱離を伴わな 、ィ匕合物が挙げられ、特に好ましくはビュル基等のラ ジカル重合可能な官能基を有する化合物、またはエポキシ基等の開環重合可能な 官能基を有する化合物が挙げられ、最も好ましくはビュル基を有する化合物が挙げ られる。
[0044] 本発明においては、第 1の有機層で用いる化合物と第 2の有機層で用いる化合物 とは、素子の性能を向上させる目的で機能を分離することが好ましぐ後述する正孔 輸送材料及び電子輸送材料及び発光層の例として挙げている構造をそれぞれ別々 に有することが好ましい。
[0045] 第 1の有機層で用いる化合物または第 2の有機層で用いる化合物としては、いずれ かが芳香族第三級ァミン構造を有する化合物または有機金属錯体構造を有する化 合物が好ましい。更に好ましくは第 1の有機層で用いる化合物が芳香族第三級ァミン 構造を有する化合物であり、第 2の有機層で用いる化合物が有機金属錯体構造を有 する化合物である。
[0046] 以下に重合性基または反応性基を有する化合物の具体的な例を挙げるが、本発 明はこれらに限定されるものではない。
[0047] [化 4]
Figure imgf000013_0001
[0048] [化 5]
[9^] [6^00]
Figure imgf000014_0001
LZ£Z0 00Zdr/∑Jd 1 6Z60/900Z OA Ώοε/:12
Figure imgf000015_0001
[8^ ] [TSOO]
Figure imgf000016_0001
[6^ ] [2S00]
Figure imgf000017_0001
ίΖ£Ζ0£/900Ζάΐ/13ά 91· εΐ?6Ζ60/900Ζ OAV
Figure imgf000018_0001
[0053] 本発明に係る化合物は、本発明の有機 EL素子を構成する少なくとも 2層の有機層 にお ヽて主成分として含まれるが、更に別の化合物を含有してもよ 、。
[0054] 本発明の有機 EL素子においては、上記説明した第 1の有機層あるいは第 2の有機 層に代表される各有機層の塗布 (形成)を、インクジェット記録方式により行うことが好 ましい。
本発明に適用可能なインクジェット記録装置としては、本発明に係る有機層を形成す るための重合性基を少なくとも一つ有する化合物を含有する溶液を吐出するための エネルギー発生手段、該溶液を吐出するノズルを備えたインクジェットヘッド、インク ジェットヘッドの駆動信号を与える電気回路、また、重合性基を少なくとも一つ有する 化合物を含有する溶液の吐出を安定に確保するための吐出不良回復手段 (メンテナ ンス手段ともいう)、また、非使用時にインクジェットヘッドが待機位置において、該溶 液の蒸発等による固化が起こらないようキャップ部材によりノズル面を覆うキヤッピン グ手段等から構成されて ヽる。 [0055] 使用するインクジェットヘッドの吐出方式としては、電気 機械変換方式 (例えば、 シングルキヤビティー型、ダブルキヤビティー型、ベンダー型、ピストン型、シェアーモ ード型、シェアードウォール型等)、電気 熱変換方式 (例えば、サーマルインクジェ ット型、バブルジェット (登録商標)型等)、静電吸引方式 (例えば、電界制御型、スリ ットジェット型等)及び放電方式 (例えば、スパークジェット型等)などを挙げることがで きる。好ましくは電気—機械変換方式であるが、いずれの吐出方式を用いても構わな い。
[0056] また、本発明の有機 EL素子において、本発明に係る第 1の有機層あるいは第 2の 有機層に代表される各有機層は、塗布 (形成)を行った後、エネルギー線を照射する ことにより重合することが好ましぐ更には、エネルギー線が、紫外線、電子、イオン、 熱、ラジカルビームまたは放射線であることが好ましい。紫外線線源としては、水銀ラ ンプ、メタルハライドランプ、エキシマーランプ、紫外線レーザ一 · LEDなどを用いるこ とが出来る。また、電子線照射装置としては、「UV'EB硬化技術の展開」(ラドテック 研究会編 シーエムシ一社刊 1999年版頁 95)等に詳細がある。又最近では塗装 技術 2001年 10月号 90頁等に小型電子線照射装置が紹介されている。本発明に 用いられる電子線照射装置としては格別の制限はなぐ一般にはこのような電子線照 射用の電子線加速機として、比較的安価で大出力が得られるカーテンビーム方式の ものが有効に用いられる。電子線照射の際の加速電圧は 100〜300kVであることが 好ましぐ吸収線量としては、 0. 5〜: LOMradであることが好ましい。
[0057] 次に、本発明の有機 EL素子について述べる。
[0058] 本発明の有機 EL素子に含有される化合物の例としては、蛍光性ィ匕合物及び燐光 性化合物が挙げられ、有機 EL素子の発光としては含有する蛍光性化合物または燐 光性化合物に由来する発光が得られる。蛍光性化合物としてはレーザー色素に用 、 られる量子収率の高い化合物が好ましい。また、近年プリンストン大力 励起三重項 力 の燐光発光を用いる有機 EL素子の報告がなされ (M. A. Baldo et al. , Nat ure、 395卷、 151〜154頁(1998年))、励起一重項からの蛍光発光を用いる有機 EL素子に比べて、原理的に発光効率が最大 4倍となり注目されている。本発明にお V、ても、燐光性化合物を含有することが発光効率の点で好ま 、。 [0059] 蛍光性ィ匕合物として好ま 、のは、溶液状態で蛍光量子収率が高 、ものである。こ こで蛍光量子収率は 10%以上、特に 30%以上が好ましい。具体的な蛍光性化合物 は、クマリン系色素、ピラン系色素、シァニン系色素、クロコニゥム系色素、スクァリウ ム系色素、ォキソベンツアントラセン系色素、フルォレセイン系色素、ローダミン系色 素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチォフェン系色素、ま たは希土類錯体系蛍光体等が挙げられる。ここでの蛍光量子収率は、第 4版実験化 学講座 7の分光 IIの 362頁(1992年版、丸善)に記載の方法により測定することがで きる。
[0060] 本発明における燐光性ィ匕合物とは、励起三重項からの発光が観測される化合物で あり、燐光量子収率が 25°Cにおいて 0. 001以上の化合物である。燐光量子収率は 好ましくは 0. 01以上、更に好ましくは 0. 1以上である。上記燐光量子収率は、第 4 版実験化学講座 7の分光 IIの 398頁(1992年版、丸善)に記載の方法により測定で きる。溶液中での燐光量子収率は種々の溶媒を用いて測定できる力 本発明に用い られる燐光性ィ匕合物は、任意の溶媒の何れかにお 、て上記燐光量子収率が達成さ れればよい。
[0061] 本発明で用いられる燐光性ィ匕合物としては、好ましくは元素の周期律表で VIII属の 金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化 合物、または白金化合物(白金錯体系化合物)であり、中でも最も好ましいのはイリジ ゥム化合物である。
[0062] 以下に、本発明で用いられる燐光性ィ匕合物の具体例を示すが、これらに限定され るものではない。これらの化合物は、例えば、 Inorg. Chem. 40卷、 1704〜1711 に記載の方法等により合成できる。なお含有する蛍光性化合物及び燐光性化合物 は、重合性基または反応性基を有して!/、ても 、なくてもょ 、。
[0063] [化 10] lr-1 lr一 2
Figure imgf000021_0001
11]
[Zl^ [S900]
Figure imgf000022_0001
lr 13
Figure imgf000023_0001
3]
Figure imgf000024_0001
Figure imgf000024_0002
ίΖ£Ζ0£/900Ζάΐ/13ά D— 5 D-6
Figure imgf000025_0001
[0068] 次いで、本発明の有機エレクト口ルミネッセンス素子 (有機 EL素子)の層構成につ いて説明する。
[0069] 本発明に係る発光層は、広義の意味では陰極と陽極力 なる電極に電流を流した 際に発光する層のことであり、具体的には陰極と陽極力 なる電極に電流を流した際 に発光する化合物を含有する層のことをさす。
[0070] 本発明の有機 EL素子は、必要に応じ発光層の他に正孔輸送層、電子輸送層、陽 極バッファ一層及び陰極バッファ一層等を有し、陰極と陽極で挟持された構造をとる
。具体的には以下に示される構造が挙げられる。
[0071] (i)陽極 Z正孔輸送層 Z発光層 Z陰極
(ii)陽極 Z発光層 Z電子輸送層 Z陰極
(iii)陽極 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極
(iv)陽極 Z陽極バッファ一層 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極バッフ ァ一層 Z陰極
上記有機 EL素子を構成する、電極 (陽極及び陰極)間に挟持された複数層のうち 、隣接する少なくとも 2層が、本発明に係る第 1の化合物を含有する第 1の有機層と本 発明に係る第 2の化合物を含有する第 2の有機層によって構成されることが好ま ヽ 。更に陰極と陽極との間に 3層以上の有機層を有することが好ましい。
[0072] 《発光層》
本発明の有機 EL素子に係る発光層について説明する。発光層は電極または電子 輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であ り、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい
[0073] 発光層に使用される材料 (以下、発光材料という)は、蛍光または燐光を発する有 機化合物または錯体であることが好ましぐ有機 EL素子の発光層に使用される公知 のものの中力も適宜選択して用いることができる。このような発光材料は主に有機化 合物であり、所望の色調により、例えば、 Macromol. Synth. , 125卷、 17〜25頁 に記載の化合物等を用いることができる。
[0074] 本発明の有機 EL素子においては、発光材料は、発光性能の他に、正孔輸送機能 や電子輸送機能を併せもっていてもよぐ正孔輸送材料や電子輸送材料の殆どが発 光材料としても使用できる。発光材料は、 ρ—ポリフエ-レンビ-レンやポリフルオレン のような高分子材料でもよぐ更に前記発光材料を高分子鎖に導入した、または前記 発光材料を高分子の主鎖とした高分子材料を使用してもよい。
[0075] 一般的に、発光層は正孔輸送層よりも陰極側に配置する方が素子の性能上好まし ぐ従って正孔輸送材料に比べれば、発光層に用いられる材料は全て相対的には( 本発明の定義では)電子輸送材料になる。
[0076] (発光層の膜厚)
このようにして形成された発光層の膜厚については特に制限はなぐ状況に応じて 適宜選択することができるが、 5nm〜5 mの範囲に膜厚調製することが好ましい。
[0077] 次に、正孔注入層、正孔輸送層、電子注入層、電子輸送層等、発光層と組み合わ せて有機 EL素子を構成するその他の層につ 、て説明する。
[0078] 《正孔注入層、正孔輸送層、電子注入層、電子輸送層》
本発明に用いられる正孔注入層、正孔輸送層は、陽極より注入された正孔を発光 層に伝達する機能を有し、この正孔注入層、正孔輸送層を陽極と発光層の間に介在 させることにより、より低い電界で多くの正孔が発光層に注入され、その上発光層に 陰極、電子注入層、または電子輸送層より注入された電子は、発光層と正孔注入層 もしくは正孔輸送層の界面に存在する電子の障壁により、発光層内の界面に累積さ れ発光効率が向上するなど発光性能の優れた素子となる。
