WO2024016743A1 - 硬质聚氨酯泡沫、其制备方法及包含硬质聚氨酯泡沫的保温材料、冰箱或冰柜 - Google Patents

硬质聚氨酯泡沫、其制备方法及包含硬质聚氨酯泡沫的保温材料、冰箱或冰柜 Download PDF

Info

Publication number
WO2024016743A1
WO2024016743A1 PCT/CN2023/087643 CN2023087643W WO2024016743A1 WO 2024016743 A1 WO2024016743 A1 WO 2024016743A1 CN 2023087643 W CN2023087643 W CN 2023087643W WO 2024016743 A1 WO2024016743 A1 WO 2024016743A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
polyurethane foam
rigid polyurethane
mixture
pressure
Prior art date
Application number
PCT/CN2023/087643
Other languages
English (en)
French (fr)
Inventor
孙晓凯
王永帅
范才全
Original Assignee
海信冰箱有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信冰箱有限公司 filed Critical 海信冰箱有限公司
Publication of WO2024016743A1 publication Critical patent/WO2024016743A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/482Mixtures of polyethers containing at least one polyether containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • C08G18/4883Polyethers containing cyclic groups containing cyclic groups having at least one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • C08G18/5027Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups directly linked to carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2

Definitions

  • the present disclosure relates to the technical field of polymer materials, and in particular to a rigid polyurethane foam, its preparation method, and insulation materials, refrigerators or freezers containing rigid polyurethane foam.
  • the refrigerator wall can be thinned without affecting the insulation performance of the refrigerator, thereby improving the utilization of the internal space of the refrigerator.
  • Rigid polyurethane foam is a commonly used filling material for insulation layers. It has excellent thermal insulation properties and is widely used in refrigeration equipment.
  • a rigid polyurethane foam is provided.
  • the rigid polyurethane foam includes 100 parts of dry white material and trans-1-chloro-3,3,3-trifluoropropylene LBA foaming agent 26 parts to 34 parts, 1 to 5 parts of low boiling point foaming agent, 130 to 170 parts of polyphenylmethane polyisocyanate, and 3 parts of methyl formate modifier.
  • the dry white material includes 87 to 95 parts of combined polyether, 2.5 to 4 parts of surfactant, 1.5 to 6 parts of catalyst and 1 to 3 parts of water.
  • a method for preparing rigid polyurethane foam includes: mixing the combined polyether, the surfactant, the catalyst and the water for the first time according to the proportion by weight, and obtaining a first mixture; Ratio, the first mixture is mixed with the trans-1-chloro-3,3,3-trifluoropropene blowing agent and the methyl formate for a second time, and a second mixture is obtained; according to the weight The second mixture and the low boiling point foaming agent are mixed evenly for the third time, and a third mixture is obtained; the mixing pressure is increased, and the third mixture is mixed evenly for the fourth time, and Obtain the fourth mixture; send a part of the fourth mixture into the high-pressure foaming machine, and circulate it at high pressure for 0.5h, so that the fourth mixture mixes and flows at high speed in the tank and pipeline of the high-pressure foaming machine.
  • thermal insulation material is provided, which is prepared from the rigid polyurethane foam described in any of the above embodiments.
  • a refrigerator which includes the thermal insulation material described in any of the above embodiments, and the thermal insulation material is provided on the side panels and the back panel of the refrigerator.
  • a refrigerator which includes the thermal insulation material described in any of the above embodiments, and the thermal insulation material is provided on the side panels and the back panel of the refrigerator.
  • Figure 1 is a flow chart of a method for preparing rigid polyurethane foam according to some embodiments.
  • Rigid polyurethane foam is a commonly used filling material for insulation layers. It has excellent thermal insulation properties and is widely used in refrigeration equipment, such as refrigerators and freezers.
  • the volume ratio of the refrigerator is increased by reducing the thickness of the refrigerator wall while the refrigerator volume remains unchanged.
  • the insulation layer of the refrigerator becomes thinner and the insulation performance of the refrigerator decreases. Therefore, in order to remedy the reduced thermal insulation performance of thin-walled refrigerators due to the thinning of the thermal insulation layer, vacuum insulation panels (Vacuum Insulation Panels, referred to as VIP panels) are usually added to the thermal insulation layer of thin-walled refrigerators.
  • VIP panels are expensive, and adding VIP boards to the insulation layer will compress the foaming flow channel space, causing the production difficulty and production cost of thin-walled refrigerators to increase.
  • the rigid polyurethane foam that has low density and thermal conductivity, has excellent thermal insulation properties, and can be used as an insulation layer filling material to replace VIP boards in thin-walled refrigerators. use.
  • the rigid polyurethane foam includes 100 parts of dry white material, trans-1-chloro-3,3,3-trifluoropropene (trans-1-chloro-3,3,3-trifluoropropene, referred to as 26 to 34 parts of LBA) foaming agent, 1 to 5 parts of low boiling point foaming agent, 130 to 170 parts of polyphenylmethane polyisocyanate (polymerized MDI for short) and 3 parts of methyl formate.
  • the dry white material includes 87 to 95 parts of combined polyether, 2.5 to 4 parts of surfactant, 1.5 to 6 parts of catalyst and 1 to 3 parts of water.
  • the rigid polyurethane foam is a system combining LBA foaming agent, low boiling point foaming agent and methyl formate (i.e. "LBA + low boiling point + methyl formate” system).
  • the rigid polyurethane foam has low density and thermal conductivity, ideal thermal insulation performance, controllable preparation cost, and can be used in thin-walled refrigerators instead of VIP boards.
  • the rigid polyurethane foam of the pure LBA system includes 30 parts of LBA and has a density of approximately 32kg/m 3 .
  • the system has a high density and does not meet the usage requirements when used as an insulation layer material in a refrigerator.
  • the low boiling point foaming agent has a relatively large saturated vapor pressure and a large air pressure in the foam cells.
  • the foam density can be reduced to about 29.0kg/m 3 . And it can maintain foam strength, dimensional stability, expansion rate and other properties unchanged, reduce the use of raw materials and reduce production costs.
  • methyl formate is used as a modifier.
  • the methyl formate has good compatibility with polyols. Adding methyl formate to the rigid polyurethane foam of the pure LBA system can reduce the viscosity of the rigid polyurethane foam, which is beneficial to mixing the components in the rigid polyurethane foam evenly, thereby improving the foaming process. The uniformity of the rigid polyurethane foam.
  • the carbonyl group in the methyl formate reacts with the amino group in the rigid polyurethane foam to form a hydrogen bond, causing the molecules to be affected by van der Waals forces, thereby improving the compressive strength and dimensional stability of the rigid polyurethane foam. properties and enhance the strength of the molecular skeleton.
  • adding about 3 parts of the methyl formate modifier to the rigid polyurethane foam of the pure LBA system to which 1 to 2 parts of the low-boiling point foaming agent has been added is beneficial to promoting the development of the rigid polyurethane foam.
  • the polyol in the foam fully reacts with the isocyanate to improve the density uniformity of the rigid polyurethane foam after the reaction, improve the fluidity and strength of the rigid polyurethane foam, and reduce the density of the rigid polyurethane foam.
  • the low boiling point blowing agent includes a butane blowing agent.
  • the butane blowing agent includes any one of n-butane, isobutane or a mixture of n-butane and isobutane in any proportion.
  • the polymeric MDI includes isocyanate, and the content (NCO) of the isocyanate is 30% to 32%, so that the isocyanate index of the rigid polyurethane foam is 1.10 to 1.30.
  • the polymerized MDI is selected from one or more of polymerized MDI Wanhua PM-200, polymerized MDI Wanhua PM-2010, or polymerized MDI Wanhua PM-400.
  • isocyanate groups when the content of isocyanate groups is high, the isocyanate groups will react with each other to form urea groups, which is beneficial to improving the strength of the rigid polyurethane foam.
  • the combined polyether in parts by weight, includes 30 to 50 parts of polyether polyol A, 15 to 30 parts of polyether polyol B, and 10 to 20 parts of polyether polyol C. 3 parts to 10 parts of polyether polyol D and 0 to 20 parts of phthalic anhydride polyester polyol E.
  • the polyether polyol A is prepared from toluenediamine and propylene oxide, and has a hydroxyl value of 380 mgKOH/g to 480 mgKOH/g.