[0079] 《正孔注入材料、正孔輸送材料》
この正孔注入層、正孔輸送層の材料 (以下、正孔注入材料、正孔輸送材料という) については、前記の陽極より注入された正孔を発光層に伝達する機能を有するもの であれば特に制限はなぐ従来、光導伝性材料において、正孔の電荷注入輸送材 料として慣用されているものや、有機 EL素子の正孔注入層、正孔輸送層に使用され る公知のものの中力も任意のものを選択して用いることができる。
[0080] 上記正孔注入材料、正孔輸送材料は、正孔の注入もしくは輸送、電子の障壁性の いずれかを有するものであり、有機物、無機物のいずれであってもよい。この正孔注 入材料、正孔輸送材料としては、例えば、トリァゾール誘導体、ォキサジァゾール誘 導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びビラ ゾロン誘導体、フ -レンジァミン誘導体、ァリールァミン誘導体、ァミノ置換カルコン 誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレノン誘導体、ヒ ドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重合体、または導 電性高分子オリゴマー、特にチォフェンオリゴマーなどが挙げられる。
[0081] 正孔注入材料、正孔輸送材料としては上記のものを使用することができる力 ポル フィリン化合物、芳香族第三級ァミン化合物及びスチリルァミン化合物、特に芳香族 第三級ァミン化合物を用いることが好ま 、。
[0082] 上記芳香族第三級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N' , N' —テトラフエ-ル一 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ル一 N, N' —ビス(3—メチルフエ-ル)一〔1, 1' —ビフエ-ル〕一 4, 4' —ジァミン(T PD) ; 2, 2 ビス(4 ジ一 p トリルァミノフエ-ル)プロパン; 1, 1—ビス(4 ジ一 p —トリルァミノフエニル)シクロへキサン; N, N, N' , N' —テトラ一 p トリル一 4, 4 ' -ジアミノビフエ-ル; 1 , 1 ビス(4 ジ一 p トリルァミノフエ-ル) 4 フエ-ル シクロへキサン;ビス(4 -ジメチルァミノ 2 メチルフエ-ル)フエニルメタン;ビス(4 —ジ一 p トリルァミノフエ-ル)フエ-ルメタン; N, N' —ジフエ-ル一 N, N' —ジ( 4—メトキシフエ-ル)一 4, 4' —ジアミノビフエニル; N, N, N' , N' —テトラフエ二 ルー 4, 4' —ジアミノジフエ-ルエーテル; 4, 4' —ビス(ジフエ-ルァミノ)クオード リフエ-ル; N, N, N トリ(p トリル)ァミン; 4— (ジ— p トリルァミノ)— 4' —〔4— (ジ— p トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエ-ルァミノ—(2 ジフ ェ-ルビ-ル)ベンゼン; 3—メトキシ— 4' — N, N ジフエ-ルアミノスチルベンゼン ; N フエ-ルカルバゾール、更に米国特許第 5, 061 , 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' ビス〔N—(1ーナ フチル) N フ -ルァミノ〕ビフヱ-ル(α— NPD)、特開平 4 308688号公報 に記載されて 、るトリフエ-ルァミンユニットが 3つスターバースト型に連結された 4, 4 ' , " —トリス〔?^— (3—メチルフエ-ル)一 Ν—フエ-ルァミノ〕トリフエ-ルァミン( MTDATA)などが挙げられる。更にこれらの材料を高分子鎖に導入した、またはこ れらの材料を高分子の主鎖とした高分子材料を用いることもできる。
[0083] または ρ型 Si、 p型 SiCなどの無機化合物も、正孔注入材料あるいは正孔輸送 材料として使用することができる。この正孔注入層、正孔輸送層は、上記正孔注入材 料、正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、 LB法などの 公知の方法により、薄膜ィ匕することにより形成することができる。
[0084] (正孔注入層の膜厚、正孔輸送層の膜厚)
正孔注入層、正孔輸送層の膜厚については特に制限はないが、 5nm~5 μ m@ 度での範囲に調製することが好ましい。この正孔注入層、正孔輸送層は上記材料の 一種または二種以上力 なる一層構造であってもよぐ同一組成または異種組成の 複数層からなる積層構造であってもよ 、。
[0085] 《電子輸送層、電子輸送材料》
本発明に係る電子輸送層は、陰極より注入された電子を発光層に伝達する機能を 有していればよぐその材料としては従来公知の化合物の中力 任意のものを選択し て用いることができる。
[0086] この電子輸送層に用いられる材料 (以下、電子輸送材料という)の例としては、 -ト 口置換フルオレン誘導体、ジフヱ-ルキノン誘導体、チォピランジオキシド誘導体、ナ フタレンペリレンなどの複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリ デンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ォキサジァゾール誘導 体、有機金属錯体などが挙げられる。更に上記ォキサジァゾール誘導体において、 ォキサジァゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電 子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送 材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれ らの材料を高分子の主鎖とした高分子材料を用いることもできる。
[0087] または、 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミ -ゥム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジ ブロモ 8 キノリノール)アルミニウム、トリス(2—メチル 8 キノリノール)アルミ- ゥム、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛( Znq)など、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは P bに置き替わった金属錯体も、電子輸送材料として用いることができる。
[0088] その他、メタルフリーまたはメタルフタロシアニン、更にはそれらの末端がアルキル 基ゃスルホン酸基などで置換されて 、るものも、電子輸送材料として好ましく用いるこ とができる。または発光層の材料として例示したジスチリルビラジン誘導体も、電子輸 送材料として用いることができるし、正孔注入層、正孔輸送層と同様に n型一 Si、 n型 — SiCなどの無機半導体も電子輸送材料として用いることができる。
[0089] (電子輸送層の膜厚)
電子輸送層の膜厚は特に制限はないが、 5ηπι〜5 /ζ mの範囲に調製することが好 ましい。この電子輸送層は、これらの電子輸送材料一種または二種以上力 なる一 層構造であってもよ 、し、あるいは同一組成または異種組成の複数層からなる積層 構造であってもよい。
[0090] また本発明においては、蛍光性ィ匕合物は発光層のみに限定することはなぐ発光 層に隣接した正孔輸送層、または電子輸送層に前記燐光性ィ匕合物のホストイ匕合物と なる蛍光性ィヒ合物と同じ領域に蛍光極大波長を有する蛍光性ィヒ合物を少なくとも 1 種含有させてもよぐそれにより更に EL素子の発光効率を高めることができる。これら の正孔輸送層や電子輸送層に含有される蛍光性ィ匕合物としては、発光層に含有さ れるものと同様に蛍光極大波長が 350〜440nm、更に好ましくは 390〜410nmの 範囲にある蛍光性ィ匕合物が用いられる。
[0091] 次に、本発明の有機 EL素子を作製する好適な例を説明する。例として、前記の陽 極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子輸送層 Z電子注入層 Z陰極からな る EL素子の作製法にっ 、て説明する。
[0092] まず適当な基板上に所望の電極用物質、例えば、陽極用物質力 なる薄膜を 1 μ m以下、好ましくは 10〜200nmの範囲の膜厚になるように、蒸着やスパッタリングな どの方法により形成させて陽極を作製する。次にこの上に素子材料である正孔注入 層、正孔輸送層、発光層、電子輸送層 Z電子注入層力 なる薄膜を形成させる。更 に陽極と発光層または正孔注入層の間、及び陰極と発光層または電子注入層との 間にはバッファ一層(電極界面層)を存在させてもよい。
[0093] ノ ッファー層とは、駆動電圧低下や発光効率向上のために電極と有機層間に設け られる層のことで、「有機 EL素子とその工業ィ匕最前線(1998年 11月 30日ェヌ 'ティ 一'エス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されてお り、陽極バッファ一層と陰極バッファ一層とがある。
[0094] 陽極バッファ一層は、特開平 9— 45479号、同 9— 260062号、同 8— 288069号 の各公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表 されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される酸ィ匕物バッファ一層 、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディン)やポリチォフェン 等の導電性高分子を用いた高分子バッファ一層等が挙げられる。
[0095] 陰極バッファ一層は、特開平 6— 325871号、同 9— 17574号、同 10— 74586号 の各公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミ-ゥ ム等に代表される金属バッファ一層、フッ化リチウムに代表されるアルカリ金属化合物 バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー 層、酸ィ匕アルミニウム、酸化リチウムに代表される酸ィ匕物バッファ一層等が挙げられる
[0096] 上記バッファ一層はごく薄い膜であることが望ましぐ素材にもよるがその膜厚は 0.
1〜 1 OOnmの範囲が好まし!/、。
[0097] 更に上記基本構成層の他に必要に応じてその他の機能を有する層を積層してもよ ぐ例えば、特開平 11 204258号、同 11— 204359号の各公報、及び「有機 EL 素子とその工業ィ匕最前線(1998年 11月 30日ェヌ'ティー'エス社発行)」の 237頁等 に記載されて 、る正孔阻止(ホールブロック)層などのような機能層を有して 、てもよ い。
[0098] 《電極》
次に、本発明の有機 EL素子の電極について説明する。有機 EL素子の電極は、陰 極と陽極力もなる。本発明の有機 EL素子における陽極としては、仕事関数の大きい (4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするも のが好ましく用いられる。このような電極物質の具体例としては Auなどの金属、 Cul、 インジウムチンォキシド (ITO)、 SnO、 ZnOなどの導電性透明材料が挙げられる。
2
[0099] 上記陽極は蒸着やスパッタリングなどの方法により、これらの電極物質の薄膜を形 成させ、フォトリソグラフィ一法で所望の形状のパターンを形成してもよぐあるいはパ ターン精度をあまり必要としない場合(100 m以上程度)は、上記電極物質の蒸着 やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよ 、。この陽 極より発光を取り出す場合には、透過率を 10%より大きくすることが望ましぐまたは 陽極としてのシート抵抗は数百 Ω /口以下が好ましい。更に膜厚は材料にもよるが、 通常 10nm〜l μ m、好ましくは 10〜200nmの範囲で選ばれる。
[0100] 一方、陰極としては仕事関数の小さ!/ヽ (4eV以下)金属 (電子注入性金属と称する) 、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用 いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム—カリウム合金
、マグネシウム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物、マグ ネシゥム zアルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸 化アルミニウム (Ai o )混合物、インジウム、リチウム
2 3 Zアルミニウム混合物、希土類 金属などが挙げられる。これらの中で電子注入性及び酸ィ匕などに対する耐久性の点 から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属と の混合物、例えば、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、 マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Ai o )混合物、
2 3 リチウム Zアルミニウム混合物などが好適である。 [0101] 上記陰極は、これらの電極物質を蒸着やスパッタリングなどの方法で薄膜を形成さ せることにより作製することができる。または陰極としてのシート抵抗は数百 ΩΖロ以 下が好ましぐ膜厚は通常 10nm〜l μ m、好ましくは 50〜200nmの範囲で選ばれ る。なお、発光を透過させるため、本発明の有機 EL素子の陽極または陰極のいずれ か一方が透明または半透明であれば、発光効率が向上するので好都合である。
[0102] 《表示装置》
本発明の有機 EL素子は、照明用や露光光源のような一種のランプとして使用して もよいし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画像を直 接視認するタイプの表示装置 (ディスプレイ)として使用してもよい。動画再生用の表 示装置として使用する場合の駆動方式は、単純マトリクス (パッシブマトリクス)方式で もアクティブマトリクス方式でもどちらでもよい。または異なる発光色を有する本発明の 有機 EL素子を 2種以上使用することにより、フルカラー表示装置を作製することが可 能である。
[0103] 《光取り出し技術》
本発明の有機 EL素子は、発光層から放射された光の光の取り出し効率を向上させ るため、基板の表面にプリズムやレンズ状の加工を施す、もしくは基板の表面にプリ ズムシートやレンズシートを貼ってもよ 、。
[0104] 本発明の有機 EL素子は、透明電極と透明基板の間に低屈折率層を有してもよい。
低屈折率層としては、例えば、エア口ゲル、多孔質シリカ、フッ化マグネシウム、フッ素 系ポリマーなどが挙げられる。
[0105] 透明基板の屈折率は一般に 1. 5〜1. 7程度であるので、低屈折率層は屈折率が およそ 1. 5以下であることが好ましい。また更に 1. 35以下であることが好ましい。ま た、低屈折率媒質の厚みは媒質中の波長の 2倍以上となるのが望ましい。これは低 屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が 基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
[0106] 本発明の有機 EL素子は、いずれかの層間、もしくは媒質中 (透明基板内や透明電 極内)に回折格子を有してもよい。導入する回折格子は二次元的な周期屈折率を持 つて 、ることが望ま 、。これは発光層で発光する光はあらゆる方向にランダムに発 生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な 1次元回折 格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がら ない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に 進む光が回折され、光の取り出し効率が上がる。回折格子を導入する位置としては 前述のとおり、いずれかの層間もしくは、媒質中 (透明基板内や透明電極内)でもよ いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の 周期は、媒質中の光の波長の約 1Z2〜3倍程度が好ましい。回折格子の配列は、 正方形のラチス状、三角形のラチス状、ハ-カムラチス状など、 2次元的に配列が繰 り返されることが好ましい。
[0107] 《ガスバリア層》
本発明の有機 EL素子においては、基材がガスノリア層を有する透明ガスノリア性 フィルムであることが好ましぐ本発明に係るガスノ リア層とは、酸素及び水蒸気の透 過を阻止する層であれば、その組成等は特に限定されるものではない。本発明に係 るガスバリア層を構成する材料として、具体的には無機酸化物が好ましぐ酸化珪素 、酸ィ匕アルミニウム、酸化窒化珪素、酸ィ匕窒化アルミニウム、酸化マグネシウム、酸ィ匕 亜鉛、酸化インジウム、酸化スズ等を挙げることができる。
[0108] また、本発明に係るガスノリア層の厚さは用いられる材料の種類、構成により最適 条件が異なり、適宜選択される力 5〜2000nmの範囲内であることが好ましい。ガス ノ リア層の厚さが上記の範囲より薄い場合には、均一な膜が得られず、ガスに対する ノリア性を得ることが困難であるからである。またガスノリア層の厚さが上記の範囲よ り厚い場合には、ガスノ リア性フィルムにフレキシビリティを保持させることが困難であ り、成膜後に折り曲げ、引っ張り等の外的要因により、ガスノリア性フィルムに亀裂が 生じる等のおそれがある力 である。
[0109] 本発明に係るガスノリア層は、基材、例えば、透明性フレキシブルフィルム上に後 述する原材料をスプレー法、スピンコート法、スパッタリング法、イオンアシスト法、後 述するプラズマ CVD法、後述する大気圧または大気圧近傍の圧力下でのプラズマ
CVD法等を適用して形成することができる。
[0110] しかしながら、スプレー法やスピンコート法等の湿式法では、分子レベル (nmレべ ル)の平滑性を得ることが難しぐまた溶剤を使用するため、後述する基材が有機材 料であることから、使用可能な基材または溶剤が限定されるという欠点がある。そこで 、本発明においては、プラズマ CVD法等で形成されたものであることが好ましぐ特 に大気圧プラズマ CVD法は減圧チャンバ一等が不要で、高速製膜ができ生産性の 高 ヽ製膜方法である点カゝら好まし ヽ。上記ガスバリア層を大気圧プラズマ CVD法で 形成することにより、均一且つ表面の平滑性を有する膜を比較的容易に形成すること が可能となるからである。
[0111] プラズマ CVD法、大気圧または大気圧近傍の圧力下でのプラズマ CVD法である 力 特に好ましくは大気圧または大気圧近傍の圧力下でのプラズマ CVD法を用いて 形成される。なお、プラズマ CVD法の層形成条件の詳細については後述する。
[0112] プラズマ CVD法、大気圧または大気圧近傍の圧力下でのプラズマ CVD法により 得られるガスノリア層は、原材料 (原料ともいう)である有機金属化合物、分解ガス、 分解温度、投入電力などの条件を選ぶことで、金属炭化物、金属窒化物、金属酸ィ匕 物、金属硫化物、金属ハロゲン化物、またこれらの混合物 (金属酸窒化物、金属酸化 ハロゲンィ匕物、金属窒化炭化物など)も作り分けることができるため好ましい。
[0113] 例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば、珪素 酸化物が生成する。また亜鉛化合物を原料化合物として用い、分解ガスに-硫化炭 素を用いれば、硫ィ匕亜鉛が生成する。これはプラズマ空間内では非常に活性な荷電 粒子 ·活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反 応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な 化合物へと非常な短時間で変換されるためである。
[0114] このような無機物の原料としては、典型または遷移金属元素を有していれば、常温 常圧下で気体、液体、固体いずれの状態であっても構わない。気体の場合にはその まま放電空間に導入できるが、液体、固体の場合は加熱、パブリング、減圧、超音波 照射等の手段により気化させて使用する。また溶媒によって希釈して使用してもよぐ 溶媒はメタノール、エタノール、 n—へキサンなどの有機溶媒及びこれらの混合溶媒 が使用できる。なおこれらの希釈溶媒は、プラズマ放電処理中において分子状、原 子状に分解されるため、影響は殆ど無視することができる。 [0115] このような有機金属化合物として、珪素化合物としては、例えば、シラン、テトラメトキ シシラン、テトラエトキシシラン、テトラ n プロボキシシラン、テトライソプロポキシシラ ン、テトラ n ブトキシシラン、テトラ t ブトキシシラン、ジメチノレジメトキシシラン、ジメ チノレジェトキシシラン、ジェチノレジメトキシシラン、ジフエニノレジメトキシシラン、メチノレ トリエトキシシラン、ェチルトリメトキシシラン、フエニルトリエトキシシラン、(3, 3, 3—ト リフルォロプロピル)トリメトキシシラン、へキサメチルジシロキサン、ビス(ジメチルァミノ )ジメチルシラン、ビス(ジメチルァミノ)メチルビ-ルシラン、ビス(ェチルァミノ)ジメチ イミド、ジェチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、へキサメチルジ シラザン、へキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラ ザン、オタタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシァ ナートシラン、テトラメチルジシラザン、トリス(ジメチルァミノ)シラン、トリエトキシフルォ ロシラン、ァリルジメチルシラン、ァリルトリメチルシラン、ベンジルトリメチルシラン、ビ ス(トリメチルシリル)アセチレン、 1, 4 ビストリメチルシリル— 1, 3 ブタジイン、ジ— tーブチルシラン、 1, 3 ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジ ェニルトリメチルシラン、フエ二ルジメチルシラン、フエニルトリメチルシラン、プロパル ギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、 1 (トリメチル ビニルトリメチルシラン、へキサメチルジシラン、オタタメチルシクロテトラシロキサン、 テトラメチルシクロテトラシロキサン、へキサメチルシクロテトラシロキサン、 Mシリケート 51等が挙げられる。