  • the polyether polyol B is produced by the addition reaction of sucrose and propylene oxide as starting agents, and has a hydroxyl value of 360 mgKOH/g to 460 mgKOH/g.
  • the polyether polyol C is produced by the addition reaction of sorbitol and propylene oxide as initiators, and has a hydroxyl value of 400 mgKOH/g to 500 mgKOH/g.
  • the polyether polyol D is produced through an addition reaction of glycerin and propylene oxide as the starting agent, and has a hydroxyl value of 160 mgKOH/g to 260 mgKOH/g.
  • the E hydroxyl value of the phthalic anhydride polyester polyol is 390 mgKOH/g to 490 mgKOH/g.
  • the surfactant includes at least one of an alkali metal salt of a fatty acid, an amine salt of a fatty acid, castor oil, ricinoleic acid or a silicone polymer.
  • the surfactant includes at least one of silicone oil L6863, silicone oil L6988, silicone oil AK8830, silicone oil B8525 or silicone oil B8545.
  • the catalyst includes a foaming catalyst, a gel catalyst and a trimerization catalyst, and the mass ratio of the foaming catalyst, the gel catalyst and the trimerization catalyst is (2 ⁇ 4):(3 ⁇ 8): (1 ⁇ 3).
  • the foaming catalyst is selected from one or more of pentamethyldiethylenetriamine, N-methyldicycloethylamine, tetramethylhexanediamine or bis-dimethylaminoethyl ether. kind.
  • the gel catalyst is selected from one or more of dimethylbenzylamine, dimethylcyclohexane or triethylenediamine.
  • the trimerization catalyst is selected from the group consisting of potassium acetate, 1,3,5-tris(dimethylaminopropyl)hexahydrotriazine, (2-hydroxypropyl)trimethylammonium formate, ethoquaternary ammonium salt or octyl quaternary ammonium salt One or more of the salts.
  • embodiments of the present disclosure provide a method for preparing rigid polyurethane foam. As shown in Figure 1 , the method includes step 1 to step 7.
  • step 1 the combined polyether, the surfactant, the catalyst and the water are mixed for the first time according to the proportion by weight, and a first mixture is obtained.
  • the first mixing is performed at 20°C and a mixing pressure of 0.5MPa to 1.5MPa for 1h to 1.5h.
  • step 2 the first mixture, the LBA foaming agent and the methyl formate are mixed for a second time according to the proportion by weight, and a second mixture is obtained.
  • the second mixing is performed at 20°C and a mixing pressure of 1.5MPa to 3.5MPa for 1h to 1.5h.
  • step 3 the second mixture and the low-boiling point foaming agent are mixed for a third time according to the proportion by weight, and a third mixture is obtained.
  • the third mixing is performed at 20°C and a mixing pressure of 3.0MPa to 4.0MPa for 0.5h to 1h.
  • step 4 the mixing pressure is increased, the third mixture is mixed for the fourth time, and a fourth mixture is obtained.
  • the fourth mixing is performed at 20° C. and a mixing pressure of 3.0 MPa to 4.5 MPa for 0.5 to 1 hour.
  • the low boiling point foaming agent has a low boiling point and is easy to volatilize. Increasing the mixing pressure when mixing the third mixture can mix the low-boiling point foaming agent with the second mixture and at the same time reduce the volatilization of the low-boiling point foaming agent, which is beneficial to improving mixing. Precision, reducing the loss of the low boiling point blowing agent.
  • step 5 a part of the fourth mixture is fed into a high-pressure foaming machine and circulated under high pressure for 0.5 hours to clean the high-pressure foaming machine.
  • a part of the fourth mixture is sent to a high-pressure foaming machine and circulated under high pressure for 0.5 hours, so that the fourth mixture is mixed and flows at high speed in the tank and pipeline of the high-pressure foaming machine to clean it.
  • the high-pressure foaming machine prevents the mixture remaining in the tank and the pipeline from contaminating the fourth mixture.
  • step 6 the part of the fourth mixture in the high-pressure foaming machine is discharged, and the other part of the fourth mixture is sent into the high-pressure foaming machine, and circulated under high pressure for 0.5 h.
  • step 7 the other part of the fourth mixture circulated under high pressure by the high-pressure foaming machine is mixed with the polymerized MDI according to the proportion by weight, so that the other part of the fourth mixture React with the polymerized MDI to obtain a fifth mixture, and then inject the fifth mixture into a mold to prepare the rigid polyurethane foam.
  • the conditions for injecting the fifth mixture into the mold include an injection temperature of 15°C to 20°C and an injection pressure of 130Mpa to 150Mpa.
  • the following examples are provided to introduce the rigid polyurethane foam, its preparation method, and insulation materials, refrigerators or freezers containing rigid polyurethane foam provided by the embodiments of the present disclosure.
  • This embodiment provides a rigid polyurethane foam and a preparation method thereof.
  • the rigid polyurethane foam includes 100 parts of dry white material, 30 parts of LBA foaming agent, 1.5 parts of low boiling point foaming agent, 134 parts of polymerized MDI and 3 parts of methyl formate.
  • the dry white material includes 2.9 parts of catalyst, 3 parts of silicone surfactant and 2.1 parts of water.
  • the preparation method of rigid polyurethane foam includes steps 11 to 18.
  • step 11 according to the above weight parts proportion, mix each component in the dry white material for 1h to 1.5h at 20°C and a mixing pressure of 0.5MPa to 1.5MPa to perform the first Mix well and get the first mixture.
  • step 12 the first mixture obtained in step 11, the LBA foaming agent, and the methyl formate are mixed according to the above weight parts ratio at 20° C. and a mixing pressure of 1.5 MPa to 3.5 MPa.
  • the esters are mixed for 1 to 1.5 hours to perform a second mixing and obtain a second mixture.
  • step 13 the second mixture obtained in step 12 and the low boiling point foaming agent are mixed for 0.5 h to 20° C. at a mixing pressure of 3.0 MPa to 4.0 MPa according to the above weight ratio. 1.0h to perform the third mixing and obtain the third mixture.
  • step 14 under the conditions of 20°C and a mixing pressure of 3.0MPa to 4.5Mpa, increase the mixing pressure of the third mixture obtained in step 13 and continue mixing for 0.5h to 1h to perform the fourth mixing, and A fourth mixture is obtained.
  • step 15 a part of the fourth mixture is sent to the high-pressure foaming machine and circulated at high pressure for 0.5h, so that the fourth mixture is mixed and flows at high speed in the tank and pipeline of the high-pressure foaming machine.
  • the high-pressure foaming machine is cleaned to prevent the mixture remaining in the tank and the pipeline from contaminating the fourth mixture.
  • step 16 the part of the fourth mixture in the high-pressure foaming machine is discharged, and the other part of the fourth mixture is sent into the high-pressure foaming machine, and circulated under high pressure for 0.5 h.
  • step 17 according to the above weight parts proportion, the high-pressure foaming machine obtained in step 16 is used to The other portion of the recycled fourth mixture is mixed with the polymeric MDI, and the other portion of the fourth mixture is reacted with the polymeric MDI to obtain a fifth mixture.
  • step 18 calculate the exact filling quality of the mold, determine the overfilling quality, and determine the cream time (CT), gel time (GT), and free foam density (FRD) of the foam during design.
  • CT cream time
  • GT gel time
  • FTD free foam density
  • the fifth mixture obtained in step 17 is controlled under the conditions of injection temperature of 15°C to 20°C and injection pressure of 130Mpa to 150Mpa, filled into the mold with the overfill quality, and controlled
  • the mold temperature is 45°C and the curing time is set to 7 minutes to prepare rigid polyurethane foam.
  • the foam whitening time is 4s to 12s
  • the gel time is 35s to 55s
  • the free foam density is 18.5kg/m 3 to 22.5kg/m 3
  • the overfill mass is 15%.
  • the exact filling mass is the mass of the foam when the free expansion volume of the foam is equal to the volume of the container.
  • the mass greater than the exact filling mass is called overfilling mass.
  • the overfilling quality is between 110-130% of the just-filling quality, such as 110%, 115% or 130%.
  • This embodiment provides a rigid polyurethane foam and a preparation method thereof. Compared with Example 1, the formula of the rigid polyurethane foam in Example 2 is different, but the preparation method is the same. The same preparation method as in Example 1 will not be described again here.
  • the rigid polyurethane foam in Example 2 includes 100 parts of dry white material, 30 parts of LBA foaming agent, 1.5 parts of low boiling point foaming agent, 146 parts of polymerized MDI and 3 parts of methyl formate.
  • the dry white material includes 2.9 parts of catalyst, 3 parts of silicone surfactant and 2.1 parts of water.