[0116] チタンィ匕合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロ ポキシド、チタンテトライソポロポキシド、チタン n—ブトキシド、チタンジイソプロポキシ ド(ビス 2, 4 ペンタンジォネート)、チタンジイソプロボキシド(ビス 2, 4 ェチ ルァセトアセテート)、チタンジ一 n—ブトキシド(ビス一 2, 4 ペンタンジォネート)、 チタンァセチルァセトネート、ブチルチタネートダイマー等が挙げられる。
[0117] ジルコニウム化合物としては、例えば、ジルコニウム n—プロポキシド、ジルコニウム n—ブトキシド、ジルコニウム t—ブトキシド、ジルコニウムトリ— n—ブトキシドアセチル ァセトネート、ジルコニウムジー n ブトキシドビスァセチルァセトネート、ジルコニウム ァセチルァセトネート、ジルコニウムアセテート、ジルコニウムへキサフルォロペンタン ジォネート等が挙げられる。
[0118] アルミニウム化合物としては、例えば、アルミニウムエトキシド、アルミニウムトリイソプ ロポキシド、アルミニウムイソプロポキシド、アルミニウム n—ブトキシド、アルミニウム s —ブトキシド、アルミニウム t—ブトキシド、アルミニウムァセチルァセトナート、トリェチ ルジアルミニウムトリ - s -ブトキシド等が挙げられる。
[0119] 硼素化合物としては、例えば、ジボラン、テトラボラン、フッ化硼素、塩化硼素、臭化 硼素、ボランージェチルエーテル錯体、ボラン THF錯体、ボラン ジメチルスルフ イド錯体、三フッ化硼素ジェチルエーテル錯体、トリェチルボラン、トリメトキシボラン、 トリエトキシボラン、トリ(イソプロポキシ)ボラン、ボラゾール、トリメチルボラゾール、トリ ェチルボラゾール、トリイソプロピルボラゾール、等が挙げられる。
[0120] 錫化合物としては、例えば、テトラエチル錫、テトラメチル錫、二酢酸ジー n プチ ル錫、テトラブチル錫、テトラオクチル錫、テトラエトキシ錫、メチルトリエトキシ錫、ジェ チルジェトキシ錫、トリイソプロピルエトキシ錫、ジェチル錫、ジメチル錫、ジイソプロピ ル錫、ジブチル錫、ジェトキシ錫、ジメトキシ錫、ジイソプロポキシ錫、ジブトキシ錫、 錫ジブチラート、錫ジァセトァセトナート、ェチル錫ァセトァセトナート、エトキシ錫ァセ トァセトナート、ジメチル錫ジァセトァセトナート等、錫水素化合物等、ハロゲン化錫と しては、二塩化錫、四塩ィ匕錫等が挙げられる。
[0121] またその他の有機金属化合物としては、例えば、アンチモンエトキシド、ヒ素トリエト キシド、ノ リウム 2, 2, 6, 6—テトラメチルヘプタンジォネート、ベリリウムァセチルァセ トナート、ビスマスへキサフルォロペンタンジォネート、ジメチルカドミウム、カルシウム 2, 2, 6, 6—テトラメチルヘプタンジォネート、クロムトリフルォロペンタンジォネート、 コバルトァセチルァセトナート、銅へキサフルォロペンタンジォネート、マグネシウムへ キサフルォロペンタンジォネートージメチルエーテル錯体、ガリウムエトキシド、テトラ エトキシゲルマン、テトラメトキシゲルマン、ハフニウム t—ブドキシド、ハフニウムエトキ シド、インジウムァセチルァセトナート、インジウム 2, 6 ジメチルァミノヘプタンジォ ネート、フエ口セン、ランタンイソプロポキシド、酢酸鉛、テトラエチル鉛、ネオジゥムァ セチルァセトナート、白金へキサフルォロペンタンジォネート、トリメチルシクロペンタ ジェ-ル白金、ロジウムジカルボ-ルァセチルァセトナート、ストロンチウム 2, 2, 6, 6 ーテトラメチルヘプタンジォネート、タンタルメトキシド、タンタルトリフルォロエトキシド 、テルルエトキシド、タングステンエトキシド、ノ ナジゥムトリイソプロポキシドォキシド、 マグネシウムへキサフルォロアセチルァセトナート、亜鉛ァセチルァセトナート、ジェ チル亜鉛などが挙げられる。
[0122] また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスと しては、例えば、水素ガス、メタンガス、アセチレンガス、一酸ィ匕炭素ガス、二酸化炭 素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガ ス、酸素ガス、水蒸気、フッ素ガス、フッ化水素、トリフルォロアルコール、トリフルォロ トルエン、硫化水素、二酸化硫黄、二硫化炭素、塩素ガスなどが挙げられる。
[0123] 金属元素を含む原料ガスと分解ガスを適宜選択することで、各種の金属炭化物、 金属窒化物、金属酸化物、金属ハロゲン化物、金属硫ィ匕物を得ることができる。
[0124] これらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合し、 プラズマ放電発生装置にガスを送りこむ。このような放電ガスとしては、窒素ガス及び Zまたは周期表の第 18属原子、具体的にはヘリウム、ネオン、アルゴン、クリプトン、 キセノン、ラドン等が用いられる。これらの中でも特に、窒素、ヘリウム、アルゴンが好 ましく用いられる。
[0125] 上記放電ガスと反応性ガスを混合し、混合ガスとしてプラズマ放電発生装置 (ブラズ マ発生装置)に供給することで膜形成を行う。放電ガスと反応性ガスの割合は、得よう とする膜の性質によって異なる力 混合ガス全体に対し放電ガスの割合を 50%以上 として反応性ガスを供給する。
[0126] 図 2は、本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電 処理装置の一例を示す概略図である。
[0127] 本発明に係る大気圧プラズマ放電処理装置は、少なくともプラズマ放電処理装置 3 0、二つの電源を有する電界印加手段 40、ガス供給手段 50、電極温度調節手段 60 を有している装置である。
[0128] 図 2はロール回転電極 (第 1電極) 35と角筒型固定電極群 (第 2電極) 36との対向 電極間 (放電空間) 32で、基材 Fをプラズマ放電処理して薄膜を形成するものである 。図 2においては、 1対の角筒型固定電極群 (第 2電極) 36とロール回転電極 (第 1電 極) 35とで 1つの電界を形成し、この 1ユニットで、例えば、低密度層の形成を行う。 図 2においては、この様な構成カゝらなるユニットを計 5力所備えた構成例を示しあり、 それぞれのユニットで供給する原材料の種類、出力電圧等を任意に独立して制御す ることにより、本発明で規定する構成力 なる積層型の透明ガスノリア層を連続して 形成することができる。
[0129] ロール回転電極 (第 1電極) 35と角筒型固定電極群 (第 2電極) 36との間の放電空 間(対向電極間) 32に、ロール回転電極 (第 1電極) 35には第 1電源 41から周波数 ω、電界強度 V、電流 Iの第 1の高周波電界を、また角筒型固定電極群 (第 2電極)
1 1 1
36にはそれぞれに対応する各第 2電源 42から周波数 ω、電界強度 V、電流 Iの第
2 2 2
2の高周波電界をかけるようになって 、る。
[0130] ロール回転電極 (第 1電極) 35と第 1電源 41との間には、第 1フィルタ 43が設置され ており、第 1フィルタ 43は第 1電源 41から第 1電極への電流を通過しやすくし、第 2電 源 42からの電流をアースして、第 2電源 42から第 1電源への電流を通過しに《する ように設計されている。また角筒型固定電極群 (第 2電極) 36と第 2電源 42との間に は、それぞれ第 2フィルタ 44が設置されており、第 2フィルター 44は第 2電源 42から 第 2電極への電流を通過しやすくし、第 1電源 41からの電流をアースして、第 1電源 4 1から第 2電源への電流を通過しに《するように設計されて!、る。
[0131] なお本発明においては、ロール回転電極 35を第 2電極、また角筒型固定電極群 3 6を第 1電極としてもよい。いずれにしろ第 1電極には第 1電源が、また第 2電極には 第 2電源が接続される。第 1電源は第 2電源より高い高周波電界強度 (V >V )を印
1 2 加することが好ましい。また周波数は ω < ωとなる能力を有している。
1 2
[0132] また電流は Iく Iとなることが好ましい。第 1の高周波電界の電流 Iは、好ましくは 0
1 2 1
. 3〜20mAZcm2、更に好ましくは 1. 0〜20mAZcm2である。また第 2の高周波電 界の電流 Iは好ましくは 10〜100mAZcm2、更に好ましくは 20〜100mAZcm2
2
ある。
[0133] ガス供給手段 50のガス発生装置 51で発生させたガス Gは、流量を制御して給気口 よりプラズマ放電処理容器 31内に導入する。
[0134] 基材 Fを図示されて 、な 、元巻き力 巻きほぐして搬送されて来る力 または前ェ 程から搬送されて来て、ガイドロール 64を経て-ップロール 65で基材に同伴されて 来る空気等を遮断し、ロール回転電極 35に接触したまま巻き回しながら角筒型固定 電極群 36との間に移送し、ロール回転電極 (第 1電極) 35と角筒型固定電極群 (第 2 電極) 36との両方から電界をかけ、対向電極間(放電空間) 32で放電プラズマを発 生させる。基材 Fはロール回転電極 35に接触したまま巻き回されながらプラズマ状態 のガスにより薄膜を形成する。基材 Fは、 -ップロール 66、ガイドロール 67を経て、図 示してない巻き取り機で巻き取る力 次工程に移送する。
[0135] 放電処理済みの処理排ガス G' は排気口 53より排出する。
[0136] 薄膜形成中、ロール回転電極 (第 1電極) 35及び角筒型固定電極群 (第 2電極) 36 を加熱または冷却するために、電極温度調節手段 60で温度を調節した媒体を、送 液ポンプ Pで配管 61を経て両電極に送り、電極内側から温度を調節する。なお、 68 及び 69はプラズマ放電処理容器 31と外界とを仕切る仕切板である。
[0137] 本発明に係るガスノリア層においては、ガスノリア層が含有する無機化合物力 Si O、 SiNまたは SiO N (x= l〜2、 y=0. 1〜1)であることが好ましぐ特に水分の 透過性、光線透過性及び後述する大気圧プラズマ CVD適性の観点から、 SiOであ ることが好ましい。
[0138] 本発明に係る無機化合物は、例えば、上記有機珪素化合物に更に酸素ガスゃ窒 素ガスを所定割合で組み合わせて、 O原子と N原子の少なくともいずれかと、 Si原子 とを含む膜を得ることができる。なお、 SiOは透明性が高いもののガスノ リア性が少し
2
低めで水分をやや通すことから、 N原子を含んだ方がより好ましい。即ち、酸素原子 と窒素原子の数の比を x :yとした場合に、 xZ (x+y)は 0. 95以下、更に 0. 80以下 であればより一層好ましい。よって本発明に係るガスノリア層においては、光線透過 率 Tが、 80%以上であることが好ましい。
[0139] なお、 N原子の割合が多いと光透過性が低下し、 x=0である SiNではやや黄色み を呈する。そこで、具体的な酸素原子と窒素原子の割合は用途に応じて決めればよ い。例えば、表示装置において発光素子に対して発光面側に膜を形成する場合のよ うな、光透過性を要する用途であれば、 xZ (x+y)が 0. 4以上、 0. 95であれば、光 透過性と防水性のバランスをとることができるので好ましい。また、表示装置の発光素 子の後面に設けられる映り込み防止膜のように光を吸収あるいは遮光した方が好ま しい用途であれば、 xZ (x+y)は 0以上 0. 4未満であることが好ましい。
[0140] よって、本発明に係るガスノリア層は透明であることが好ましい。上記ガスノリア層 が透明であることにより、ガスノリア性フィルムを透明なものとすることが可能となり、有 機 EL素子の透明基板等の用途にも使用することが可能となるからである。
[0141] 図 1は、本発明に係る透明ガスノリア性フィルムの層構成とその密度プロファイルの 一例を示す模式図である。
[0142] 本発明に係る透明ガスノリア性フィルム 1は、基材 2上に密度の異なる層を積層し た構成をとる。本発明においては、低密度層 3と高密度層 5との間に本発明に係る中 密度層 4を設けたことを特徴とし、更に高密度層上にも中密度層 4を設け、これらの低 密度層、中密度層、高密度層及び中密度層からなる構成を 1ユニットとし、図 1にお いては 2ユニット分を積層した例を示してある。この時、各密度層内における密度分 布は均一とし、隣接する層間での密度変化が階段状となるような構成をとる。なお図 1においては、中密度層 4を 1層として示した力 必要に応じて 2層以上の構成をとつ てもよい。
[0143] 《基板》
本発明に係る透明ガスノ リア性フィルムで用いられる基板は、上述したバリア性を 有するガスノリア層を保持することができる有機材料で形成された膜であれば特に限 定されるものではない。
[0144] 具体的には、エチレン、ポリプロピレン、ブテン等の単独重合体または共重合体、ま たは共重合体等のポリオレフイン (PO)榭脂、環状ポリオレフイン等の非晶質ポリオレ フィン榭脂(APO)、ポリエチレンテレフタレート(PET)、ポリエチレン 2, 6 ナフタレ ート(PEN)等のポリエステル系榭脂、ナイロン 6、ナイロン 12、共重合ナイロン等のポ リアミド系(PA)榭脂、ポリビュルアルコール(PVA)榭脂、エチレン ビュルアルコー ル共重合体 (EVOH)等のポリビュルアルコール系榭脂、ポリイミド (PI)榭脂、ポリエ 一テルイミド (PEI)榭脂、ポリサルホン (PS)榭脂、ポリエーテルサルホン (PES)榭脂 、ポリエーテルエーテルケトン (PEEK)榭脂、ポリカーボネート(PC)榭脂、ポリビ- ルブチラート(PVB)榭脂、ポリアリレート(PAR)榭脂、エチレン一四フッ化工チレン 共重合体(ETFE)、三フッ化塩化エチレン(PFA)、四フッ化工チレン パーフルォ 口アルキルビュルエーテル共重合体(FEP)、フッ化ビ-リデン(PVDF)、フッ化ビ- ノレ(PVF)、 ノ ーフノレオ口エチレン一パーフロロプロピレン一パーフロロビ-ノレエーテ ルー共重合体 (EPA)等のフッ素系榭脂等を用いることができる。
[0145] また、上記に挙げた榭脂以外にも、ラジカル反応性不飽和化合物を有するアタリレ ート化合物によりなる榭脂組成物や、上記アクリルレートィヒ合物とチオール基を有す るメルカプト化合物よりなる榭脂組成物、エポキシアタリレート、ウレタンアタリレート、 ポリエステルアタリレート、ポリエーテルアタリレート等のオリゴマーを多官能アタリレー トモノマーに溶解せしめた榭脂組成物等の光硬化性榭脂及びこれらの混合物等を 用いることも可能である。更に、これらの榭脂の 1または 2種以上をラミネート、コーティ ング等の手段によって積層させたものを基材フィルムとして用いることも可能である。
[0146] これらの素材は、単独であるいは適宜混合されて使用することもできる。中でもゼォ ネックスゃゼォノア(日本ゼオン (株)製)、非晶質シクロポリオレフイン榭脂フィルムの ARTON (ジヱイエスアール (株)製)、ポリカーボネートフィルムのピュアエース(帝人 (株)製)、セルローストリアセテートフィルムのコ-カミノルタタック KC4UX、 KC8UX (コ-力ミノルタォプト (株)製)などの市販品を好ましく使用することができる。
[0147] また、基板は透明であることが好ましい。基板が透明であり、基板上に形成する層も 透明であることにより、透明なガスノ リア性フィルムとすることが可能となるため、有機 EL素子等の透明基板とすることも可能となる力もである。
[0148] また、上記に挙げた榭脂等を用いた本発明に係る基板は、未延伸フィルムでもよく 、延伸フィルムでもよい。
[0149] 本発明に係る基板は、従来公知の一般的な方法により製造することが可能である。
例えば、材料となる榭脂を押し出し機により溶融し、環状ダイや Tダイにより押し出し て急冷することにより、実質的に無定形で配向していない未延伸の基材を製造するこ とができる。また、未延伸の基材をー軸延伸、テンター式逐次二軸延伸、テンター式 同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、基材の流れ (縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基 材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせ て適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ 2〜10倍が好まし い。
[0150] また、本発明に係る基板においては、蒸着膜を形成する前にコロナ処理、火炎処 理、プラズマ処理、グロ一放電処理、粗面化処理、薬品処理などの表面処理を行つ てもよい。
[0151] 更に、本発明に係る基材表面には、蒸着膜との密着性の向上を目的としてアンカ 一コート層を形成してもよヽ。このアンカーコート層に用いられるアンカーコート剤とし ては、ポリエステル榭脂、イソシァネート榭脂、ウレタン榭脂、アクリル榭脂、エチレン ビニルアルコール榭脂、ビュル変性榭脂、エポキシ榭脂、変性スチレン榭脂、変性シ リコン榭脂、及びアルキルチタネート等を、 1または 2種以上併せて使用することがで きる。これらのアンカーコート剤には、従来公知の添加剤をカ卩えることもできる。そして 、上記のアンカーコート剤はロールコート、グラビアコート、ナイフコート、ディップコー ト、スプレーコート等の公知の方法により基材上にコーティングし、溶剤、希釈剤等を 乾燥除去することによりアンカーコート層を形成することができる。上記のアンカーコ ート剤の塗布量としては、 0. l〜5gZm2 (乾燥状態)程度が好ましい。
[0152] 基板としては、ロール状に巻き上げられた長尺品が便利である。また、本発明に用 いられる基板は、フィルム形状のものの膜厚としては 10〜200 mが好ましぐより好 ましくは 50〜: LOO μ mである。
[0153] 本発明に係るガスノ リア性フィルムの水蒸気透過度としては、有機 ELディスプレイ や高精彩カラー液晶ディスプレイ等が高度の水蒸気バリア性を必要とする観点から、 JIS K7129 B法に従って測定した水蒸気透過度が、 1. OgZm2Zday以下 であることが好ましぐ更に、本発明に係る有機 ELディスプレイ用途の場合、ごくわず かであっても成長するダークスポットが発生し、ディスプレイの表示寿命が極端に短く なる場合があるため、水蒸気透過度が 0. lgZm2Zday未満であることが好ましい。 実施例
[0154] 以下、本発明について実施例をもって説明する力 本発明はこれに限定されるもの ではない。
[0155] 実施例 1
《有機 EL素子の作製》
〔有機 EL素子 OLED1— 1の作製〕
基板として、厚さ 100 μ mのポリエチレンテレフタレートフィルム(帝人'デュポン社 製フィルム、以下 PENと略記する)上に、下記の大気圧プラズマ放電処理装置及び 放電条件で、図 1に記載の密度分布プロファイルを有する構成で、低密度層、中密 度層、高密度層、中密度層から構成されるユニットを 3ユニット積層した透明ガスバリ ァ性フィルムを作製した。
[0156] (大気圧プラズマ放電処理装置)
図 2に記載の大気圧プラズマ放電処理装置を用い、誘電体で被覆したロール電極 及び複数の角筒型電極のセットは、以下のように作製した。
[0157] 第 1電極となるロール電極は、冷却水による冷却手段を有するチタン合金 T64製ジ ャケットロール金属質母材に対して、大気プラズマ法により高密度、高密着性のアル ミナ溶射膜を被覆し、ロール径 1000mm φとなるようにした。一方、第 2電極の角筒 型電極は、中空の角筒型のチタン合金 T64に対し、上記同様の誘電体を同条件に て方肉で lmm被覆し、対向する角筒型固定電極群とした。
[0158] この角筒型電極を、ロール回転電極のまわりに、対向電極間隙を lmmとして 24本 配置した。角筒型固定電極群の放電総面積は、 150cm (幅手方向の長さ) X 4cm ( 搬送方向の長さ) X 24本(電極の数) = 14400cm2であった。なお、いずれもフィル ターは適切なものを設置した。
[0159] プラズマ放電中、第 1電極 (ロール回転電極)及び第 2電極 (角筒型固定電極群)が 80°Cになるように調節保温し、ロール回転電極はドライブで回転させて薄膜形成を 行った。上記 24本の角筒型固定電極中、上流側より 4本を下記第 1層(低密度層 1) の製膜用に、次の 6本を下記第 2層(中密度層 1)の製膜用に、次の 8本を第 3層(高 密度層 1)の製膜用に使用し、残りの 6本を第 4層(中密度層 2)の製膜用にして、各 条件を設定して 1パスで 4層を積層した。次いで、この条件を更に 2回繰り返して、透 明ガスノ リア性フィルム 1を作製した。 [0160] (放電条件)
[第 1層:低密度層 1]
下記の条件で、プラズマ放電を行って、厚さ約 90nmの低密度層 1を形成した。
[0161] 〈ガス条件〉
放電ガス:窒素ガス 94. 8体積%
薄膜形成性ガス:へキサメチノレジシロキサン
(リンテック社製気化器にて窒素ガスに混合して気化) 0. 2体積% 添加ガス:酸素ガス 5. 0体積0 /0
〈電源条件:第 1電極側の電源のみを使用した〉
第 1電極側 電源種類 応用電機社製高周波電源
周波数 80kHz
出力密度 lOWZcm2
上記形成した第 1層(低密度層)の密度は、前述のマックサイエンス社製 MXP21を 用いた X線反射率法で測定した結果、 1. 90であった。
[0162] [第 2層:中密度層 1]
下記の条件で、プラズマ放電を行って、厚さ約 90nmの中密度層 1を形成した。
[0163] 〈ガス条件〉
放電ガス:窒素ガス 94. 9体積%
薄膜形成性ガス:へキサメチノレジシロキサン
(リンテック社製気化器にて窒素ガスに混合して気化) 0. 1体積% 添加ガス:酸素ガス 5. 0体積0 /0
〈電源条件:第 1電極側の電源のみを使用した〉
第 1電極側 電源種類 応用電機社製高周波電源
周波数 80kHz
出力密度 lOWZcm2
上記形成した第 2層(中密度層)の密度は、前述のマックサイエンス社製 MXP21を 用いた X線反射率法で測定した結果、 2. 05であった。
[0164] [第 3層:高密度層 1] 下記の条件で、プラズマ放電を行って、厚さ約 90nmの高密度層 1を形成した。
[0165] 〈ガス条件〉
放電ガス:窒素ガス 94. 9体積%
薄膜形成性ガス:へキサメチノレジシロキサン
(リンテック社製気化器にて窒素ガスに混合して気化) 0. 1体積% 添加ガス:酸素ガス 5. 0体積0 /0
〈電源条件〉
第 1電極側 電源種類 応用電機社製高周波電源
周波数 80kHz
出力密度 lOWZcm2
第 2電極側 電源種類 パール工業社製高周波電源
周波数 13. 56MHz
出力密度 lOWZcm2
上記形成した第 3層(高密度層)の密度は、前述のマックサイエンス社製 MXP21を 用いた X線反射率法で測定した結果、 2. 20であった。
[0166] [第 4層:中密度層 2]