  • This embodiment provides a rigid polyurethane foam and a preparation method thereof. Compared with Example 1, the formula of the rigid polyurethane foam in Example 3 is different, but the preparation method is the same. The same preparation method as in Example 1 will not be described again here.
  • the rigid polyurethane foam in Example 3 includes 100 parts of dry white material, 30 parts of LBA foaming agent, 1.5 parts of low boiling point foaming agent, 160 parts of polymerized MDI and 3 parts of methyl formate.
  • the dry white material includes 2.9 parts of catalyst, 3 parts of silicone surfactant and 2.1 parts of water.
  • This embodiment provides a rigid polyurethane foam and a preparation method thereof.
  • the formula and preparation method of the rigid polyurethane foam in Example 4 are the same as those in Example 1, and will not be described again here.
  • This embodiment provides a rigid polyurethane foam and a preparation method thereof.
  • the formula of the rigid polyurethane foam in Example 5 is the same as that in Example 2, and the preparation method of the rigid polyurethane foam in Example 5 is the same as that in Example 1, which will not be described again here.
  • This embodiment provides a rigid polyurethane foam and a preparation method thereof.
  • the formula of the rigid polyurethane foam in Example 6 is the same as that in Example 3, and the preparation method of the rigid polyurethane foam in Example 6 is the same as that in Example 1, which will not be described again here.
  • This comparative example provides a rigid polyurethane foam and a preparation method thereof. Compared with Example 1, the formula of the rigid polyurethane foam in Comparative Example 1 is different, but the preparation method is the same. The same preparation method as in Example 1 will not be described again here.
  • the rigid polyurethane foam in Comparative Example 1 includes 100 parts of dry white material, 30 parts of LBA foaming agent, 1.5 parts of low boiling point foaming agent and 134 parts of polymerized MDI.
  • the dry white material includes 2.9 parts of catalyst, 3 parts of silicone surfactant and 2.1 parts of water.
  • This comparative example provides a rigid polyurethane foam and a preparation method thereof. Compared with Example 1, Comparative Example 2 The formula of rigid polyurethane foam in is different, but the preparation method is the same. The same preparation method as in Example 1 will not be described again here.
  • the rigid polyurethane foam in Comparative Example 2 includes 100 parts of dry white material, 30 parts of LBA foaming agent, 1.5 parts of low boiling point foaming agent, 134 parts of polymerized MDI and 4 parts of methyl formate.
  • the dry white material includes 2.9 parts of catalyst, 3 parts of silicone surfactant and 2.1 parts of water.
  • This comparative example provides a rigid polyurethane foam and a preparation method thereof. Compared with Example 1, the components of the rigid polyurethane foam in Comparative Example 3 are different, but the preparation method is the same. The same preparation method as in Example 1 will not be described again here.
  • the rigid polyurethane foam in Comparative Example 3 includes 100 parts of dry white material, 30 parts of LBA foaming agent, 5 parts of low boiling point foaming agent, 134 parts of polymerized MDI and 3 parts of methyl formate.
  • the dry white material includes 2.9 parts of catalyst, 3 parts of silicone surfactant and 2.1 parts of water.
  • This comparative example provides a rigid polyurethane foam and a preparation method thereof. Compared with Example 1, the formula of the rigid polyurethane foam in Comparative Example 4 is different, but the preparation method is the same. The same preparation method as in Example 1 will not be described again here.
  • the rigid polyurethane foam in Comparative Example 4 includes 100 parts of dry white material, 30 parts of LBA foaming agent, 134 parts of polymerized MDI and 3 parts of methyl formate.
  • the dry white material includes 2.9 parts of catalyst, 3 parts of silicone surfactant and 2.1 parts of water.
  • This comparative example provides a rigid polyurethane foam and a preparation method thereof. Compared with Example 1, the formula of the rigid polyurethane foam in Comparative Example 5 is different, but the preparation method is the same. The same preparation method as in Example 1 will not be described again here.
  • the rigid polyurethane foam in Comparative Example 5 includes 100 parts of dry white material, 30 parts of LBA foaming agent and 134 parts of polymerized MDI.
  • the dry white material includes 2.9 parts of catalyst, 3 parts of silicone surfactant and 2.1 parts of water.
  • This comparative example provides a rigid polyurethane foam and a preparation method thereof. Compared with Example 1, the formula of the rigid polyurethane foam in Comparative Example 6 is different, but the preparation method is the same. The same preparation method as in Example 1 will not be described again here.
  • the rigid polyurethane foam in Comparative Example 6 includes 100 parts of dry white material, 6 parts of LBA foaming agent, 13 parts of cyclopentane and 134 parts of polymerized MDI.
  • the dry white material includes 2.9 parts of catalyst, 3 parts of silicone surfactant, and 2.1 parts of water.
  • the present disclosure also conducts various performance tests on the rigid polyurethane foam prepared in the above examples and comparative examples.
  • the size of the mold used is 2000mm*200mm*50mm to prepare rigid polyurethane foam.
  • the prepared rigid polyurethane foam was evenly divided into small pieces of foam with a size of 200mm*200mm*50mm, and the performance of the foam was tested using the small pieces of foam.
  • Example 2 Compared with Example 1, the amount of methyl formate used in Comparative Example 2 exceeds the usage range limited by this disclosure.
  • the excessive addition of methyl formate makes the dimensional stability of the prepared rigid polyurethane foam larger, and also increases the dimensional stability of the rigid polyurethane foam. That is, the rigid polyurethane foam has low dimensional stability.
  • the dosage of the low-boiling point foaming agent in Comparative Example 3 is 5 parts by weight, which exceeds the usage range limited by the present disclosure.
  • the excessive addition of the low-boiling point foaming agent makes the prepared rigid polyurethane foam
  • the numerical value of the thermal conductivity is large, that is to say, the thermal conductivity of the rigid polyurethane foam is high.
  • Example 1 Compared with Example 1, no low-boiling point foaming agent was added in Comparative Example 4, and no low-boiling point foaming agent was added, so that the core density of the prepared rigid polyurethane foam was larger, that is to say, the hard polyurethane foam had a higher core density. Quality polyurethane foam has a higher density.
  • Example 5 Compared with Example 1, in Comparative Example 5, no low-boiling point foaming agent and methyl formate were added, so that the thermal conductivity and core density of the prepared rigid polyurethane foam were The larger the value, that is, the rigid polyurethane foam has a higher thermal conductivity and density.
  • Example 6 Compared with Example 1, in Comparative Example 6, no low-boiling point foaming agent and methyl formate were added, but the cyclopentane component was added, and no low-boiling point foaming agent and methyl formate were added, but the cyclopentane component was added, so that The thermal conductivity coefficient and core density of the prepared rigid polyurethane foam are relatively large, that is to say, the thermal conductivity and density of the rigid polyurethane foam are relatively high.
  • the prepared Rigid polyurethane foam has a high density and thermal conductivity, making it unable to replace VIP boards.
  • the density of the rigid polyurethane foam is reduced, the thermal conductivity is reduced, and the cost is reduced.
  • various aspects of the foam are reduced. The performance remains basically unchanged and can be used to replace the VIP board.
  • An embodiment of the present disclosure also provides a thermal insulation material, which is prepared from the rigid polyurethane foam described in any of the above embodiments.
  • the thermal insulation material can be used for the side panels and back panels of the refrigerator or freezer instead of the VIP board, which is beneficial to reducing the production cost of the refrigerator or the freezer.
  • An embodiment of the present disclosure also provides a refrigerator, which includes the above-mentioned thermal insulation material, and the thermal insulation material is provided on the side panels and the back panel of the refrigerator.
  • An embodiment of the present disclosure also provides a freezer, which includes the above-mentioned thermal insulation material, and the thermal insulation material is provided on the side panels and back panel of the freezer.