上記第 2層(中密度層 1)の同様の条件で、中密度層 2を形成した。
[0167] JIS— K— 7129Bに準拠した方法により水蒸気透過率を測定した結果、 1 X 10— 3g Zm2Zday以下であった。 JIS— K— 7126Bに準拠した方法により酸素透過率を測 定した結果、 1 X 10—3g/m2/day以下であった。
[0168] (ITO基板の作製)
次いで、該ガスバリア性フィルム基板上に、 ITO (インジウムチンォキシド)を 120η m成膜してパターユングを行った後、この ITO透明電極を付けた基板をイソプロピル アルコールで超音波洗净し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った 。市販の真空蒸着装置の基板ホルダーに固定し、真空度 4 X 10— 4Paまで減圧し、 IT O基板 100を作製した。
[0169] (正孔輸送層の形成)
次に、図 3に記載のようにインクジェット記録ヘッド 10が高速に ITO基板 100に対し て相対移動しながら、正孔輸送材料として例示化合物 B6を含む流動体 Dを基板 10 0の上面に向けて吐出させることにより、例示化合物 B6を含む液滴 Dが着弾する。着 弾した液滴 (流動体 D)は数十/ z m程度の径を有する。そして、所定量の流動体 Dを 吐出して正孔輸送層 111を形成した。次いで、 200°C、 1時間の加熱条件にて重合 し、高分子薄膜を形成した。形成した高分子の平均分子量は約 10000 (繰り返し単 位は 16. 6)であり、膜厚は 50nmであった。
(電子輸送層の形成)
上記正孔輸送層の形成と同様にして、電子輸送材料として例示化合物 B7を含む 流動体 Dを、インクジェット記録ヘッド 10より、正孔輸送層 111を有する基板 100の上 面に向けて吐出させることにより、例示化合物 B7を含む液滴が着弾する。着弾した 液滴は数十 m程度の径を有する。そして、所定量の流動体を吐出して電子輸送層 112が形成された。更に 200°C、 1時間の加熱条件で重合して、高分子薄膜を形成 した。形成した高分子の平均分子量は約 20000 (繰り返し単位 40. 5)であり、膜厚 は 50nmであった。
[0170] (陰極の形成)
上記の様にして形成した電子輸送層 112上に、厚さ 200nmのアルミニウムを蒸着 して、陰極 113を形成した。
[0171] (ガスバリア膜による封止)
ガスノ リア膜 114による封止は、上記透明ガスノ リア性フィルムを用い、ガスバリア 膜を形成した側を陰極と相対する側にして封止し、本発明の有機 EL素子 OLED1— 1を形成した。この有機 EL素子 OLED1— 1に ITO側を正、アルミニウム側を負として 20Vの電圧を印加すると、ピーク波長 500nmの緑色の発光が観察された。
[0172] 〔有機 EL素子 OLED2—1の作製〕
上記有機 EL素子 OLED1— 1の作製において、正孔輸送層及び電子輸送層の構 成を、下記の様に変更した以外は同様にして、本発明の有機 EL素子 OLED2—1を 作製した。
[0173] (正孔輸送層の形成)
正孔輸送材料として例示化合物 A7とドデシルメルカブタン (モル比 10: 1)を含む 流動体 Dを、基板 100の上面に向けて吐出し、正孔輸送層 111を形成した。次いで 、 100°C、 1時間の加熱条件で重合して、高分子薄膜を形成した。形成した高分子の 平均分子量は約 5000 (繰り返し単位 9. 2)であり、膜厚は 50nmであった。
[0174] (電子輸送層の形成)
電子輸送材料として、例示化合物 A12とォクタデシルアルコール(モル比 10 : 1)を 含む流動体 Dを、基板 100の上面に向けて吐出して電子輸送層 112を形成した。次 いで、 100°C、 1時間の加熱条件で重合して、高分子薄膜を形成した。形成した高分 子の平均分子量は約 4000 (繰り返し単位 8. 0)であり、膜厚は 50nmであった。
[0175] 〔有機 EL素子 OLED3— 1の作製〕
上記有機 EL素子 OLED1— 1の作製において、正孔輸送層及び電子輸送層の構 成を、下記の様に変更した以外は同様にして、本発明の有機 EL素子 OLED3— 1を 作製した。
[0176] ITO基板上に正孔輸送層として、 α— NPDを 50nmの膜厚で上記と同様の方法 で塗布、成膜し、 100°C、 30分乾燥した後に、電子輸送性発光材料として Alqを 50
3 nm膜厚で塗布成膜し、同様に乾燥した。次いで、 LiFを 0. 5nm及び A1を l lOnm膜 厚で蒸着して陰極を形成して、比較用の有機 EL素子 OLED3— 1を作製した。 〔有機 EL素子 OLED4— 1の作製〕
上記有機 EL素子 OLED1— 1の作製において、正孔輸送層及び電子輸送層の構 成を、下記の様に変更した以外は同様にして、本発明の有機 EL素子 OLED4—1を 作製した。
正孔輸送材料として例示化合物 B6を含む流動体 Dを、基板 100の上面に向けて吐 出して、正孔輸送層 111を形成した。次に、照射電子電流 5mA、電子照射エネルギ 一 50eVの条件で重合して、高分子薄膜を形成した。形成した高分子の平均分子量 は、約 18000 (繰り返し単位 30. 0)であり、膜厚は 50應であった。
同様に電子輸送材料として例示化合物 B8を含む流動体 Dを、基板 100の上面に向 けて吐出して、電子輸送層 112を形成した。次に、照射電子電流 5mA、電子照射ェ ネルギー 50eVの条件で重合して、高分子薄膜を形成した。形成した高分子の平均 分子量は、約 15000 (繰り返し単位 28. 3)であり、膜厚は 50nmであった。さらに、封 止後、電流密度 50mAZcm2、 1時間の電流を素子に流して重合度を高めた。
[0177] 《有機 EL素子の評価》
以上の様にして得られた各有機 EL素子について、下記の方法に従って各評価を行 い、得られた結果を表 1に示す。
(発光輝度の評価)
有機 EL素子 OLED3— 1では初期駆動電圧 4Vで電流が流れ始め、緑色の発光を 示した。有機 EL素子 OLED1— 1及び有機 EL素子 OLED2—1について、温度 23 °C、 10V直流電圧を印加した時の発光輝度 (cdZm2)、発光効率 (lmZW)を測定し た。発光輝度、発光効率は、有機 EL素子 OLED3— 1を 100とした時の相対値で表 した。発光輝度については、分光放射輝度計 CS— 1000 (コ-カミノルタセンシング 社製)を用いて測定した。
[0178] (耐久性の評価)
各有機 EL素子について、 lOmAZcm2の一定電流で駆動したときに、初期輝度が 元の半分に低下するのに要した時間である半減寿命時間を測定し、これを耐久性の 指標とした。なお、半減寿命時間は、有機 EL素子 OLED3— 1を 100とした時の相 対値で表した。
[0179] また、 lOmAZcm2の一定電流で 20時間駆動させた後に、 2mm X 2mm四方の範 囲での目視で確認できる非発光点 (ダークスポット)の数を測定した。
[0180] [表 1]
Figure imgf000048_0001
[0181] 表 1から明らかなように、本発明で規定する構成力もなる有機 EL素子は、比較例に 対し、ダークスポットが大幅に減少し、寿命も向上することが明らかになった。更に発 光輝度の向上も認められた。
[0182] 実施例 2
《有機 EL素子の作製》 実施例 1に記載の有機 EL素子 OLEDl— lを作製した条件と同じ条件で、下記表 2に記載の材料及び膜厚構成力もなる有機 EL素子 OLED5— 1〜5— 3を作製した 。また、有機 EL素子 OLED2— 1を作製した条件と同じ条件で、下記表 2に記載の材 料及び膜厚構成力もなる有機 EL素子 OLED5— 4〜5— 6を作製した。更に、有機 E L素子 OLED3— 1を作製した条件と同じ条件で、下記表 2に記載の材料及び膜厚 構成からなる比較用の有機 EL素子 OLED5 - 7を作製した。
[0183] [化 15]
CBP BCP
Figure imgf000049_0001
[0184] [表 2]
Figure imgf000050_0001
《有機 EL素子の評価》
上記作製した有機 EL素子 OLED5— 1 5— 7につ 、て、実施例 1に記載の方法と 同様にして各評価を行 、、得られた結果を表 3に示す。
[0186] [表 3]
Figure imgf000051_0001
[0187] 表 3の結果力も明らかなように、燐光発光型の有機 EL素子においても、本発明で 規定する構成カゝらなる有機 EL素子は、比較例に対し、発光輝度、寿命に優れダーク スポットの発生が抑えられた耐久性の高い素子であることが分かる。
[0188] また、重合性基を有する化合物と反応性基を有する化合物を組み合わせた有機 E L素子 OLED5— 3は、電子輸送材料に反応性基を有する化合物を使用した有機 E L素子 OLED5— 1よりも耐久性が優位に向上しており、有機 EL素子 OLED5— 2同 等の耐久性向上効果が見られることから、発光層と電子輸送層の界面近傍で少なく とも一部分は共有結合を形成して 、ることが、より好まし 、ことが分かる。
実施例 3
実施例 2で作製した本発明の有機 EL素子 5— 2と、実施例 2で作製した本発明の有 機 EL素子 OLED5— 2の燐光性化合物を例示化合物 Ir 1に換えた以外は、同様 にして作製した緑色発光有機 EL素子と、本発明の有機 EL素子 OLED5— 2の燐光 性ィ匕合物を例示化合物 Ir 9に置き換えた以外は、同様にして作製した赤色発光有 機 EL素子を同一基板上に並置し、第 4図に示すアクティブマトリックス方式フルカラ 一表示装置を作製した。第 5図には作製したフルカラー表示装置の表示部 Aの模式 図のみを示した。即ち同一基板上に、複数の走査線 205及びデータ線 206を含む 配線部と、並置した複数の画素 203 (発光の色が赤領域の画素、緑領域の画素、青 領域の画素等)とを有し、配線部の走査線 205及び複数のデータ線 206はそれぞれ 導電材料からなり、走査線 205とデータ線 206は格子状に直交して、直交する位置 で画素 203に接続している(詳細は図示せず)。前記複数の画素 3は、それぞれの発 光色に対応した有機 EL素子、アクティブ素子であるスイッチングトランジスタと駆動ト ランジスタそれぞれが設けられたアクティブマトリックス方式で駆動されており、走査 線 205から走査信号が印加されると、データ線 206から画像データ信号を受け取り、 受け取った画像データに応じて発光する。このように各赤、緑、青の画素を適宜、並 置することによって、フルカラー表示が可能となる。また、フルカラー表示装置を駆動 することにより、鮮明なフルカラー動画表示が得られた。
実施例 4
《照明装置の作製》
実施例 3で作製した青色発光、緑色発光及び赤色発光の有機 EL素子の各々の非 発光面をガラスケースで覆い、照明装置とした。照明装置は発光効率が高ぐ発光寿 命の長い白色光を発する薄型の照明装置として使用することができた。図 6は照明 装置の概略図で、図 7は照明装置の断面図である。有機 EL素子 301をガラスカバー 302で覆った。 305は陰極で、 306は有機 EL層、 307は透明電極付きガラス基板で ある。なおガラスカバー 302内には窒素ガス 308が充填され、捕水剤 309が設けられ ている。
次 、で、ディスプレイ用として市販されて 、るカラーフィルターを組み合わせた際の色 再現域を評価した。有機 EL素子とカラーフィルターの組み合わせにおいて、色再現 域が広ぐ色再現性において優れた性能を有することが確認された。