Abstract

提供一种硬质聚氨酯泡沫,以重量份数计,所述硬质聚氨酯泡沫包括干白料100份、反-1-氯-3,3,3-三氟丙烯LBA发泡剂26份~34份、低沸点发泡剂1份~5份、多苯基甲烷多异氰酸酯130份~170份、以及甲酸甲酯改良剂3份。以重量份数计,所述干白料包括组合聚醚87份~95份、表面活性剂2.5份~4份、催化剂1.5份~6份和水1份~3份。

Description

硬质聚氨酯泡沫、其制备方法及包含硬质聚氨酯泡沫的保温材料、冰箱或冰柜
本申请要求于2022年7月21日提交的、申请号为202210860414.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及高分子材料技术领域,尤其涉及一种硬质聚氨酯泡沫、其制备方法及包含硬质聚氨酯泡沫的保温材料、冰箱或冰柜。
背景技术
随着经济的发展,人们对冰箱性能的要求日益提高。通过改进冰箱的保温层填充材料,可以在不影响冰箱保温性能的前提下,减薄冰箱壁,从而可以提高冰箱内部空间的利用率。
硬质聚氨酯泡沫是一种常用的保温层填充材料,具有优良的隔热性能,被广泛应用于冷藏设备中。
发明内容
一方面,提供一种硬质聚氨酯泡沫,以重量份数计,所述硬质聚氨酯泡沫包括干白料100份、反-1-氯-3,3,3-三氟丙烯LBA发泡剂26份~34份、低沸点发泡剂1份~5份、多苯基甲烷多异氰酸酯130份~170份、以及甲酸甲酯改良剂3份。以重量份数计,所述干白料包括组合聚醚87份~95份、表面活性剂2.5份~4份、催化剂1.5份~6份和水1份~3份。
另一方面,提供一种硬质聚氨酯泡沫的制备方法,所述硬质聚氨酯泡沫包括上述任一实施例所述的硬质聚氨酯泡沫。所述方法包括:按照重量份数配比,将所述组合聚醚、所述表面活性剂、所述催化剂和所述水进行第一次混匀,并得到第一混合物;按照重量份数配比,将所述第一混合物与所述反-1-氯-3,3,3-三氟丙烯发泡剂和所述甲酸甲酯进行第二次混匀,并得到第二混合物;按照重量份数配比,将所述第二混合物与所述低沸点发泡剂进行第三次混匀,并得到第三混合物;提高混合压力,将所述第三混合物进行第四次混匀,并得到第四混合物;将所述第四混合物的一部分送入高压发泡机中,并高压循环0.5h,使所述第四混合物在所述高压发泡机的料罐与管路中高速混合流动,以清洗所述高压发泡机;将所述高压发泡机中的所述第四混合物的所述一部分排出,并将所述第四混合物的另一部分送入所述高压发泡机中,并高压循环0.5h;以及按照重量份数配比,将经所述高压发泡机高压循环的所述第四混合物的所述另一部分与所述多苯基甲烷多异氰酸酯混合,使所述第四混合物的所述另一部分与所述多苯基甲烷多异氰酸酯反应,以得到第五混合物,然后将所述第五混合物注入模具中,以制备得到所述硬质聚氨酯泡沫。
又一方面,提供一种保温材料,所述保温材料由上述任一实施例所述的硬质聚氨酯泡沫制备得到。
又一方面,提供一种冰箱,所述冰箱包括上述任一实施例所述的保温材料,所述保温材料设置于所述冰箱的侧板、后背板。
又一方面,提供一种冰柜,所述冰柜包括上述任一实施例所述的保温材料,所述保温材料设置于所述冰柜的侧板、后背板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的硬质聚氨酯泡沫的制备方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
硬质聚氨酯泡沫是一种常用的保温层填充材料,具有优良的隔热性能,被广泛应用于冷藏设备中,例如冰箱、冷柜等。
随着冰箱的广泛使用,为了提高冰箱内部空间的利用率,一般,在冰箱容积不变的前提下,以减小冰箱壁厚度的方式来提高冰箱的容积率。然而冰箱壁的厚度减小,会导致冰箱保温层变薄,冰箱的保温性能降低。因此为了补救薄壁冰箱因保温层变薄而降低的保温性能,通常在薄壁冰箱的保温层中增加真空隔热板(Vacuum Insulation Panel,简称VIP板)。但是VIP板价格昂贵,并且在保温层中增加VIP板会压缩发泡流道空间,导致薄壁冰箱的生产难度和生产成本上升。
本公开的一些实施例提供了一种硬质聚氨酯泡沫,所述硬质聚氨酯泡沫的密度和导热系数低,具有优良的隔热性能,可以作为保温层填充材料,替代VIP板在薄壁冰箱中使用。以重量份数计,所述硬质聚氨酯泡沫包括干白料100份、反-1-氯-3,3,3-三氟丙烯(trans-1-chloro-3,3,3-trifluoropropene,简称LBA)发泡剂26份~34份、低沸点发泡剂1份~5份、多苯基甲烷多异氰酸酯(简称聚合MDI)130份~170份以及甲酸甲酯3份。
所述干白料包括组合聚醚87份~95份、表面活性剂2.5份~4份、催化剂1.5份~6份和水1份~3份。
所述硬质聚氨酯泡沫为LBA发泡剂、低沸点发泡剂与甲酸甲酯相结合的体系(即“LBA+低沸点+甲酸甲酯”体系)。所述硬质聚氨酯泡沫的密度和导热系数低,保温性能理想,制备成本可控,且可以替代VIP板在薄壁冰箱中使用。
需要说明的是,纯LBA体系的硬质聚氨酯泡沫包括30份LBA,且密度约为32kg/m3,该体系的密度较高,作为保温层材料在冰箱中使用时,不符合使用要求。而所述低沸点发泡剂的饱和蒸汽压较大,泡沫泡孔内气压较大。
因此,本公开一些实施例提供的硬质聚氨酯泡沫,通过在所述LBA发泡剂中加入1份~2份所述低沸点发泡剂,可以使泡沫密度降低至约29.0kg/m3,且可以维持泡沫强度、尺寸稳定性、膨胀率等性能不变,降低原料使用量,降低生产成本。
在所述“LBA+低沸点+甲酸甲酯”体系的所述硬质聚氨酯泡沫中,甲酸甲酯作为改良剂使用。所述甲酸甲酯与多元醇具有良好的相容性。在所述纯LBA体系的硬质聚氨酯泡沫中添加甲酸甲酯,可以降低所述硬质聚氨酯泡沫的粘度,有利于使所述硬质聚氨酯泡沫中的各成分混合均匀,从而提高发泡过程中的所述硬质聚氨酯泡沫的均一性。另外,所述甲酸甲酯中的羰基与所述硬质聚氨酯泡沫中的氨基反应形成氢键,使得分子之间受到范德华力的作用,从而可以提高所述硬质聚氨酯泡沫的压缩强度、尺寸稳定性,增强分子骨架强度。
例如,在已加入1份~2份所述低沸点发泡剂的所述纯LBA体系的硬质聚氨酯泡沫中,加入约3份所述甲酸甲酯改良剂,有利于促进所述硬质聚氨酯泡沫中的多元醇与异氰酸酯充分反应,提高所述反应后的所述硬质聚氨酯泡沫的密度的均一性,提高所述硬质聚氨酯泡沫的流动性、强度,降低所述硬质聚氨酯泡沫的密度。
在一些实施例中,所述低沸点发泡剂包括丁烷发泡剂。例如,所述丁烷发泡剂包括正丁烷、异丁烷或者正丁烷与异丁烷以任意比例组成的混合物中的任一者。
所述聚合MDI包括异氰酸酯,所述异氰酸酯的含量(NCO)为30%~32%,以使所述硬质聚氨酯泡沫的异氰酸酯指数为1.10~1.30。例如,所述聚合MDI选自聚合MDI万华PM-200、聚合MDI万华PM-2010或聚合MDI万华PM-400中的一种或多种。
需要说明的是,异氰酸酯基的含量较高时,异氰酸酯基会相互反应生成脲基,有利于提高所述硬质聚氨酯泡沫的强度。
在一些具体实施例中,以重量份数计,所述组合聚醚包括聚醚多元醇A 30份~50份、聚醚多元醇B 15份~30份、聚醚多元醇C 10份~20份、聚醚多元醇D 3份~10份和苯酐聚酯多元醇E 0份~20份。
所述聚醚多元醇A由甲苯二胺与氧化丙烯制得,且羟值为380mgKOH/g~480mgKOH/g。所述聚醚多元醇B由作为起始剂的蔗糖与氧化丙烯通过加成反应制得,且羟值为360mgKOH/g~460mgKOH/g。所述聚醚多元醇C由作为起始剂的山梨醇与氧化丙烯通过加成反应制得,且羟值为400mgKOH/g~500mgKOH/g。所述聚醚多元醇D由作为起始剂的甘油与氧化丙烯通过加成反应制得,且羟值为160mgKOH/g~260mgKOH/g。所述苯酐聚酯多元醇E羟值为390mgKOH/g~490mgKOH/g。
所述表面活性剂包括脂肪酸的碱金属盐、脂肪酸的胺盐、蓖麻油、蓖麻油酸或硅氧烷聚合物中的至少一种。例如,所述表面活性剂包括硅油L6863、硅油L6988、硅油AK8830、硅油B8525或硅油B8545中的至少一种。
所述催化剂包括发泡催化剂、凝胶催化剂和三聚催化剂,且所述发泡催化剂、所述凝胶催化剂与所述三聚催化剂的质量比为(2~4):(3~8):(1~3)。
例如,所述发泡催化剂选自五甲基二乙烯三胺、N-甲基二环乙基胺、四甲基己二胺或双-二甲基胺基乙基醚中的一种或多种。所述凝胶催化剂选自二甲基苄胺、二甲基环己烷或三乙烯二胺中的一种或多种。所述三聚催化剂选自醋酸钾、1,3,5-三(二甲氨基丙基)六氢三嗪、(2-羟基丙基)三甲基甲酸铵、乙季铵盐或辛季铵盐中的一种或多种。
基于上述任一实施例所述的硬质聚氨酯泡沫,本公开实施例提供一种硬质聚氨酯泡沫的制备方法,如图1所示,该方法包括步骤1至步骤7。
在步骤1,按照重量份数配比,将所述组合聚醚、所述表面活性剂、所述催化剂和所述水进行第一次混匀,并得到第一混合物。
例如,所述第一次混匀是在20℃、混合压力为0.5MPa~1.5MPa的条件下混合1h~1.5h。
在步骤2,按照重量份数配比,将所述第一混合物与所述LBA发泡剂、所述甲酸甲酯进行第二次混匀,并得到第二混合物。
例如,所述第二次混匀是在20℃、混合压力为1.5MPa~3.5MPa的条件下混合1h~1.5h。
在步骤3,按照重量份数配比,将所述第二混合物与所述低沸点发泡剂进行第三次混匀,并得到第三混合物。
例如,所述第三次混匀是在20℃、混合压力为3.0MPa~4.0MPa的条件下混合0.5h~1h。
在步骤4,提高混合压力,将所述第三混合物进行第四次混匀,并得到第四混合物。
例如,所述第四次混匀是在20℃、混合压力为3.0MPa~4.5Mpa的条件下混合0.5h~1h。
需要说明的是,所述低沸点发泡剂的沸点较低,且容易挥发。提高混均所述第三混合物时的混合压力,可以使所述低沸点发泡剂与所述第二混合物混匀的同时,减少所述低沸点发泡剂的挥发量,从而有利于提高混合精度,减少所述低沸点发泡剂的损失。
在步骤5,将所述第四混合物的一部分送入高压发泡机中,并高压循环0.5h,以清洗所述高压发泡机。
例如,将所述第四混合物的一部分送入高压发泡机中,并高压循环0.5h,使所述第四混合物在所述高压发泡机的料罐与管路中高速混合流动,以清洗所述高压发泡机,防止残留在所述料罐和所述管路中的混合物污染所述第四混合物。
在步骤6,将所述高压发泡机中的所述第四混合物的所述一部分排出,并将所述第四混合物的另一部分送入所述高压发泡机中,并高压循环0.5h。
在步骤7,按照重量份数配比,将经所述高压发泡机高压循环的所述第四混合物的所述另一部分与所述聚合MDI混合,使所述第四混合物的所述另一部分与所述聚合MDI反应,以得到第五混合物,然后将所述第五混合物注入模具中,以制备得到所述硬质聚氨酯泡沫。
例如,将所述第五混合物注入所述模具的条件包括注射温度为15℃~20℃,注射压力为130Mpa~150Mpa。以下,对本公开实施例提供的硬质聚氨酯泡沫、其制备方法及包含硬质聚氨酯泡沫的保温材料、冰箱或冰柜,提供以下实施例进行介绍。
实施例1
本实施例提供一种硬质聚氨酯泡沫及其制备方法。
以重量份数计,该硬质聚氨酯泡沫包括干白料100份、LBA发泡剂30份、低沸点发泡剂1.5份、聚合MDI 134份以及甲酸甲酯3份。所述干白料包括催化剂2.9份、硅油表面活性剂3份以及水2.1份。
该硬质聚氨酯泡沫的制备方法,包括步骤11至步骤18。
在步骤11,按照上述重量份数配比,在20℃、混合压力为0.5MPa~1.5MPa的条件下,将所述干白料中的各组分混合1h~1.5h,以进行第一次混匀,并得到第一混合物。
在步骤12,按照上述重量份数配比,在20℃、混合压力为1.5MPa~3.5MPa的条件下,将步骤11所得的所述第一混合物与所述LBA发泡剂、所述甲酸甲酯混合1h~1.5h,以进行第二次混匀,并得到第二混合物。
在步骤13,按照上述重量份数配比,在20℃、混合压力为3.0MPa~4.0MPa的条件下,将步骤12所得的所述第二混合物与所述低沸点发泡剂混合0.5h~1.0h,以进行第三次混匀,并得到第三混合物。
在步骤14,在20℃、混合压力为3.0MPa~4.5Mpa的条件下,将步骤13所得的所述第三混合物,提高混合压力继续混合0.5h~1h,以进行第四次混匀,并得到第四混合物。
在步骤15,将所述第四混合物的一部分送入高压发泡机中,并高压循环0.5h,使所述第四混合物在所述高压发泡机的料罐与管路中高速混合流动,以清洗所述高压发泡机,防止残留在所述料罐和所述管路中的混合物污染所述第四混合物。
在步骤16,将所述高压发泡机中的所述第四混合物的所述一部分排出,并将所述第四混合物的另一部分送入所述高压发泡机中,并高压循环0.5h。
在步骤17,按照上述重量份数配比,将步骤16所得的经所述高压发泡机高压 循环的所述第四混合物的所述另一部分与所述聚合MDI混合,使所述第四混合物的所述另一部分与所述聚合MDI反应,以得到第五混合物。
在步骤18,计算模具的恰填质量,并且确定过填质量,以及确定泡沫的乳白时间(cream time,简称CT)、凝胶时间(gel time,简称GT)、自由泡沫密度(FRD)在设计范围内,将步骤17所得的所述第五混合物控制在注射温度为15℃~20℃、注射压力为130Mpa~150Mpa的条件下,以所述过填质量填充进所述模具中,并且控制所述模具温度为45℃,设置固化时间为7min,以制备得到硬质聚氨酯泡沫。
例如,所述泡沫乳白时间为4s~12s,所述凝胶时间为35s~55s,所述自由泡沫密度为18.5kg/m3~22.5kg/m3,过填质量为15%。
需要说明的是,所述恰填质量为泡沫的自由膨胀的体积与容器的体积相等时,泡沫的质量。大于恰填质量的质量称为过填质量。过填质量为恰填质量的110-130%之间,例如为110%、115%或130%。
实施例2
本实施例提供一种硬质聚氨酯泡沫及其制备方法。与实施例1相比,实施例2中的硬质聚氨酯泡沫的配方不同,而制备方法相同。对与实施例1相同的制备方法,此处不再赘述。