Claims

請求の範囲
[1] 基板上に陰極と陽極とを有し、該陰極と陽極間に複数の有機層を有する有機エレ タトロルミネッセンス素子において、該有機層の少なくとも 1層は、重合性基を少なくと も一つ有する化合物を塗布、重合することにより得られる、繰り返し単位が 10個以下 の有機分子を含有する第 1の有機層であることを特徴とする有機エレクト口ルミネッセ ンス素子。
[2] 前記第 1の有機層上に、重合性基を少なくとも一つ含有する化合物を塗布、重合 することにより得られる、繰り返し単位が 10個以下の有機分子を含有する第 2の有機 層を積層することを特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセン ス素子。
[3] 基板上に陰極と陽極とを有し、該陰極と陽極間に複数の有機層を有する有機エレ タトロルミネッセンス素子にぉ 、て、重合性基または反応性基を有する化合物を塗布 し、重合することにより形成された第 1の有機層を有し、該第 1の有機層の上に、重合 性基または反応性基を有する化合物を塗布し、重合することにより形成され第 2の有 機層を有し、かつ各有機層の界面の一部が共有結合を介して接合していることを特 徴とする有機エレクト口ルミネッセンス素子。
[4] 前記重合性基が、ビニル基であることを特徴とする請求の範囲第 1項乃至第 3項の いずれか 1項に記載の有機エレクト口ルミネッセンス素子。
[5] 前記塗布が、インクジェット記録方式により行われることを特徴とする請求の範囲第
1項乃至第 4項のいずれか 1項に記載の有機エレクト口ルミネッセンス素子。
[6] 前記重合が、エネルギー線照射によって行われることを特徴とする請求の範囲第 1 項乃至第 5項のいずれか 1項に記載の有機エレクト口ルミネッセンス素子。
[7] 前記エネルギー線照射が、紫外線、電子、イオン、熱、ラジカルビームまたは放射 線の照射であることを特徴とする請求の範囲第 6項に記載の有機エレクト口ルミネッセ ンス素子。
[8] 前記第 1の有機層が含有する化合物が、芳香族第三級ァミン構造を有する化合物 であり、前記第 2の有機層が含有する化合物が、有機金属錯体構造を有する化合物 であることを特徴とする請求の範囲第 2項乃至第 7項のいずれ力 1項に記載の有機ェ レクト口ルミネッセンス素子。
[9] 前記第 1の有機層または前記第 2の有機層が、更に燐光性化合物を含有すること を特徴とする請求の範囲第 2項乃至第 8項のいずれか 1項に記載の有機エレクトロル ミネッセンス素子。
[10] 前記第 1の有機層が電子輸送層であって、かつ前記第 2の有機層が正孔輸送層で あることを特徴とする請求の範囲第 2項乃至第 9項のいずれ力 1項に記載の有機エレ タトロルミネッセンス素子。
[11] 前記基板が、透明ガスノリア性フィルムであることを特徴とする請求の範囲第 1項乃 至第 10項のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[12] 発光が、白色であることを特徴とする請求の範囲第 1項乃至第 11項のいずれか 1 項に記載の有機エレクト口ルミネッセンス素子。
[13] 請求の範囲第 12項に記載の有機エレクト口ルミネッセンス素子を有することを特徴 とする表示装置。
[14] 請求の範囲第 12項に記載の有機エレクト口ルミネッセンス素子を有することを特徴 とする照明装置。
[15] 請求の範囲第 14項に記載の照明装置と、表示手段としての液晶素子とを有するこ とを特徴とする表示装置。
PCT/JP2006/302327 2005-03-02 2006-02-10 有機エレクトロルミネッセンス素子、表示装置及び照明装置 WO2006092943A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007505834A JPWO2006092943A1 (ja) 2005-03-02 2006-02-10 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US11/817,271 US7888859B2 (en) 2005-03-02 2006-02-10 Organic electroluminescence element, display device and lighting device
GB0716598A GB2438772B (en) 2005-03-02 2006-02-10 Organic electroluminescence element, display device and lighting device
US12/983,362 US8405301B2 (en) 2005-03-02 2011-01-03 Organic electroluminescence element, display device and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-057051 2005-03-02
JP2005057051 2005-03-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/817,271 A-371-Of-International US7888859B2 (en) 2005-03-02 2006-02-10 Organic electroluminescence element, display device and lighting device
US12/983,362 Continuation US8405301B2 (en) 2005-03-02 2011-01-03 Organic electroluminescence element, display device and lighting device