以重量份数计,实施例2中的硬质聚氨酯泡沫包括干白料100份、LBA发泡剂30份、低沸点发泡剂1.5份、聚合MDI 146份以及甲酸甲酯3份。所述干白料包括催化剂2.9份、硅油表面活性剂3份以及水2.1份。
实施例3
本实施例提供一种硬质聚氨酯泡沫及其制备方法。与实施例1相比,实施例3中的硬质聚氨酯泡沫的配方不同,而制备方法相同。对与实施例1相同的制备方法,此处不再赘述。
以重量份数计,实施例3中的硬质聚氨酯泡沫包括干白料100份、LBA发泡剂30份、低沸点发泡剂1.5份、聚合MDI 160份以及甲酸甲酯3份。所述干白料包括催化剂2.9份、硅油表面活性剂3份以及水2.1份。
实施例4
本实施例提供一种硬质聚氨酯泡沫及其制备方法。实施例4中的硬质聚氨酯泡沫的配方以及制备方法与实施例1相同,此处不再赘述。
实施例5
本实施例提供一种硬质聚氨酯泡沫及其制备方法。实施例5中的硬质聚氨酯泡沫的配方与实施例2相同,且实施例5中的硬质聚氨酯泡沫的制备方法与实施例1相同,此处不再赘述。
实施例6
本实施例提供一种硬质聚氨酯泡沫及其制备方法。实施例6中的硬质聚氨酯泡沫的配方与实施例3相同,且实施例6中的硬质聚氨酯泡沫的制备方法与实施例1相同,此处不再赘述。
对比例1
本对比例提供一种硬质聚氨酯泡沫及其制备方法。与实施例1相比,对比例1中的硬质聚氨酯泡沫的配方不同,而制备方法相同。对与实施例1相同的制备方法,此处不再赘述。
以重量份数计,对比例1中的硬质聚氨酯泡沫包括干白料100份、LBA发泡剂30份、低沸点发泡剂1.5份以及聚合MDI 134份。所述干白料包括催化剂2.9份、硅油表面活性剂3份以及水2.1份。
对比例2
本对比例提供一种硬质聚氨酯泡沫及其制备方法。与实施例1相比,对比例2 中的硬质聚氨酯泡沫的配方不同,而制备方法相同。对与实施例1相同的制备方法,此处不再赘述。
以重量份数计,对比例2中的硬质聚氨酯泡沫包括干白料100份、LBA发泡剂30份、低沸点发泡剂1.5份、聚合MDI 134份以及甲酸甲酯4份。所述干白料包括催化剂2.9份、硅油表面活性剂3份以及水2.1份。
对比例3
本对比例提供一种硬质聚氨酯泡沫及其制备方法。与实施例1相比,对比例3中的硬质聚氨酯泡沫的组分不同,而制备方法相同。对与实施例1相同的制备方法,此处不再赘述。
以重量份数计,对比例3中的硬质聚氨酯泡沫包括干白料100份、LBA发泡剂30份、低沸点发泡剂5份、聚合MDI 134份以及甲酸甲酯3份。所述干白料包括催化剂2.9份、硅油表面活性剂3份以及水2.1份。
对比例4
本对比例提供一种硬质聚氨酯泡沫及其制备方法。与实施例1相比,对比例4中的硬质聚氨酯泡沫的配方不同,而制备方法相同。对与实施例1相同的制备方法,此处不再赘述。
以重量份数计,对比例4中的硬质聚氨酯泡沫包括干白料100份、LBA发泡剂30份、聚合MDI 134份以及甲酸甲酯3份。所述干白料包括催化剂2.9份、硅油表面活性剂3份以及水2.1份。
对比例5
本对比例提供一种硬质聚氨酯泡沫及其制备方法。与实施例1相比,对比例5中的硬质聚氨酯泡沫的配方不同,而制备方法相同。对与实施例1相同的制备方法,此处不再赘述。
以重量份数计,对比例5中的硬质聚氨酯泡沫包括干白料100份、LBA发泡剂30份以及聚合MDI 134份。所述干白料包括催化剂2.9份、硅油表面活性剂3份以及水2.1份。
对比例6
本对比例提供一种硬质聚氨酯泡沫及其制备方法。与实施例1相比,对比例6中的硬质聚氨酯泡沫的配方不同,而制备方法相同。对与实施例1相同的制备方法,此处不再赘述。
以重量份数计,对比例6中的硬质聚氨酯泡沫包括干白料100份、LBA发泡剂6份、环戊烷13份以及聚合MDI 134份。所述干白料包括催化剂2.9份、硅油表面活性剂3份、水2.1份。
本公开还对上述实施例及对比例制备得到的硬质聚氨酯泡沫进行了各项性能测试。例如,使用的模具的尺寸为2000mm*200mm*50mm制备硬质聚氨酯泡沫。将制备所得的硬质聚氨酯泡沫均分成尺寸为200mm*200mm*50mm的小块泡沫,并利用所述小块泡沫测试泡沫的性能。
例如,将泡沫去掉表皮切割成尺寸为50mm*50mm*30mm的小块,用于测试压缩强度、密度、体积变化率。将泡沫去掉表皮切割成尺寸为100mm*100mm*30mm的小块,用于测试尺寸稳定性。将泡沫去掉表皮切割成尺寸为200mm*200mm*25mm的小块,用于测试导热系数。
为了便于理解上述实施例及对比例制备得到的硬质聚氨酯泡沫,对上述实施例及对比例制备得到的低密度超低导热系数的硬质聚氨酯泡沫的各项性能测试的结果,总结于表1和表2,具体内容如下。
表1各实施例的硬质聚氨酯泡沫性能测试结果
可以理解的是,分析各实施例及对比例的制备硬质聚氨酯泡沫的配方,与实施 例1相比,对比例1的配方中并未添加甲酸甲酯,未添加甲酸甲酯,使得制备出的硬质聚氨酯泡沫的芯密度的数值较大,也就是说,该硬质聚氨酯泡沫的密度较高。
与实施例1相比,对比例2中甲酸甲酯的用量超出本公开所限定的使用范围,超量添加甲酸甲酯,使得制备出的硬质聚氨酯泡沫的尺寸稳定性的数值较大,也就是说,该硬质聚氨酯泡沫的尺寸稳定性较低。
与实施例1相比,对比例3中低沸点发泡剂的用量为5重量份,超出本公开所限定的使用范围,超量添加低沸点发泡剂,使得制备出的硬质聚氨酯泡沫的导热系数的数值较大,也就是说,该硬质聚氨酯泡沫的导热系数较高。
与实施例1相比,对比例4中并未添加低沸点发泡剂,未添加低沸点发泡剂,使得制备出的硬质聚氨酯泡沫的芯密度的数值较大,也就是说,该硬质聚氨酯泡沫的密度较高。
与实施例1相比,对比例5中未添加低沸点发泡剂与甲酸甲酯,未添加低沸点发泡剂和甲酸甲酯,使得制备出的硬质聚氨酯泡沫的导热系数和芯密度的数值较大,也就是说,该硬质聚氨酯泡沫的导热系数和密度较高。
与实施例1相比,对比例6中未添加低沸点发泡剂和甲酸甲酯,而添加环戊烷成分,未添加低沸点发泡剂和甲酸甲酯,而添加环戊烷成分,使得制备出的硬质聚氨酯泡沫的导热系数和芯密度的数值较大,也就是说,该硬质聚氨酯泡沫的导热系数和密度较高。
综上所述,当配方中不添加甲酸甲酯或低沸点发泡剂,以及当在配方中添加的甲酸甲酯或低沸点发泡剂的使用量超出本公开所限定的范围时,制备所得的硬质聚氨酯泡沫的密度较高、导热系数较高,无法实现替代VIP板的目的。而利用本公开所提供的配方及其制备方法制备得到的硬质聚氨酯泡沫,在加入低沸点发泡剂与甲酸甲酯后,硬质聚氨酯泡沫密度降低,导热系数降低,成本降低,但各项性能基本维持不变,可以实现替代VIP板的目的。
本公开实施例还提供一种保温材料,所述保温材料由上述任一实施例所述的硬质聚氨酯泡沫制备得到。所述保温材料可以替代VIP板用于冰箱或冰柜的侧板、后背板,有利于降低所述冰箱或所述冰柜的生产成本。
本公开实施例还提供一种冰箱,所述冰箱包括上述保温材料,且所述保温材料设置于所述冰箱的侧板、后背板。
本公开实施例还提供一种冰柜,所述冰柜包括上述保温材料,且所述保温材料设置于所述冰柜的侧板、后背板。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (15)

  1. 一种硬质聚氨酯泡沫,以重量份数计,包括:
    干白料100份;
    反-1-氯-3,3,3-三氟丙烯发泡剂26份~34份;
    低沸点发泡剂1份~5份;
    多苯基甲烷多异氰酸酯130份~170份;以及
    甲酸甲酯3份;
    其中,以重量份数计,所述干白料包括组合聚醚87份~95份、表面活性剂2.5份~4份、催化剂1.5份~6份和水1份~3份。
  2. 根据权利要求1所述的硬质聚氨酯泡沫,其中,所述低沸点发泡剂包括丁烷发泡剂,所述多苯基甲烷多异氰酸酯包括异氰酸酯,所述异氰酸酯的含量为30%~32%,以使所述硬质聚氨酯泡沫的异氰酸酯指数为1.10~1.30。
  3. 根据权利要求2所述的硬质聚氨酯泡沫,其中,所述丁烷发泡剂包括正丁烷、异丁烷或正丁烷与异丁烷以任意比例组成的混合物中的任一者。
  4. 根据权利要求1至3中任一项所述的硬质聚氨酯泡沫,其中,所述组合聚醚包括聚醚多元醇A 30份~50份、聚醚多元醇B 15份~30份、聚醚多元醇C 10份~20份、聚醚多元醇D 3份~10份和苯酐聚酯多元醇E 0份~20份;所述聚醚多元醇A由甲苯二胺与氧化丙烯制得,所述聚醚多元醇B由作为起始剂的蔗糖与氧化丙烯通过加成反应制得,所述聚醚多元醇C由作为起始剂的山梨醇与氧化丙烯通过加成反应制得,所述聚醚多元醇D由作为起始剂的甘油与氧化丙烯通过加成反应制得。
  5. 根据权利要求4所述的硬质聚氨酯泡沫,其中,所述聚醚多元醇A羟值为380mgKOH/g~480mgKOH/g,所述聚醚多元醇B羟值为360mgKOH/g~460mgKOH/g,所述聚醚多元醇C羟值为400mgKOH/g~500mgKOH/g,所述聚醚多元醇D羟值为160mgKOH/g~260mgKOH/g,所述苯酐聚酯多元醇E羟值为390mgKOH/g~490mgKOH/g。
  6. 根据权利要求1至5中任一项所述的硬质聚氨酯泡沫,其中,所述表面活性剂包括脂肪酸的碱金属盐、脂肪酸的胺盐、蓖麻油、蓖麻油酸或硅氧烷聚合物中的至少一种;所述催化剂包括发泡催化剂、凝胶催化剂和三聚催化剂,且所述发泡催化剂、所述凝胶催化剂与所述三聚催化剂的质量比为(2~4):(3~8):(1~3)。
  7. 根据权利要求6所述的硬质聚氨酯泡沫,其中,所述发泡催化剂包括五甲基二乙烯三胺、N-甲基二环乙基胺、四甲基己二胺或双-二甲基胺基乙基醚中的一种或多种,所述凝胶催化剂选自二甲基苄胺、二甲基环己烷或三乙烯二胺中的一种或多种,所述三聚催化剂选自醋酸钾、1,3,5-三(二甲氨基丙基)六氢三嗪、(2-羟基丙基)三甲基甲酸铵、乙季铵盐或辛季铵盐中的一种或多种。
  8. 一种硬质聚氨酯泡沫的制备方法,其中,所述硬质聚氨酯泡沫包括如权利要求1至7中任一项所述的硬质聚氨酯泡沫;
    所述方法包括:
    按照重量份数配比,将所述组合聚醚、所述表面活性剂、所述催化剂和所述水进行第一次混匀,并得到第一混合物;
    按照重量份数配比,将所述第一混合物与所述反-1-氯-3,3,3-三氟丙烯发泡剂和所述甲酸甲酯进行第二次混匀,并得到第二混合物;
    按照重量份数配比,将所述第二混合物与所述低沸点发泡剂进行第三次混匀,并得到第三混合物;
    提高混合压力,将所述第三混合物进行第四次混匀,并得到第四混合物;
    将所述第四混合物的一部分送入高压发泡机中,并高压循环0.5h,使所述第四混合物在所述高压发泡机的料罐与管路中高速混合流动,以清洗所述高压发泡机;
    将所述高压发泡机中的所述第四混合物的所述一部分排出,并将所述第四混合物的另一部分送入所述高压发泡机中,并高压循环0.5h;以及
    按照重量份数配比,将经所述高压发泡机高压循环的所述第四混合物的所述另一部分与所述多苯基甲烷多异氰酸酯混合,使所述第四混合物的所述另一部分与所述多苯基甲烷多异氰酸酯反应,以得到第五混合物,然后将所述第五混合物注入模具中,以制备得到所述硬质聚氨酯泡沫。
  9. 根据权利要求8所述的硬质聚氨酯泡沫的制备方法,其中,所述第一次混匀包括在第一预设条件下混合1h~1.5h,所述第二次混匀包括在第二预设条件下混合1h~1.5h,所述第三次混匀包括在第三预设条件下混合0.5h~1h,所述第四次混匀包括在第四预设条件下混合0.5h~1h。
  10. 根据权利要求9所述的硬质聚氨酯泡沫的制备方法,其中,所述第一预设条件包括第一预设温度和第一预设压力,所述第二预设条件包括第二预设温度和第二预设压力,所述第三预设条件包括第三预设温度和第三预设压力,所述第四预设条件包括第四预设温度和第四预设压力。
  11. 根据权利要求10所述的硬质聚氨酯泡沫的制备方法,其中,所述第一预设温度、所述第二预设温度、所述第三预设温度和所述第四预设温度为20℃,所述第一预设压力为0.5MPa~1.5MPa,所述第二预设压力为1.5MPa~3.5MPa,所述第三预设压力为3.0MPa~4.0MPa,所述第四预设压力为3.0MPa~4.5MPa。
  12. 根据权利要求8至11中任一项所述的硬质聚氨酯泡沫的制备方法,其中,将所述第五混合物注入所述模具的条件包括注射温度为15℃~20℃,注射压力为130Mpa~150Mpa。
  13. 一种保温材料,由权利要求1至7中任一项所述的硬质聚氨酯泡沫制备得到。
  14. 一种冰箱,包括如权利要求13所述的保温材料,所述保温材料设置于所述冰箱的侧板、后背板。
  15. 一种冰柜,包括如权利要求13所述的保温材料,所述保温材料设置于所述冰柜的侧板、后背板。
PCT/CN2023/087643 2022-07-21 2023-04-11 硬质聚氨酯泡沫、其制备方法及包含硬质聚氨酯泡沫的保温材料、冰箱或冰柜 WO2024016743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210860414.6 2022-07-21
CN202210860414.6A CN115073694B (zh) 2022-07-21 2022-07-21 低密度超低导热系数的硬质聚氨酯泡沫、制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2024016743A1 true WO2024016743A1 (zh) 2024-01-25