Publications (1)

Publication Number Publication Date
WO2006092943A1 true WO2006092943A1 (ja) 2006-09-08

Family

ID=36940983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302327 WO2006092943A1 (ja) 2005-03-02 2006-02-10 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Country Status (4)

Country Link
US (2) US7888859B2 (ja)
JP (1) JPWO2006092943A1 (ja)
GB (1) GB2438772B (ja)
WO (1) WO2006092943A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186895A (ja) * 2007-01-29 2008-08-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び電子ディスプレイ装置
JP2008234857A (ja) * 2007-03-16 2008-10-02 Seiko Epson Corp 有機エレクトロルミネッセンス装置の製造方法
JP2008243435A (ja) * 2007-03-26 2008-10-09 Seiko Epson Corp 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス装置
US20090242846A1 (en) * 2008-03-28 2009-10-01 Tdk Corporation Transparent electric conductor
JP2009252944A (ja) * 2008-04-04 2009-10-29 Konica Minolta Holdings Inc 有機エレクトロルミネセンス素子とその製造方法
JP2017532323A (ja) * 2014-09-25 2017-11-02 サイノーラ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 架橋可能なホスト材料

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008033017A1 (de) * 2008-07-14 2010-01-21 Osram Opto Semiconductors Gmbh Verkapseltes optoelektronisches Bauelement und Verfahren zu dessen Herstellung
JP5293120B2 (ja) 2008-11-28 2013-09-18 住友化学株式会社 有機エレクトロルミネッセンス素子およびその製造方法
US20120308831A1 (en) * 2009-12-01 2012-12-06 Nagase Chemtex Corporation Epoxy resin composition
JP5560155B2 (ja) * 2010-09-30 2014-07-23 富士フイルム株式会社 組成物、並びに、該組成物を用いた膜、電荷輸送層、有機電界発光素子、及び電荷輸送層の形成方法
EP2518789B1 (en) * 2011-04-18 2016-04-13 Corning Precision Materials Co., Ltd. Method of manufacturing a light extraction substrate for an electroluminescent device
CN103717636A (zh) 2011-10-19 2014-04-09 出光兴产株式会社 交联型聚合物及使用该聚合物的有机场致发光元件
EP2645822A1 (en) * 2012-03-29 2013-10-02 Koninklijke Philips N.V. Lighting device comprising at least two organic luminescent materials
JP2017533576A (ja) 2014-08-21 2017-11-09 ダウ グローバル テクノロジーズ エルエルシー 電子装置のための酸素置換ベンゾクロブテン(benzoclobutene)由来組成物
WO2016026123A1 (en) 2014-08-21 2016-02-25 Dow Global Technologies Llc Compositions comprising oxygen substituted benzocyclobutenes and dienophiles, and electronic devices containing same
WO2016026122A1 (en) 2014-08-21 2016-02-25 Dow Global Technologies Llc Benzocyclobutenes derived compositions, and electronic devices containing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312223A (ja) * 2000-02-22 2001-11-09 Semiconductor Energy Lab Co Ltd 自発光装置及びその作製方法
JP2002275249A (ja) * 2001-03-15 2002-09-25 National Institute Of Advanced Industrial & Technology フェナザシリン含有π共役ポリマー
JP2004103401A (ja) * 2002-09-10 2004-04-02 Konica Minolta Holdings Inc 素子および該素子の製造方法
JP2005044790A (ja) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2005044791A (ja) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163455B2 (ja) 1992-03-05 2001-05-08 新日本製鐵株式会社 粗細混合粉粒状物の造粒方法及び焼結鉱製造方法
TW525305B (en) * 2000-02-22 2003-03-21 Semiconductor Energy Lab Self-light-emitting device and method of manufacturing the same
US6723828B2 (en) * 2001-05-23 2004-04-20 Sri International Conjugated electroluminescent polymers and associated methods of preparation and use
JP3969152B2 (ja) 2001-06-21 2007-09-05 昭和電工株式会社 有機発光素子および発光材料
WO2003001616A2 (en) * 2001-06-20 2003-01-03 Showa Denko K.K. Light emitting material and organic light-emitting device
JP2003086377A (ja) 2001-09-07 2003-03-20 Fuji Photo Film Co Ltd 発光素子、及び発光素子の製造方法
TWI277617B (en) * 2002-03-26 2007-04-01 Sumitomo Chemical Co Metal complexes and organic electro luminescence elements
US6830830B2 (en) * 2002-04-18 2004-12-14 Canon Kabushiki Kaisha Semiconducting hole injection materials for organic light emitting devices
EP1514315A2 (en) * 2002-05-31 2005-03-16 Koninklijke Philips Electronics N.V. Electroluminescent device
US20040131881A1 (en) * 2002-12-31 2004-07-08 Eastman Kodak Company Complex fluorene-containing compounds for use in OLED devices
KR101314034B1 (ko) * 2003-03-24 2013-10-02 유니버시티 오브 써던 캘리포니아 Ir의 페닐-피라졸 착물
JP5005164B2 (ja) * 2004-03-03 2012-08-22 株式会社ジャパンディスプレイイースト 発光素子,発光型表示装置及び照明装置
US7304428B2 (en) * 2004-12-14 2007-12-04 Eastman Kodak Company Multilayered cathode structures having silver for OLED devices
CN101128507B (zh) * 2004-12-28 2012-03-28 住友化学株式会社 高分子化合物及使用该高分子化合物的元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312223A (ja) * 2000-02-22 2001-11-09 Semiconductor Energy Lab Co Ltd 自発光装置及びその作製方法
JP2002275249A (ja) * 2001-03-15 2002-09-25 National Institute Of Advanced Industrial & Technology フェナザシリン含有π共役ポリマー
JP2004103401A (ja) * 2002-09-10 2004-04-02 Konica Minolta Holdings Inc 素子および該素子の製造方法
JP2005044790A (ja) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2005044791A (ja) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186895A (ja) * 2007-01-29 2008-08-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び電子ディスプレイ装置
JP2008234857A (ja) * 2007-03-16 2008-10-02 Seiko Epson Corp 有機エレクトロルミネッセンス装置の製造方法
JP2008243435A (ja) * 2007-03-26 2008-10-09 Seiko Epson Corp 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス装置
US20090242846A1 (en) * 2008-03-28 2009-10-01 Tdk Corporation Transparent electric conductor
JP2009252944A (ja) * 2008-04-04 2009-10-29 Konica Minolta Holdings Inc 有機エレクトロルミネセンス素子とその製造方法
JP2017532323A (ja) * 2014-09-25 2017-11-02 サイノーラ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 架橋可能なホスト材料

Also Published As

Publication number Publication date
GB2438772A (en) 2007-12-05
US20110095278A1 (en) 2011-04-28
US8405301B2 (en) 2013-03-26
US20090021147A1 (en) 2009-01-22
JPWO2006092943A1 (ja) 2008-08-07
GB2438772B (en) 2011-01-19
GB0716598D0 (en) 2007-10-10
US7888859B2 (en) 2011-02-15

Similar Documents

Publication Publication Date Title
WO2006092943A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006279007A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20190027705A1 (en) Materials and Methods for OLED Microcavities and Buffer Layers
JP4858167B2 (ja) 透明導電性フィルム、透明導電性フィルムの製造方法及び有機エレクトロルミネッセンス素子
US8466484B2 (en) Materials and methods for organic light-emitting device microcavity
US20120326139A1 (en) Materials and methods for controlling properties of organic light-emitting device
US20120326136A1 (en) Materials and methods for controlling properties of organic light-emitting device
WO2008032526A1 (fr) processus de PRODUCtion d&#39;UN film d&#39;étanchéité flexible et dispositifs électroluminescents organiques réalisés à l&#39;aide du film
WO2007004627A1 (ja) パターニング装置、有機エレクトロルミネッセンス素子とその製造方法及び有機エレクトロルミネッセンス表示装置
WO2007052431A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN101243561B (zh) 有机电致发光元件、显示装置、照明装置
JP2006302637A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006297694A (ja) ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、該樹脂基材を用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法
JP2006294484A (ja) 有機エレクトロルミネッセンス素子とその製造方法及び有機エレクトロルミネッセンス表示装置
JP2007083644A (ja) ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、該樹脂基材を用いた有機エレクトロルミネッセンス素子
KR20030064599A (ko) 평판 디스플레이 소자 및 평판 디스플레이 소자의 보호막형성 방법
JP2007059244A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007042316A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5192127B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2007059687A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007060826A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007042729A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP7040006B2 (ja) 画像表示部材及び画像表示部材の製造方法
JP2007059243A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007053044A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007505834

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 0716598

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20060210

WWE Wipo information: entry into national phase

Ref document number: 0716598.8

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 11817271

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

REG Reference to national code

Ref country code: GB

Ref legal event code: 789A

Ref document number: 0716598

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 06713470

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713470

Country of ref document: EP