Family

ID=83242581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087643 WO2024016743A1 (zh) 2022-07-21 2023-04-11 硬质聚氨酯泡沫、其制备方法及包含硬质聚氨酯泡沫的保温材料、冰箱或冰柜

Country Status (2)

Country Link
CN (1) CN115073694B (zh)
WO (1) WO2024016743A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073694B (zh) * 2022-07-21 2023-09-22 海信冰箱有限公司 低密度超低导热系数的硬质聚氨酯泡沫、制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110303867A1 (en) * 2006-03-21 2011-12-15 Honeywell International Inc. Foams And Articles Made From Foams Containing 1-Chloro-3,3,3-Trifluoropropene (HFCO-1233zd)
CN113773463A (zh) * 2021-08-16 2021-12-10 佳化化学科技发展(上海)有限公司 聚醚组合物和以其为原料的聚氨酯硬泡及其制备方法
CN114057981A (zh) * 2021-11-09 2022-02-18 红宝丽集团股份有限公司 聚氨酯硬泡及其使用的组合聚醚
CN114716722A (zh) * 2021-01-04 2022-07-08 海信容声(广东)冰箱有限公司 冰箱及硬质聚氨酯泡沫、硬质聚氨酯泡沫的制备方法
CN115073694A (zh) * 2022-07-21 2022-09-20 海信冰箱有限公司 低密度超低导热系数的硬质聚氨酯泡沫、制备方法及其应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1528612A (en) * 1975-01-27 1978-10-18 Ici Ltd Polyurethane foams and foam composites
DE3933335C2 (de) * 1989-10-06 1998-08-06 Basf Ag Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen mit geringer Wärmeleitfähigkeit und ihre Verwendung
JP3618188B2 (ja) * 1997-01-21 2005-02-09 住化バイエルウレタン株式会社 低発煙性の硬質ポリウレタンフォームの製造方法
KR20120128662A (ko) * 2010-10-22 2012-11-27 남경 버신 폴리우레탄 컴퍼니 리미티드 일종의 저밀도 경질 폴리우레탄 폼을 제조하기 위한 빠른 반응 조합물
CN102443134B (zh) * 2011-09-16 2013-08-07 广东万华容威聚氨酯有限公司 一种聚氨酯硬质泡沫及其制备方法
CN104262670A (zh) * 2014-09-17 2015-01-07 合肥华凌股份有限公司 发泡剂组合物、聚氨酯泡沫及其制造方法
CN108129631A (zh) * 2017-12-28 2018-06-08 青岛海尔股份有限公司 聚氨酯硬质泡沫塑料及其制备方法
CN110078890B (zh) * 2019-04-30 2021-04-20 万华化学(宁波)容威聚氨酯有限公司 一种聚氨酯硬质泡沫及其制备方法
CN110016132B (zh) * 2019-04-30 2021-06-29 万华化学(宁波)容威聚氨酯有限公司 纳米碳纤维聚醚多元醇乳化剂及其制备方法和用途
CN111647123B (zh) * 2020-04-20 2022-06-14 上海抚佳精细化工有限公司 一种聚氨酯硬泡泡沫及其制备方法
CN111647191B (zh) * 2020-05-14 2022-11-08 万华化学(宁波)容威聚氨酯有限公司 一种低导发泡剂组合物,聚氨酯硬质泡沫及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110303867A1 (en) * 2006-03-21 2011-12-15 Honeywell International Inc. Foams And Articles Made From Foams Containing 1-Chloro-3,3,3-Trifluoropropene (HFCO-1233zd)
CN114716722A (zh) * 2021-01-04 2022-07-08 海信容声(广东)冰箱有限公司 冰箱及硬质聚氨酯泡沫、硬质聚氨酯泡沫的制备方法
CN113773463A (zh) * 2021-08-16 2021-12-10 佳化化学科技发展(上海)有限公司 聚醚组合物和以其为原料的聚氨酯硬泡及其制备方法
CN114057981A (zh) * 2021-11-09 2022-02-18 红宝丽集团股份有限公司 聚氨酯硬泡及其使用的组合聚醚
CN115073694A (zh) * 2022-07-21 2022-09-20 海信冰箱有限公司 低密度超低导热系数的硬质聚氨酯泡沫、制备方法及其应用

Also Published As

Publication number Publication date
CN115073694A (zh) 2022-09-20
CN115073694B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
US11505670B2 (en) Polyurethane foams co-blown with a mixture of a hydrocarbon and a halogenated olefin
CN108976463B (zh) 用于制备聚氨酯泡沫的组合物套装及其制备方法和应用
CN102079803B (zh) 一种全水型组合聚醚及使用方法,聚氨酯硬质泡沫组合物
WO2018227884A1 (zh) 组合聚醚、聚氨酯泡沫及其制备方法和应用
CN106062054A (zh) 低温绝热泡沫
EP3548533B1 (de) Polyurethan-hartschaumstoffe, ein verfahren zu deren herstellung und deren verwendung
CN110105520B (zh) 一种保温硬质聚氨酯泡沫及其制备方法
WO2024016743A1 (zh) 硬质聚氨酯泡沫、其制备方法及包含硬质聚氨酯泡沫的保温材料、冰箱或冰柜
JP2022531217A (ja) パネル断熱材としての使用に適した硬質ポリウレタンフォーム
CN107501517A (zh) 聚氨酯泡沫及其制备方法和用途
JP2014521798A (ja) Hfo/水で発泡した硬質フォーム系
JP2022524030A (ja) ポリオールブレンド及びpur-pirフォーム形成組成物の製造におけるそれらの使用
WO2011107374A1 (de) Verfahren zur herstellung von polyurethan-hartschaumstoffen
JP3475763B2 (ja) 冷蔵庫の断熱箱体
CN104619759B (zh) 制备聚氨酯泡沫的真空辅助式方法
WO2020146442A1 (en) Hcfo-containing isocyanate-reactive compositions, related foam-forming compositions and polyurethane foams
CN110172173B (zh) 一种用于与异氰酸酯反应的组合物
JP3700499B2 (ja) 冷蔵庫
CN113754850A (zh) 一种聚氨酯泡沫及制备方法和应用
KR100935517B1 (ko) 접착력과 탈형성이 개선된 폴리우레탄 발포체 제조를 위한원액 조성물, 이로부터 제조된 폴리우레탄 발포체 및 그제조방법
JPH11248344A (ja) 冷蔵庫と冷凍庫の断熱箱体および断熱扉
MXPA04011586A (es) Espumas rigidas de poliuretano para aislamiento y procedimiento para producirlas.
JP2011213854A (ja) 硬質ポリウレタンフォームの製造方法並びに組成物
JP3475762B2 (ja) 冷蔵庫および冷凍庫の断熱扉
JP2004027074A (ja) 硬質ポリウレタンフォームおよび断熱体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841816

Country of ref document: EP

Kind code of ref document: A1